
Dodona: Automated Oracle Data Set Selection

Pablo Loyola‡, Matt Staats∗, In-Young Ko†, and Gregg Rothermel?
‡Dept. of Ind. Eng.
University of Chile

Santiago, Chile
ployola@ing.uchile.cl

∗SnT Centre
U. Luxembourg

Luxembourg
matthew.staats@uni.lu

†Dept. of Comp. Science
KAIST

Daejeon, South Korea
iko@kaist.ac.kr

?Dept. of Comp. Science
U. Nebraska-Lincoln

Lincoln, NE, USA
grother@cse.unl.edu

ABSTRACT
Software complexity has increased the need for automated
software testing. Most research on automating testing, how-
ever, has focused on creating test input data. While careful
selection of input data is necessary to reach faulty states
in a system under test, test oracles are needed to actually
detect failures. In this work, we describe Dodona, a sys-
tem that supports the generation of test oracles. Dodona
ranks program variables based on the interactions and de-
pendencies observed between them during program execu-
tion. Using this ranking, Dodona proposes a set of variables
to be monitored, that can be used by engineers to construct
assertion-based oracles. Our empirical study of Dodona re-
veals that it is more effective and efficient than the current
state-of-the-art approach for generating oracle data sets, and
can often yield oracles that are almost as effective as oracles
hand-crafted by engineers without support.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging

General Terms
Testing

Keywords
test oracles, test generation, empirical studies

1. INTRODUCTION
A test case is composed of two essential elements: test

input data and test oracles. Test input data consists of
values passed or provided to the system under test, while
test oracles are the artifacts used to judge the correctness
of the system’s execution. Both test input data and oracles
impact the effectiveness of test cases – test input data de-
termines what behavior the system will exhibit, while test
oracles determine what failures (and hence, ultimately, what

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISSTA ’14, July 21-25, 2014, San Jose, CA, USA
Copyright 2014 ACM 978-1-4503-2645-2/14/07 ...$15.00.

faults) can be detected [21]. Most work on automating test-
ing, however, focuses on issues related to test inputs, while
largely ignoring the impact of test oracles.

Recent work has recognized the value of creating test or-
acles that are tailored to specific test inputs [9, 14, 18, 21].
While several approaches for automatically generating such
oracles have been proposed, most of these approaches at-
tempt to completely automate the process. This results in a
“generate and fix” approach, whereby the generation process
produces effective test oracles, but only if developers can cor-
rect the output from the tools, a challenging task [8, 19]. In
contrast, in this work, we seek not to completely automate
oracle generation, but instead to support test engineers in
the construction of expected value test oracles – oracles that
specify, for a single test input, the concrete expected value
for one or more program values.

Our interest in expected value test oracles stems from
their role in automatic test case generation. When gener-
ating test cases, automated test case generation techniques
can typically fully generate only test inputs, because with-
out a formal program specification, techniques cannot spec-
ify what it is for an execution to be “correct”. In practice,
it is then up to test engineers to define the expected be-
havior of the system under test. In this context, manual
oracle generation can be difficult, because, having not con-
structed the test inputs, test engineers may find it difficult
to understand expected program behavior for those inputs,
or to know where to look for failures [5]. We believe that
by providing testers with recommendations as to what ora-
cles should consist of (i.e., what aspects of system state are
worth monitoring), we can make oracle construction easier,
and maximize the potential return on engineers’ efforts.

In prior work, we presented an approach for supporting
oracle construction based on specifying an oracle data set
– a set of variables for which expected values can be de-
fined. While effective in the domain in which it was em-
ployed (avionics systems), this approach’s generalizability is
limited for two reasons: lack of scalability due to its reliance
on mutation analysis, and a simple model of program observ-
ability that assumes that an oracle can consider a program’s
entire state. These problems limit the approach’s applica-
bility, making it difficult to apply it to other areas such as
object-oriented unit testing, where much of the work on au-
tomatic test case generation currently exists.

In this work, we present Dodona, a system that imple-
ments a new approach for specifying oracle data sets when
unit testing Java applications. Dodona is applied for each
test case. Initially, a test input is executed, and Dodona

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.

ISSTA’14, July 21–25, 2014, San Jose, CA, USA
Copyright 2014 ACM 978-1-4503-2645-2/14/07...$15.00
http://dx.doi.org/10.1145/2610384.2610408

193

monitors the relationships that occur between variables dur-
ing execution (i.e., via dataflow analysis). Following this,
Dodona ranks the relevance of each program variable using
techniques from network centrality analysis. Dodona then
maps variables to observable points, i.e., methods and pub-
lic variables. Finally, Dodona recommends an oracle data
set for the given test input. A test engineer can then define
an expected value oracle for the given test input, confident
that their effort is directed towards aspects of the system
behavior that are relevant under that input.

Dodona overcomes the obstacles preventing prior work on
oracle data selection from being applied to Java unit testing.
This, in turn, addresses a long standing issue with automatic
test case generation for such programs; namely, while test
case generation tools have become increasingly competent
at generating test inputs, they provide little guidance to
test engineers concerning how to use such tests, i.e., how to
define the necessary test oracles. Dodona fulfills this need,
and does so efficiently and independent of the method used
for test case generation.

We evaluated Dodona against a state of the art oracle
data set selection approach [20] (based on mutation analy-
sis) using nine open source Java programs drawn from prior
work on automatic test generation [9]. Our results indicate
that Dodona is both more efficient and more effective than
the prior approach. Dodona required 17.3%-89.8% less time
than the mutation-based approach to generate oracle data
sets. Further, for four of the nine programs studied, the
oracle data sets generated via Dodona were clearly more
effective at detecting faults, producing improvement in fault
finding of up to 115%, whereas the mutation-based was ap-
proach more effective for only two programs (effectiveness
on other programs was comparable).

2. ORACLE DATA SET SELECTION
Dodona operates in a context in which test input data

has already been generated. Extensive research has been
performed on automatic test input generation, and various
promising approaches exist [3]. In some cases, these ap-
proaches include methods for creating test oracles, but such
approaches always — albeit often implicitly — require man-
ual intervention by test engineers to inspect and correct the
results [7, 9]. Evidence supporting the effectiveness of these
approaches is mixed, with user studies noting a tendency for
test engineers to accept incorrect oracles [8, 19].

In this work, our goal is to avoid the “generate-and-fix”
paradigm. Thus, with Dodona, we do not attempt to fully
automate the construction of test oracles. Instead, Dodona
is meant to assist test engineers who use existing test case
generation techniques by supporting their construction of
test oracles. For each test input, Dodona specifies an oracle
data set : a set of elements to be used to construct a test
oracle for that input. Dodona’s goal is to select oracle data
sets that are likely to reveal faults relative to given test
inputs. Using oracle data sets, the test engineer’s efforts can
be directed to where they are most likely to have impact.

In prior work [20], we developed an approach for oracle
data set selection based on mutation analysis; here, we refer
to this approach as mutation-analysis oracle data selection,
or MAODS. As noted in Section 1, this approach suffered
from limited generalizability, rendering it difficult to apply
in the context of object-oriented unit testing, where much of
the work on automated test case generation has occurred.

We propose a new approach suited for use with object-
oriented unit testing – specifically, unit testing for Java pro-
grams. We address two issues that prevent deployment of
MAODS on general Java programs: observability and scala-
bility. First, MAODS does not consider observability issues
relative to the system under test, i.e., it does not distinguish
between public/private variables and methods. This is inap-
propriate when testing Java programs, for which test oracles
are typically based on observer methods (e.g., get methods)
and public variables. Second, mutation analysis has scala-
bility issues in the context of oracle data selection. For the
class of systems studied in our prior work — critical avion-
ics systems — these issues were manageable. However, Java
systems can be large, and the number of mutants created for
a system must scale with the size of the system in order for
MAODS to consistently create effective oracle data. When
mutation analysis is also used to construct test inputs and
oracles this may be acceptable [9], but in other cases (e.g.
symbolic execution, random generation) we do not wish to
follow an expensive test input generation process with an
expensive oracle data selection process.

2.1 Overview of Dodona
Dodona relies on three assumptions: (1) erroneous val-

ues in program variables propagate to further uses (both
direct and transitive) during program execution, (2) vari-
ables whose values are influenced by many other variables
are more likely to contain erroneous values than other vari-
ables, and (3) the likelihood that an erroneous value will
propagate to a variable decreases as the number of interme-
diate computations (computations lying between the occur-
rence of the erroneous value and a later use of that value
increases). An effective oracle data set, then, should consist
of a small set of variables that are computationally highly
related to other program variables.

Figure 1 provides a visualization of the approach used
by Dodona. To identify variables that meet the foregoing
criteria, Dodona begins by using data flow analysis to con-
struct a network of program variables for each test input
(Algorithm 1, top of Figure 1). Next, Dodona uses network
centrality metrics to rank variables in terms of relevance or
centrality to the resulting network (Algorithm 2, lower right
of Figure 1). Dodona uses this ranking to create an oracle
data set for each test input. Both of Dodona’s algorithms
take steps to ensure that the oracle data set is constructed
in terms of observable points, i.e., public member variables
and method calls (bottom left Figure 1). In the next two
subsections we describe the two algorithms, in turn.

2.2 Building a Variable Relationship Network
Given a test case t and program P , Dodona uses Algo-

rithm 1 to map the flow of information from the input data
in t to all potentially observable points in P . This is done
by executing t (in our case a JUnit test case) and tracking
the flow of data from t’s inputs (i.e., parameters of method
calls in the JUnit test), through intermediate variable as-
signments and method calls to member variables in objects.
When tracking data flow, care is taken to consider the con-
text of the variable, including variable scope and the method
call used to reach the variable. This information is used later
to determine how to observe the variable.

For example, consider the statement int c = a + b. Here,
c is initialized using operands a and b, resulting in a unidi-

194

Figure 1: Visualization of the steps taken by Dodona. The final step in which assertions are inserted is done
manually using the oracle data set produced by Dodona.

Algorithm 1 Test Input Dataflow Recording

Require: Test case t
Require: Program P
1: adjMat = ∅
2: map obs = {}
3: while t runs over P do
4: for all yi in x := y1 op y2 ... yn do
5: s = getCurrentScope()
6: adjMat = adjMat ∪ (s.x, s.yi)
7: if s.x 6∈ obs then
8: obs[s.x] = getCurrentMethodCall()
9: end if

10: end for
11: end while
12: return adjMat, obs

rectional relationship from a and b to c, that we denote as
c← a and c← b (line 6 of Algorithm 1). In addition, when
c is added to the adjacency matrix, its dynamic scope as
part of a method call (and an object) is also captured (as
s), along with the method call’s parameters (i.e. the values
of a and b), as shown on lines 5, 6, and 8 of Algorithm 1.
As each instruction is executed sequentially, the network is
built with each relationship represented as a new edge. After
test case execution, the algorithm produces, in adjMat, an
asymmetric adjacency matrix, and a map for each variable
to the method call that references that variable.

We have implemented this analysis in Dodona by using
Java Pathfinder (JPF) (version six) [24]. JPF is an open-
source framework for executing and verifying Java bytecode.
The framework consists of an extensible custom Java Virtual
Machine (JVM) and listener support for monitoring and in-
fluencing JPF’s search. Dodona’s dynamic data flow anal-
ysis is implemented via JPF listeners that monitor Java’s
execution. Specifically, when running a Java test, Dodona
monitors all executions of bytecodes that result in a value
being assigned, method calls, and method returns. When an
assignment (of any kind) is performed, Dodona extends and
updates the Java adjacency matrix accordingly, tracking the
relationships between operands and the assigned variable,
and recording the scope, the current method call, and what
source code variable (if any) the assignment corresponds to.
Thus “variable” in this context refers to operands used by

bytecode assignment(s), and arrays (for example) consist of
multiple variables; one for each element in the array.

When a method call occurs, Dodona tracks the flow of
information from variables used as method parameters in
the current method to the called method. By constructing
the adjacency matrix at the bytecode level, Dodona avoids
problematic issues related to, for example, method calls as
operands, e.g., x = a + someMethod(b)— during compila-
tion, these operations are reduced to assignments to tempo-
rary variables. Each relationship is added only once.

2.3 Ranking Variables in Terms of Relevance
Dodona’s goal in selecting variables is to “cover” all vari-

ables, i.e., to ensure that all computed values propagate to
the test oracle, and do so in a minimal number of intermedi-
ate computations. However, a tradeoff exists when selecting
variables for a test oracle: we must often choose between
a variable that covers previously uncovered variables, and
one that reduces the number of intermediate computations
performed on variables already covered.

In prior work on test case prioritization, we developed a
metric for measuring how well a set of program variables is
covered by a test suite based on a variable adjacency ma-
trix [20]. We have subsequently discovered, however, that
our metric is essentially an example of a network centrality
metric. Network centrality metrics measure the relative im-
portance of nodes within a graph, and are frequently applied
in the analysis of social networks to measure the influence
of individuals [10]. Increasingly, these metrics are used in
software engineering contexts to measure the importance of
connected components in software, e.g., to measure the im-
portance of program dependencies [6, 28]. Given that our
chief technical challenge in selecting oracle data is identify-
ing the most relevant variables in the flow of program exe-
cution, these metrics are a natural fit, and have the benefit
of years of careful study behind them.

In this work, therefore, we have used network centrality
metrics to allow Dodona to measure the importance — and
hopefully, the fault finding ability — of the variables in the
variable adjacency matrix. We outline this process in Al-
gorithm 2. After applying a network centrality metric to
the adjacency matrix (line 1), Dodona filters and maps the

195

list of variables with centrality scores, retaining only those
variables that are either public variables, or that have pub-
lic scope, i.e., that are referenced by a public method call.
Variables referenced by a public method call are mapped to
the appropriate method call (often a “get” method). Finally,
Dodona sorts the mapped list by descending centrality score.
This is visualized on the bottom of Figure 1, which shows
us moving from a network of variables to, in the end, calls
inserted into a Java test suite.

Algorithm 2 Ranked Observable Points Computation

Require: Adjacency matrix adjMat
Require: Observable mapping obs
Require: Network centrality metric ncm
1: varV alues = ncm(adjMat)
2: mappedList = []
3: for all (var, value) ∈ varV alues do
4: if isPublicVariable(var) then
5: mappedList+ = (var, value)
6: end if
7: if isPublicScope(var) then
8: mappedList+ = (obs[var], value)
9: end if

10: end for
11: ranking =sortByValue(mappedList)
12: return ranking

2.3.1 Network Centrality Metrics
A network centrality metric consists of a function f that

computes, for all nodes n in a graph G, a centrality in-
dex f(n). Many centrality metrics have been proposed, and
when implementing Dodona, it was not clear how effective
various centrality metrics might be. We therefore allowed
the metric to vary to empirically compare the effectiveness
of several metrics in the context of oracle data selection.

We explore four network centrality metrics in this work:

Degree centrality. Given graph G, the degree centrality
of a node n ∈ G is defined as deg(n), i.e., the number
of other nodes connected to n. In our context, this
represents the number of operands used to compute a
variable.

Closeness centrality. The closeness of a node n ∈ G is
defined as the inverse of the sum of its distance to all
other nodes in G. Thus, as the distance from node n to
other nodes decreases, its closeness increases. Close-
ness is often interpreted as a metric indicating how
much time is required for information to propagate.
The closeness of a variable v represents, roughly, how
far an error must propagate from some variable to
reach v.

Betweenness centrality. The betweenness of a node n ∈
G is the frequency with which n must be traversed
when traveling the shortest path between any two nodes
n1, n2 ∈ G. A high score for a variable v indicates that
v often stores an intermediate computation.

Eigenvector centrality. Eigenvector centrality assigns a
node n ∈ G a high score if it is adjacent to nodes that
have high scores. A high score for a variable v indicates
that v is computed using other influential variables.

The foregoing metrics are discussed in further detail in [10].
In our context, we are concerned with data flowing to a vari-
able, and thus our computations are based on the in-degree
of a node/variable, i.e. the number of edges directed at

the node. We implemented the computation of all four cen-
trality metrics in Dodona using the JUNG framework, an
open-source Java library for graph-based computations [2].

Note that in contrast to our previous work [20], these met-
rics can not inherently consider “overlapping” or highly re-
lated variables; e.g., variables that are tightly coupled in the
source code.

2.3.2 Mapping Variables to Observable Points
After applying the centrality metric, Dodona must map

each variable to an observable point, and filter out any vari-
ables that cannot be mapped. This is accomplished using
information recorded during dataflow analysis. Public vari-
ables do not need to be mapped; they can be referenced
directly as object.variable. For each non-public variable,
Dodona first checks whether the method call in which the
variable was observed is public. If so, this method call, with
the parameters used when the variable was observed, is used.
If the variable was at no point observed in a public method
call, it is considered unobservable, and Dodona removes it
from the ranking.

In theory, our approach can result in inaccurate mappings
due to changes in program state. Specifically, after record-
ing the method call used to observe a variable, it is possible
that calling that method a second time may, in fact, not ac-
cess that variable a second time. In practice, however, many
variables are mapped to accessor methods or are otherwise
accurately mapped. We considered alternative methods of
mapping variables, including static analysis and Java reflec-
tion, but concluded that these methods were too expensive
to justify using, given the the small number of mistakes that
must be corrected.

2.4 Construction of Test Oracles
Using the foregoing analysis, Dodona produces a list of

observable points for each test input, ordered by their impor-
tance according to a network centrality metric. To construct
an oracle data set, a test engineer selects the top n observ-
able points from the ranked list, with n determined by the
engineer according to the level of effort he or she believes
is warranted. The engineer then constructs a complete test
oracle, by defining expected values for each element in the
oracle data set and placing them after the test input. In JU-
nit testing, the engineer will construct an assertEquals call
for each variable, asserting that the variable has the value
he or she expects for the given test input.

In prior work, we provided a method for estimating an
effective size n. In this work, we do not use such a method.
The prior analysis was based on estimating the point of di-
minishing returns on testing effort using mutation analysis.
While a similar analysis could be performed here, we be-
lieve that estimating diminishing returns using a centrality
metric — an abstraction of variable importance — is not
conceptually sound. Furthermore, in practice, testers typi-
cally construct only 1-4 assertions, with the size of the oracle
determined via tester judgement [8]. We therefore believe
that any suggestion about oracle data size might not only
be conceptually unsound, but also likely to be ignored.

3. EVALUATION
We had two goals when evaluating Dodona. We wished

to first determine what network centrality metric is typi-
cally the most effective with respect to fault finding with
Dodona or, failing that, develop a set of guidelines. Sec-

196

ond, we wished to assess the effectiveness and the cost of
using Dodona to specify oracle data sets.

In this evaluation, we do not yet consider data on human
effort. This is typical when evaluating testing approaches;
early work refines the approach, after which human stud-
ies begin to rigorously assess the human factor (e.g. fault-
localization [16], invariant generation [19]).

We designed an empirical study to explore the following
research questions:

RQ1. How do different centrality metrics used impact the
effectiveness of Dodona?

RQ2. Is Dodona more effective than the existing state-of-
the-art approach for specifying oracle data sets?

RQ3. Is Dodona more effective than oracle data specified
by developers?

RQ4. What is the cost associated with using Dodona to
specify oracle data sets?

3.1 Objects of Study

Table 1: Object Program Characteristics

Object Pckgs Classes Lines Test Branch
Program Cases Coverage

CLI 1 21 882 187 92%
CDC 6 85 3131 616 93%
COL 16 447 11311 13677 77%
LOG 2 28 1500 26 -
MTH 62 1063 41228 4993 84%
PRI 4 294 5586 4452 96%
JGT 17 264 5775 188 72%
JOT 7 232 13547 4000 81%
GUA 15 1175 >800K >200K 77%

As stated in Section 2, one of our original goals in de-
veloping Dodona was to bring oracle data set specification
to Java testing. We therefore wished to apply our tech-
nique to programs that: (1) have limited observability, and
thus present a challenge for oracle data set specification; (2)
have associated, manually constructed Java unit tests (for
comparison); and (3) are amenable to the use of test case
generation techniques.

We thus chose as objects of study the set of libraries used
by Fraser et al. [9]. These objects exhibit the types of observ-
ability issues that motivated the development of Dodona
and each object program has an associated test suite con-
structed by their developers, together with a set of oracles
constructed by their developers.

Ultimately, we chose nine object programs, as follows.1

Commons CLI (CLI) provides an API for parsing com-
mand line options. Commons Codec (CDC) implements
common encoders and decoders such as Base64. Commons
Collections (COL) is a collection of data structures. Com-
mons Logging (LOG) establishes communication between
logging systems. Commons Math (MTH) provides math
and statistics tools for numerical analysis. Commons Primi-
tives (PRI) provides utilities for manipulating primitive data
types. JGraphT (JGT) provides graph-theory objects and
algorithms for graph analysis. Joda Time (JOT) provides
new functionalities for Java time classes. Guava (GUA) (for-
merly Google Collections) is a set of collection types.

1We omitted the NanoXML system used by Fraser et al., due
to problems encountered applying our prototype to it. These
problems are strictly implementation related, and could be
surmounted through an improved prototype.

Table 1 provides basic data on these object programs, in-
cluding the numbers of packages, classes, and lines in the
code bases for the objects, the numbers of test cases that
we utilize, and the branch coverage of the object programs’
code achieved by those test cases. Statistics were gathered
using Cobertura2 [1].

3.2 Variables and Measures
3.2.1 Independent Variables

Our first independent variable involves oracle selection
techniques. We explore the relative merits of three tech-
niques: Dodona, outlined in Section 2; MAODS, the previ-
ous state-of-the-art approach based on mutation testing [18];
and manual oracle specification3.

For the purpose of this study, we reimplemented MAODS
for use with Java programs, using the MAJOR mutation sys-
tem for Java programs [12]. To use MAODS in Java, this
approach now employs the observability mapping used by
Dodona, but otherwise is the same as before [18]. In con-
trast, manually constructed oracles, being built by develop-
ers with a deep understanding of the source code, serves as
a representation of the current state of practice.

Our second independent variable is the centrality metric
used for Dodona. We explore how this metric impacts the
effectiveness of Dodona, using the four centrality metrics
outlined in Section 2.3.1.

Our third independent variable is the oracle data set size;
we vary data set size to understand how the relative ef-
fectiveness of the techniques and the centrality metric vary
depending on the size of the test oracle.

3.2.2 Dependent Variable
To investigate our research questions, we measure the

fault detection effectiveness and the cost of oracle data se-
lection approaches. Let T be a set of test inputs, and let O
be an oracle data set for T , created by oracle data selection
technique M . To measure the fault detection effectiveness
of technique M on object program P , for T and O, we com-
pute the percentage of faults in P that can be detected by
T augmented with O. (The faults utilized in our study are
mutation faults, and are described further in Section 3.3.2).

To measure the cost of M on program P , for T and S, we
compute the runtime (wall clock time) for the entire oracle
data selection process. For Dodona this includes running
T over P to generate the adjacency matrix, computing net-
work centrality, mapping data sets to observable points and
compuring the ranking. For MAODS this includes running
T against all mutants and computing the ranking.

3.3 Controlled Factors
3.3.1 Test Inputs

In prior work, we used random test inputs to evaluate the
effectiveness of oracle data set specification approaches [18].
This was necessitated by the closed source nature of the
projects studied, which prevented us from using the test
suites actually developed for the systems. In this work,

2Accurate branch coverage statistics for LOG could not be
produced due to an incompatibility with this system and
Cobertura.
3We had also considered using EvoSuite as a comparison [9],
but omitted it as it performs only whole test suite generation
(i.e., test inputs and suggested test oracles).

197

we wished to compare Dodona not only against MAODS
(RQ2), but also against test oracles developed by actual
testers (RQ3). Such test oracles, using oracle data sets care-
fully selected by the test developers, represent a challenging
target for our approach and a good baseline for comparison.

To do this, we needed test suites containing manually con-
structed test oracles. Constructing such a test suite our-
selves for each object would be prohibitively costly for an
initial study, but fortunately each of our object programs
is part of a mature, open source project, and thus has an
associated set of test cases constructed by developers. We
thus used each test suite — with the developers’ assertions
removed — as the set of test inputs when evaluating both
MAODS and Dodona.

Our goal is to support testers via automated oracle data
set specification; we expect that the actual choices of ex-
pected data values will be manual. To allow for evaluation
without a user study, we specify expected values for each
proposed oracle data set by executing the test suite over the
original, unmutated Java program, filling in expected values
using the results.

3.3.2 Faults
To measure the fault detection effectiveness of oracle data

selection approaches, we embedded mutation faults into our
object programs. This process proceeded in two steps. First,
we used MAJOR, the mutant generation tool on which
MAODS is based, to generate single fault mutants for each
object program [12]. The faults seeded by MAJOR model
fault classes found in object-oriented programs, and are sim-
ilar to those used in our previous work [18].

MAJOR generates as many mutants as possible for the
operators specified, and for our objects at least 400 mutants
were generated for each system, with larger numbers gener-
ated for larger programs. We partitioned these into an eval-
uation set (roughly half) that was used to compute all fault
finding numbers, and a training set used with MAODS. We
then subdivided the evaluation set into subsets of roughly
equal size, resulting in 10 or more evaluation mutant sets
for each program, each of at least size 40.

Note that using the same tool for both MAODS and our
evaluation represents a risk. MAODS may appear more
effective during evaluation than it would be in practice, be-
cause the mutants used to select the oracle data are similar
to those used in the evaluation.

3.4 Experiment Process
We performed the following process for each object.

1. Remove the test oracles from the original developers’
test suite.

2. Generate the mutant sets for evaluation.
3. Generate the Dodona-enhanced test suite using the

oracle-free test suite, recording the time required.
4. Generate the MAODS-enhanced test suite using the

oracle-free test suite, recording the time required.
5. Run both enhanced test suites over the original pro-

gram, and use the results to fill in the expected values
for their respective oracle data sets.

6. Execute each test suite against each mutant set, com-
puting the number of mutants killed.

The foregoing process resulted in at least 50 fault-detection
effectiveness measurements per technique.

3.5 Threats to Validity
External: Our study is limited to nine mid-sized Java

libraries. Nevertheless, these objects are common targets in
automatic test case generation work, and given that our goal
is to help testers use automatic test case generation tools,
are representative for our purposes.

We have used manually constructed test suites in our
study to allow us to compare our results to manually con-
structed test oracles. Other methods of generating test
suites are possible, notably, approaches using automatically
generated test suites.

We have generated at least 40 mutants for each mutant
set evaluated. This value was chosen to yield a reasonable
study run-time, and it is possible that larger sets may yield
different results. However, in our experience, larger sets of
mutants typically result in similar levels of fault finding.

Internal: It is possible that our implementations of MAODS
and Dodona, or the automation used in our experiment,
contain faults. The tools underlying our competing ap-
proaches (JPF and MAJOR), however, are well tested, and
we have extensive experience using both [12, 24]. Our im-
plementation of Dodona is an early prototype, and, being
based on JPF is considerably slower than a well-optimized
implementation.

Construct: We have measured fault detection effective-
ness based on seeded faults introduced via mutation analy-
sis. Nevertheless, empirical studies have suggested that for
the purpose of testing experimentation, results with muta-
tion faults are comparable to actual faults [4].

When measuring fault detection, we have assumed a “per-
fect” tester; that is, we have assumed that the tester always
specifies the correct value for a proposed set of oracle data.
In practice this is unlikely to be true [8]. However, this is a
problem affecting all approaches to testing, even the “fully
automatic” approaches. In this work we wish only to evalu-
ate whether our approach can quickly find an effective oracle
data set. Once we have established whether our approach is
technically sound, user studies will be required to determine
the effectiveness of the approach in-vitro.

4. RESULTS AND DISCUSSION
In this section, we present the results of our study in the

context of our four research questions. We begin by visualiz-
ing our results (using the abbreviated program names given
in Section 3.1).

In Figure 2 we plot the median fault detection effective-
ness for each network centrality metric used (RQ1). We
highlight the apparent “best” centrality metric, eigenvalue,
with a dotted blue line (this is discussed in Section 4.2).
This designation of “best” is assumed in subsequent figures;
for these figures, Dodona refers to the approach given in
Section 2 used with eigenvalue centrality.

In Figure 3 we plot the median fault detection effectiveness
of test suites using oracle data sets generated by Dodona,
MAODS, and the manually constructed test oracles associ-
ated with the original system. We visually represent the sta-
tistical analysis (presented below) comparing Dodona and
MAODS on the line for Dodona as follows: green rect-
angles indicate that Dodona outperforms MAODS with
statistical significance (α = 0.05), yellow triangles indicate
that there is no statistically significant difference between
the techniques, and red xs indicate that Dodona is outper-

198

formed by MAODS with statistical significance.
In Figure 3, we also plot the fault detection effectiveness of

the original, manual test oracles as a horizontal red dashed
line. For this line, the x-axis does not represent oracle size –
in general, computing the size of manually constructed ora-
cle data sets is not feasible. While we control for the size of
automatically generated oracle data sets, we naturally can-
not for the size of developer constructed test oracles and for
a given test suite, the size of the manually constructed ex-
pected value test oracles varies. Thus, rather than present a
potentially misleading oracle size, we plot the fault detection
for test oracles as a horizontal line.

Finally, in Figure 4 we plot the average wallclock runtime
required to compute the oracle data sets.

4.1 Statistical Analysis
As shown in Figures 3 and 4, Dodona appears to be more

effective and more efficient that MAODS in most scenarios.
However, in the case of fault detection effectiveness, there is
a fair amount of overlap between the approaches. We thus
wished to determine (with statistical significance) at which
oracle sizes and for which objects Dodona outperformed
MAODS in terms of fault detection. We begin by restating
our research questions as statistical hypotheses4.

H1. For a given system S and oracle size m, Dodona out-
performs MAODS.

H2. For a given system S, Dodona requires less time to
generate an oracle data set than MAODS.

We have a large number of observations (30+), and thus the
t-test is appropriate (even in the absence of normality). We
apply this test for each case example and oracle size for H1,
and for each case example for H2. This produces a large
number of p-values in the case of H1. Rather than report
p-values, we visually indicate the statistical significance of
each comparison at the level of α = 0.05 in Figure 3 as
described above.

In considering H2, we can reject each null hypothesis in
each case and thus accept H2. We therefore conclude that
for each object, Dodona is more efficient than MAODS
with statistical significance at α = 0.05.

Note that no statistical hypothesis testing is presented for
RQ1 or RQ3. In the former case, this is due to the very large
number of observations – one per combination of oracle size
and metric, resulting in an unwieldy amount of data. In the
latter case, there exists only a single manually constructed
test oracle for each object, and thus we have insufficient data
on which to perform statistical hypothesis testing.

4.2 RQ1: Impact of Centrality Metric
Our first task is to select a single centrality metric for use

with Dodona or, failing that, to develop a set of guidelines
for when each metric should be used. From Figure 2, we can
see that the clear winner is the eigenvalue centrality metric.
While other centrality metrics outperform eigenvalue cen-
trality for some oracle sizes (typically oracles of size one or
two) on most systems, the differences in fault detection ef-
fectiveness are usually slight – under 5%.

4We do not generalize across objects as the appropriate sta-
tistical assumption — random selection from the population
of Java programs — is not met. Furthermore we do not
generalize across oracle sizes as our approach’s effectiveness
may vary depending on size. The tests are used to determine
whether observed differences are likely due to chance.

In contrast, on all but one of the nine systems (LOG),
eigenvalue becomes the most effective metric for oracles of
size four or greater, often by a wide margin. For example, on
CDC, eigenvalue centrality outperforms the next best metric
(degree centrality) by 32%, for an increase in fault detection
effectiveness of 74%. Even on LOG, eigenvalue centrality
overtakes the next best metric (betweenness centrality) for
oracles of size seven and eight.

Initially, we had expected that the betweenness metric
would be the best fit for oracle data selection. Intuitively, be-
tweenness in our context captures the likelihood that a vari-
able is frequently in the path of data propagating through
the system. We expected that such variables would be good
candidates for a test oracle, being somewhat in the middle
of computations, a point which balances the likelihood of er-
rors being masked with the need for enough computation to
have occurred to make detecting a fault likely. In contrast,
we believed eigenvalue centrality — while also a reasonable
choice — would often select many highly related variables,
defeating the purpose of selecting an oracle data set.

We hypothesize that, in practice, the variables selected
by betweenness are difficult to actually observe. These vari-
ables, being in the middle of computations, may be too
far from a public method return to be observed with ac-
curacy, and are thus either filtered out of the ranking or
observed very indirectly (e.g., not using accessor methods).
In contrast, variables selected by eigenvalue centrality, be-
ing connected to other highly connected variables, typically
are found near the end of long computations. Consequently,
these variables are usually easy to observe, and the mapping
process is more accurate. Furthermore, in practice, several
fairly unrelated variables are selected by this process, as ev-
idenced by rapid increases in fault finding for small oracles.
We therefore conclude that although centrality metrics are
useful for distinguishing the relevance of variables in the con-
text of dataflow analysis, the practical value of said variables
is strongly determined by their observability.

In summary, on the object programs that we consider,
the eigenvalue centrality metric is clearly the best choice for
use with Dodona. Consequently, in the remainder of this
discussion we focus on the use of this metric.

4.3 RQ2: Effectiveness Relative to MAODS
As noted in Section 1, our goal in developing Dodona was

to improve the efficiency of automated approaches selecting
oracle data sets. Nevertheless, we still wish to produce effec-
tive oracle data sets, and therefore we seek to determine how
Dodona compares, in terms of fault-detection effectiveness,
with MAODS.

As Figure 3 shows, Dodona typically produces oracle
data sets that are at least as effective as those produced
by MAODS, albeit with some variation between case exam-
ples. On four of the nine object programs — CLI, CDC,
JGT, and JOT — Dodona is clearly more effective. In
these cases, Dodona outperforms MAODS with statistical
significance for nearly all oracle sizes, with improvements of
up to 115% (for CDCwhen using an oracle size of six), and
for no oracle sizes does MAODS outperform Dodona.

Additionally, on three of the nine object programs — PRI,
MTH, GUA — Dodona and MAODS produce comparable
levels of fault detection effectiveness across oracle sizes. For
PRI we see that Dodona outperforms MAODS by up to
16% (for oracle sizes larger than 4). For MTH, oracle data

199

(a) CLI (b) CDC (c) COL

(d) LOG (e) MTH (f) PRI

(g) JGT (h) JOT (i) GUA

Figure 2: Median effectiveness of each network centrality metric when used with Dodona.

sets produced by Dodona typically achieve higher detection
effectiveness with statistical significance, but an exception
exists for oracles of size 12. For GUA, Dodona is more
effective than MAODS for lower oracle sizes.

Only for two programs, LOG and COL, does MAODS
consistently outperform Dodona. This is especially true
for LOG, where Dodona finds fewer than 50% of the faults
for oracle sizes of six or less, while MAODS achieves at least
58% fault detection effectiveness for any oracle size. Only
at oracles of size eight are the fault detection effectiveness
results for both approaches comparable.

Overall, Dodona appears to be a better choice than MAODS
when selecting oracle data, despite some variation across ob-
ject programs. While in some cases Dodona can result in
the selection of a less effective oracle data set, these cases are
in the minority. In fact, in many cases Dodona produces
more effective oracle data sets than MAODS– sometimes
much more, as in the case of CDC and CLI. This is de-
spite the fact that, per Section 3.3.2, the implementation
and evaluation of MAODS both use MAJOR and thus our

evaluation somewhat favors MAODS.

4.4 RQ3: Effectiveness Relative to Manually
Constructed Oracles

Software developers, being familiar with their systems,
can construct test inputs and oracles, and in practice they
must routinely do so. Thus while our goal is to create an
effective automated approach for reducing effort — not sur-
passing human intelligence — developers’ test oracles (and
by implication, the selected oracle data sets) are an inter-
esting datapoint to consider when assessing effectiveness.

We expected that in practice both Dodona and MAODS
would be less effective than manually constructed test ora-
cles. However, as shown in Figure 3, we found that Dodona
and manually constructed oracles were often comparable.
For four systems — CLI, CDC, JGT, and PRI — Dodona
provided fault detection effectiveness within 5% of that of
manually constructed test oracles for oracles of moderate
size (size four or larger). For several other systems, Dodona
provided reasonable effectiveness – within 20% of that of

200

(a) CLI (b) CDC (c) COL

(d) LOG (e) MTH (f) PRI

(g) JGT (h) JOT (i) GUA

Figure 3: Median effectiveness of each oracle data selection approach.

manually constructed test oracles. Only for LOG did Dodona
provide fault detection effectiveness considerably worse than
that of manually constructed test oracles (42%+ less for or-
acles of size five or less), and as noted above, this system
represents the outlier in terms of effectiveness for Dodona.

We find these results to be encouraging. We expect oracle
data manually selected by developers to be very effective;
our goal is find reasonably effective oracle data with a level
of automation that is capable of reducing programmer ef-
fort. The fact that Dodona can select oracle data not only
better than or comparable to that selected by MAODS, but
also often comparable to the data selected by developers
themselves, demonstrates the promise of the approach.

4.5 RQ4: Efficiency Comparisons
While the results for RQ2 demonstrate that Dodona is

relatively effective in terms of fault detection effectiveness,
the original motivation behind this work was to correct per-
ceived technical shortcomings in MAODS; notably, the re-
liance on potentially expensive mutation testing to select

oracle data. Thus, one of our primary concerns is the rela-
tive efficiency of Dodona relative to MAODS.

As shown in Figure 4, Dodona required less time to gen-
erate oracle data sets than MAODS, with decreases in the
time required ranging from of 17.3%-89.8%. (Per Section 4.1,
all differences were statistically significant at α = 0.05). We
thus conclude that Dodona does indeed reduce the time
required to produce oracle data sets.

While our results concerning efficiency were positive, we
were surprised at how competitive MAODS was relative to
Dodona. On paper, Dodona should clearly be the faster
approach. Instead of running a test suite multiple times,
once for each generated mutant (for MAODS), Dodona
runs each test suite once, tracks the flow of data during
execution, and applies a network centrality metric. While
there is some overhead for dataflow analysis, after which
we must compute the network centrality (always a runtime
linear to the number of vertices), we expected Dodona to
be at least twice as fast as MAODS for all objects. Instead,
for four of the nine study objects, MAODS required only

201

Figure 4: Execution time for each approach.

15.3%-42.5% more time to compute an oracle data set.
We also expected that for larger Java programs, the im-

provement in speed achieved by Dodona would be more
pronounced. In practice, however, we observed no relation-
ship between the number of statements in object programs,
and the time required to generate oracle data sets for those
programs. From this we infer that the relative scalability of
the approaches is not a simple function of program size.

This is likely due to the use of Java Pathfinder (JPF) for
dataflow computations. JPF was selected because it is easily
extensible, but it is also a research JVM, making it a heavy-
weight tool for tracking dataflow relationships. In contrast,
MAODS uses the standard (highly optimized) JVM for exe-
cution, and the mutation analysis tool MAJOR is a product
of an extensive body of research on mutation testing. Thus,
while our implementation of Dodona could likely easily be
made more efficient by using more lightweight, dataflow-
specific tools based on a standard optimized JVM, improv-
ing the speed of our MAODS implementation would be more
challenging.

To better understand the limitations on Dodona’s scal-
ability, we analyzed the runtime for Dodona for each sys-
tem. For most systems, we found that the computation
of the eigenvalue network centrality metric was very fast –
less than one minute. However, for our problem systems
— MTH, JGT, JOT, GUA — we found that runtimes were
higher, ranging from 2.2 to 4.3 minutes. While this is a small
percentage of the overall runtime, the runtime for eigen-
value centrality is linear in the number of nodes (variables).
Thus we can infer that the increase in cost is linked to cap-
turing large dataflow networks: as the number of interme-
diate computations to be tracked grows, the workload for
Dodona alone increases. This suggests that future versions
of Dodona could be made more efficient by preemptively
dropping uninteresting/useless aspects of the dataflow net-
work, or again by simple performance increases in dataflow
tracking by using a more lightweight dataflow engine.

5. RELATED WORK
While significant work on automatic test generation ex-

ists, active work specific to test oracles is a recent phe-
nomenon [22]. For example, several authors have recently
discussed the need to focus on test oracles when evaluating

the quality of the testing process [3, 22], and Harman et
al. have recently conducted a comprehensive survey of test
oracle research [11].

Despite this recent work, there still exists little work spe-
cific to constructing, or supporting the construction, of test
oracles. Xie and Memon explore methods for constructing
test oracles specifically for GUI systems, yielding several rec-
ommendations [13, 27]. Several tools exist for automatically
generating invariant-based test oracles for use in regression
testing, including Eclat [15] and DiffGen [23], though such
work assumes the program is currently correct.

Work on generating oracles for non-regression testing also
exists. Several authors have proposed methods for inferring
invariants from programs for use in testing [7, 26]. Fraser
et al. [9] propose µTEST , which generates complete JU-
nit test cases for object oriented programs. Both bodies of
work assume the tester will later manually correct generated
test oracles, and are part of the “generate-and-fix” paradigm
for test oracle construction. Work evaluating this paradigm
with users is mixed, but on the whole discouraging [8, 19].

In contrast, we are attempting to support creation of test
oracles, rather than completely automated of it. Towards
this, Staats et al. [18] proposed a mutation-based approach
for selecting oracle data based on how often a variable reveals
a fault in a mutant. This work’s limitations are scalability
and the need to estimate the number of required mutants
to select effective oracle data. Pastore et al. [17] proposed
CrowdOracles, an approach to use crowdsourcing for check-
ing assertions. The main limitation here is the need for
qualified crowd to produce the test oracle.

To the best of our knowledge, this work is the first to
leverage network centrality metrics to produce oracle data
sets. However there exists work in other software engineer-
ing contexts which leverages network centrality metrics, e.g.
Zimmerman et al. [28]. Voas and Miller [25] also note that
errors typically propagate through a system, but provide no
method of selecting oracle data based on this observation.

6. CONCLUSION
Test oracles, like test inputs, are a key aspect in achieving

effective test results, but research on oracle generation is rel-
atively scarce. In this work we have presented an approach
for automatically specifying oracle data sets, with the goal
of helping harness engineers’ understanding of systems to
create effective oracles. Our system, Dodona, in most case
outperforms the state-of-the-art MAODS system in terms of
effectiveness and efficiency, resulting in improvement in fault
finding of up to 115% and reduction in generation time by up
to 89.8%. Furthermore, Dodona performs surprisingly well
in comparison to oracles created fully manually by system
developers, resulting in very similar fault finding for four of
the nine objects studied.

7. ACKNOWLEDGEMENTS
This work is supported in part by the National Science

Foundation through award CNS-0720757, and the Air Force
Office of Scientific Research through award FA9550-10-1-
0406. This work has been supported by the Fonds National
de la Recherche, Luxembourg (FNR/P10/03).

202

8. REFERENCES
[1] Cobertura framework. Available at

http://cobertura.github.io/cobertura/.

[2] Jung framework. Available at
http://jung.sourceforge.net/.

[3] S. Anand, E. Burke, T. Y. Chen, J. Clark, M. B.
Cohen, W. Grieskamp, M. Harman, M. J. Harrold,
P. McMinn, A. Bertolino, et al. An orchestrated
survey on automated software test case generation.
Journal of Systems and Software, 2013.

[4] J. H. Andrews, L. C. Briand, and Y. Labiche. Is
mutation an appropriate tool for testing experiments?
In Proceedings of the 27th International Conference on
Software Engineering, pages 402–411, 2005.

[5] L. Baresi and M. Young. Test oracles. Technical
Report CISTR-01, 2, 2001.

[6] C. Bird, N. Nagappan, B. Murphy, H. Gall, and
P. Devanbu. Don’t touch my code!: Examining the
effects of ownership on software quality. In Proceedings
of the 19th ACM SIGSOFT Symposium and the 13th
European Conference on Foundations of Software
Engineering, ESEC/FSE ’11, pages 4–14, New York,
NY, USA, 2011. ACM.

[7] M. D. Ernst, J. H. Perkins, P. J. Guo, S. McCamant,
C. Pacheco, M. S. Tschantz, and C. Xiao. The daikon
system for dynamic detection of likely invariants.
Science of Computer Programming, 69(1):35–45, 2007.

[8] G. Fraser, M. Staats, P. McMinn, A. Arcuri, and
F. Padberg. Does automated white-box test
generation really help software testers? In Proceedings
of the 2013 International Symposium on Software
Testing and Analysis, pages 188–198. ACM, 2013.

[9] G. Fraser and A. Zeller. Mutation-driven generation of
unit tests and oracles. IEEE Transactions on Software
Engineering, 38(2):278–292, 2012.

[10] L. C. Freeman. Centrality in social networks
conceptual clarification. Social networks, 1(3):215–239,
1979.

[11] M. Harman, P. McMinn, M. Shahbaz, and S. Yoo. A
comprehensive survey of trends in oracles for software
testing. Technical report, Technical Report Research
Memoranda CS-13-01, Department of Computer
Science, University of Sheffield, 2013.

[12] R. Just, F. Schweiggert, and G. M. Kapfhammer.
Major: An efficient and extensible tool for mutation
analysis in a java compiler. In Proceedings of the 2011
26th IEEE/ACM International Conference on
Automated Software Engineering, pages 612–615.
IEEE Computer Society, 2011.

[13] A. Memon, I. Banerjee, and A. Nagarajan. What test
oracle should i use for effective gui testing? In
Proceedings of the 18th IEEE International
Conference on Automated Software Engineering,
2003., pages 164–173. IEEE, 2003.

[14] A. M. Memon, M. E. Pollack, and M. L. Soffa.
Automated test oracles for GUIs. SIGSOFT Software
Engineering Notes, 25(6):30–39, Nov. 2000.

[15] C. Pacheco and M. Ernst. Eclat: Automatic

generation and classification of test inputs. ECOOP
2005-Object-Oriented Programming, pages 504–527,
2005.

[16] C. Parnin and A. Orso. Are automated debugging

techniques actually helping programmers? In
Proceedings of the 2011 International Symposium on
Software Testing and Analysis, pages 199–209, 2011.

[17] F. Pastore, L. Mariani, and G. Fraser. Crowdoracles:
Can the crowd solve the oracle problem? In 2013
IEEE Sixth International Conference on Software
Testing, 2013.

[18] M. Staats, G. Gay, and M. P. Heimdahl. Automated
oracle creation support, or: How I learned to stop
worrying about fault propagation and love mutation
testing. In Proceedings of the International Conference
on Software Engineering, pages 870–880, 2012.

[19] M. Staats, S. Hong, M. Kim, and G. Rothermel.
Understanding user understanding: determining
correctness of generated program invariants. In
Proceedings of the 2012 International Symposium on
Software Testing and Analysis, pages 188–198. ACM,
2012.

[20] M. Staats, P. Loyola, and G. Rothermel.
Oracle-centric test case prioritization. In Proceedings
of the International Symposium on Software Reliability
Engineering, pages 311–320, 2012.

[21] M. Staats, M. W. Whalen, and M. P. Heimdahl.
Better testing through oracle selection. In Proceedings
of the International Conference on Software
Engineering (NIER Track), pages 892–895, 2011.

[22] M. Staats, M. W. Whalen, and M. P. Heimdahl.
Programs, tests, and oracles: the foundations of
testing revisited. In 2011 33rd International
Conference on Software Engineering (ICSE), pages
391–400. IEEE, 2011.

[23] K. Taneja and T. Xie. Diffgen: Automated regression
unit-test generation. In 23rd IEEE/ACM International
Conference on Automated Software Engineering, 2008.
ASE 2008., pages 407–410. IEEE, 2008.

[24] W. Visser, K. Havelund, G. Brat, S. Park, and
F. Lerda. Model checking programs. Automated
Software Engineering, 10(2):203–232, 2003.

[25] J. M. Voas. Pie: A dynamic failure-based technique.
IEEE Trans. Software Eng., 18(8):717–727, 1992.

[26] Y. Wei, C. A. Furia, N. Kazmin, and B. Meyer.
Inferring better contracts. In Proceedings of the 31st
International Conference on Software Engineering
(ICSE), pages 191–200, 2011.

[27] Q. Xie and A. M. Memon. Designing and comparing
automated test oracles for gui-based software
applications. ACM Transactions on Software
Engineering and Methodology (TOSEM), 16(1):4,
2007.

[28] T. Zimmermann and N. Nagappan. Predicting defects
using network analysis on dependency graphs. In
Proceedings of the 30th International Conference on
Software Engineering, ICSE ’08, pages 531–540, New
York, NY, USA, 2008. ACM.

203

