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METHODOLOGY ARTICLE Open Access

doepipeline: a systematic approach to
optimizing multi-level and multi-step data
processing workflows
Daniel Svensson1†, Rickard Sjögren1,2†, David Sundell3, Andreas Sjödin3 and Johan Trygg1,2*

Abstract

Background: Selecting the proper parameter settings for bioinformatic software tools is challenging. Not only will

each parameter have an individual effect on the outcome, but there are also potential interaction effects between

parameters. Both of these effects may be difficult to predict. To make the situation even more complex, multiple

tools may be run in a sequential pipeline where the final output depends on the parameter configuration for each

tool in the pipeline. Because of the complexity and difficulty of predicting outcomes, in practice parameters are often

left at default settings or set based on personal or peer experience obtained in a trial and error fashion. To allow for the

reliable and efficient selection of parameters for bioinformatic pipelines, a systematic approach is needed.

Results: We present doepipeline, a novel approach to optimizing bioinformatic software parameters, based on core

concepts of the Design of Experiments methodology and recent advances in subset designs. Optimal parameter

settings are first approximated in a screening phase using a subset design that efficiently spans the entire search space,

then optimized in the subsequent phase using response surface designs and OLS modeling. Doepipeline was used to

optimize parameters in four use cases; 1) de-novo assembly, 2) scaffolding of a fragmented genome assembly, 3) k-mer

taxonomic classification of Oxford Nanopore Technologies MinION reads, and 4) genetic variant calling. In all four cases,

doepipeline found parameter settings that produced a better outcome with respect to the characteristic measured

when compared to using default values. Our approach is implemented and available in the Python package doepipeline.

Conclusions: Our proposed methodology provides a systematic and robust framework for optimizing software

parameter settings, in contrast to labor- and time-intensive manual parameter tweaking. Implementation in

doepipeline makes our methodology accessible and user-friendly, and allows for automatic optimization of tools

in a wide range of cases. The source code of doepipeline is available at https://github.com/clicumu/doepipeline

and it can be installed through conda-forge.

Keywords: Design of Experiments, Optimization, Sequencing, Nanopore, MinION, Assembly, Classification,

Scaffolding, Variant calling

Background
Bioinformatic software tools frequently offer a number

of outcome-related parameters for the user to set or

change from their default values. These parameters may

be different forms of input filters, or alter the behavior

of the running algorithm. Parameters may be either

quantitative or qualitative (multi-level) in nature. While

it is advantageous to customize tools to a specific situ-

ation, it is not always obvious what effect changing param-

eters will have on the outcome. This may be due to lack of

documentation, poor understanding of the algorithm, or

interaction effects between parameters that are difficult to

foresee. Additionally, software tools are commonly com-

bined into pipelines, for example when calling genetic

variants from raw sequence reads [1, 2]. Pipelining tools in

this manner further increases the complexity of selecting

optimal parameter settings by increasing the numbers of

both parameters and potential interaction effects. The
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settings for a particular data processing pipeline may also

have to be tailored to the type of technology that was used

to generate the data, for example the different platforms

available for DNA sequencing which yield different error

profiles [3]. In general, the strategy for selecting parameter

settings therefore typically consists of using values derived

from personal or peer experience and obtained in a trial-

and-error fashion, or simply retaining the default values.

This kind of non-systematic selection of parameter set-

tings runs the risk of producing sub-optimal results.

The combined ranges of all possible parameter settings

form a parameter space. To find the optimal point in the

parameter space, an exhaustive brute-force search, com-

monly called a grid search, simply trying all possible

combinations, is guaranteed to find the optimum. Since

the number of combinations increases exponentially,

exhaustive searching quickly becomes unfeasible as the

number of parameters, and their ranges, grow. Instead,

statistical Design of Experiments (DoE) can be used to

span and investigate the parameter space in an efficient

manner [4]. DoE aims to maximize information gain

while minimizing the number of experiments required

[5]. This is done by introducing variation into the system

under investigation in a structured manner in order to

explain how the parameters (factors) influence the result

(response). This variation is introduced according to

statistical designs for simultaneously varying the factor

settings at a specific set of values (levels), and the system

is modeled using statistical methods, for example with

Ordinary Least Squares (OLS) regression [5–7]. The

simplest type of statistical design is the full factorial

design (FFD) where all combinations of factor levels are

investigated in an exhaustive manner, meaning that they

quickly become impracticable. To greatly reduce the

number of experiments required, fractional factorial de-

signs (FrFD) are used to investigate a structured subset

of the FFD [6]. The problem is that FrFD are not trivial

to use in situations where there are more than two levels

to investigate, and that there is no obvious way to com-

bine qualitative and quantitative variables. Recently, frac-

tional factorial designs have been generalized into the so

called generalized subset design (GSD) [8]. GSDs are

balanced and near-orthogonal multi-level and multi-factor

subset designs capable of mixing quantitative and qualita-

tive factors, allowing for the investigation of a large and di-

verse set of parameters in an efficient manner. Compared

to grid search, GSDs reduce the number of runs required

to explore an equivalent parameter space by an integer

factor, also called the reduction factor.

Although DoE is primarily used in analytical chemis-

try, a DoE approach has previously been applied by

Eliasson et al. to optimize software parameter settings

in a liquid chromatography-mass spectrometry (LC-MS)

metabolomics data processing pipeline [9]. In essence, this

approach consists of sequentially updating a statistical

design based on the predicted optimal configuration of

settings, until they converge at an optimum. We build

upon the approach proposed by Eliasson et al., and have

developed a strategy for automated optimization of soft-

ware parameter settings. We extend Eliasson et al’s

approach with a screening phase using the recently devel-

oped GSD to efficiently span a much larger parameter

space. We also make it possible to optimize multiple re-

sponses simultaneously. This extended approach may be

used both for optimization of individual tools and for mul-

tiple tools organized into a pipeline. One crucial compo-

nent is a well-defined objective function that you wish to

minimize or maximize, i.e. there must be some way to ob-

jectively determine how well the pipeline is performing.

Our strategy is software-agnostic and is implemented as a

user-friendly Python package - doepipeline.

In this article, we outline our DoE-based strategy for a

systematic approach to optimizing multi-level and multi-

step data processing workflows, and exemplify the applica-

tion of doepipeline with four cases; 1) de-novo assembly of

a bacterial genome, 2) scaffolding of contiguous sequences

(contigs) of a bacterial genome using 3rd generation se-

quencing (nanopore) data, 3) k-mer taxonomic classifica-

tion of long noisy sequence reads generated by ONT

MinION sequencing units, and 4) genetic variant calling

in a human sample.

Methods
We propose an approach for the optimization of soft-

ware parameters, based on methods derived from statis-

tical design of experiments. Our approach, which has

been implemented in a python package (doepipeline),

can be divided into two distinct phases:

1. Screening using a generalized subset design to find

an approximate optimum. This phase also serves to

find the best choice of categorical variables.

2. Iterative optimization, starting from the best point

found by screening, based on the algorithm by

Eliasson et al. [9]. This phase optimizes only

quantitative variables, meaning that categorical

variables are fixed at the best values found during

phase 1.

The screening and optimization phases are schematic-

ally illustrated in Fig. 1 and described in more detail in

the following subsections. Prior to screening and

optimization, the user specifies what parameters to use

as factors in the designs, whether they are categorical or

numerical, and the permitted categories or value spans

to be investigated. The user also specifies what process

outcomes to use as response, and whether it should be

maximized, minimized or reach a target value. In cases

Svensson et al. BMC Bioinformatics          (2019) 20:498 Page 2 of 13



with several responses the user also needs to specify

low/high limits and the target for each response. The

responses are then re-scaled according to these limits

and targets and combined into a single response using

the geometric mean according to Derringer & Suich de-

sirability functions [10]. In brief, when there are multiple

responses each individual response is rescaled to be in

the interval between 0 and 1, and it is 0 when outside

accepted limits and 1 when better than the target. The

rescaled responses are then combined into the overall

desirability using the geometric mean.

Screening for approximate optimum

The purpose of the screening phase is to span the full

search space to find regions with close to optimal per-

formance. Screening is performed by executing the speci-

fied pipeline using combinations of factor configurations

given by a GSD. Using GSD effectively reduces the

number of experiments to run, while optimally spanning

the search space (Fig. 1a). The number of experiments

required to investigate a given set of factors at a number

of levels is approximately an integer fraction of the total

number of possible combinations, which depends on the

number of factors and their levels. A greater number of

levels increases the resolution of the space searched dur-

ing screening but also exponentially increases the number

of runs required. We have found that five levels per nu-

meric factor span large search spaces with a high enough

resolution to give satisfactory results, but it is possible to

set the number of levels individually for each factor in doe-

pipeline. Similarly, we have found that the integer fraction

of the full design that the GSD should represent can be

safely set at the number of factors included in the design.

However, this may also be controlled by the user by

means of the reduction factor setting in doepipeline.

The screening phase also serves the purpose of setting

the category to use for each categorical variable. For

subsequent optimization, qualitative factors are fixed at

the category of the best factor configuration according

to the screening. By fixing qualitative factors, only numeric

factors are investigated during the following optimization

phase.

Optimization of numeric factors

After selecting the best factor configuration during screen-

ing, numerical factors are optimized using response sur-

face designs. The levels used in the screening design are

here applied as anchor points for the new optimization

design. A response surface design, for instance a central

composite design, is constructed around the best config-

uration found. That is, the configuration of factor levels

found to produce the best result during the screening

phase is initially set as the center point in the new re-

sponse surface design (Fig. 1b). If this configuration lies at

the edge of a factor’s global design space (as defined by its

min and max allowed values), the factor’s center point is

shifted to the nearest screening level instead. This is done

in order to keep the design within the global design space.

After having set the center point for the new design, the

high and low settings for each numeric factor are set to lie

at the midpoints between the nearest screening levels

respectively above and below the chosen center point, as

Fig. 1 Schematic visualization of doepipeline design space movement. Example of optimization of two factors (A and B) through both the

screening (a) and the optimization phase (b), completed in 3 iterations. Each dot represents an executed pipeline with the parameters set by

factors A and B. Triangles represent executed pipelines using the optima of an Ordinary Least Squares (OLS) model calculated in each

optimization iteration. Red dots and triangles represent the best configuration of factors found in each iteration. Dashed lines represent the

current high and low parameter settings in each iteration. Screening phase: a GSD using three levels and a reduction factor of 2 is used to span

the design space. The pipelines are executed with the factor configurations suggested by the GSD and an approximate optimum is found (red

dot). Optimization phase: in iteration 2, an optimization design is created around the best configuration found in the screening phase (black dots).

In iteration 3, the design space is moved in the direction of the configuration of factors that produced the best result (red triangle) in iteration

2. doepipeline halts when the best response is produced by a configuration of factors that lies close to the center point (red triangle in

iteration 3).
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indicated by the dashed line in Fig. 1b. The span of each

factor is then defined as the difference between the high

and low settings. As during screening, the specified pipe-

line is executed using factor configurations given by the

response surface design.

During each optimization iteration, pipeline performance

is approximated using OLS regression [7]. By fitting a re-

gression model the optimal configuration can be found by

optimizing the response predicted according to the model.

The factors included in the OLS model are selected either

using a best subset approach or by using greedy forward se-

lection; the latter is preferred when more than four factors

are included in the design. If the predictive power (Q2) of

the model is acceptable (Q2 > 0.5), the model is used to

predict an optimal parameter configuration. Each numeric

factor’s settings are then updated based on the best result

in a manner similar to the algorithm given by Eliasson et al.

[9]. For each factor, the difference between the predicted

best factor setting and the factor center point is calculated.

If this distance is greater than 25% of the span of the factor,

the high and low settings of the factor are updated in the

direction of the best result. The default step length is 25%

of the span of the factor, i.e. the high and low settings are

moved 25% of the step length (Fig. 1b, iteration 3). We

found that the algorithm did not always converge at this

stage, but moved the design space back and forth between

iterations. To alleviate this problem, we implemented de-

sign space shrinkage, which shrinks the design space span

through multiplication by a so called shrinkage factor (typ-

ical value is 0.9, corresponding to 10% shrinkage) between

iterations, and found that it successfully improved conver-

gence. If the proposed updated factor settings lie outside

the predefined design space limits, the design is instead

placed at the factor limits while keeping the same factor

span. If the design has not moved between two iterations,

or the best response is not improved upon compared to the

previous iteration, the algorithm has converged and halts. If

the optimization algorithm halts and responses have not

reached their minimally acceptable values, the screening

results are re-evaluated and a new optimization phase is

run based on the results of the next best screening. At the

end of the optimization iterations the factor configuration

that has produced the best result throughout the iterations

is chosen as the optimal configuration.

Sequence data used in cases

The Francisella tularensis sp. holarctica strain FSC200

[11], and a genetic near neighbor Francisella hispaniensis

strain FSC454 were chosen as an example dataset in case

1 to 3 of this study. The genome assembly of FSC200 is

available as RefSeq assembly accesssion GCF_000168775.2

and genome assembly of FSC454 as RefSeq assembly ac-

cession GCF_001885235.1. Previously, generated Illumina

HiSeq reads of FSC200 are available as NCBI SRA run

SRR518502. This latter dataset was subsampled down to

an estimated coverage of 100X (1.9M 100 bp reads) for

use in case 1, subsampling was performed with seqtk

[12](v. 1.2-r94, installed through bioconda [13]).

New sequencing libraries were prepared from DNA

extractions of the two bacterial strains using the SQK-

LSK108 Ligation Sequencing Kit according to the man-

ufacturer’s specifications and then sequenced using a

FLO-MIN107 MinION flow cell (Oxford Nanopore Tech-

nologies, UK). MinION sequence reads for FSC200 are

available as NCBI SRA run SRR9290761, and for FSC454

as NCBI SRA run SRR9290851. Subsampling down to 50,

000 from 132,259 MinION reads for FSC200 and 15,000

from 15,757 MinION reads for FSC454 was performed

with a custom script, and the sequences were trimmed to

a maximum length of 3000 bp as well as being sorted by

length to increase classification speed.

Case 1: de-novo assembly of a bacterial genome

In this example, we optimize the paired-end sequence

assembler ABySS [14, 15] (v. 2.0.2, installed through bio-

conda [13]) to assemble the genome of an isolate of

Francisella tularensis ssp. holarctica (FSC200). ABySS

has a total of 27 different parameters that can be speci-

fied by the user. Some are directly related to the running

time and memory usage of the software (such as number

of threads to use or bloom filter size), while others are

related to the quality and/or characteristics of the result-

ing assembly (such as the size of k-mer or the minimum

mean k-mer coverage of a unitig). For this example, we

focused on the latter type of parameter. Hence, all pa-

rameters chosen to be part of the optimization were

deemed to have a potential effect on the resulting as-

sembly. The chosen parameters were: size of k-mer (k)

(KMER), minimum mean k-mer coverage of a unitig (c)

(MIKC), minimum alignment length of a read (l)

(MIAL), and minimum number of pairs required for

building contigs (n) (MIPA).

For this optimization we set the investigated factor

space so that the default value for each factor was in-

cluded within the span of each factors’ min and max

values (Table 1). Although central to the ABySS algo-

rithm, there is no default value for the k-mer size par-

ameter. But since the value of the k-mer size is bounded

by the actual read length it was still possible to define

the GSD search space in a satisfactory way. For purposes

of comparison, however, we considered a k-mer size of

31 to be the default setting. In this example we ran the

initial screening with a reduction factor of 8, and used

Central Composite Face-centered (CCF) designs in the

following optimization iterations. We used a shrinkage

factor of 0.9 (−s), and set the model selection method

(−m) to greedy to speed up model selection. All other

doepipeline settings were kept at default values.
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There are many metrics that can be used to evaluate

the quality of a de-novo assembly, and which specific

ones to use depends on what the assembly is to be used

for [16, 17]. Example metrics include the number of

resulting contiguous sequences (contigs), the amount of

total sequence covered by the assembly, and the N50

value. The latter is the length of the contig that, when

the contigs are ordered by size, spans the midpoint of

the total assembly. Hence, the N50 value can be viewed

as an assessment of the quality of the assembly in terms

of contiguity.

We used the total size of the assembly (tSeq), the

number of contigs (nSeq), and the N50 value as responses.

Since this optimization contained multiple responses, it

was necessary to set low/high acceptable limits for each

response, as well as target values to reach. The low and

high limits for the responses were set with respect to the

result obtained using the default settings with the same

input data, meaning that the worst acceptable results are

the default results. The target for the tSeq response was

set to the reference genome size for FSC200 [11], while

the targets for the nSeq and N50 responses were set to

values that were considered achievable (Table 2).

The data input to ABySS consisted of the subsampled

Illumina HiSeq 2500 sequence data for FSC200 (see

Sequence data used in cases). Prior to calculating the

values for the responses we applied a length-based filter

to the assembly using Fastaq [18] (v. 3.17.0), keeping

only those contigs more than 1000 bp in length. This fil-

ter was also applied when calculating the response from

the pipeline using the default parameter configuration.

This is done because the very short contigs are typically

made up of short repetitive sequences, and removing

them simplifies the assembly graph and calculations on

it. The software seqstats [19] was used to calculate the

response values from the filtered assembly.

Case 2: scaffolding of a bacterial genome assembly using

long reads

Assembling a genome with short reads typically results in

a fragmented assembly, consisting of a number of contigs.

The way these contigs are connected with each other - in

terms of ordering, distance, and direction - remains un-

known. The reason for the fragmentation is that certain

stretches of genomes have low complexity and are there-

fore impossible to resolve with short reads. One way of

stitching together the contigs of an assembly is by using

paired reads with long insert sizes, or - as is increasingly

common - using long reads from, for example, the Nano-

pore or PacBio platforms. The long reads have an in-

creased chance of spanning the low-complexity regions,

effectively anchoring both ends of a pair of contigs to-

gether and thus resolving the gap. The process of connect-

ing contigs together is referred to as scaffolding, and the

resulting sequences are known as scaffolds.

SSPACE-LongRead [20] (SSPACE) uses long reads,

such as those produced by the PacBio or Nanopore plat-

forms, to scaffold an assembly. When running the soft-

ware, the user can manipulate a total of six parameters

that relate to the resulting scaffolds. We investigated

whether manipulating some of the parameters would

yield a better result than that achieved by running

SSPACE (v. 1–1) with default parameter settings. We

chose to optimize the minimum alignment length to

allow a contig to be included for scaffolding (a) (ALEN),

the minimum gap between two contigs (g) (GLEN), the

maximum link ratio between the two best contig pairs

(r) (RRAT), and the minimum identity of the alignment

Table 1 Factors in the de-novo assembly case

Parameter Abbr. Type Min Max Default Optimized

Size of k-mer (k) KMER Ordinal 20 90 31a 38

Minimum mean k-mer coverage of a unitig (c) MIKC Quantitative 2 15 sqrt (median)b 8.5

Minimum alignment length of a read (l) MIAL Ordinal 20 60 40 30

Minimum number of pairs required for building contigs (n) MIPA Ordinal 5 15 10 15

The four factors investigated in the de-novo assembly case are described above. The letter in parenthesis following the parameter name is the parameter

used in the abyss-pe command line interface. Min and max values define the design space. a: There is no default value explicitly specified by the ABySS

documentation. However here we used a k-mer size of 31 for comparison purposes. b: This refers to the square root of the median k-mer coverage,

which is affected by the sequencing depth and choice of k-mer size. The optimized values are the combination of factor values that produced the best

outcome, as found by doepipeline

Table 2 Responses in the de-novo assembly case

Response Abbr. Criterion Low/high limita Target Defaultb Optimized

Total sequence in assembly (bp) tSeq Maximize 1,830,000 1,894,157 1,835,427 1,864,165

Number of contigs in assembly nSeq Minimize 95 85 91 89

N50 N50 Maximize 28,000 35,000 28,149 31,847

The three responses that were measured in the de-novo assembly case are described above. a: Responses that have the criterion maximize have a low limit, and

those with the criterion minimize have a high limit. b: Default values are based on using a k-mer size of 31 and leaving all other parameters unchanged
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of the long reads to the contig sequences (i) (IDEN). As

response, we maximized the N50 value of the resulting

scaffolded assembly.

We set the investigated space for the factors so that

the default value for each factor was included within the

span of each factor’s min and max values (Table 3). For

the optimization phase following the screening phase we

chose to use a CCF design for the experiments. The re-

duction factor for the GSD was kept at the default value,

i.e. the number of factors in the investigation, which in

this case was 4. The model selection method (−m) was

set to greedy and the shrinkage factor (−s) to 0.9. All

other doepipeline settings were kept at default values.

The input assembly had been constructed with ABySS

[15] (v. 2.0.2) (k = 71) and subjected to a contig length filter

(> 1000 bp). It consisted of 94 contigs between 1685 and

87,479 bp in length, had an N50 of 27,549 bp, and totaled 1,

800,912 bp prior to scaffolding. The assembly was con-

structed from the FSC200 Illumina HiSeq 2500 sequence

data (see Sequence data used in cases). We include the as-

sembly at the doepipeline github repository. The read set

used for scaffolding consisted of 132,258 nanopore reads of

between 163 and 108,214 bp in length (N50 = 679 bp), to-

taling 104,374,862 bp. Seqstats [19] was used to calculate

the response from the scaffolded assembly.

Case 3: k-mer classification

K-mer classification is a method used to assign taxo-

nomic labels to short DNA sequence reads [21]. The

method requires a precomputed database of k-mers gen-

erated from previously known and assembled genomes,

for example all complete genomes in the NCBI database.

When classifying a sample, the k-mer set of each read is

calculated and compared with the database of known k-

mers. The read is then assigned to the most specific

taxonomic class within the database using the highest

scoring k-mer root-to-leaf classification path following

the taxonomic hierarchy. This method is implemented

in, for example, the software package Kraken [22].

Kraken also uses a least common ancestor method,

which re-classifies reads that are assigned to multiple

taxonomic sub-classes under a parent node. A read with

non-unique leaf assignment will then be assigned to the

least common ancestor where there is little or no

assignment conflict instead. The k-mer classification

method implemented in Kraken can be applied to longer

error-prone reads even though it is optimized for short

accurate reads. However, it will be less accurate due to

the different (higher) error frequencies and will therefore

generate an increased rate of false positives.

In this study we used the software KrakenUniq [23] (v.

0.5.2). KrakenUniq builds upon the Kraken engine but add-

itionally records the number of unique k-mers as well as

coverage for each taxon. Three factors were used in the

optimization: precision (PRES), minimum k-mer hits (MH)

and a filter (FILT) (Table 4). We chose to use a CCF design

in the optimization phase of doepipeline, the model selec-

tion method (−m) was set to greedy, and the shrinkage fac-

tor (−s) to 0.9. All other doepipeline settings were kept at

default values. The F1 score (Eq. 1), which is the harmonic

mean of precision and recall, was used as response.

F1 ¼ 2 �
precision � recallð Þ

precisionþ recallð Þ
ð1Þ

The input data were nanopore sequenced reads from

two Francisella species, a target, Francisella tularensis

holarctica (FSC200) and one near neighbor, Francisella

hispaniensis (FSC454). The dataset was reduced to

contain 50,000 F. tularensis reads and 15,000 (max) F.

holarctica reads of maximum length 3000 bp, to increase

the speed of classification and reduce potential bias (see

Sequence data used in cases).

Case 4: genetic variant calling

A sequence difference between the genome of a sequenced

sample and the reference genome is referred to as a genetic

variant, and the process of identifying these variants from

sequence data is referred to as variant calling. Calling the

simplest form of genetic variant, single nucleotide variants

(SNV), from standard Illumina paired-end data is consid-

ered trivial nowadays, with F1 scores reaching 0.98 [24]. Be-

cause of this, we opted to optimize calling of short

insertions and deletions (indels), which are slightly more

complex and are harder to call correctly [24].

We used raw sequence data and high-confidence genetic

(or “truth”) variant calls from a single well-studied individ-

ual, commonly known as NA12878. The raw sequence data

Table 3 Factors in the scaffolding case

Parameter Abbr. Type Min Max Default Optimized

Minimum alignment length to allow a contig to be included for scaffolding (a) ALEN Ordinal 0 5000 0 0

Minimum gap between two contigs (g) GLEN Ordinal −3000 3000 −200 − 750

Maximum link ratio between two best contig pairs (r) RRAT Quantitative 0.1 0.7 0.3 0.325

Minimum identity of the alignment of the long reads to the contig sequences (i) IDEN Ordinal 30 90 70 82

The four factors investigated in the scaffolding case are described above. The letter in parenthesis following the parameter name is the parameter used in the

SSPACE command line interface. Min and max values define the design space. The optimized values are those that in combination produced the best outcome, as

found by doepipeline
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(2 × 100 bp, 50X depth), which form part of the Illumina

Platinum Genomes (PG) [25], were retrieved from the

European Nucleotide Archive (ENA), study accession

ERP001960 (run: ERR194147). The truth callset was a

“hybrid” dataset, meaning it was produced by combining

callsets obtained with different technologies and methodolo-

gies [25–27] as described in Krusche et al. [28]. The truth

set was downloaded from the PG GitHub repository [29].

The genome analysis toolkit (GATK) best practices

workflow [1, 2] was used as a guide for this variant calling

case. Raw data processing was carried out in accordance

with GATK best practices up to the point of having ana-

lysis ready reads, after which doepipeline was applied to

optimize the variant calling and filtering steps. First, PIC-

ARD (v. 2.18.1) [30] was used to convert the sequence

reads (FASTQ format) into unmapped BAM format

(uBAM) and to mark Illumina adapters. We then mapped

the reads to the hg19 reference (part of the GATK resource

bundle) using BWA-MEM (v. 0.7.15 -r1140) [31, 32] and

marked duplicates using PICARD. Finally, Base Quality

Score Recalibration (BQSR) was carried out using GATK

(v. 3.8–1-0) [33] to obtain analysis-ready reads.

This case aimed to optimize variant calling and variant

filtering, the remaining steps in the GATK best practices

after obtaining analysis-ready reads. The calling was carried

out using HaplotypeCaller, and the filtering was carried out

using VariantFiltration, both tools within GATK. Haploty-

peCaller offers around 20 adjustable parameters while the

VariantFiltration tool expects custom-specified cutoffs for

annotations in the variant call format (VCF) file. GATK

suggests four annotations by which to filter indels. In

order to include a meaningful number of parameters at

each step we chose to optimize the two steps sequentially.

Performing sequential optimization allowed us to investi-

gate 4 parameters for each step, 8 in total. We first opti-

mized the calling step while keeping the parameters in the

filtering step at their default settings. We then optimized

the parameters for the filtering step using the output from

the highest scoring experiment in the first step. For the

calling step we chose to optimize the global assumed mis-

mapping rate for reads (globalMAPQ, henceforth: GMQ),

the minimum base quality for calling (mbq, henceforth:

MBQ), the minimum reads per alignment start (minRead-

sPerAlignStart, henceforth: RAS), and the minimum confi-

dence threshold for calling (stand_call_conf, henceforth:

SCC). For the filtering step we chose to optimize the qual-

ity by depth (QD), the read position rank sum test (Read-

PosRankSum, henceforth: RPRS), the Fisher test for strand

bias (FS), and the strand odds ratio (SOR). To further re-

duce the size of the optimization, we chose to optimize

only against variants on chromosome 1. However, we

screened for any overfitting of the parameters by executing

the variant calling and filtering pipeline across all auto-

somes and chromosome X with the optimized parameters.

The following settings were used for both optimizations.

We set the space investigated for the factors so that the

default value for each factor was included within the span

of each factor’s min and max values (Table 5). The design

Table 4 Factors in the k-mer classification case

Parameter Abbr. Type Min Max Default Optimized

Minimum k-mer hits MH Ordinal 1 200 a 14

Standard deviation of the relative errors of the estimate PRES Ordinal 10 18 12 17

Minimum tax-ID score threshold FILT Quantitative 0 0.05 0 0

The three factors investigated in the k-mer case are described above. Min and max values define the design space. The optimized values are those that in

combination produced the best outcome, as found by doepipeline. a: The KrakenUniq documentation to our knowledge does not state what the default value is

Table 5 Factors in the variant calling case

Step Parameter Abbr. Type Min Max Default Optimized

Variant calling Global assumed mismapping rate for reads (globalMAPQ) GMQ Ordinal 20 55 45 46

Minimum base quality for calling (mbq) MBQ Ordinal 5 25 10 10

Minimum reads per alignment start (minReadsPerAlignment) RAS Ordinal 5 25 10 20

Minimum confidence threshold for calling (stand_call_conf) SCC Quantitative 5 25 10 5

Variant filtering Quality by depth (QD) QD Quantitative 0 10 2 0.41

Read position rank sum test (ReadPosRankSum) RPRS Quantitative −40 0 −20 −37.5

Fisher test for strand bias (FS) FS Quantitative 0 250 200 62.5

Strand odds ratio (SOR) SOR Quantitative 0 20 10 8.16

The factors investigated in the variant calling case are described above. The optimization was carried out sequentially for two main steps, variant calling and

variant filtering, and which step each factor belongs to is indicated. For the variant calling step, the factor’s corresponding command line flag is given in

parentheses after the parameter name. For the variant filtering step, the corresponding information tag annotated in the VCF file is indicated in parentheses. The

min and max values define the design space. The default values for all factors are also indicated; for the calling step they are the built-in default values of the

HaplotypeCaller tool, while for the filtering step the default values are those recommended by the GATK team. The optimized values are those that in

combination produced the best outcome, as found by doepipeline
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of choice for the screening phase was the CCF design. The

reduction factor for the GSD was increased to 8, reducing

the number of experiments. The model selection method

(−m) was set to greedy and the shrinkage factor (−s) to 0.9.

All other doepipeline settings were kept at default values.

Performance metrics and tools to assess the accuracy of

variant calling in a standardized manner are crucial, and

the benchmarking team of the Global Alliance for Genom-

ics and Health (GA4GH) have made significant progress

with respect to this [28]. The GA4GH benchmarking team

has developed a benchmarking tool, hap.py [34], that can

compare a high-confidence (or “truth”) variant callset with

a user-made single-sample callset, also known as the query

callset, and output performance metrics. For a certain set of

confident regions (specified by BED file), concordant vari-

ants in the two callsets should be considered true positives

(TP), while discordant variants should be considered either

false positives (FP) or false negatives (FN) depending on

which callset they appear in. Hap.py also outputs the F1

score (see case 3 methods) for variants passing the VCF

filters, which was used as the response in this case.

Grid search comparison

We compared the results from doepipeline to those from

grid search, which is a common methodology for opti-

mizing parameters. Grid search is done by evaluating the

parameter performance for all possible combinations of

parameter settings, the so-called parameter grid. For the

comparison to be relevant, we performed the grid search

at the same resolution as the GSD screening step in each

case. In other words, we tested all possible combinations

of the factor setting levels (typically 5 levels per factor).

Doepipeline

Implementation

doepipeline is fully implemented in the Python program-

ming language and source code is available for download

at github (https://github.com/clicumu/doepipeline) and

installable with conda-forge [35, 36] and through PyPi.

Generation of statistical designs is carried out through

the python package PyDOE2 [37], in which the GSD has

been implemented.

Usage

Configuration of the optimization is done in a structured

YAML file with sections for the experimental design and

for the pipeline steps (commands) to run. The design

section includes the names of the factors investigated

and their min/max values (design space), the responses

and their goals (minimize/maximize), and the type of

design to use in the optimization phase. The pipeline

section is where each individual pipeline step is speci-

fied. In each iteration, doepipeline takes the pipeline

steps as configured and substitutes the parameters under

investigation with the values given by the statistical de-

sign. A batch script is created for each pipeline step,

with any parameter values substituted, and the execution

of it is controlled by doepipeline. Pipeline steps are exe-

cuted either in parallel mode, where all experiments are

run at the same time, or in sequential mode where each

pipeline with all of the steps is executed in sequence.

For reference, we provide example YAML files at the

github repository.

Today, scientific data processing can include vast

amounts of data and/or require substantial computing

power. In such cases, data processing is commonly per-

formed on compute clusters that typically use some

queueing system in order to handle all user requests for

resources. An example of such a queueing system is the

Slurm Workload Manager [38] (Slurm). To accommo-

date users of compute clusters, we have implemented

Slurm support for doepipeline. If using Slurm, specify

the Slurm options in the YAML file as you would when

running a regular Slurm job. The Slurm options are

transferred by doepipeline to the batch script which is

then submitted to Slurm using sbatch.

After optimization, the parameter values suggested by

doepipeline are saved in the working directory for the

optimization. Additionally, there is a rich log file that

can be investigated to follow the workflow.

Results
Case 1: de-novo assembly of a bacterial genome

The goal of de-novo assembly is to combine raw

sequence reads into a representation of an organism’s

genome, i.e. to obtain as contiguous a genomic sequence

as possible. Due to the characteristics of the genome

sequence itself, in combination with short reads, this

process can be difficult. For example, sequence reads

from less complex segments of the genome will map to

more than one position, causing ambiguities that are not

possible to resolve, and this in turn leads to fragmenta-

tion of the assembly.

One popular sequence assembler is ABySS [15], which

provides 27 different user-controlled parameters. We set

up an example for optimization of de-novo assembly

software parameters using ABySS (see Methods section).

doepipeline ran for two iterations before halting. Thus,

the best response was obtained in the first iteration, in

the GSD screening phase. The experimental sheet and

corresponding response values from the GSD screening

and iteration 2 are included as Additional file 1. Using

the optimized parameter settings (Table 1), we obtained

a 1.6 and 13.1% increase in the investigated responses

tSeq and N50, and a 2.2% reduction in nSeq as com-

pared to when abyss-pe was run with default settings

(Table 2). Optimizing the parameters using the grid

search option required 625 experiments to be run, and it
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resulted in the same combination of parameter settings

as when using doepipeline (see Additional file 2 for grid

search result). By comparison, doepipeline required 97

experiments to be run.

Case 2: scaffolding of a bacterial genome assembly using

long reads

Scaffolding is the process of connecting together contigs

obtained from an assembly step. In this example we

aimed to optimize parameters for the scaffolding soft-

ware package SSPACE-LongRead [20], which relies on

long reads to span the low-complexity regions that are

typically found between the contigs of an assembly. Doe-

pipeline ran for three iterations before halting, obtaining

the best result in the second iteration. The response

values and parameter settings investigated in each iter-

ation are included in Additional file 3. The response

(N50) value obtained when using the default parameter

settings was 1,141,889 bp. Using the optimized param-

eter settings (Table 3) resulted in a 66.9% increase in the

response (1,905,883 bp). Optimizing the parameters

using the grid search option required 625 experiments

to be run, compared to 211 experiments using doepipe-

line, and it resulted in a best N50 value of 1,868,309,

which is slightly lower than the result obtained using

doepipeline (see Additional file 4 for grid search result).

Case 3: k-mer classification

K-mer classification is used to gather information about the

species content of a metagenomic sample. It is possible to

visualize the general distribution of species through the

reads classified or to identify the presence/absence of reads

classified to specific targets. By using third generation se-

quencing techniques, such as Oxford Nanopore, it is pos-

sible to classify reads from an unknown sample in real time.

But due to the long error-prone reads produced by third-

generation sequencing machines, there is a greater risk of

misclassification. At the genus level this is not usually a

problem. But when it comes to discriminating between

pathogenic and non-pathogenic species, misclassification

may become problematic; in particular false positive sig-

nals of pathogenic species may be obtained. We investi-

gated the KrakenUniq [23] (v. 0.5.2) algorithm and used

doepipeline to find optimized settings for long error-prone

reads in order to increase the ratio of true positives to

false positives using the F1-score as response. KrakenUniq

also has a filter that may reduce the number of false posi-

tive reads. The filter will adjust each assigned read up the

tree until the desired threshold is met, where the thresh-

old is the number of assigned k-mers divided by the num-

ber of unique k-mers in that category [23].

Optimization ran for three iterations before halting

and the best results were found during the second iter-

ation. The experimental sheet and corresponding response

values from the GSD screening and optimization itera-

tions are included in Additional file 5. Using the optimized

parameter settings (Table 4), we were able to increase the

F1 score by 0.065% from 0.993690 to 0.994341, compared

to when running KrakenUniq with default settings.

Optimizing the parameters using the grid search option

required 125 experiments to be run, compared to 76

experiments using doepipeline. The grid search resulted in

a best F1 score of 0.994169 which is slightly lower than

the result obtained using doepipeline (see Additional file 6

for grid search result).

Case 4: genetic variant calling

Variant calling is the process of determining genetic var-

iants (or mutations) from genetic sequence data. In this

case we aimed to find optimized parameters for a widely

used variant calling framework, the genome analysis

toolkit (GATK). Specifically, we sequentially optimized

two of the steps carried out by GATK: variant calling

and variant filtering (see methods).

In the optimization for the first step (variant calling),

doepipeline ran for three iterations before halting,

obtaining the best result in the second iteration (F1 =

0.9707). In the optimization for the second step (variant

filtration), doepipeline ran for four iterations before halt-

ing. The best result (F1 = 0.9716) was obtained in the

fourth iteration when the optimum predicted by the

model was validated. This optimum was too far from the

design space edges for doepipeline to move the design

space and initiate another iteration, and thus it halted

execution. The response values and parameter settings

investigated in each iteration are included in Additional file 7

(variant calling step) and Additional file 8 (variant filtering

step). The included parameters and their default and opti-

mized settings are listed in Table 5.

As the optimization was performed only on chromosome

1, we wanted to see how well the optimized parameter set-

tings carried over into a variant calling and filtering pipeline

applied across all autosomes and chromosome X. This ana-

lysis resulted in an F1 score of 0.9713, while using the de-

fault settings resulted in an F1 score of 0.9702.

Optimizing the parameters using the grid search option

resulted in a best F1 score of 0.9715, which is marginally

lower than the results obtained using doepipeline. Five ex-

periments in the first step of the grid search optimization

(calling) resulted in the same highest F1 score (see Add-

itional file 9). We therefore ran five parallel instances of the

second step of optimization (filtering) using the different

VCF files from the five best experiments in the first step.

This inflated the number of required experiments from the

expected 1250 to 3750 experiments in total, compared to

280 experiments with doepipeline. The five parallel optimi-

zations of step two all yielded the same set of 12 combina-

tions of settings producing an equally high F1 score
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(0.9715) (see Additional file 10). Validation across all auto-

somes and chromosome X using all 60 combinations of

parameter settings (5 times 12) yielded a best F1 score

of 0.9712, again marginally lower than for doepipeline.

Discussion
Selecting parameter settings for a data processing pipe-

line is complex, since the influence of the parameters on

the end result is not always obvious. While the value of

personal and peer experience should not be underesti-

mated, our approach provides a systematic way of deter-

mining optimal settings. Specialized tools to optimize

particular bioinformatic software tools have been pro-

posed previously. For example, VelvetOptimizer [39] can

be used to optimize the k-mer and coverage cutoff pa-

rameters of the Velvet assembler [40] and KmerGenie

can be used to make an informed decision on the choice

of k-mer in de Bruijn based assemblers [41]. However, a

generalized, software-agnostic optimization approach is

preferable, especially when several tools are used to-

gether in a pipeline.

Here we present such a generalized strategy for auto-

mated sequential optimization of software parameters,

employing core concepts of DoE methodology. We have

implemented our strategy in a user-friendly python pack-

age, doepipeline. The optimization strategy and the use of

doepipeline was exemplified in four bioinformatics use

cases; de-novo assembly of a bacterial genome using Illu-

mina reads, scaffolding a bacterial genome assembly using

nanopore reads, k-mer classification of metagenomic third

generation sequencing data, and genetic variant calling. In

all four cases, we saw an improvement in the measured

response variables as compared to when using the default

parameter settings. The improvement of the measured re-

sponses in our examples ranged between 0.065 and 66.9%.

We compared the results from doepipeline to results from

standard grid searches, and doepipeline achieved equally

good or better results using significantly lower numbers of

evaluations/experiments. Grid search is typically limited

to running a single optimization phase evaluating all

points in the parameter grid with no further refinement.

This is in contrast to doepipeline, which is adaptive and

refines the parameter settings based on the best results

from the previous phase, allowing it to find better per-

forming parameter settings than grid search.

One of the advantages of our proposed strategy is the

use of a GSD in a screening phase prior to the optimization

phase. Compared to Eliasson et al. [9], we are able to

screen a much larger design space efficiently prior to

optimization using the GSD-based approach. In order for

the optimization phase to converge in a feasible number

of iterations, the design space should be restricted in some

way. Deciding the range of each of the factors without

guidance risks creating too narrow or wide a design space.

Instead, the screening allows the user to set up a relaxed

(wide) design space in which to investigate and to approxi-

mate the optimal factor combination. The approximation

represents a substantiated initial center point around

which to set up a narrower optimization design. The

screening phase will also identify promising values for any

qualitative factors and fix them before optimization. Thus,

the GSD screening phase can be viewed as a systematic

approach to restricting the design space for the subse-

quent optimization phase. Similar results can be achieved

using stochastic optimization methods such as random

search [42], commonly applied within the machine learn-

ing community. Random search can effectively reduce the

number of runs required, but the final results are prob-

abilistic and may not be optimal, depending on each par-

ticular random draw. By using structured space-filling

designs, doepipeline deliberately spans more of the search

space rather than relying on randomness. We note that

the multi-phase workflow of doepipeline has conceptual

similarities to Bayesian hyperparameter optimization [43],

in refining the parameter choice based on promising par-

ameter regions from earlier iterations. However, doepipe-

line uses statistical designs that are guaranteed to fill the

parameter space and structured refinement around prom-

ising points rather than randomly sampling promising re-

gions with higher probability.

The fraction of the full design that a GSD represents

can be controlled with the reduction factor parameter in

doepipeline. We ran the optimization of ABySS (case 1)

with a GSD reduction factor of 8, but another optimization

of ABySS where a reduction factor of 10 was used produced

the same response values (data not shown) in fewer experi-

mental runs (45 as opposed to 70). In addition, there was a

degree of overlap among the response values in the GSD

iterations (Additional files 1, 3 and 5). Overall, this could

indicate that it is meaningful to try running the GSD with a

higher reduction factor than the recommended default,

and/or reducing the number of levels, further reducing the

number of experiments.

Currently, doepipeline leverages cloud computing cap-

ability through the Slurm workload managing system.

Given the recent development and consolidation of work-

flow managing systems [44] it would be possible to inte-

grate doepipeline with for example SnakeMake [45] or

NextFlow [46], similar to other implementations [47, 48].

During development and testing of doepipeline we saw

the design space moving back and forth between iterations

in the optimization phase. We hypothesized that this

behavior was because either the underlying function was

not modeled properly or the function was flat within the

investigated design space. To counteract this phenomenon

we implemented three features; i) no prediction of the op-

timal factor combination if the predictive power (Q2) of

the model was low (default: Q2 < 0.5), ii) validation of the
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predicted optimal factor combination by carrying out the

pipeline with those factor settings, and iii) shrinking the

span of the factors between iterations. After implementing

these three features, doepipeline consistently converged to

satisfactory results.

Specifying the pipeline in a YAML file allows for flex-

ible configurations of commands to be run, essentially

enabling optimization of any pipeline run on the com-

mand line. However, the number of parameters will typ-

ically increase with the length of the pipeline under

investigation. At the same time there is a soft constraint

on the number of parameters that can be investigated

simultaneously. This constraint will be related to the

problem currently under investigation and depends on

the computational complexity of the pipeline, and on

the available computational and time resources. Instead

of doing a global optimization of parameters, i.e. opti-

mizing the entire pipeline at once, an alternative ap-

proach is to run sequential optimizations in which only

a section of the pipeline at a time is optimized while

keeping the default parameter values for the rest of the

pipeline [9]. This type of sequential optimization is not

yet fully implemented in doepipeline and is a feature for

future updates. Sequential optimization of a pipeline

currently requires that an optimization is carried out for

each step of the pipeline and that the optimized param-

eter values so obtained are manually updated for the

subsequent steps of the pipeline.

Conclusion
Our proposed strategy represents a systematic approach

to the optimization of software parameters. Our imple-

mentation in the software-agnostic and user-friendly

package doepipeline could potentially serve as a starting

point for experimenters and bioinformaticians who cur-

rently rely on default settings or common practice when

running their data processing pipelines.

Availability and requirements
Project name: doepipeline.

Project home page: https://github.com/clicumu/doepipeline

Operating system(s): Platform independent.

Programming language: Python.

Other requirements: Python 3.x.

License: MIT License.

Any restrictions to use by non-academics: No restrictions.
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