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Abstract: This paper examines how AI at work impacts on-the-job learning, shedding light on
workers’ reactions to the groundbreaking AI technology. Based on theoretical analysis, six hypotheses
are proposed regarding three aspects of AI’s influence on on-the-job learning. Empirical results
demonstrate that AI significantly inhibits people’s on-the-job learning and this conclusion holds
true in a series of robustness and endogeneity checks. The impact mechanism is that AI makes
workers more pessimistic about the future, leading to burnout and less motivation for on-the-job
learning. In addition, AI’s replacement, mismatch, and deskilling effects decrease people’s income
while extending working hours, reducing their available financial resources and disposable time
for further learning. Moreover, it has been found that AI’s impact on on-the-job learning is more
prominent for older, female and less-educated employees, as well as those without labor contracts and
with less job autonomy and work experience. In regions with more intense human–AI competition,
more labor-management conflicts, and poorer labor protection, the inhibitory effect of AI on further
learning is more pronounced. In the context of the fourth technological revolution driving forward
the intelligent transformation, findings of this paper have important implications for enterprises to
better understand employee behaviors and to promote them to acquire new skills to achieve better
human–AI teaming.

Keywords: artificial intelligence; on-the-job learning; technological revolution; replacement effect;
deskilling effect

1. Introduction

Artificial intelligence, as the core driving force of the fourth technological revolution,
has grown by leaps and bounds in recent years. According to 2022 International Federation
of Robotics (IFR) statistics, the number of new industrial robots installed worldwide reached
an all-time high of 517,385 in 2021, with a yearly growth rate of 31%. Over the past six
years, annual robot installations have more than doubled (https://ifr.org/worldrobotics/
accessed on 16 January 2023). The rapid development of AI brings immense economic
benefits [1–3] and profound changes in people’s preferences and behaviors [4]. From an
enterprise perspective, the new work pattern applying AI contributes to wiser organiza-
tional decisions [5], better innovation management [6], and performance improvement [7].
From the viewpoint of workers, the new work style teaming with AI deeply influences
their employment [8,9], income [10], and well-being [11]. However, how workers react to
the AI technological revolution at work remains an unanswered question. It is yet to be
determined whether workers tend to further improve their skills to enhance competitive-
ness against AI, or whether they passively accept AI’s replacement and deskilling effects
on their jobs, resulting in a decrease in further learning.

On the one hand, the stimulation effect of artificial intelligence may motivate workers
to further improve skills so as to avoid being replaced by the new technology [12]. AI’s
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complementarity and cost-saving effects can also increase people’s income [13,14]. In
addition, the productivity and replacement effects of AI may reduce employees’ working
hours [15–17]. All of these factors can help to promote people’s on-the-job learning. How-
ever, on the other hand, AI may also lead people to have more pessimistic expectations
about the future by substituting their jobs, as well as bringing about a burnout effect [18,19],
which undermines their motivation for further learning. In addition, AI has the replacement
effect [8], mismatch effect [20], and deskilling effect [21,22] on people’s jobs, decreasing
their financial resources and time available for on-the-job learning.

Therefore, based on a theoretical analysis, it is unclear whether artificial intelligence
promotes or inhibits on-the-job learning. In the current context of the booming AI tech-
nology and digital transformation of industries, promoting employees to learn new skills
that can facilitate collaborating with AI is crucial for enterprises to improve their com-
petitiveness [23,24]. In light of this, this paper empirically examines the impact of AI
on on-the-job learning using the data from the Chinese general social survey (CGSS). In
addition, this study conducts a series of robustness and endogeneity tests by applying
different AI and on-the-job learning measures, ordered response models, instrumental
variables approach, penalized regressions, placebo tests, etc. We also systematically explore
the future expectation, economic income, and working-time mechanisms through which
AI affects on-the-job learning. Furthermore, the heterogeneities of AI’s influence in terms
of demographic, working, and regional characteristics are further explored.

The contributions of this paper include the following aspects. First, this paper deepens
our understanding of human reactions to artificial intelligence at work from an on-the-job
learning perspective and expands the research concerning AI’s impact on workers. Existing
studies about the impacts of AI on workers have mainly focused on its direct effects on
employment [8,9,25], income [10], and well-being [11,26]. However, there is a lack of litera-
ture on how workers react to AI. This paper provides a valuable exploration in this regard.
The findings of this paper reveal that workers passively accept the effect of AI and reduce
on-the-job learning. This can help companies to better understand employee preferences
and behaviors while taking advantage of AI for technological upgrades. Second, this paper
examines factors influencing employees’ on-the-job learning from a novel perspective of
technological change and clarifies the impact mechanism of technological progress on on-
the-job learning. There are numerous elements affecting on-the-job learning, and the related
literature has mainly emphasized factors with respect to organizational environment [27],
job attributes [28,29], demographic characteristics [30,31], as well as personal traits [32].
Nevertheless, the effects of technological advances on on-the-job learning have been rela-
tively neglected. Therefore, this study contributes to a more comprehensive understanding
of the elements influencing on-the-job learning from a new view. In addition, this study
indicates that by creating more pessimistic expectations, reducing income, and extending
work hours through its deskilling effect, AI inhibits workers’ on-the-job learning. Thus, this
paper enlightens enterprises to optimize their management strategy from the perspectives
of workers’ expectations, earnings, and working hours, so as to motivate workers to learn
furth, improve human capital, and promote innovation. Third, this paper also identifies
vulnerable subgroups whose on-the-job learning is more adversely affected in the era of AI,
such as older, female and less-educated workers, as well as those with less job autonomy
and work experience. This contributes to encouraging enterprises and governments to
pay more attention to these employees and consider providing them with more training
opportunities and labor protection.

The remainder of the paper is structured as follows: Section 2 is the literature review
and theoretical background. Section 3 introduces data and variables. Section 4 presents
the results of benchmark analysis, as well as endogeneity and robustness tests. Section 5
explores impact mechanisms through which artificial intelligence affects on-the-job learning.
Section 6 conducts heterogeneity analysis. Section 7 summarizes the findings of this study
and puts forward implications.
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2. Literature Review and Theoretical Background
2.1. AI’s Impacts on People’s Future Expectations and On-the-Job Learning

The previous literature has shown that the growing power of artificial intelligence
and its increasing status in the workplace may make workers more pessimistic about their
future. According to Huang and Rust [33], both humans and AI have four intelligences:
mechanical, analytical, intuitive, and empathetic intelligences. Mechanical intelligence is
responsible for standardized and repetitive tasks. Analytical intelligence is the ability to
process information and to perform tasks requiring logical thinking in decision-making. In-
tuitive intelligence completes tasks needing intuitive, holistic, experiential, and contextual
interactions. Empathetic intelligence is applied for tasks that involve empathy and emo-
tional analytics. Although currently humans have the advantage in the “softer” intuitive
and empathetic skills [33,34], with the rapid development of enhanced computing power
and machine learning algorithms, AI can learn and accumulate knowledge on its own,
just like human capital [35]. Thus, it is suggested that AI will replace people to perform
complex tasks requiring the latter two intelligences [33]. In addition, the power of AI is
also reflected in its increasing importance and status at work [4–6], where the role of AI
gradually changes from follower to manager [36,37] or even leader [38,39], leaving workers
with less room for further promotion. Because of the above reasons, humans may perceive
AI as a threat to their jobs, leading to increased fear of unemployment, anxiety [40], and
job insecurity [26]. Lan et al. [41] find that when human employees feel threatened, they
may develop robot-phobia and have more pessimistic expectations about the future due to
AI-induced displacement of their jobs.

When workers perceive their roles as vulnerable to being replaced by artificial intelli-
gence and have pessimistic expectations, the existing literature does not provide a definitive
answer as to whether they are stimulated to further improve their skills to enhance compet-
itiveness or whether they become burned out and reduce on-the-job learning. A strand of
literature believes that the threat brought by new technologies stimulates workers to learn
more to update their knowledge. Ivanov et al. [12] find that when faced with a potential
threat of substitution, employees prefer the “fight strategy”, in which they learn how to
use new technologies to be more productive to stay competitive. In addition, it is also
shown that people with job insecurity are more willing to undertake training to strengthen
their ability to find jobs outside the organization [32]. At the same time, the improvement
of skills enables workers to build confidence in their employability, thus increasing job
satisfaction and security [42]. Therefore, Hypothesis 1a can be proposed: the pessimistic
expectations caused by AI have a stimulation effect and thus promote on-the-job learning.
However, on the other hand, when employees feel fear of unemployment and the negative
emotions dominate, AI may lead to burnout, thus discouraging further learning [18,19].
This is because people may perceive themselves as no longer competitive against AI and
that human capital has been totally replaced by AI. Hence, people have a sense of hope-
lessness in achieving better performance at work than AI even if they engage in further
learning [43]. Based on this, Hypothesis 1b, which is the opposite of Hypothesis 1a, can
be put forward: the pessimistic expectations caused by AI have a burnout effect and thus
inhibit on-the-job learning.

2.2. AI’s Impacts on Workers’ Income and On-the-Job Learning

In addition to affecting future expectations, artificial intelligence can also impact
workers’ income. Nevertheless, studies have not reached a unanimous conclusion as to
whether AI increases or decreases income. A stream of research argues that AI is labor-
friendly and raises income. First, AI has a complementarity effect on labor demand. When
AI is applied in production, it requires close collaboration with human cognitive and
interpersonal skills, thus promoting the employment and income of workers with such
skills [13,14]. Moreover, this will motivate workers to seek further learning and training
to acquire these skills to achieve better human–AI collaboration, and therefore, increase
wages [44]. In addition, AI also has a cost-saving effect. The application of automation can
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save production costs, lower the price of products and increase total demand, creating more
demand for labor and thus resulting in increased incomes [45]. Therefore, on the grounds
of its complementarity and cost-saving effects, AI may exert a positive effect on income.

However, another stream of research holds the view that artificial intelligence reduces
workers’ income, mainly due to the following two reasons. First, AI has a capital-deepening
effect and brings down labor demand, which leads to job replacement and lowers earnings
for workers [8]. For example, it has been found that in the human–machine competition,
automation brought by AI displaces labor and decreases its wage [16]. Second, AI can also
exert a mismatch effect on the labor market. Despite the aforementioned complementarity
effect, skills in the workforce may not suit the requirements of the new technology in
the short term. Consequently, AI can lead to a mismatch between labor skills and the
demands of new technologies, thus reducing economic gains from AI application [20].
Furthermore, the AI-induced mismatch creates a higher risk of frictional unemployment
and lowers workers’ income [10,25]. Therefore, from the theoretical analysis, the impact of
AI on people’s income is unclear. On-the-job learning entails financial resources as well as
opportunity costs in lost income. If AI raises employees’ income, they can shoulder higher
costs of on-the-job learning, and thus increase the frequency of their on-the-job learning. In
view of this, Hypothesis 2a can be proposed: AI’s complementarity and cost-saving effects
increase income and thus promote on-the-job learning. On the contrary, if AI decreases
people’s income, there will be less financial resources available for training, resulting in
reduced on-the-job learning. So, Hypothesis 2b, opposite to Hypothesis 2a, can be proposed:
AI’s replacement and mismatch effects reduce income and thus inhibit on-the-job learning.

2.3. AI’s Impacts on Employees’ Working Hours and On-the-Job Learning

On-the-job learning, which is a form of human capital investment, not only requires
financial expenses but also involves investment in time. Therefore, exploring the impact of
artificial intelligence on further learning also requires clarifying the relationship between
AI application and working time. There are two opposite viewpoints on this issue in the
existing literature. On the one hand, some studies suggest that AI deskills workers and
reduces their bargaining power [46]. As a consequence, AI may extend working hours. To
be specific, with the standardization of work tasks realized by advanced technologies, it
is no longer necessary for experienced and skilled workers to perform complicated tasks
at work. As a result, their skills could not automatically give them bargaining power in
the workplace [21,22]. Therefore, people’s working hours may increase because of their
reduced negotiating power. Moreover, employees’ control over their work also decreases
due to AI-driven deskilling [47]. Machines can work at more intense rhythms and increase
human workload and working time [48,49]. In this process, AI can also manage and monitor
work processes in real time [50], resulting in employees experiencing more work stress. In
addition, from a macroeconomic perspective, technological advances may also increase
working hours. This is due to the fact that, based on the real business cycle theory, favorable
technological advances can drive investment, which requires more labor input [51].

However, on the other hand, some research demonstrates that artificial intelligence
may reduce working time. First, AI has the productivity effect. It can support workers in
performing repetitive and heavy tasks and the human–machine cooperation saves working
time [52]. Therefore, the application of AI directly improves productivity [2,53]. Moreover,
technological upgrading promotes labor reallocation, for which AI also indirectly promotes
productivity [15]. Owing to the lifted productivity, people’s working hours may decrease.
Second, AI has the replacement effect discussed earlier, which can decrease people’s work
on certain tasks, thereby shortening working hours [16,17]. For example, Cho and Kim [54]
find that AI application in some Korean firms helps to reduce overwork. According to the
above literature, AI may either decrease or increase working hours. If AI increases working
time due to its deskilling effect, workers would have less time available for learning, and
thus, their on-the-job learning would be less frequent. This leads to Hypothesis 3a: AI’s
deskilling effect increases working hours and thus inhibits on-the-job learning. Conversely,
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if AI reduces working hours thanks to its productivity or substitution effects, then workers
can spare more time to learn new skills. From this, Hypothesis 3b can be put forward:
AI’s productivity and replacement effects reduce working hours and thus promote on-the-
job learning.

2.4. Possible Heterogeneities in AI’s Effects on On-the-Job Learning

From the existing literature, there may exist heterogeneities in the effects of artificial
intelligence on on-the-job learning across different groups. First, the impact of AI on on-the-
job learning may vary depending on demographic characteristics. In terms of age, younger
workers are more willing to acquire new knowledge and skills, whereas the older labor
force is less able to adapt to technological changes, and thus, more likely to be replaced by
AI [55]. Moreover, the accelerating pace of technological progress and innovation increases
the demand for work-related learning. However, as people age, their motivation to learn
diminishes. As a consequence, employers are more willing to provide more training and
development opportunities to younger workers [56,57]. For these reasons, older employees’
willingness to learn on the job may decrease to a greater extent when their jobs are impacted
by AI. Regarding gender, studies find that women tend to perform routine tasks more often
than men even within the same occupational category, making them more at risk of being
substituted [58]. Furthermore, women are more vulnerable to labor market discrimination
in terms of job search, promotion opportunities, and payment for labor [59]. Therefore, it
is more difficult for them to switch jobs by updating skills when being replaced by new
technology. In terms of education, those with higher levels of education are less likely to be
displaced by AI [25]. Zhou et al. [60] have discovered that for those with college and above
educational attainment, the substitution probability is only half of that of low-education
groups. Furthermore, educational level is usually positively correlated with a willingness
to participate in work-related learning [31]. Hence, in the face of AI’s replacement effect,
workers with lower levels of education may be less inclined to learn on the job.

Second, the impact of artificial intelligence may differ based on working characteristics.
Labor contracts are the legal basis for workers to protect their rights and interests. They can
raise social insurance coverage and reduce the likelihood of wage arrears, thus improving
the welfare of underprivileged labor [61,62]. All these factors contribute to mitigating
the impact of AI on workers. Therefore, labor contracts may reduce the impact of AI at
work on on-the-job learning. With regard to job autonomy, related studies have shown
that granting workers more autonomy to determine their work content increases their
willingness to learn [63]. Conversely, less job autonomy not only decreases willingness
to learn but also increases turnover intention [64,65]. In addition, work experience can
enhance employability [66], which helps workers better switch jobs when they are replaced
by AI. Consequently, the effect of AI on on-the-job learning may be smaller for those
with higher job autonomy and more work experience. Third, macro-level regional factors
may also play a role in the impact of AI on workers’ on-the-job learning. In regions with
faster technological development, workers often develop more negative emotions, such
as anxiety, insecurity, and aversion to new technologies [67]. As a result, they may react
more passively to technological progress, reducing on-the-job learning to a greater extent.
In contrast, in regions with stronger labor protection, workers tend to have a more positive
attitude toward new technology. They are also more likely to adapt to rapidly evolving skill
demands through reeducation and retraining [68]. From the above analysis, the impact of
AI on workers’ on-the-job learning can vary in regions with different levels of technological
development, AI application, and labor protection.

Based on the above analysis, the theoretical framework and research design of this
study are illustrated in Figure 1.
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Figure 1. Theoretical framework and research design.

3. Data and Variables
3.1. Data Source

This paper examines the impact of artificial intelligence on employees’ on-the-job
learning using data from the Chinese general social survey (CGSS). CGSS is the first na-
tionwide, comprehensive, and continuous large-scale survey project in China, aiming to
systematically collect multi-dimensional information at the individual level and monitor
changes in society. Compared with other data sources, CGSS has two advantages for this
study: first, CGSS investigates respondents’ on-the-job learning frequencies and compre-
hensive factors influencing further learning, facilitating the construction of the dependent
and control variables of this research. Second, CGSS provides people’s occupational codes
of the international standard classification of occupations 2008 (ISCO-2008), which enables
us to measure AI’s impact on respondents’ work, so as to construct the explanatory vari-
ables of this paper. CGSS data have been updated to 2018; however, since the ISCO-2008
standard occupational codes are not available in the data before 2017, this paper uses the
2017–2018 wave data in CGSS.
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3.2. Variables
3.2.1. Dependent Variables

The main dependent variable in this paper is the frequency of on-the-job learning,
derived from the responses of employed respondents to the frequency of further learning,
denoted as Further_Learningi. Specifically, the frequency of further on-the-job learning is
measured based on the five-point Likert scale, classifying learning frequency from 1 to
5 as “never”, “seldom”, “sometimes”, “often”, and “frequently”. Higher scores indicate
more frequent on-the-job learning. This indicator has been used in many existing studies to
characterize workers’ on-the-job learning [69,70].

3.2.2. Explanatory Variables

The most commonly used indicator to characterize artificial intelligence’s impact on
workers is the routine task intensity constructed by Autor and Dorn [71]. They have found
that the new technological progress led by AI is task-biased rather than skill-biased. The
greater degree of routine cognitive and routine manual intensity a task has, the more
codable it is, the easier it is to be performed by machine learning algorithms, and the
greater the impact of AI on it [72,73]. Therefore, based on the task characteristics of
different occupations in the Dictionary of Occupational Titles of the United States Department
of Labor, they measure occupations’ routine intensity from the cognitive and operational
dimensions to characterize AI’s impact on workers. This indicator is calculated based on
the standard occupational classification 2009 version (SOC-2009). We use the occupational
crosswalk system from the United States Department of Labor to convert this index into
the ISCO-2008 standard indicator, and then match it to CGSS data, denoted as AI. It is
worth pointing out that in the crosswalk from SOC-2009 to ISCO-2008, a certain ISCO-2008
occupation may correspond to multiple SOC-2009 occupations. In this regard, we calculate
the mean value as the AI indicator of the ISCO-2008 occupation. In addition, other measures
are also used for robustness checks [25].

3.2.3. Control Variables

Referring to the literature on factors influencing on-the-job learning, e.g., [18,69], this
paper comprehensively controls for variables in six aspects to avoid omitted variable bias:
(1) Demographic characteristics include gender, age, and the quadratic term of age; (2) Work
characteristics include personal income, whether one works in the system and whether one
has pension and medical insurance; (3) Human capital characteristics include educational
status and health condition; (4) Social identity characteristics include whether one belongs
to an ethnic minority, whether one has religious beliefs, and whether one is a Communist
Party of China (CPC) member; (5) Family characteristics include whether one is married,
family size, and number of children; (6) Time and province dummies. Table 1 presents the
descriptive statistics of the above variables.

Table 1. Descriptive statistics.

Variable Description Obs. Mean Std. Dev. Min. Max.

Dependent Variables
Further Learning Frequency of on-the-job learning, 1–5 levels 12,418 1.943 1.064 1 5

Whe_Learning Whether often participate in on-the-job
learning 12,418 0.282 0.450 0 1

Explanatory Variables
AI AI (unweighted index) 12,418 −0.473 1.333 −6.190 4.235

AI_weighted AI (weighted index) 12,418 −0.474 1.348 −6.190 4.235
AI_median AI (median index) 12,418 −0.474 1.345 −6.190 4.235

AI_max AI (max index) 12,418 0.113 1.618 −6.190 6.100

AI_2
AI index subtracting the non-routine cognitive

analytic and non-routine interpersonal
intensity

12,418 −0.335 2.570 −7.407 5.887
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Table 1. Cont.

Variable Description Obs. Mean Std. Dev. Min. Max.

AI_3
AI_2 index subtracting the non-routine manual
physical and non-routine manual interpersonal

intensity
12,262 −0.382 2.905 −7.976 6.221

AI_Frey Another AI index constructed by Frey and
Osborne [25] 12,085 0.634 0.312 0.004 0.990

Control Variables
Demographic characteristics

Whether female Yes = 1, No = 0 12,418 0.471 0.499 0 1
Age Age 12,418 45.407 13.145 18 75

Age_squared Squared term of age 12,418 2234.583 1219.794 324 5625
Work characteristics

ln_Income Logarithm of personal income (RMB) 11,867 9.451 2.771 0 16.113
Whether

workingin-system Yes = 1, No = 0 12,347 0.112 0.315 0 1

Whether having
pension Yes = 1, No = 0 12,401 0.742 0.437 0 1

Whether
havingmedical

insurance
Yes = 1, No = 0 12,412 0.934 0.248 0 1

Human capital characteristics
Whether higher

educated Yes = 1, No = 0 12,414 0.139 0.345 0 1

Whether healthy Yes = 1, No = 0 12,414 0.633 0.482 0 1
Social identity characteristics

Whether ethnic
minorities Yes = 1, No = 0 12,418 0.081 0.273 0 1

Whether religious
believer Yes = 1, No = 0 12,418 0.095 0.293 0 1

Whether CPC
member Yes = 1, No = 0 12,403 0.101 0.302 0 1

Family characteristics
Whether married Yes = 1, No = 0 12,418 0.825 0.380 0 1

Number of children Number of children 12,418 1.515 1.035 0 10
Family size Number of family members 12,418 2.940 1.424 1 12

Year dummies
Province dummies

Notes: Working in-system in China refers to having jobs in Communist Party of China organizations, governments,
and state-owned corporations. Compared with out-system jobs, in-system jobs bring better social security and
additional hidden benefits. Whether higher educated denotes whether the respondent has a college degree
or higher.

4. Results and Discussion
4.1. Benchmark Empirical Results

First, the following ordinary least squares (OLS) model is constructed to examine the
impact of AI on on-the-job learning:

Further_Learningi = α0 + α1 AIi + x′iψ
1 + dy + dr + ε1

i (1)

In Model (1), the dependent variable Further_Learningi refers to employed respon-
dent’s frequency of on-the-job learning. The explanatory variable characterizes the degree
to which the respondent’s work is affected by AI. x′i, dy and, dr are the vectors of control
variables, as well as year and province dummy variables as mentioned above. α0, α1, and
ψ1 are parameters to be estimated; we specifically focus on α1.

Estimation results of Model (1) are shown in Table 2. Column (1), which does not
include any control variables, indicates that the effect of artificial intelligence is significantly
negatively related to on-the-job learning frequencies. Columns (2)–(7) sequentially include
the six types of control variables mentioned above. Results display that no matter which
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controls are included in the regression, the estimated coefficients of AI, which are −0.075,
−0.06, −0.049, −0.048, −0.05, and −0.05, are all significantly negative at the 1% level, im-
plying that AI significantly reduces on-the-job learning. In addition, as different aspects of
characteristics are added, estimates of the relationship between AI and on-the-job learning
decrease slightly but basically stabilize at around −0.050, suggesting that the negative
relationship between the two factors is robust and not interfered by other elements. The
estimated results of controls are generally in line with theoretical expectations and the
existing literature. For example, younger workers participate in more on-the-job learning
because they have more opportunities of career development and acquire new skills more
quickly [56,57]. Higher-educated employees have a greater willingness to engage in further
learning [31]. Those with higher incomes can afford higher learning costs, and therefore,
learn on the job more frequently.

Table 2. Impacts of AI on on-the-job learning.

Model (1) OLS (2) OLS (3) OLS (4) OLS (5) OLS (6) OLS (7) OLS

Variable Further
Learning

Further
Learning

Further
Learning

Further
Learning

Further
Learning

Further
Learning

Further
Learning

AI −0.085 ***
(0.007)

−0.075 ***
(0.007)

−0.060 ***
(0.007)

−0.049 ***
(0.007)

−0.048 ***
(0.007)

−0.050 ***
(0.007)

−0.050 ***
(0.006)

Whether female −0.139 ***
(0.018)

−0.065 ***
(0.018)

−0.074 ***
(0.017)

−0.052 ***
(0.017)

−0.038 **
(0.017)

−0.042 ***
(0.016)

Age −0.038 ***
(0.004)

−0.060 ***
(0.004)

−0.038 ***
(0.004)

−0.041 ***
(0.004)

−0.033 ***
(0.004)

−0.031 ***
(0.004)

Age_squared 0.000 **
(0.000)

0.000 ***
(0.000)

0.000 ***
(0.000)

0.000 ***
(0.000)

0.000 ***
(0.000)

0.000 ***
(0.000)

ln_Income 0.063 ***
(0.003)

0.047 ***
(0.003)

0.044 ***
(0.003)

0.040 ***
(0.003)

0.030 ***
(0.003)

Whether working
in-system

0.728 ***
(0.032)

0.481 ***
(0.032)

0.387 ***
(0.033)

0.373 ***
(0.033)

0.378 ***
(0.032)

Whether having pension 0.275 ***
(0.020)

0.184 ***
(0.019)

0.165 ***
(0.019)

0.157 ***
(0.019)

0.125 ***
(0.020)

Whether having
medical insurance

0.125 ***
(0.034)

0.097 ***
(0.033)

0.080 **
(0.033)

0.100 ***
(0.033)

0.125 ***
(0.032)

Whether higher educated 0.839 ***
(0.030)

0.736 ***
(0.031)

0.690 ***
(0.031)

0.601 ***
(0.031)

Whether healthy 0.110 ***
(0.018)

0.095 ***
(0.018)

0.092 ***
(0.017)

0.096 ***
(0.017)

Whether ethnic minorities −0.149 ***
(0.031)

−0.131 ***
(0.030)

−0.084 **
(0.036)

Whether religious believer 0.044
(0.030)

0.069 **
(0.031)

0.062 **
(0.031)

Whether CPC member 0.483 ***
(0.035)

0.483 ***
(0.034)

0.460 ***
(0.034)

Whether married −0.004
(0.025)

−0.002
(0.025)

Number of children −0.129 ***
(0.010)

−0.105 ***
(0.010)

Family size −0.010
(0.006)

−0.004
(0.006)

Time dummies No No No No No No Yes
Province dummies No No No No No No Yes

Constant 1.902 ***
(0.010)

3.461 ***
(0.096)

2.814 ***
(0.107)

2.268 ***
(0.103)

2.410 ***
(0.103)

2.382 ***
(0.106)

2.701 ***
(0.114)

Observations 12,418 12,418 11,788 11,780 11,770 11,770 11,770
Adjusted R2 0.011 0.138 0.239 0.298 0.315 0.327 0.351

Notes: ***, **, and * indicate significance at the levels of 1%, 5%, and 10%, respectively. The values in parentheses
are standard errors robust to heteroskedasticity. Yes means the corresponding variables are controlled in the
regression, while no means not controlled. Adjusted R2 is reported for linear models and pseudo R2 is reported
for nonlinear models. The same applies to other tables below.
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4.2. Robustness and Endogeneity Tests
4.2.1. Using Other AI Measures

In converting the artificial intelligence indicator constructed by Autor and Dorn [71]
from SOC-2009 to ISCO-2008 occupations, when an ISCO-2008 occupation has more than
one corresponding occupations in SOC-2009, the mean measure of SOC-2009’s AI indexes is
used in the benchmark analysis. However, this approach fails to take into account the scale
of employment in different SOC-2009 occupations. To address this, this paper constructs a
weighted average AI indicator, denoted as AI_weighted, by taking the employment scale
of different occupations in the US occupational employment survey (OES) as the weight
to check the robustness of the above findings. In addition, to avoid the interference of
outliers to which the mean and weighted values are subject to, the median AI index of SOC-
2009 occupations is also constructed for ISCO-2008, denoted as AI_median. Furthermore,
to check the robustness of findings, a more radical conversion is applied, in which the
maximum value of different SOC-2009 occupations’ AI indicators is used.

Moreover, to more comprehensively characterize working features, considering that
the higher the non-routine intensity, the lower the influence of AI on the occupation,
this research subtracts the non-routine cognitive analytic and non-routine interpersonal
intensities of the occupation from its routine cognitive and routine manual intensities
to construct the AI_2 index. Based on this, we also calculate the AI_3 indicator that
further subtracts the non-routine manual physical and non-routine manual interpersonal
intensities from AI_2. Then, this paper utilizes these different AI indicators based on Autor
and Dorn [71] to perform robustness tests.

In addition, we are also concerned about whether the conclusions of this paper still
hold if artificial intelligence indicators constructed by other scholars are exploited. An-
other AI indicator newly developed by Frey and Osborne [25] has also received attention
recently. So, we performed a robustness test using this indicator, denoted as AI_Frey.
This indicator, based on the characteristics of different occupations in the occupational
information network (O*NET), uses machine learning algorithms to measure the degree to
which different occupations are affected by AI. It takes values in the interval [0, 1], with
higher values indicating AI’s greater impact on people. Robustness tests results using the
above different AI indexes are exhibited in Table 3. It is shown that the impact of AI on
on-the-job learning is significantly negative at the 1% level, regardless of which indicator is
applied. Furthermore, AI’s estimated coefficients obtained using the above indicators are
largely consistent, confirming the robustness of the findings in this paper.

Table 3. Robustness and endogeneity tests: using other AI measures.

Model (1) OLS (2) OLS (3) OLS (4) OLS (5) OLS (6) OLS

Variable Further
Learning

Further
Learning

Further
Learning

Further
Learning

Further
Learning

Further
Learning

AI_weighted −0.049 ***
(0.006)

AI_median −0.049 ***
(0.006)

AI_max −0.045 ***
(0.005)

AI_2 −0.046 ***
(0.004)

AI_3 −0.034 ***
(0.003)

AI_Frey −0.317 ***
(0.030)

Controls Yes Yes Yes Yes Yes Yes

Constant 2.703 ***
(0.114)

2.703 ***
(0.114)

2.740 ***
(0.114)

2.738 ***
(0.113)

2.705 ***
(0.114)

2.926 ***
(0.117)

Observations 11,770 11,770 11,770 11,770 11,626 11,454
Adjusted R2 0.351 0.351 0.351 0.358 0.355 0.351
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4.2.2. Dealing with Measurement Errors in the On-the-Job Learning Indicator

Considering that different respondents may have varied understandings of the options
presented in the questionnaire, the dependent variable may suffer from measurement errors.
To check the robustness of the benchmark regression results, this paper further constructs
the dummy variable Whe_Learning, according to whether ratings of on-the-job learning
frequencies are greater than 3. Therefore, if the respondents seldom or never participate in
on-the-job learning, Whe_Learning is coded as 0 and as 1 if otherwise. This dummy variable
can mitigate measurement errors caused by differences in respondents’ understandings
of question options to a large extent. The reason lies in the fact that although different
respondents may have divergent understandings of the frequency of “sometimes”, “often”,
and “frequently”, there is hardly any difference in the judgment of whether the further
learning frequency belongs to Whe_Learning = 0 (never or seldom) or Whe_Learning = 1
(sometimes, often or frequently). Since this explained variable is a binary variable, the
predicted values of the OLS model may be outside [0, 1], so probit and logit models based
on the maximum likelihood estimation are applied. The log-likelihood function is of the
following form:

lnL = ∑
i∈S

ln
[

F
(

β0 + β1 AIi + x′iψ
2 + dy + dr

)]
+ ∑

i/∈S
ln
[
1− F

(
β0 + β1 AIi + x′iψ

2 + dy + dr

)]
(2)

F(·) = Φ
(

β0 + β1 AIi + x′iψ
2 + dy + dr

)
(3)

or

F(·) = exp
(

β0 + β1 AIi + x′iψ
2 + dy + dr

)
/
{

1 + exp
(

β0 + β1 AIi + x′iψ
2 + dy + dr

)}
(4)

In expression (2), S is the set of all observations such that Whe_Learningi = 1. F(·)
can take the form of either Equation (3) or Equation (4). Equation (3), where Φ(·) is the
standard normal cumulative density function, corresponds to the probit model. Equation (4)
is applied to the logit model. Based on this, β1 and ψ2 are estimated by max

β1,ψ2
lnL.

The results estimated using the probit model and logit model are shown in Tables 4
and 5, respectively. Similarly, by stepwise adding control variables in six aspects, the
estimated coefficients of AI’s effect on Whe_Learning remain significantly negative at the
1% level. This demonstrates that AI significantly inhibits on-the-job learning after dealing
with measurement errors in the on-the-job learning indicator, no matter whether a probit
or logit model is employed.

Table 4. Robustness and endogeneity tests: using the dummy measure of on-the-job learning
(probit model).

Model (1) Probit (2) Probit (3) Probit (4) Probit (5) Probit (6) Probit (7) Probit

Variable Whe_
Learning

Whe_
Learning

Whe_
Learning

Whe_
Learning

Whe_
Learning

Whe_
Learning

Whe_
Learning

AI −0.095 ***
(0.009)

−0.086 ***
(0.009)

−0.074 ***
(0.010)

−0.064 ***
(0.010)

−0.064 ***
(0.010)

−0.068 ***
(0.010)

−0.067 ***
(0.010)

Demographic
characteristics No Yes Yes Yes Yes Yes Yes

Work characteristics No No Yes Yes Yes Yes Yes
Human capital
characteristics No No No Yes Yes Yes Yes

Social identity
characteristics No No No No Yes Yes Yes

Family characteristics No No No No No Yes Yes
Time and province

characteristics No No No No No No Yes
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Table 4. Cont.

Model (1) Probit (2) Probit (3) Probit (4) Probit (5) Probit (6) Probit (7) Probit

Variable Whe_
Learning

Whe_
Learning

Whe_
Learning

Whe_
Learning

Whe_
Learning

Whe_
Learning

Whe_
Learning

Constant −0.627 ***
(0.013)

0.722 ***
(0.140)

0.029
(0.170)

−0.477 ***
(0.166)

−0.313 *
(0.167)

−0.393 **
(0.179)

−0.002
(0.193)

Observations 12,418 12,418 11,788 11,780 11,770 11,770 11,770
Pseudo R2 0.008 0.087 0.161 0.200 0.213 0.223 0.243

Table 5. Robustness and endogeneity tests: using the dummy measure of on-the-job learning
(logit model).

Model (1) Logit (2) Logit (3) Logit (4) Logit (5) Logit (6) Logit (7) Logit

Variable Whe_
Learning

Whe_
Learning

Whe_
Learning

Whe_
Learning

Whe_
Learning

Whe_
Learning

Whe_
Learning

AI −0.161 ***
(0.016)

−0.144 ***
(0.016)

−0.123 ***
(0.017)

−0.109 ***
(0.017)

−0.109 ***
(0.017)

−0.117 ***
(0.017)

−0.116 ***
(0.018)

Demographic
characteristics No Yes Yes Yes Yes Yes Yes

Work characteristics No No Yes Yes Yes Yes Yes
Human capital
characteristics No No No Yes Yes Yes Yes

Social identity
characteristics No No No No Yes Yes Yes

Family characteristics No No No No No Yes Yes
Time and province

characteristics No No No No No No Yes

Constant −1.021 ***
(0.022)

0.938 ***
(0.241)

−0.377
(0.331)

−1.000 ***
(0.299)

−0.702 **
(0.298)

−0.931 ***
(0.319)

−0.285
(0.342)

Observations 12,418 12,418 11,788 11,780 11,770 11,770 11,770
Pseudo R2 0.008 0.087 0.162 0.199 0.213 0.223 0.242

4.2.3. Using Ordered Response Models

The dependent variable Further_Learningi is an ordered variable because it takes the
values of 1, 2, 3, 4, and 5. This means that although further learning frequencies are ordered
from “never” to “frequently”, the spacing between the values of Further_Learningi may
not be the same across different levels. The linear models, such as OLS, assume that these
categories are equally spaced, which may not be the case. Therefore, to check the robustness
of the conclusions obtained from the linear model, ordered response models are further
applied, which assume that the explained variable is ordinal and different categories are
not equally spaced. Specifically, based on Further_Learningi the sample is divided into five
subgroups, denoted g = 1 to 5, representing those that never, seldom, sometimes, often,
and frequently engage in on-the-job learning, respectively. The probability pgi of a given
observation i in group g is

pgi = Pr(Further_Learningi = g) = Pr
(

χg−1 < γ0 + γ1 AIi + x′iψ
3 + dy + dr + εi ≤ χg

)
(5)

Pr(·) = Φ
(

χg − γ0 − γ1 AIi − x′iψ
3 − dy − dr

)
−Φ

(
χg−1 − γ0 − γ1 AIi − x′iψ

3 − dy − dr

)
(6)

or

Pr(·) = 1/
{

1 + exp
(

γ0 + γ1 AIi + x′iψ
3 + dy + dr − χg

)}
− 1/

{
1 + exp

(
γ0 + γ1 AIi + x′iψ

3 + dy + dr − χg−1

)}
(7)
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In Equation (5), χ0 is −∞ and χ5 is +∞. Pr(·) can take two forms. The first is to use
Equation (6) for an ordered probit model estimation, where Φ(·) is the standard normal
cumulative distribution function. The other approach is to apply Equation (7) for an
ordered logit model estimation. Accordingly, the log likelihood of the maximum likelihood
estimation (MLE) is

lnL =
N

∑
i=1

5

∑
g=1

Ig(Further_Learningi)lnpgi (8)

where Ig(Further_Learningi) =

{
1, i f Further_Learningi = g
0, i f Further_Learningi 6= g

and N is the sample size.

Based on this, γ1 and ψ3 are estimated by max
γ1, ψ3

lnL.

The estimation results obtained from the ordered probit and ordered logit models
are displayed in Tables 6 and 7, respectively. In all regressions, the estimated coefficients
of artificial intelligence’s impact on Further_Learningi are significantly negative at the
1% level, consistent with the conclusions derived from the benchmark regressions. This
indicates that the application of AI decreases workers’ further learning. Additionally, with
the inclusion of different control variables, the estimated coefficients of AI are stable around
−0.06, suggesting that the conclusions of this paper are robust and that AI’s effects on
on-the-job learning are not altered by model selection or the inclusion of other factors.

Table 6. Robustness and endogeneity tests: using ordered response models (ordered probit model).

Model (1) Oprobit (2) Oprobit (3) Oprobit (4) Oprobit (5) Oprobit (6) Oprobit (7) Oprobit

Variable Further
Learning

Further
Learning

Further
Learning

Further
Learning

Further
Learning

Further
Learning

Further
Learning

AI −0.085 ***
(0.007)

−0.077 ***
(0.008)

−0.065 ***
(0.008)

−0.055 ***
(0.008)

−0.055 ***
(0.008)

−0.060 ***
(0.008)

−0.060 ***
(0.008)

Demographic
characteristics No Yes Yes Yes Yes Yes Yes

Work characteristics No No Yes Yes Yes Yes Yes
Human capital
characteristics No No No Yes Yes Yes Yes

Social identity
characteristics No No No No Yes Yes Yes

Family characteristics No No No No No Yes Yes
Time and province

characteristics No No No No No No Yes

Observations 12,418 12,418 11,788 11,780 11,770 11,770 11,770
Pseudo R2 0.004 0.063 0.109 0.129 0.138 0.145 0.161

Table 7. Robustness and endogeneity tests: using ordered response models (ordered logit model).

Model (1) Ologit (2) Ologit (3) Ologit (4) Ologit (5) Ologit (6) Ologit (7) Ologit

Variable Further
Learning

Further
Learning

Further
Learning

Further
Learning

Further
Learning

Further
Learning

Further
Learning

AI −0.140 ***
(0.013)

−0.128 ***
(0.013)

−0.110 ***
(0.013)

−0.094 ***
(0.013)

−0.094 ***
(0.013)

−0.101 ***
(0.014)

−0.103 ***
(0.014)

Demographic
characteristics No Yes Yes Yes Yes Yes Yes

Work characteristics No No Yes Yes Yes Yes Yes
Human capital
characteristics No No No Yes Yes Yes Yes

Social identity
characteristics No No No No Yes Yes Yes

Family characteristics No No No No No Yes Yes
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Table 7. Cont.

Model (1) Ologit (2) Ologit (3) Ologit (4) Ologit (5) Ologit (6) Ologit (7) Ologit

Variable Further
Learning

Further
Learning

Further
Learning

Further
Learning

Further
Learning

Further
Learning

Further
Learning

Time and province
characteristics No No No No No No Yes

Observations 12,418 12,418 11,788 11,780 11,770 11,770 11,770
Pseudo R2 0.004 0.067 0.113 0.134 0.143 0.150 0.166

4.2.4. Instrumental Variable Methods

In benchmark regressions, the impact of artificial intelligence on on-the-job learning
may be subject to the endogeneity problem for two reasons. On the one hand, the reverse
causality problem may arise from the concern that workers who learn more frequently may
be less likely to be replaced by AI because of their high human capital, and thus, AI has
less impact on the jobs they perform. On the other hand, there may exist other unobserved
factors that could affect on-the-job learning in the random disturbance term, resulting in
biased estimates of AI’s coefficient. To address potential endogeneity issues, the following
two-stage least squares (2SLS) model is constructed:

AIi = δ0 + δ1RIIi + x′iψ
4 + dy + dr + ε4

i (9)

Further_Learningi = η0 + η1 ÂIi + x′iψ
5 + dy + dr + ε5

i (10)

In Model (9), RIIi is the instrumental variable. This is the first stage regression of 2SLS,
in which RIIi is used to estimate AIi. In Model (10), the predicted value of AIi is used to
test its effect on on-the-job learning. The instrumental variable RIIi is the routine intensity
index constructed by Marcolin et al. [74]. The higher the RIIi, the higher the routine
intensity of the occupation, and the easier it is to be influenced by artificial intelligence [74].
Therefore, this instrumental variable satisfies the correlation prerequisite. In addition, this
indicator also satisfies exogeneity due to the following two reasons. First, from a reverse
causality perspective, RIIi is an indicator measured based on the 2011–2012 OECD survey
of adult skills, whereas the data used in this paper are from the 2017–2018 CGSS, making it
unlikely that Chinese respondents in 2017 and 2018 reversely affect the earlier RIIi. Second,
RIIi is an indicator at the sectoral level, which is based on three-digit ISCO-2008, whereas
AIi is an individual-level four-digit ISCO2008 measure. Consequently, RIIi is exogenous
to respondents’ individual characteristics. Based on the above two points, RIIi satisfies
the exogeneity condition of instrumental variables. Column (1) of Table 8 exhibits the
estimation results of the first stage of 2SLS, indicating that RIIi significantly increases AIi
at the 1% level, proving the above proposition. Additionally, the F value of this regression
is 74.127, much larger than the empirical criterion of 10, confirming that this instrumental
variable is valid for the estimation. The results of the second-stage regression of 2SLS
are listed in Column (2) of Table 8. After addressing endogeneity, the effect of AI on
on-the-job learning is still significantly negative at the 1% level, demonstrating that AI
robustly inhibits on-the-job learning. Furthermore, as presented in Columns (3)–(5) of
Table 8, when employing different instrumental variable models, including the limited
information maximum likelihood estimation (LIML), two-step optimal generalized method
of moments (GMM) and iterative GMM (IGMM), AI’s impact on on-the-job learning
remains significantly negative at the 1% level. This supports the notion that the findings of
this paper are not affected by the endogeneity issue and are highly reliable.
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Table 8. Robustness and endogeneity tests: instrumental variable regressions.

Model (1)
First Stage

(2)
2SLS

Second Stage

(3)
LIML

Second Stage

(4)
GMM

Second Stage

(5)
IGMM

Second Stage

Variable AI Further Learning Further Learning Further Learning Further Learning

RII 0.806 ***
(0.016)

AI −0.227 ***
(0.017)

−0.227 ***
(0.017)

−0.227 ***
(0.017)

−0.227 ***
(0.017)

Controls Yes Yes Yes Yes Yes

Constant −1.023 ***
(0.155)

2.776 ***
(0.117) 2.776 ***(0.117) 2.776 ***

(0.117)
2.776 ***
(0.117)

Observations 11,780 11,770 11,770 11,770 11,770
Adjusted R2 0.191 0.305 0.305 0.305 0.305

4.2.5. Penalized Machine Learning Estimations

Given that the existing literature has not yet focused on the impact of artificial in-
telligence on on-the-job learning, we further test the predictive and explanatory power
of AI on further learning in comparison to other factors. To achieve this, this paper first
utilizes the lasso model of machine learning for analysis. We calculate the optimal penalties
λ using both 10-fold and 20-fold cross-validation methods and obtain the two optimal
penalty parameters of 0.00025 and 0.00039, respectively. As shown in Columns (1) and (2)
of Table 9, under the optimal penalties, AI is among the non-zero independent variables
in both models with negative estimates. This implies that AI is an important predictor of
workers’ on-the-job learning frequencies. Subsequently, we use the Ridge and Elastic net
models for estimation. The optimal α obtained in the Elastic net model is 1, indicating that
it is equivalent to the lasso model. The results demonstrate that AI is a necessary predictor
of on-the-job learning in all the penalty models. To visually and intuitively analyze the
changes in the coefficients of different independent variables as the penalty parameter
increases, we further plot the change paths of independent variables’ coefficients for each
penalized machine learning model, as shown in Figure 2, where the coefficient paths of AI
are the black bolded lines. It is demonstrated that, first, none of the AI’s estimates converge
to 0 at the optimal penalties in these models, consistent with the estimation results in Table 9.
Second, the estimated coefficients of AI converge to 0 only when penalty parameters are
very large when few variables are not penalized to 0. This suggests that the explanatory
power of AI for on-the-job learning is very robust compared to other factors.

Table 9. Robustness and endogeneity tests: explanatory power of AI.

Model
(1)

Lasso
(10-Fold CV)

(2)
Lasso

(20-Fold CV)

(3)
Ridge

(10-Fold CV)

(4)
Ridge

(20-Fold CV)

(5)
Elastic Net

(10-Fold CV)

(6)
Elastic Net

(20-Fold CV)

Variable Further
Learning

Further
Learning

Further
Learning

Further
Learning

Further
Learning

Further
Learning

AI −0.0493 −0.0492 −0.0475 −0.0475 −0.0493 −0.0492
Number of non-zero

coefficients 44 44 46 46 44 44

Out-of-sample R2 0.3475 0.3481 0.3464 0.3470 0.3475 0.3481
λ 0.00025 0.00039 0.04643 0.04643 0.00025 0.00039
α 1 1

Observations 11,770 11,770 11,770 11,770 11,770 11,770
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4.2.6. Placebo Tests

We have examined the impact of artificial intelligence on on-the-job learning from
different perspectives, but there is still a concern that the statistical significance of AI’s
estimates may be due to uncontrolled random factors. If this speculation is true, the
results of this paper would not be valid. To address this concern, placebo tests were
conducted. Specifically, we randomly assigned the AI indicator in the sample 1000 times
to obtain the placebo explanatory variable AI_placeboi, and then used these 1000 new
samples for regression to estimate the impact of AI_placeboi on on-the-job learning. The
estimated results are plotted in Figure 3, where the six sub-figures are the placebo test results
performing the benchmark regressions in Columns (2)–(7) of Table 2, with the stepwise
addition of control variables. The black solid lines are the probability density curves of
AI_placeboi’s estimated coefficients in regressions with the 1000 new samples. The colored
scatters are the P values corresponding to the estimates of AI_placeboi. The red vertical
dashed lines signify the estimates of benchmark regressions in Columns (2)–(7) of Table 2.
It is clear that the distributions of AI_placeboi′s coefficients are all basically centered on 0,
showing a near-normal distribution in all regression models. The colored scatters, which
are the P values corresponding to the estimated coefficients of AI_placeboi, are almost all
higher than 0.1. More importantly, the estimated coefficients of benchmark regressions
in Columns (2)–(7) of Table 2 are all much smaller than the 1000 placebo estimates. This
proves that the magnitude of the relationship between AI and on-the-job learning owing
to chance factors is far from the results obtained in benchmark regressions. Therefore,
this provides evidence that the effect of AI on further learning is not due to uncontrolled
random factors.
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Figure 3. Placebo tests results. Notes: Sub-figures (a–f) depict kernel density curves of AI_placebo’s
estimated coefficients and the corresponding p values in regressions of Columns (2)–(7) of Table 2,
respectively.

5. Mechanism Analysis

The preceding sections have confirmed the negative effect of artificial intelligence on
on-the-job learning. We next examine the mechanisms by which AI influences workers’ on-
the-job learning. Based on the above theoretical analysis, this paper further tests the future
expectation mechanism, income mechanism, and working-time mechanism. Referring to
Alesina et al. [75], the following model is constructed to conduct the mechanism analysis
based on dealing with endogeneity:
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Mediatori = θ0 + θ1 ÂIi + x′iψ
6 + dy + dr + ε6

i (11)

Further_Learningi = λ0 + λ1 ÂIi + λ2Mediatori + x′iψ
7 + dy + dr + ε7

i (12)

where Mediatori is the mediating variable. ÂIi is the fitted value of AI in the first stage
regression of 2SLS in Model (9). Models (11) and (12) use the fitted values of AI obtained
from Model (9) for the second stage regression of 2SLS. If both θ1 in Model (11) and λ2 in
Model (12) are estimated to be significant, Mediatori is proven to mediate AI’s effect on
on-the-job learning.

5.1. Future Expectation Mechanism

In the first part of theoretical analysis, two hypotheses concerning the future expecta-
tion mechanism (H1a and H1b) are proposed. It has been discussed that the pessimistic
expectations caused by AI may produce a stimulation effect and thus promote on-the-job
learning. At the same time, the pessimistic expectations can also bring a burnout effect,
which may inhibit further learning. In light of this, this paper tests the future expectation
mechanism using the above mechanism test approach. To directly measure people’s future
expectations, we construct a variable Optimism about future, based on respondents’ answers
to the CGSS question “I am optimistic about my future”. This variable, based on the
five-point Likert scale, classifies the level of agreement to the above question from 1–5 in
the order of “strongly disagree”, “disagree”, “neither agree nor disagree”, “agree”, and
“strongly agree”. Obviously, higher scores represent more optimistic future expectations.
Because this question comes from the extension module of the CGSS questionnaire in
the 2017 wave, the number of observations in regressions with this variable is smaller.
Additionally, a variable indirectly characterizing future expectations, Anticipated social
status, is utilized, which is based on the question “what social class do you think you will
belong to in the next 10 years?” The options for this question are on a scale from 1 to 10,
with 10 representing the top social class and 1 being the bottom class. Based on the above
two variables that directly and indirectly measure workers’ future expectations, this paper
conducts the following mechanism analysis.

Table 10 shows the test results of the future expectation mechanism. In Columns (2)
and (4), artificial intelligence significantly decreases people’s expectations for the future.
Meanwhile, the results in Columns (3) and (5) indicate that the more optimistic towards
future workers are and the higher the expected social status, the larger the further learning
frequencies. Moreover, the absolute values of AI’s estimated coefficients drop from 0.227 to
0.211 when the mediating variable is included in the regression. This implies that AI reduces
on-the-job learning frequencies by lowering workers’ future expectations. Therefore, H1b
is confirmed, meaning that more pessimistic expectations caused by AI inhibit people’s
on-the-job learning.

Table 10. Future expectation mechanism analysis.

Model (1)
2SLS

(2)
2SLS

(3)
2SLS

(4)
2SLS

(5)
2SLS

Variable Further Learning Optimism about Future Further Learning Anticipated Social Status Further Learning

AI −0.227 ***
(0.017)

−0.075 **
(0.030)

−0.211 ***
(0.044)

−0.279 ***
(0.033)

−0.211 ***
(0.017)

Optimismabout
future

0.080 ***
(0.029)

Anticipated social
status

0.056 ***
(0.005)

Controls Yes Yes Yes Yes Yes

Constant 2.776 ***
(0.117)

3.937 ***
(0.242)

2.130 ***
(0.327)

6.636 ***
(0.239)

2.420 ***
(0.123)

Observations 11,770 1864 1864 11,253 11,253
Adjusted R2 0.302 0.045 0.287 0.129 0.321
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5.2. Economic Income Mechanism

In addition to the future expectation mechanism, artificial intelligence may also in-
fluence on-the-job learning through its impact on income. In this regard, H2a and H2b
are put forward in the second part of the theoretical analysis. It is shown that the com-
plementarity and cost-saving effects of AI may increase income, and therefore, promote
on-the-job learning. However, its replacement and mismatch effects can reduce earnings,
which may inhibit further learning. To test the hypotheses, this paper firstly uses workers’
personal income for mechanism analysis. The results in Column (2) of Table 11 demonstrate
that AI significantly reduces workers’ personal income at the 1% level. In Column (3),
personal income significantly increases the frequency of on-the-job learning. Moreover,
after controlling for income, the absolute value of AI’s estimated coefficient decreases from
0.230 to 0.227, while still being significant at the 1% level, compared with that in Column (1).
This means that personal income mediates the negative effect of AI on on-the-job learning.
Therefore, H2b is supported. Furthermore, we perform a robustness test for this mechanism
using household income. To avoid multicollinearity, personal income is not controlled in
Columns (4) and (5). The results show that the economic income mechanism still holds
when household income is used as the mediating variable. Therefore, by cutting down
people’s income, AI decreases the financial resources they can spend on human capital
investment, thus reducing on-the-job learning.

Table 11. Economic income mechanism analysis.

Model (1)
2SLS

(2)
2SLS

(3)
2SLS

(4)
2SLS

(5)
2SLS

Variable Further Learning Personal Income Further Learning Family Income Further Learning

AI −0.230 ***
(0.017)

−0.125 ***
(0.036)

−0.227 ***
(0.017)

−0.136 ***
(0.022)

−0.217 ***
(0.018)

Personal Income 0.023 ***
(0.003)

Family Income 0.057 ***
(0.006)

Other controls Yes Yes Yes Yes Yes

Constant 2.956 ***
(0.113)

7.714 ***
(0.342)

2.776 ***
(0.117)

10.142 ***
(0.201)

2.426 ***
(0.135)

Observations 11,770 11,770 11,770 11,356 11,356
Adjusted R2 0.298 0.227 0.302 0.302 0.308

Notes: other controls in this table refer to control variables excluding ln_Income.

5.3. Working Time Mechanism

On-the-job learning involves not only financial costs but also investment in time. In
this respect, H3a and H3b are proposed in theoretical analysis. On the one hand, the
deskilling effect of artificial intelligence increases working time, and thus, may inhibit
on-the-job learning. However, on the other hand, its productivity and replacement effect
can reduce working time, which may enhance on-the-job learning. To test the mechanism,
the number of hours worked per week is firstly used as the mediator for analysis. Results
in Column (2) of Table 12 exhibit that AI significantly increases working hours at the 1%
level. This indicates that the application of AI does not reduce workers’ workload, while
extending their working time because of its deskilling effect as discussed in the theoretical
analysis, which is consistent with the existing literature [22,48,49]. In Column (3), working
hours significantly reduce people’s further learning, demonstrating that the longer the
working time, the less time they can spend on learning. Furthermore, the absolute value
of AI’s estimated coefficient in Column (3), which is 0.220, drops compared to 0.227 in
Column (1). This implies that AI inhibits on-the-job learning through increasing working
hours, proving H3a. Furthermore, to test the robustness of this mechanism, a dummy
variable of whether one overworks is generated. Referring to [76,77], working more than
50 h per week is defined as overworking. Since the explained variable here is a binary
variable, the IV Probit model is applied for estimation. As illustrated in Columns (4) and
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(5), AI also discourages further learning by increasing the probability of overworking,
again verifying H3a. Therefore, it is concluded that the application of AI results in longer
working hours, and thus, inhibits on-the-job learning.

Table 12. Working time mechanism analysis.

Model (1)
2SLS

(2)
2SLS

(3)
2SLS

(4)
IV Probit

(5)
2SLS

Variable Further Learning Working Hours Further Learning Whether Overwork Further Learning

AI −0.227 ***
(0.017)

3.087 ***
(0.312)

−0.220 ***
(0.017)

0.155 ***
(0.021)

−0.210 ***
(0.017)

Working hours −0.003 ***
(0.000)

Whether overwork
−0.152 ***

(0.018)
Controls Yes Yes Yes Yes Yes

Constant 2.776 ***
(0.117)

21.161 ***
(2.732)

2.820 ***
(0.117)

−1.531 ***
(0.168)

2.755 ***
(0.117)

Observations 11,770 11,673 11,673 11,673 11,673
Adjusted R2 0.302 0.070 0.309 . 0.310

6. Heterogeneity Analysis
6.1. Heterogeneities in Terms of Demographic Characteristics

Artificial intelligence has significantly negative effects on on-the-job learning, but this
consequence may vary with different workers’ characteristics. So, we perform subgroup
regressions to test heterogeneities in terms of different demographic characteristics. Results
in Columns (1) and (2) of Table 13 show that AI’s negative impacts on further learning
are greater for workers over 45 years of age. This may be attributed to the fact that older
people have more difficulty in acquiring new skills and are less willing to learn further [55].
Consequently, faced with the new AI technology, they have lower on-the-job learning
frequencies. In terms of gender, findings demonstrate that AI’s inhibitory effect on on-
the-job learning is more salient for female workers. This may be because women are at a
disadvantaged position in the labor market [59] and it is harder for them to switch jobs by
updating skills when being displaced by new technologies. In addition, women may tend
to perform routine tasks more often than men even within the same occupational category,
making them more at risk of being substituted [58]. Hence, AI negatively affects their
on-the-job learning to a greater extent. In addition, with respect to educational attainment,
Columns (5) and (6) display that AI causes a greater reduction in on-the-job learning for
workers with lower education levels. By contrast, since highly educated workers who
have a college degree or higher are more competitive in the labor market, they are less
affected by technological shocks [25,60]. Moreover, because employers tend to provide
those who are higher educated with more training opportunities, they are easier to engage
in further learning [31]. Thus, AI has a less negative impact on on-the-job learning for
highly educated workers.

Table 13. Heterogeneities in terms of demographic characteristics (2SLS).

Sample (1)
Older than 45

(2)
Younger than 45

(3)
Men

(4)
Women

(5) Lower Education
Levels

(6) Higher
Education Levels

Variable Further Learning Further Learning Further Learning Further Learning Further Learning Further Learning

AI −0.258 ***
(0.032)

−0.206 ***
(0.020)

−0.219 ***
(0.023)

−0.240 ***
(0.027)

−0.225 ***
(0.019)

−0.192 ***
(0.039)

Controls Yes Yes Yes Yes Yes Yes

Constant 1.655 ***
(0.100)

2.017 ***
(0.094)

2.350 ***
(0.163)

3.151 ***
(0.165)

2.930 ***
(0.128)

3.255 ***
(0.435)

Observations 6001 5769 6269 5501 10,162 1608
Adjusted R2 0.234 0.237 0.267 0.351 0.173 0.023
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6.2. Heterogeneities in Terms of Working Characteristics

We have examined the variations in artificial intelligence’s effect on on-the-job learning
from the perspective of demographic characteristics. Next, the heterogeneities of AI’s
impact on workers’ on-the-job learning in terms of working characteristics are explored.
In detail, we conducted analysis from the three aspects of labor contract, job autonomy,
and work experience. First, considering that labor contract provides the legal basis for
employees to protect their rights, we performed the subsample regressions based on
whether one has a labor contract. The results are reported in Columns (1) and (2) of
Table 14, where the effect of AI on further learning is greater for workers without a labor
contract. This indicates that strengthening labor protection through labor contracts can
mitigate AI’s negative effect on on-the-job learning. This echoes the findings of Li and
Freeman [61] and Zhao and Tang [62] that labor contracts help improve the welfare of
vulnerable workers. Second, with regard to job autonomy, according to respondents’
answers to the CGSS question, “In your current job, how much autonomy do you have to
decide your work pattern?”, the sample is divided into lower and higher job autonomy
subgroups. Specifically, the workers reporting “having no autonomy” and “having little
autonomy” are classified in the lower autonomy group, while those answering “have
full autonomy” and “have some autonomy” are categorized as in higher autonomy jobs.
Columns (3) and (4) of Table 14 present that the inhibitory effect of AI on on-the-job
learning is more prominent for workers in low-autonomy jobs. On the contrary, those
with more job autonomy are less affected by AI, since they can spare more time on further
learning. This also supports the previous analysis on the working-time mechanism from
another angle. Third, in terms of work experience, it is generally believed that the more
the working years, the more work experience is accumulated. So, based on the average
working time in the current job of respondents in the CGSS sample, which is 6.120 years,
we classify respondents into subgroups with less and more working experience. The results
in Columns (5) and (6) show that AI has a greater impact on further learning for workers
with less work experience. This can be explained by the fact that work experience can
enhance employability [66].

Table 14. Heterogeneities in terms of working characteristics (2SLS).

Sample
(1)

Not Having
Labor Contracts

(2)
Having Labor

Contracts

(3)
Lower

Autonomy

(4)
Higher

Autonomy

(5)
Less Working

Experience

(6)
More Working

Experience

Variable Further Learning Further
Learning

Further
Learning

Further
Learning

Further
Learning

Further
Learning

AI −0.276 ***
(0.032)

−0.192 ***
(0.021)

−0.291 ***
(0.034)

−0.220 ***
(0.025)

−0.228 ***
(0.022)

−0.212 ***
(0.029)

Controls Yes Yes Yes Yes Yes Yes

Constant 2.822 ***
(0.186)

2.136 ***
(0.211)

2.913 ***
(0.273)

2.747 ***
(0.133)

3.112 ***
(0.129)

0.669
(0.454)

Observations 6790 4919 2300 9455 8605 2816
Adjusted R2 0.235 0.154 0.235 0.314 0.339 0.166

6.3. Regional Heterogeneities

This paper further investigates the regional variations in the impact of artificial in-
telligence. First, we carry out an analysis from the perspective of human–AI competition.
Considering that more technologically developed regions have a wider application of AI
and the human–AI competition there is more intense, subsample analysis is carried out
from the perspective of regional variations in technological development. Specifically,
according to the median of the proportion of high-technology industry output (=high-
technology industry output/GDP) in the China Torch Statistical Yearbook 2017, provinces
are divided into high-technology and low-technology regions. The results in Table 15,
Columns (1) and (2) show that AI has a greater negative effect on on-the-job learning for
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workers in high-technology regions, indicating that intense human–AI competition reduces
workers’ willingness to learn further to a greater extent. Moreover, this paper investigates
AI’s heterogeneous effects in regions with different numbers of labor disputes and unem-
ployment rates. Based on the median number of labor disputes and unemployment rate
in the China Labor Statistics Yearbook 2017, provinces are divided into areas with fewer and
more disputes, as well as lower and higher unemployment rates. Results demonstrate that
the negative effect of AI on on-the-job learning is more pronounced in regions with more
labor disputes and higher unemployment rates. This may be due to the fact that in regions
with stronger labor protection, workers tend to have a more positive attitude toward new
technology. They are also more likely to adapt to rapidly evolving skill demands through
reeducation and retraining [68]. Therefore, more harmonious labor relations and better job
security contribute to weakening AI’s adverse consequences.

Table 15. Regional heterogeneities (2SLS).

Sample
(1)

Low-Technology
Regions

(2)
High-

Technology
Regions

(3)
Regions with
Fewer Labor

Disputes

(4)
Regions with
More Labor

Disputes

(5)
Regions with

Lower
Unemployment

Rate

(6)
Regions with

Higher
Unemployment

Rate

Variable Further Learning Further Learning Further Learning Further Learning Further Learning Further Learning

AI −0.161 ***
(0.035)

−0.244 ***
(0.020)

−0.162 ***
(0.034)

−0.244 ***
(0.020)

−0.222 ***
(0.025)

−0.233 ***
(0.024)

Controls Yes Yes Yes Yes Yes Yes

Constant 2.667 ***
(0.182)

2.614 ***
(0.144)

2.375 ***
(0.193)

2.774 ***
(0.141)

2.587 ***
(0.190)

2.727 ***
(0.160)

Observations 4110 7660 3857 7913 5569 6201
Adjusted R2 0.307 0.284 0.295 0.302 0.308 0.297

7. Conclusions and Implications

This paper systematically explores the impact of artificial intelligence on on-the-
job learning. Based on the literature review and theoretical analysis, six hypotheses are
proposed relating to three aspects of AI’s consequences on workers’ further learning. On
this basis, empirical tests using CGSS data are performed. The findings demonstrate
that: First, the application of AI in the workplace significantly inhibits workers’ on-the-
job learning. This conclusion holds in a series of robustness and endogeneity checks,
including using different AI and on-the-job learning measures, ordered response models,
instrumental variable approach, penalized regressions, placebo tests, etc. Second, AI’s
adverse impact on on-the-job learning is mediated by future expectation, economic income
and working-time mechanisms. To be specific, AI makes people more pessimistic about
their future, leading to burnout, and thus, less motivation for on-the-job learning. At the
same time, AI decreases workers’ income and lengthens working hours, for which their
available financial resources and disposable time for further learning are cut down, thus
inhibiting on-the-job learning. Third, this paper explores the variations in AI’s impact
in the aspects of demographic, working, and regional characteristics. It has been found
that AI has greater negative impacts on on-the-job learning for older, female, and less-
educated employees. Moreover, its effect is more conspicuous for those without a labor
contract, as well as with less job autonomy and work experience. In terms of regional
heterogeneities, results show that in regions with more intense human–AI competition,
more labor-management conflicts, and poorer labor protection, the negative effect of AI on
on-the-job learning is more pronounced. This highlights that harmonious labor relations
and better employment protection are conducive to mitigating AI’s adverse impact on
on-the-job learning.

In the current context of the fourth technological revolution driving the intelligent
transformation, the findings of this paper have important implications for enterprises to
better understand employee preferences and behaviors, and accordingly optimize their
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management strategy in the era of AI. First, managers should attach great importance
to AI’s negative effect on employees’ on-the-job learning. The findings of this paper
reveal that AI does not necessarily stimulate employees to further improve their skills
and increase human capital investment, but rather makes them more pessimistic about
the future and thus discourages on-the-job learning. This is not favorable in terms of
promoting employees to acquire new skills to achieve human–AI teaming and cooperation,
and thus, is detrimental to future innovation. So, in the process of taking advantage of AI
for technological upgrades, on the one hand, enterprises should bolster workers’ positive
psychological expectations and motivate them to improve their skills. On the other hand,
more training opportunities should be provided for workers to master new skills that are
compatible with the new technology, which can help enhance their human capital and
foster long-term innovation. Second, enterprises should be aware of AI’s adverse impact
on employees’ income and working time. It has been shown that AI reduces workers’
income while extending work hours through its deskilling effect, leading them to have less
money and time available on on-the-job learning. For this reason, for enterprises aiming
to motivate employees to learn new skills, they can consider offering subsidies for skill
training. At the same time, for those who have further learning motivations, managers
need to optimize their working time arrangement to better support them to participate in
on-the-job learning. Third, more attention should be paid to employees who have fewer
learning opportunities or are less willing to learn, such as older, female and less-educated
workers, as well as those with less job autonomy and work experience. It is more critical
for companies to provide more training opportunities for them. Fourth, in the process of
applying AI technology, governments and relevant public agencies should strengthen labor
protection for workers. Measures such as improving employment contracting systems,
setting up efficient labor dispute resolution mechanisms and providing better job security
should be emphasized to help workers develop more stable and positive employment
expectations, thus mitigating the negative effects of AI on on-the-job learning.

However, there are limitations in this study. Although this paper takes an empirical
approach to examine workers’ reactions to AI, it fails to analyze the personnel failure, as well
as workers’ reliability in human–AI teaming, resulting in a lack of an in-depth examination
of on-the-job learning contents. In the future, using human reliability analysis [78,79] to
evaluate the causes and impact of human error so as to study the contents of on-the-job
learning would be a valuable research direction.
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