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1 Introduction

It is widely accepted that the idea of quantum information is useful and important to

understand quantum gravity in the AdS/CFT correspondence, starting from the work [1].

The holographic entanglement entropy [1] is given by an extremal area of a codimension-

two surface anchored to the entangling surface on the AdS boundary. There are many

significant developments based on the holographic entanglement entropy (See [2] for review

and references therein). However, the holographic entanglement entropy is not enough to

understand a black hole physics, for instance, a late time dynamics of black holes [3].

To remedy this problem, Susskind and his collaborators introduced a notion of com-

plexity of quantum states in the context of the AdS/CFT correspondence and proposed its

holographic dual. Now there are two different conjectures for the complexity; the “complex-

ity = volume” (CV) conjecture [4, 5] and the “complexity = action” (CA) conjecture [6, 7].

The CV conjecture states that the holographic dual of the complexity is given by a maximal

volume of codimension-one surface anchored to the AdS boundary,1

CV =
V

GNL
, (1.1)

where GN is the Newton constant. In order to make the complexity dimensionless, the

length scale L is introduced and this is assumed to be an AdS radius. The CV conjecture

is ambiguous due to the length scale. On the other hand, the CA conjecture states that

1Alternatively quantum information metric has been studied as a field-theoretic dual of the maximal

volume [8–10].
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the holographic dual of the complexity is given by the gravitational action on the Wheeler-

DeWitt (WDW) patch,

CA =
IWDW

π~
, (1.2)

where ~ is the Planck constant and we will set ~ = 1 later. In the CA conjecture, there

is no length scale introduced by hand. It has been revealed that there is no significant

difference between the two conjectures such as they show the same divergence structures,

late time behaviours and so on.

The CV and CA conjectures were originally proposed as holographic duals of the

complexity but its definition in quantum field theory did not exist at that time. Now there

are some proposals of the definition of the complexity in quantum field theory. One of

the authors and his collaborators proposed the complexity by optimizing the path integral

appearing in the wave functional [11, 12], called the path-integral optimization we will

work in this paper. One of the advantages of the path-integral optimization is that we can

obtain the complexity in generic CFT. Furthermore, the path-integral optimization can

be regarded as a special case of the circuit complexity [13] shown by [14]. See [15, 16] for

a further development of the path-integral optimization. Note that these definitions of the

complexity are not satisfactory because they contain some ambiguities [11–13, 17, 18].

Recently, the authors in [19] argued that defects might distinguish the features of

these two holographic conjectures. They showed that the increments of the holographic

complexities in a AdS3/CFT2 model with a defect [20] behave

∆Cdefect
V = CDCFT

V − CCFT
V 6= 0 , ∆Cdefect

A = CDCFT
A − CCFT

A = 0 . (1.3)

It implies that the defects are detected by CV but invisible to CA. They also showed

that the circuit complexity [13] of several models in defect CFT2 does not depend on the

presence of defects. Hence, their result suggests that the CV conjecture is not adequate

for the holographic dual of the complexity.

In this paper, we will make an attempt to test their argument in boundary CFT

(BCFT). Because two copies of BCFT can be regarded as a CFT with a codimension-

one defect or interface via doubling trick, our setup is relevant to defect CFTs considered

in [19]. We will compute some quantities conjectured to be dual to the complexity of

quantum states. One is the optimized Liouville action CL in the path-integral optimization

approach [11, 12] in BCFT2. The others are the maximal volume CV and the WdW action

CA in a holographic model proposed by Takayanagi [21, 22]. Especially we will study the

boundary complexity which is an increment of the complexity due to the presence of the

boundary,

∆Cbdy = CBCFT − 1

2
CCFT . (1.4)

The factor 1/2 comes from the fact that the spacetime of BCFT is just half of the spacetime

of CFT. We will check whether the boundary complexities in these three proposals depend

on the existence of the boundary.
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The organization of this paper is as follows. In the next section, we apply the path-

integral optimization to BCFT2 and compute a boundary complexity. We will see that the

path-integral optimization naturally produces a geometry in Takayanagi’s AdS3/BCFT2

model. Hence, in order to compare the result in section 2, we give a brief review of

the AdSd+1/BCFTd model and study holographic complexities following the CV and CA

conjectures in section 3. The final section is devoted to discussion.

Note added. After submitting the paper to arXiv, we were informed of a forthcoming

paper by P. Braccia, A. Cotrone and E. Tonni [23], which is based on a thesis written by

P. Braccia presented in the end of July and we received the thesis where the correct WDW

patch in the AdS3/BCFT2 setup has already been presented. They independently studied

the CV and CA complexities in the AdS3/BCFT2 setup with finite interval and there are

some overlaps with section 3 in our paper.

2 Path-integral optimization in BCFT

In this section, we will work on the path-integral optimization in BCFT to compute the

optimized Liouville action proposed as the complexity of the ground state [11, 12]. To

simplify our discussion, we restrict our attention to BCFT2 in this section.

2.1 Ground state wave functional in BCFT and boundary Liouville action

Consider a two-dimensional CFT on half line with a flat Euclidean metric,

ds2 = δabdx
adxb = dz2 + dx2 . (2.1)

The ground state wave functional is described by a Euclidean path integral on a two-

dimensional region M = {x ≥ 0, ǫ ≤ z < ∞}

ΨBCFT
δab

[ϕ̃(x)] =

∫

M

Dϕ e−SBCFT[ϕ]
∏

x>0

δ(ϕ(ǫ, x)− ϕ̃(x)) , (2.2)

where ϕ̃(x) is a configuration of the CFT field at the cutoff surface ∂M0 = {x ≥ 0, z = ǫ}.
The boundary condition on the other boundary ∂M1 = {x = 0, ǫ ≤ z < ∞} classifies types

of BCFTs. We introduce a cutoff parameter ǫ for later convenience. See the left picture in

figure 1.

For the purpose to estimate the wave functional effectively, the path integral is actually

redundant because some high-energy degrees of freedom would be suppressed in the deep

region of the bulk M. To reduce such degrees of freedom, we deform the background metric

with a boundary condition keeping the wave functional. In two-dimensional CFTs, it can

be realized by Weyl transformation of the background metric,

δab → e2φδab . (2.3)

This procedure is analogous to a coarse-graining procedure for discretized path-integral

on a flat lattice with spacing ǫ due to deforming the flat lattice to a lattice with position

dependent spacing ǫe−φ, as firstly considered in [24].
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Under the Weyl transformation of the reference metric δab, the wave functional trans-

forms as

ΨBCFT
e2φδab

[ϕ̃(x)] = eSL[φ]−SL[0]ΨBCFT
δab

[ϕ̃(x)] . (2.4)

Here SL is the boundary Liouville action2 [25],

SL[φ] =
c

24π

∫

M

d2x
√
g
(

Rφ+ (∂φ)2 + µe2φ
)

+
c

12π

∑

i

∫

∂Mi

ds
√
h
(

Kφ+ µ
(i)
B eφ

)

,
(2.5)

with the central charge c, the metric gab, the Ricci scalar R, the induced metric on the

boundary h and the extrinsic curvature K. The Liouville action is evaluated on the original

metric δab in (2.4). The parameters µ and µ
(i)
B represent the bulk and the boundary

cosmological constants respectively. We will set µ
(0)
B = 0, µ

(1)
B = µB for later convenience,

and take µ, µB ≥ 0 for the convergence of the action in the semi-classical level. The

appearance of the Liouville action in (2.4) follows from a transformation of the path-

integral measure,

[Dϕ]e2φδab = eSL[φ]−SL[0] [Dϕ]δab . (2.6)

The overall factor reflects how much redundant degrees of freedom (or lattice sites) can

be reduced. To optimize the path integral, we will minimize this factor, or the exponent

SL. From the solution of the equation of motion for φ, we will obtain the optimized

path-integral geometry. Then the on-shell Liouville action is expected to be a measure for

complexity of quantum states in CFTs.

2.2 Optimize the Liouville action

Let us move to the analysis of the Liuouville action (2.5). The action leads the equation

of motion and the boundary condition,

−2∂2φ+ 2µe2φ = 0 , (2.7)

n · ∂φ+ µ
(i)
B eφ = 0 , (2.8)

where na is an out-going unit normal vector. Note that the Ricci scalar and the extrinsic

curvature vanish because the original metric is flat and the boundaries are conformal.

From the transformation laws under the Weyl transformation, (2.7) and (2.8) are simply

written as

R+ 2µ = 0 , (2.9)

K + µ
(i)
B = 0 , (2.10)

2Here we rescale φ, µ and µB in [25] as bφ → φ, 4πb2µ → µ and 2πb2µB → µB, respectively, where b is

a coupling relevant to the central charge c = 1 + 6(b + 1/b)2 (c ≃ 6/b2 in the semi-classical limit b → 0).

By applying the rescaling to (3.5) in [25] associated with boundary two-point functions, we can find the

quantum constraint for the existence of the semi-classical solutions, µ2
B/µ = πb2/(2 tan(πb2/2)). The range

of the cosmological constant is 0 ≤ |µB/
√
µ| ≤ 1 for |b| ≤ 1.

– 4 –
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x

z

∂M0

∂M1 M Optimize

x

z
x = −αz

∂M0

∂M1 M

Figure 1. (Left) The setup of the path integral for vacuum wave functional in BCFT. The

boundary ∂M1 is located at x = 0 and the state is realized at ∂M0 = {x > 0, z = ǫ ∼ 0}. (Right)
The setup after the path-integral optimization. The boundary ∂M1 is tilted.

in the deformed background. The geometry is the AdS spacetime with the AdS radius

L = 1/
√
µ. It also has another length scale µB = µ

(1)
B associated to the boundary ∂M1.

We can make a dimensionless parameter µB/
√
µ = µBL.

Taking the boundary condition such that the conformal factor decays at infinity and

is fixed on the cutoff surface ∂M0 as e2φ(z=ǫ,x) = L2/ǫ2, the equation of motion (2.7) leads

e2φ(z,x) =
L2

z2
. (2.11)

Then the path-integral optimization leads the time slice of the AdS metric in Poincaré

coordinates,

ds2 = L2dz
2 + dx2

z2
. (2.12)

For the boundary ∂M0, we fix the shape by setting µ
(0)
B = 0 to keep the same wave

functional. After the path-integral optimization, the boundary ∂M0 can be understood as

the boundary of the AdS spacetime. For the other boundary ∂M1 with µB = µ
(1)
B 6= 0, the

boundary condition (2.8) determines the shape as3

x = f(z) = −αz , α =
µBL

√

1− µ2
BL

2
. (2.13)

Hence, the path-integral optimization to BCFT introduces a new boundary in the radial

direction of the AdS spacetime as Takayanagi’s AdS/BCFT model [21, 22]. For µBL → 0

(α → 0) limit, ∂M1 becomes perpendicular to ∂M0 and no shape deformation happens

after the optimization. For µBL → 1 (α → ∞) limit, the corner between ∂M0 and ∂M1

disappears and M becomes the upper-half plane. As seen later, the slope α is related with

the boundary entropy. For the brief picture of our optimization procedure, see figure 1.

Finally, we obtain the on-shell Liouville action,

CBCFT
L = SL|on-shell (2.14)

=
c

12π
· x∞

ǫ
+

c

6π
α log

(z∞
ǫ

)

, (2.15)

3Note that, in order to have positive real α, µBL is restricted to a specific region 0 ≤ µBL ≤ 1. This is

consistent with the constraint from the quantum Liouville theory mentioned in the previous footnote.
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where z∞ and x∞ correspond to IR cutoffs. The first term has volume divergence and is

half of the Liouville action in CFT without boundary. The data of the boundary can be

read off from the second term. In total, the path-integral optimization leads the boundary

complexity,

∆Cbdy
L = CBCFT

L − 1

2
CCFT
L =

c

6π
α log

(z∞
ǫ

)

. (2.16)

The boundary complexity diverges logarithmically and this behaviour is consistent with

the defect complexity in the CV conjecture [19, 26].

Note that the complexity can depend on the regularization scheme as similar to the

entanglement entropy. Indeed, for the first term in (2.15) which is volume divergent, we

can see how they affect. The coefficient of the logarithmic term in (2.15), however, is

independent of the regularization schemes,

∆Cbdy
L

∣

∣

∣

univ
=

c

6π
α =

c

6π

µBL
√

1− µ2
BL

2
, (2.17)

and is often called the universal term in this sense.

2.3 Boundary entropy

In this subsection, we will compute the boundary entropy [27, 28], which is an increment

of the entanglement entropy due to the existence of the boundary, in our setup by using

the path-integral optimization [11, 12]. From the result, we will find a parameter matching

between the boundary entropy in BCFT and µBL in the Liouville side.

Consider a subsystem A in the half line x ≥ 0 as shown in figure 2. It has length l and

is attached to the boundary x = 0. To compute the boundary entropy [27, 28]

Sbdy = SBCFT
A − 1

2
SCFT
A , (2.18)

via the replica trick, we put a vertex operator at the edge of A creating the deficit angle

2π(1− n). Then the delta functional source term is added to the Liouville action and the

equation of motion is deformed as

−∂2φ+ µe2φ = π(n− 1) · δ(x− l)δ(z = 0) , (2.19)

with the boundary condition (2.8).

In the path-integral optimization procedure for the reduced density matrix ρA, we

divide the boundary ∂M0 as ∂M0 = ∂MA ∪ ∂MĀ associated to the subsystem A and

the compliment Ā. We fix ∂MA and deform ∂MĀ with µB = π(1 − n) so that the n-

sheeted replica manifold M(n) is realized. For ∂M1, we put the same boundary condition

as before. To obtain the entanglement entropy, we take the limit n → 1. In this limit, back

reactions from the bulk vertex operator is suppressed and two boundaries ∂M1 and ∂MĀ

are deformed independently.

– 6 –
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x

z
x = −αz

∂MA ∂MĀ

∂M1

l

A

0

γA

Figure 2. The entanglement entropy associated to the subsystem A (0 ≤ x ≤ l) is given by the

length of the arc γA anchored on the boundary surface ∂M1 (x = −αz) and the edge of A.

We have the wave functional optimized by the path integral and, following previous

works [11, 12], can compute the entanglement entropy using it,

SBCFT
A = − ∂n

(

log
Tr(ρnA)

(TrρA)n

)∣

∣

∣

∣

n=1

(2.20)

= ∂n

(

c(n− 1)

6

∫

γA

ds eφ
)∣

∣

∣

∣

n=1

(2.21)

=
c

6
log

(

2l

ǫ

)

+
c

12
log

(

1 + µBL

1− µBL

)

, (2.22)

where γA is an arc to which ∂MĀ transforms by the optimization and it is anchored on

∂M1 and the edge of A (figure 2). The first term is half of the entanglement entropy in

CFT without boundary and hence the second term represents the boundary entropy (2.18),

Sbdy =
c

12
log

(

1 + µBL

1− µBL

)

=
c

6
arcsinhα . (2.23)

Since the path-integral optimization naturally produces the AdS geometry with the

cutoff in the radial direction, it is instructive to compare the boundary entropy we obtained

with that of the AdS/BCFT model [21]. For this purpose, we introduce new coordinates,

z =
w

cosh(r/L)
, x = w tanh

( r

L

)

. (2.24)

In the new coordinates, the range of w is 0 ≤ w < ∞ and that of r is −r∗ < r < ∞. −r∗
is the position of the boundary in the radial direction and it is given by

r∗ =
L

2
log

(

1 + µBL

1− µBL

)

. (2.25)

By using the Ryu-Takayanagi formula, the boundary entropy becomes Sbdy = cr∗/6L =

r∗/4GN with c = 3L/2GN and it perfectly agrees with that of [21]. Note that the range of

the radial direction r is different from ρ used in [21] but the relation r∗ = ρ0 holds.

Finally, we can check the relation between the boundary entropy (2.23) and the uni-

versal coefficient of the boundary complexity (2.17),

∆Cbdy
L

∣

∣

∣

univ
=

c

6π
sinh

(

6Sbdy

c

)

. (2.26)
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From this relation, the monotonicity of the boundary entropy under the renormalization

group flow localized on the boundary, called the g-theorem [27–29], implies the monotonic-

ity of the boundary complexity under the boundary RG flow.

3 Holographic complexity in the AdS/BCFT model

In this section, we consider the holographic complexities CV and CA in the AdS/BCFT

model proposed by Takayanagi [21, 22].

3.1 Review of the AdS/BCFT model

Consider BCFT which is defined on a half plane, x1 ≥ 0, on flat spacetime with metric,

ds2 = ηµνdx
µdxν = −dt2 +

d−1
∑

i=1

dx2i , (3.1)

where the signature of ηµν is mostly plus, and the indices µ, ν run 0 to d − 1. The bulk

AdS metric with a radius L in Poincaré coordinate is

ds2 = GMNdXMdXN = L2dz
2 + ηµνdx

µdxν

z2
, (3.2)

where z is a radial coordinate and its range is 0 < z < ∞. To reduce the isometry of

the metric from SO(2, d) to SO(1, d), we introduce a boundary Q in the radial direction.

To construct the gravity dual following Takayanagi’s proposal [21, 22], we introduce the

boundary with a brane of tension T ,

I =
1

16πGN

∫

B

dd+1X
√
−G

(

R+
d(d− 1)

L2

)

+
1

8πGN

∫

Q

ddX

√

−Ĝ (K − T ) +
1

8πGN

∫

M

ddX

√

−ĜK ,

(3.3)

where B is the bulk AdS spacetime and M is the boundary on which the dual BCFT lives.

In the present case, M is the half plane, B is the bulk AdS spacetime in the coordinates (3.2)

with the restricted range x1 ≥ −αz, and Q is the AdS boundary at x1 = −αz. ĜMN

represents the induced metric. To make the variational problem well-define in the presence

of the boundary, the Gibbons-Hawking term is introduced with the extrinsic curvature

defined by

KMN = ĜMLĜNK∇LnK , (3.4)

for the outward pointing normal vector nM . The Dirichlet boundary condition is imposed

on M, but the Neumann boundary condition is chosen on Q

KMN − ĜMNK = −T ĜMN . (3.5)

Since the extrinsic curvature is given by

K = − d

L

x1
√

z2 + x21
, (3.6)

– 8 –
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the brane tension is fixed to be

T =
d− 1

L

α√
1 + α2

. (3.7)

For d = 2, comparing the model to the Liouville setup, we find the parameter relations

L = 1/
√
µ and T = µB as discussed in the previous section via the boundary entropies.

Because α plays the same role in each setup, we do not mind the duplicate notation of α.

3.2 CV conjecture

Let us compute a holographic complexity following the CV conjecture (1.1)

CV =
V

GNL
, (3.8)

in the AdS/BCFT model. In this setup, the length scale L is fixed to be the AdS radius

and V is the maximum volume at t = 0 given by

V =

∫ ∞

ǫ

dz

∫ ∞

−αz

dx1

∫ d−1
∏

i=2

dxi
Ld

zd
(3.9)

=
1

2
Vd−1L

d

∫ ∞

ǫ

dz

zd
+ α

LdVd−2

(d− 2)ǫd−2
, (3.10)

where ǫ is a cutoff, and Vd−1 and Vd−2 are (d−1)- and (d−2)-dimensional infinite volumes,

respectively. The first term corresponds to a half of a complexity without boundary. In

the CV conjecture (1.1), the boundary complexity (1.4) is

∆Cbdy
V = CBCFT

V − 1

2
CCFT
V = α

Ld−1Vd−2

(d− 2)GNǫd−2
. (3.11)

The boundary contribution still survives and is proportional to 1/ǫd−2 as expected. In

d = 2 case, the boundary complexity is logarithmically divergent,

∆Cbdy
V = α

L

GN
log

(z∞
ǫ

)

=
2c

3
α log

(z∞
ǫ

)

, (3.12)

where z∞ is an IR cutoff and the relation c = 3L/2GN is used. This is obtained by a direct

computation of the integral (3.10) or a replacement of Vd−2/(d − 2)ǫd−2 with log(z∞/ǫ).

This result quantitatively matches with that of the path-integral complexity (2.16). Since

both of the boundary complexity and the boundary entropy are monotonic increasing

functions of the slope α, they are monotonically decreasing under the boundary RG flow.

Note that the RG flow from UV to IR corresponds to from large α to small α. See [26] for

a related previous work on the CV conjecture with boundary or defect.

3.3 CA conjecture

The CA conjecture (1.2) argues that the holographic complexity is given by the WDW

action

CA =
IWDW

π
, (3.13)

– 9 –
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z

x1

t

SǫQWDW

N1

N2

Jn,1

Jn,2

Js,ǫ+

Js,ǫ−

Jt,ǫ

Figure 3. The WDW patch which is the causal development of the Cauchy slice t = 0. The

bulk region BWDW is surrounded by a portion QWDW of the brane Q, null surfaces N1,2 and the

timelike surface Sǫ at z = ǫ. The red lines are joints Jn,1,2 = N1,2 ∩ QWDW, Js,ǫ± = N1,2 ∩ Sǫ and

Jt,ǫ = QWDW ∩ Sǫ. The other timelike surface S∞ at z = z∞, the other spacelike joints Js,∞±
and

the other timelike joint Jt,∞ are not depicted.

as noted in introduction. We consider a state at t = 0, and hence the causal development

of the Cauchy slice, called the WDW patch, is surrounded by the boundary Q, two null

surfaces emanating from (z, t) = (0, 0), denoted by N1 for the future directing surface and

N2 for the past directing surface. For regularization, we introduce two timelike surfaces at

z = ǫ and z = z∞, denoted by Sǫ and S∞ respectively. The WDW patch for x1 ≥ 0 region

is the same as that of a pure AdS spacetime. However, as noted in [19], the WDW patch for

x1 < 0 region is surrounded by null rays emanating from the point (z, t, x1) = (0, 0, 0) and is

given by t2 < z2+x21.
4 The WDW patch contains two null joints, Jn,1 and Jn,2, four space-

like joints, Js,ǫ+ , Js,ǫ− , Js,∞+
and Js,∞−

, and two timelike joints, Jt,ǫ and Jt,∞. See figure 3

for the configuration of the WDW patch. The WDW action consists of variable terms,

IWDW =
1

16πGN

∫

BWDW

dd+1X
√
−G

(

R+
d(d− 1)

L2

)

+
1

8πGN

∫

QWDW

ddX

√

−Ĝ (K − T ) +
1

8πGN

∑

i=ǫ,∞

∫

Si

ddX

√

−ĜK

+
1

8πGN

2
∑

i=1

ǫκ

(
∫

Ni

dλdd−1
x
√
γκ+

∫

Ni

dλdd−1
x
√
γΘ log(ℓct|Θ|)

)

+
1

8πGN

∑

J

ǫa

∫

J

dd−1X
√
ha+

1

8πGN

∑

J

ǫφ

∫

J

dd−1X
√
−hφ .

(3.14)

4We would like to thank S. Chapman, D. Ge and G. Policastro for pointing out this.
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The first term is a bulk contribution in the WDW patch, BWDW which is a bulk AdS region

surrounded by Q, N1,2 and Sǫ,∞. The second term is the Gibbons-Hawking term with the

brane tension T of the boundary region Q surrounded by N1,2 and S, denoted by QWDW.

The third term represents the Gibbons-Hawking term of the cutoff surfaces Sǫ and S∞.

The terms in the third line are null surface contributions and their counter terms, which are

introduced for a reparametrization invariance. ǫκ = −1 for future of the boundary segment

and ǫκ = 1 for past of the boundary segment. γMN is the induced metric on the null surfaces

and γ is its determinant. κ is defined by the equation kM∇MkN = κkN and represents how

the null coordinate λ deviates from affine parametrization. Θ = ∂λ log
√
γ represents the

expansion. The new length scale in the counter term, ℓct, serves a scale appearing in the def-

inition of complexity in quantum field theory. The rest terms are joint contributions and the

details are explained when we evaluate them. See [30, 31] for the detail of the various terms.

Comments on cutoffs are in order. As usual, we have to introduce the cutoffs at z = ǫ

for a UV reguralization and at z = ∞ for an IR reguralization. Note that a different

reguralization scheme is often used in literature about the AdS/CFT setup with defect.

See, e.g., [19] for detail. In higher dimensions, the IR contributions in (3.14) can be ignored

compared with other contributions containing UV divergences.

Contribution from BWDW. Let us evaluate the bulk action in the WDW patch. The

bulk region in the WDW patch consists of the x1 ≥ 0 region B+
WDW and the x1 < 0 region

B−
WDW. Since the Ricci scalar of AdSd+1 is R = −d(d + 1)/L2, the bulk contribution

becomes

IBWDW
=

1

16πGN

∫

BWDW

dd+1X
√
−G

(

R+
d(d− 1)

L2

)

(3.15)

= I
B
+

WDW

− dLd−1Vd−2

8πGN(d− 2)ǫd−2

(

α
√

1 + α2 + arcsinhα
)

. (3.16)

The first term is a contribution from B+
WDW and a half of the pure AdS spacetime. The

second term is a contribution by the boundary and comes from the region B−
WDW.

Contribution from QWDW. Since null rays on the surface are given by t = ±
√
1 + α2z,

the WDW patch on the brane QWDW is surrounded by the null rays. The induced metric

on the brane is

ds2 = L2 (1 + α2)dz2 − dt2 +
∑d−1

i=2 dx2i
z2

, (3.17)

and the extrinsic curvature becomes

K =
d

L

α√
1 + α2

. (3.18)

The WDW action of the brane Q becomes

IQWDW
=

1

8πGN

∫

QWDW

ddX

√

−Ĝ (K − T ) (3.19)

=
Ld−1Vd−2

4πGN(d− 2)ǫd−2
α
√

1 + α2 . (3.20)

Only the boundary contribution survives.

– 11 –



J
H
E
P
1
1
(
2
0
1
9
)
1
3
2

Contribution from Sǫ and S∞. The induced metric on Sǫ is

ds2 =
L2

ǫ2
ηµνdx

µdxν , (3.21)

and the extrinsic curvature on Sǫ is

K =
d− 1

L
. (3.22)

Then, the surface contribution on Sǫ becomes

ISǫ =
1

8πGN

∫

Sǫ

ddX

√

−ĜK (3.23)

= IS+
ǫ
+

(d− 1)Ld−1Vd−2

8πGNǫd−2

(

α
√

1 + α2 + arcsinhα
)

, (3.24)

where the first term is half of the action of the surface at z = ǫ in the AdS spacetime and

the second term is a boundary contribution coming from the x1 < 0 region.

The contribution for S∞ can be easily obtained by changing the sign of the extrinsic

curvature and replacing ǫ with z∞,

IS∞
= IS+

∞

− (d− 1)Ld−1Vd−2

8πGNz
d−2
∞

(

α
√

1 + α2 + arcsinhα
)

. (3.25)

For higher dimensions, the IR surface contribution can be ignored while it still survives

for d = 2.

In d = 2 case, the boundary contributions are opposite and the sum of two boundary

contributions vanishes.

Contribution from null surfaces. Since the geometry is symmetric at t = 0, contribu-

tions of two null surfaces are the same. The null surface consists of the x1 ≥ 0 region, N+
1 ,

and the x1 < 0 region, N−
1 . Since we are especially interested in the boundary complexity,

we need not to evaluate the WDW action of N+
1 . Here we give a brief prescription to

evaluate it. The null surface N+
1 is parameterized by the coordinate λ = z/N = t/N where

N is an arbitrary parameter,

xM = (Nλ,Nλ, x1,x) , (3.26)

where the first component is z-direction and the second component is t-direction. The

tangent vector to N1 is

kM =
dxM

dλ
= N(1, 1, 0,0) . (3.27)

Then the induced metric, κ and the expansion on N+
1 are given by

ds2 = L2 δijdx
idxj

z2
, κ = − 2

λ
, Θ = −d− 1

λ
, (3.28)
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respectively, where i and j run in space directions on the boundary of AdS. By using these,

it is possible to obtain the null surface contribution of N+
1 .

Next, let us consider the x1 < 0 region, N−
1 . The null surface N−

1 can be parameterized

by

xM = (Mλ cos θ,Mλ,−Mλ sin θ,x) , (3.29)

where M is an arbitrary parameter. The tangent vector to N−
1 is

kM =
dxM

dλ
= M(cos θ, 1,− sin θ,0) . (3.30)

Then the induced metric, κ and the expansion on N−
1 are given by

ds2 = L2

(

dθ2

cos2 θ
+

dx2

z2

)

, κ = − 2

λ
, Θ = −d− 2

λ
, (3.31)

respectively.

The contribution from the null boundaries is evaluated as

IN1
= IN2

= − 1

8πGN

∫

N1

dλdθdd−2
x
√
γκ (3.32)

= IN+
1
+

Ld−1Vd−2

4πGN(d− 2)ǫd−2
arcsinhα , (3.33)

and the counter terms are

IN1,ct = IN2,ct = − 1

8πGN

∫

N1

dλdθdd−2
x
√
γΘ log(ℓct|Θ|) (3.34)

= IN+
1
,ct −

Ld−1Vd−2

8πGNǫd−2

(

1

d− 2
− log

(

ℓctM(d− 2)

ǫ

))

arcsinhα

+
Ld−1Vd−2

8πGNǫd−2

∫ θα

0
dθ

log cos θ

cos θ
,

(3.35)

with tan θα = α. Here IN+
1

and I+N1,ct
represent contributions without boundary. The

boundary contribution of IN+
1
does not depend on the arbitrary parameter M , while that of

the counter term depends on the arbitrary parameter M . However, this dependence cancels

with the joint terms of J3 as we will see later. Hence, we do not discuss this point anymore

here. Note that the counter term vanishes in d = 2 since the expansion vanishes, Θ = 0.

Contribution from spacelike joints. There are four spacelike joints in the WDW

patch. Two spacelike joints between the null surfaces and Sǫ are denoted by Js,ǫ+ for t > 0

and Js,ǫ− for t < 0, respectively. Similarly, there are two spacelike joints between the null

surfaces and S∞ denoted by Js,∞+
for t > 0 and Js,∞−

for t < 0, respectively. From the

symmetric reason, Js,ǫ+ and Js,ǫ− are the same contribution, and Js,∞+
and Js,∞−

are the

same contribution. See figure 3.

Let us compute the joint term Js,ǫ+ , firstly. The unit normal vector of Sǫ is given by

sM =
ǫ

L
(−1, 0, · · · , 0) , (3.36)
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and a term in the integrand is given by

a = log |k · s| = log

(

ML cos θ

ǫ

)

. (3.37)

Then the joint action with ǫa = −1 becomes

IJs,ǫ+ = IJ+
s,ǫ+

− Ld−1Vd−2arcsinhα

8πGNǫd−2
log

(

ML

ǫ

)

− Ld−1Vd−2

8πGNǫd−2

∫ θα

0
dθ

log cos θ

cos θ
. (3.38)

The first term represents half of the joint action without boundary, and the second and

third terms are just boundary contributions.

The joint term Js,∞+
can be easily obtained by replacing ǫ in (3.38) with z∞ and ǫa=−1

with ǫa=1. For d>2, this term can be ignored, but for d=2, the contribution remains.

For d > 2, by adding IN1,ct and IJs,ǫ+ , we can easily confirm that the combination

between IN1,ct and IJs,ǫ+ does not depend on the arbitrary parameters N and M as men-

tioned above. In d = 2, the sum of IN1
, IJs,ǫ+ and IJs,ǫ

−

does not depend on the arbitrary

parameter M .

Contribution from null joints. There are two null joints in the WDW patch. A null

joint between the null surface N1 (N2) and the brane Q is denoted by Jn,1 (Jn,2). From

the symmetric reason, Jn,1 and Jn,2 are the same contribution.

Let us evaluate a contribution of the null joints Jn,1 and Jn,2. The unit normal vector

to Q is

sM =
z

L
√
1 + α2

(−α, 0,−1, 0, · · · , 0) , (3.39)

and the induced metric on the joint is given by

ds2 = L2α
2dz2 +

∑d−1
i=2 dx2i

z2
. (3.40)

Since the vector sM and the null vector kM are orthogonal, the integrand of the joint Jn,1
contains a strong divergence,

a = log |k · s| = log 0 . (3.41)

Naively, it seems that this log 0 divergence causes an incurable problem. However, the joint

term Jn,1 does not depend on the boundary parameter α and it will be subtracted when

we define the boundary complexity.

Contribution from timelike joints. The last contribution comes from the timelike

joints between the brane Q and cutoff surfaces,denoted by Jt,ǫ located at z = ǫ and Jt,∞

located at z = z∞. Let us evaluate Jt,ǫ, first. The outgoing normal unit vector to Sǫ is

nM
Sǫ

=
ǫ

L
(−1, 0, · · · , 0) , (3.42)
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and the outgoing normal vector to Q is

nM
Q =

ǫ

L
√
1 + α2

(−α, 0,−1, 0, · · · , 0) . (3.43)

Then, the angle between two normal vectors is given by

cosφ = nS · nQ =
α√

1 + α2
. (3.44)

The joint action is evaluated as

IJt,ǫ =
1

8πGN

∫

dd−1X
√
−hφ (3.45)

=
Ld−1Vd−2

4πGNǫd−2

√

1 + α2 arccos

(

α√
1 + α2

)

, (3.46)

where hMN is an induced metric on the joint. See [31] for the detail of the timelike joint

contribution.

Next, let us consider the Jt,∞ contribution. The contribution for higher dimensional

case can be ignored and we restrict our attention to a two dimensional case. For Jt,∞, the

angle between two normal vectors is given by

cosφ = − α√
1 + α2

, (3.47)

and the joint contribution becomes

IJt,∞ =
L

4πGN

√

1 + α2

(

π − arccos

(

α√
1 + α2

))

. (3.48)

Total CA. In total, the boundary complexity for d > 2 is given by

∆Cbdy
A =

Ld−1Vd−2

8π2GNǫd−2

[

(d−2)
(

α
√

1+α2+arcsinhα
)

+2log

(

ℓct(d−2)

L

)

arcsinhα

]

+
Ld−1Vd−2

4π2GNǫd−2

(

√

1+α2 arccos

(

α√
1+α2

)

−π

2

)

.

(3.49)

and the boundary complexity for d = 2 is given by

∆Cbdy
A =

L

4πGN

(

√

1 + α2 − 1
)

. (3.50)

When we subtract the complexity without boundary, we include null joint terms and time-

like joint terms to the half of the complexity, CCFT
A /2, such that the boundary complexity

vanishes for α = 0.

It is clear that the boundary complexity (3.49) in the CA conjecture does not vanish

for d > 2. In d = 2 case, it turns out that the finite term of the boundary complexity (3.50)

is universal, since the logarithmic divergent term vanishes,

∆Cbdy
A

∣

∣

∣

log
= 0 , ∆Cbdy

A

∣

∣

∣

univ
=

L

4πGN

(

√

1 + α2 − 1
)

. (3.51)

It means that, for d = 2, the CA conjecture gives the divergence structure different from

the CV conjecture (3.12) and the path-integral optimization approach (2.16) which are

logarithmically divergent.

Note that, as α decreases, the boundary complexity (3.50) monotonically decreases as

same as the boundary entropy (2.23).
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4 Discussions

We studied complexity of quantum states in BCFT2 using the path-integral optimiza-

tion [11, 12]. Since the path-integral optimization naturally produces the AdS geometry

with a cutoff in the radial direction as in the AdS/BCFT model [21, 22], we also studied

holographic complexity in the AdSd+1/BCFTd model following the CV and the CA con-

jectures [4–7]. It was revealed that the boundary complexity which is an increment of the

complexity due to the boundary does not vanish in the path-integral optimization, in the

CV conjecture and even in the CA conjecture. The path-integral complexity and the CV

complexity shows logarithmic divergences in d = 2 case and they are the same up to the

overall prefactors. On the other hand, the CA complexity does not show a logarithmic

divergence and has non-vanishing constant in d = 2. For higher dimensional case, the CV

and the CA boundary complexities show the same divergent structures.

Let us compare our result with Chapman et al. [19]. While the increments of the circuit

complexity in several DCFT models vanish in their work, the path-integral complexity

increases due to the boundary for a positive µB. Hence this fact implies that whether

the boundary complexity and the defect complexity vanish depends on the definition of

the complexity in QFT or models in BCFT and DCFT. In gravity side, our results of

the boundary complexity in the CV and the CA conjectures in d = 2, are consistent with

their argument5 and we arrive at the same conclusion which the boundary or defect can

distinguish action from volume. On the other hand, in higher dimensional case (d > 2),

the boundary complexity does not vanish even in the CA conjecture. We conclude that

the boundary and the defect can not detect the definite difference of the CV conjecture

and the CA conjecture except a special case in contrast to the argument by Chapman et

al. [19]. We can infer the reason why the boundary complexity in the CA conjecture in the

AdS3/CFT2 setup from our higher dimensional calculations. The boundary contribution

among the volume BWDW, the brane QWDW and the null surfaces N is proportional to d−2

and this proportional factor delete a factor 1/(d − 2) in front of 1/ǫd−2. Hence log(z∞/ǫ)

terms do not appear in d → 2 limit.

There is a comment on the boundary Liouville action (2.5) used in the path-integral

optimization. The region M has the two boundaries ∂M0 and ∂M1 and there is a point

where the two boundaries cross. The extrinsic curvature suddenly changes at the point and

should be proportional to a delta function. In such a case, the Liouville action can contain

a joint contribution as in [31] and the complexity would change. However, even if the

contribution coming from the point is added, it does not make the complexity vanishing

since it should be proportional to the angle between two normal vectors to the bound-

aries. It might be notable that the corner angle contribution also appeared in the CA

complexity (3.49) in d > 2.

Some comments on the CA conjecture are in order. The WDW patch in AdS spacetime

with boundary in the radial direction includes null joint terms between the boundary and

5In [19] the defect complexity in the CA conjecture vanishes but it was argued that the coefficient of

the logarithmic term vanishes while the finite term depends on the cut-off one employs. We obtained the

non-vanishing contribution in the boundary complexity and argue that it does not depend on the cut-off

scheme and it is universal in this sense.
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the null surfaces like Jn,1 and Jn,2 in our setup. Since the normal vector of the boundary

and the null vector of the null surfaces are perpendicular each other, the joint terms contain

unavoidable divergences due to log 0.6 For the boundary complexity, we avoid this problem

by including similar terms in the subtracted WDW action of the half AdS spacetime.

However, the CA complexity with boundary itself suffers from the divergences coming from

log 0. The resolution of this problem might be shed light on the holographic complexity.

To simplify our discussion in the path-integral optimization, we restricted our atten-

tion to BCFT2. It is interesting to apply the path-integral optimization method to defect

CFT or higher-dimensional BCFT and confirm whether the defect or the boundary con-

tributions still survive. Also, finite temperature variants of the AdS/BCFT models, which

the holographic complexities were studied in [26, 32, 33], might be good playgrounds.

In two-dimensional CFTs, [18] made connection between the circuit complexity [13]

and the path-integral optimization [11, 12] by using a geometric action associated with

Virasoro group (see also [14, 34]). It is interesting to generalize [18] to BCFT2 and check

whether the boundary complexity vanishes or not. We hope for the non-vanishing boundary

complexity in this setup.
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