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Abstract

The contribution of circulating antibody to the protection of naïve piglets against porcine epi-

demic diarrhea virus (PEDV) was evaluated using a passive antibody transfer model. Pig-

lets (n = 62) derived from 6 sows were assigned to one of 6 different treatments using a

randomized block design which provided for allocation of all treatments to all sows' litters.

Each treatment was designed to achieve a different level of circulating anti-PEDV antibody

via intraperitoneally administration of concentrated serum antibody. Piglets were orally inoc-

ulated with PEDV (USA/IN/2013/19338E, 1 x 103 TCID50 per piglet) 24 hours later and then

monitored for 14 days. Piglets remained with their dam throughout the experiment. Sow

milk samples, piglet fecal samples, and data on piglet clinical signs, body weight, and body

temperature were collected daily. Fecal samples were tested by PEDV real-time reverse

transcriptase PCR. Serum, colostrum, and milk were tested for PEDV IgG, IgA, and virus-

neutralizing antibody. The data were evaluated for the effects of systemic PEDV antibody

levels on growth, body temperature, fecal shedding, survival, and antibody response. The

analysis showed that circulating antibody partially ameliorated the effect of PEDV infection.

Specifically, antibody-positive groups returned to normal body temperature faster and dem-

onstrated a higher rate of survivability than piglets without PEDV antibody. When combined

with previous literature on PEDV, it can be concluded that both systemic antibodies and

maternal secretory IgA in milk contribute to the protection of the neonatal pig against PEDV

infections. Overall, the results of this experiment suggested that passively administered cir-

culating antibodies contributed to the protection of neonatal piglets against PEDV infection.

PLOSONE | DOI:10.1371/journal.pone.0153041 April 6, 2016 1 / 17

OPEN ACCESS

Citation: Poonsuk K, Giménez-Lirola LG, Zhang J,

Arruda P, Chen Q, Correa da Silva Carrion L, et al.

(2016) Does Circulating Antibody Play a Role in the

Protection of Piglets against Porcine Epidemic

Diarrhea Virus? PLoS ONE 11(4): e0153041.

doi:10.1371/journal.pone.0153041

Editor: Yongchang Cao, Sun Yat-sen University,

CHINA

Received: December 9, 2015

Accepted: March 22, 2016

Published: April 6, 2016

Copyright: © 2016 Poonsuk et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which permits

unrestricted use, distribution, and reproduction in any

medium, provided the original author and source are

credited.

Data Availability Statement: All relevant data are

within the paper.

Funding: This study was fully funded by Checkoff

Dollars administered through the National Pork

Board, Des Moines, Iowa (USA). The funding agency

had no role in study design, data collection and

analysis, decision to publish, or preparation of the

manuscript.

Competing Interests: The authors have declared

that no competing interest exist.

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0153041&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Introduction

The Coronaviridae is a large and complex family of enveloped, single-stranded, positive-sense

RNA viruses that cause enteric and respiratory disease in humans and animals. Recently-

emerged coronaviruses include the severe acute respiratory syndrome (SARS) virus that caused

outbreaks of respiratory disease in humans in 2002–2003 and the Middle East respiratory syn-

drome (MERS) virus identified in 2012 [1]. Contemporary work suggests that bat and bird spe-

cies are the natural reservoirs of coronaviruses [2].

Five coronaviruses are recognized in swine: three alphacoronaviruses (transmissible gastro-

enteritis virus (TGEV), porcine respiratory coronavirus (PRCV), and porcine epidemic diar-

rhea virus (PEDV)), one betacoronavirus (porcine hemagglutinating encephalomyelitis virus

(PHEV)), and one species of porcine deltacoronavirus (PDCoV) [3–8]. PEDV, TGEV and

PDCoV primarily cause enteric infections in pigs. PRCV is the result of deletion and mutation

of the spike gene of TGEV. This virus has a predilection for the respiratory tract, but also has

the capacity to produce enteric disease [9]. In contrast, PHEV infection ("vomiting and wasting

disease") produces encephalomyelitis, rather than enteritis, and thus is not often considered

when differentiating enteric infections [6].

Among the porcine coronaviruses, PEDV has received considerable attention because

recently emerged highly virulent strains have caused significant morbidity and mortality in

neonatal pigs [10]. Catastrophic outbreaks of PEDV were reported in Korea (1997), China

(2005), and Thailand (2007) [11]. Following its detection in the U.S. in April 2013 [12], PEDV

is estimated to have caused the deaths of 8 million piglets and economic losses of $481 to $929

million (USD) in 2014 [13].

The primary site of PEDV replication is the cytoplasm of villous enterocytes throughout the

small intestine. Infection causes epithelial cell degeneration and villous atrophy, which leads to

diarrhea, dehydration, and prolonged shedding of PEDV in feces [14–15]. PEDV viremia has

also been reported during the acute stage of infection in young pigs [14, 16–18]. The most com-

mon clinical consequence of PEDV infection is diarrhea, i.e. watery and flocculent feces, often

accompanied by vomiting [19]. Morbidity and mortality is highly age-dependent, with neona-

tal pigs the most severely affected. Thus, an outbreak in a naïve swine population may result in

90% mortality in piglets� 2 weeks of age and� 40% mortality in 2- to 4-week-old pigs [12].

This age-dependent variation in mortality is likely the result of slower villus-epithelial repopu-

lation and less developed immune systems in neonatal pigs [15–16, 20–22]. Experimentally-

infected 3-week-old pigs showed a significant reduction in average daily gain during the first

week post-inoculation and no compensatory weight gain in the following 4 weeks [15]. In the

field, Olanratmanee et al. (2010) reported that PEDV infection in pregnant gilts and sows may

also have contributed to reduced reproductive performance, including a 12.6% decrease in far-

rowing rate, a 5.7% increase in the return rate, a 1.3% increase in the abortion rate, and a 2.0%

increase in the number of mummified fetuses per litter [23].

It is generally accepted that lactogenic immunity, i.e., anti-PEDV secretory IgA in milk, is

central to limiting the replication of PEDV in the intestinal tract and protecting piglets

against clinical disease [24]. This concept is primarily derived from research showing that

sows with higher anti-TGEV SIgA levels in milk were better able to protect their piglets

against clinical TGE [19, 25–27]. These observations are the foundation upon which success-

ful TGEV prevention and control strategies have been based for over 50 years [28]. However,

dissimilarities between immunity to PEDV versus immunity to TGEV have not been closely

examined and deserve investigation. The question addressed in this project was the effect of

colostral (passive) antibody on the protection of neonates against PEDV. Specifically, the

objective of this experiment was to quantify the impact of circulating anti-PEDV antibody on
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the course of PEDV replication and clinical disease in the neonatal pig using a passive trans-

fer model.

Materials and Methods

Experimental design

The study was conducted under the approval of the Iowa State University Office for Responsi-

ble Research (ISU #2-14-7736-S). Piglets (n = 62) from 6 PEDV indirect fluorescent antibody

(IFA)-negative sows were intraperitoneally (IP) administered concentrated serum antibody

sufficient to achieve one of 6 targeted levels of circulating anti-PEDV antibody. All piglets were

inoculated with PEDV 24 h later and were then observed daily until day post inoculation (DPI)

14 or until humane euthanasia was necessary. Each day, sow milk and piglet fecal samples and

data on piglet clinical signs, body weight, and body temperature were collected. Serum samples

were collected from sows at DPIs -7 and 14 and from piglets at DPIs -1, 0, and 14 or at the time

of humane euthanasia. Fecal samples were tested by PEDV real-time reverse transcriptase PCR

(rRT-PCR). Serum, colostrum, and milk were tested for PEDV IgG, IgA, and virus-neutralizing

antibody. The data were evaluated for the effects of systemic PEDV antibody levels on the out-

comes measured.

Porcine epidemic diarrhea virus (PEDV) inoculum

The PEDV isolate used in the study (USA/IN/2013/19338E), was isolated in 2013 at the Iowa

State University Veterinary Diagnostic Laboratory from piglet small intestine submitted from

an Indiana swine farm [10]. This isolate is a highly virulent PEDV strain with>99% genetically

homology to Chinese strains reported in 2011–2013 [10]. The infectious dose of the virus in

5-day-old piglets was reported as 0.056 TCID50. Under experimental conditions, inoculation of

5-day-old piglets caused watery diarrhea at 1 DPI, virus shedding in feces at 4 DPI and villous

atrophy within 4 DPI [50] The inoculum used in this study was the 7th passage of the virus on

cell culture.

For use in this study, the virus was serially propagated on Vero cells (African green monkey

kidney) in flasks using methods described elsewhere [10, 29]. In brief, Vero cells (ATCC1

CCL-81™, American type culture collection, Manassas, VA) were cultured in 25 cm2 flasks

(Corning1, Corning, NY) using maintenance medium (minimum essential medium (MEM)

(Life Technologies, Carlsbad, CA) supplemented with 10% fetal bovine serum (Life Technolo-

gies), 2 mM L-glutamine (Sigma-Aldrich, St. Louis, MO), 0.05 mg per ml gentamicin (Life

Technologies), 10 units/ml penicillin (Life Technologies), 10 μg per ml streptomycin (Sigma-

Aldrich) and 0.25 μg/ml amphotericin (Sigma-Aldrich). Maintenance medium was decanted

from contiguous cell monolayers, the monolayer was washed twice with maintenance medium,

and then the flask was inoculated with 0.5 ml of a mixture of PEDV and post-inoculation

medium (MEM supplemented with tryptose phosphate broth (0.3%) (Sigma-Aldrich), yeast

extract (0.02%) (Sigma-Aldrich) and Trypsin 250 (5 μg/ml) (Sigma-Aldrich)). Flasks were then

incubated at 37°C with 5% CO2 for 2 h to allow virus adsorption after which 5 ml of post-inoc-

ulation medium was added to each flask without removing viral inoculum. Flasks were incu-

bated at 37°C with 5% CO2 until cytopathic effect (CPE) was observed and then subjected to

one freeze-thaw cycle (-80°C). The contents were harvested, centrifuged at 3,000 x g for 10 min

at 4°C to remove cell debris, aliquoted into 2.0 ml microcentrifuge tubes, and stored in -80°C

until used.

PEDV titration was performed on confluent Vero cells monolayers grown in 96-well plates

(CoStar™, Corning1). Eight 10-fold dilutions of virus stock solution were made using post-

inoculation medium. Five wells were inoculated with 100 μl at each dilution, plates were
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incubated at 37°C with 5% CO2 for 1 h, and then 100 μl post-inoculation medium was added.

Plates were incubated at 37°C with 5% CO2 for 5 days, after which wells were subjected to IFA

staining and evaluated for the presence of virus. Wells with specific staining were classified

PEDV-positive. Based on the titration results, the 50% endpoint was calculated as 1 x 105

TCID50/ml using the Reed-Muench method [30].

Animals and animal care

The experiment was conducted in the Iowa State University Livestock Infectious Disease Isola-

tion Facility (LIDIF), a biosafety level 2 research facility accredited by the Association for

Assessment and Accreditation of Laboratory Animal Care (AAALAC). The facility was

equipped with a single-pass non-recirculating ventilation system that provides directional flow

from low contamination areas to high contamination areas and zones of negative pressure to

prevent control airborne contamination from area-to-area or room-to-room. Each room was

ventilated separately and humidity and temperature was strictly controlled.

Seven clinically healthy pregnant sows were acquired from one commercial sow farm at day

110 of their second gestation. To verify their negative status, sow fecal swabs were tested for

PEDV, TGEV, and PDCoV using agent-specific rRT-PCRs and serum samples were tested for

PEDV antibody using IFA.

Sows were housed in Danish-style free stall farrowing crates (Thorp Equipment Inc., Thorp,

WI) and supplemental heat was provided for piglets. Animals were closely observed from the

time they entered LIDIF to the end of the observation period by researchers, animal caretakers,

and veterinary staff. All sows had been bred on the same day. To induce parturition, all sows

were administered 10 mg of dinoprost tromethamine (Lutalyse1, Zoetis Inc., Florham Park,

NJ) 24 h prior to the expected farrowing date, i.e., day 113 of gestation. Sows completed farrow-

ing either 1 (n = 1), 2 (n = 5), or 4 (n = 1) days after induction. All viable piglets (n = 74) were

ear-tagged and administered 1 ml iron hydrogenated dextran (VetOne1, Boise, ID) and 5 mg

(0.1 ml) ceftiofur sodium (Excenel1, Zoetis). Piglets remained with their dam continuously

throughout the 2-week observation period.

Implementation of the experiment

Concentrated PEDV antibody. The procedure used to precipitate swine serum proteins

and antibodies was a modification based on previous publications [31–32]. Specifically, swine

serum proteins and serum antibody (IgG and IgA) were precipitated by single fractional pre-

cipitation using 30% and then 40% ammonium sulfate, respectively. The entire process was

conducted in an environmental chamber (Caron1, Marietta, OH) maintained at 4°C. Initially,

2 PEDV naturally (field) exposed sows were acquired from a commercial swine farm. Testing

of the pooled sow serum, before antibody purification and concentration, by PEDVWV ELISA

resulted in S/P ratios of 5.0 for IgA and 2.6 for IgG. The 2 sows were humanely euthanized and

exsanguinated to collect whole blood (ISU #2-14-7736-S). Serum was harvested, and stored in

1 L bottles (Biotainer™, Nalge Nunc Corp., Rochester, NY) at -20°C. For the first precipitation,

the serum was thawed for 24 h at 4°C, the volume of saturated ammonium sulfate (Sigma-

Aldrich) calculated to achieve 30% concentration was added in a drop-by-drop fashion while

stirring continuously, and then the mixture was incubated at 4°C for 16 h with continued stir-

ring. Following incubation, the mixture was centrifuged (4°C) at 4,000 x g for 10 min to remove

protein aggregates and less soluble proteins. For the second precipitation, the volume of the

supernatant (IgM-free antibody fraction) was measured, additional saturated ammonium sul-

fate was added as before to achieve a final concentration of 40%, and then the mixture was

incubated for 16 h at 4°C with stirring. Thereafter, the mixture was centrifuged (4°C) at 4,000 x
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g for 10 min to recover the antibody fraction. The pelleted antibody was gently resuspended

with PBS (1X pH 7.4) at a 1:5 (pellet:PBS) volume ratio. To remove salts, the solution was dia-

lyzed in 250 ml dialysis flasks (Pierce1, Thermo-Fisher Scientific, Waltham, CA) floating verti-

cally in ~15 liters of 4°C, continuously stirred PBS (1X pH 7.4). The entire volume of PBS was

replaced every 4 h for 5 times and then the antibody solution was concentrated by polyacryl-

amide gel dialysis (Spectra/Gel1 Absorbent, Spectrum Laboratories, Inc. Rancho Dominguez,

CA). The PEDVWV ELISA S/P ratios of the concentrated antibody solution were 3.0 for IgG,

and 7.2 for IgA. The concentrated antibody solution was then aliquoted into 50 ml centrifuge

tubes and stored at -80°C until used.

Treatments. The concentrated PEDV antibody solution was thawed at 22°C for 2 h and

then 2-fold diluted with PBS (1X pH 7.4) to create 6 treatments, i.e., 5 dilutions (1:80; 1:160;

1:320; 1:640; 1:1280) of the antibody solution plus an antibody-negative control (PBS 1X pH

7.4). To assign treatments (Table 1), piglets were blocked by sow and randomized to treatments

in a randomized block design using statistical software R (R 3.2.0, R foundation). Notably, all

piglets remained with their dam, but all treatments were represented within each litter. Treat-

ments were administered by intraperitoneal inoculation at the rate of 1.35 ml of the solution

per kg of piglet bodyweight.

PEDV inoculation. A virulent U.S. PEDV isolate (USA/IN19338/2013) was used as the

challenge virus in this study. Isolation, propagation and characterization of this isolate was pre-

viously described [10]. On DPI 0, the PEDV stock solution (passage 7 in cell culture, 1 x 105

TCID50/ml) was diluted to an estimated concentration of 1 x 103 TCID50/ml, mixed 1:4 with

milk replacer (Esbilac1, PetAg Inc., Hampshire, IL) and administered orally (5 ml) to each pig-

let. Thereafter, sows were monitored daily for diarrhea, milking ability, anorexia, and alertness.

Piglets were monitored daily for diarrhea, rectal body temperature, dehydration, and ability to

stand, walk, and suckle. Animals unable to suckle, reluctant to stand, or demonstrating � 10%

dehydration based on skin tenting were euthanized by intravenous administration of pentobar-

bital sodium (Fatal-Plus1, Vortech Pharmaceuticals, MI) at a dose of 100 mg/kg.

Biological sample collection

Serum. Serum samples for antibody testing were collected from sows (DPIs -7, 14) and

piglets (DPIs -4, 0, 14). Blood samples were drawn from the jugular vein or cranial vena cava

Table 1. Allocation of piglets to treatments by littera.

Litter Age (days) at time of treatment No. of piglets Groups (no. piglets within treatment)b

1b 2 3 4 5 6

1 5 13 2 3 2 2 2 2

2 4 11 2 1 2 2 2 2

3 4 9 1 2 1 2 2 1

4 4 10 2 1 2 1 1 3

5 4 10 2 2 1 2 2 1

6 4 9 2 2 2 1 1 1

7c 2 12 1 1 3 3 2 2

Totals 74 12 12 13 13 12 12

a Piglets were assigned to treatment using randomized block design whereby all treatments were assigned to each litter.
b Treatment 1 piglets served as negative controls. Piglets in treatments 2 to 6 were administered increasing levels of antibody (see Table 2).
c Litter 7 was excluded from the study because the sow was agalactic.

doi:10.1371/journal.pone.0153041.t001
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using a single-use blood collection system (Becton Dickson, Franklin Lakes, NJ) and serum

separation tubes (Kendall, Mansfield, MA). Blood samples were processed by centrifugation at

1,500 x g for 15 min, aliquoted into 2 ml cryogenic tubes (BD Falcon™, Franklin Lakes, NJ), and

stored at -20°C until tested.

Mammary secretions. Colostrum and milk samples for antibody testing were collected

from sows daily between DPIs -3 to 14. Sows were administered 20 USP units of oxytocin

(VetOne1) to facilitate collection of mammary secretions. Samples were processed by centrifu-

gation at 13,000 x g for 15 min at 4°C to remove fat and debris. The defatted samples were then

aliquoted into 2 ml cryogenic tubes (BD Falcon™) and stored at -20°C until tested.

Fecal samples. Fecal samples for porcine coronavirus RT-PCR testing included fecal swab

(BD BBL™ CultureSwab™ Collection/Transport system, Thermo-Fisher Scientific) samples col-

lected from individual sows immediately prior to receipt of the animals and individual piglet

fecal samples collected between DPIs 0 and 14. Approximately 1 gram of feces was collected

from each piglet using a disposable fecal loop (VetOne1), mixed with 1 ml PBS (1X pH 7.4,

Sigma-Aldrich) immediately after collection, placed in a 2 ml cryogenic tube (BD Falcon™),

and stored at -80°C.

Coronavirus reverse-transcriptase polymerase chain reactions
(rRT-PCR)

RNA extraction. In brief, viral RNA was extracted from 100 μl of fecal swab samples and

eluted into 90 μl of elution buffer using the Ambion1MagMAX™ viral RNA isolation kit (Life

Technologies) and a KingFisher1 96 magnetic particle processor (Thermo-Fisher Scientific)

following the procedures provided by the manufacturers.

Coronavirus primers and probes. Sow fecal swab samples and piglet fecal samples were

tested for PEDV using a PEDV nucleocapsid (N) gene-based rRT-PCR described in Madson

et al. (2014) and performed routinely at the Iowa State University-Veterinary Diagnostic Labo-

ratory (ISU-VDL SOP 9.5263) [15]. Primers and probes targeting conserved regions of the

PEDV N gene were designed to match a U.S. PEDV nucleotide sequences published in Gen-

Bank1 (accession no. KF272920) [15].

Sow fecal swab samples were tested for TGEV using a spike (S) gene-based rRT-PCR

described in Kim et al. (2007) and performed routinely at the ISU-VDL (ISU-VDL SOP

9.5575). Primers and probes targeting conserved regions of the TGEV S gene were designed to

match 9 TGEV strains, including Purdue 46-MAD (GenBank1NC00236), TO14 (GenBank1

AF302264), TS (GenBank1 DQ201447), SC-Y (GenBank1 DQ443743), Miller M6 (Gen-

Bank1 DQ811785), TH-98 (GenBank1 AY676604), HN2002 (GenBank1 AY587884), 96–

1993 (GenBank1 AF104420), and FS772/70 (GenBank1 Y00542) [33].

Sow fecal swab samples were tested for PDCoV using a membrane (M) gene-based

rRT-PCR described in Chen et al. (2015) and performed routinely at the ISU-VDL (ISU-VDL

SOP 9.5478) [34]. The protocol included positive control standards of known infectivity titers

(TCID50). In brief, the forward primer, reverse primer, and probe were designed to match the

M gene of global and U.S. PDCoV isolates. The probe was labeled with FAM/ZEN/3’Iowa

Black Detector (Integrated DNA Technologies, Coralville, IA).

Real-time RT-PCR. The eluted RNA, primers, and probe were mixed with commercial

reagents (Path-ID1Multiplex One-Step RT-PCR kit, Life Technologies) and the RT-PCR reac-

tions were conducted on an ABI 7500 Fast instrument (Life Technologies) as follows: 48°C for

10 min, 95°C for 10 min, 95°C for 15 s (45 cycles) and 60°C for 45 s. The real-time RT-PCR

(rRT-PCR) results were analyzed using an automatic baseline setting with a threshold at 0.1.

Quantification cycle (Cq) values� 35 were considered positive for the corresponding
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coronavirus. Data were reported as "adjusted Cq":

Adjusted Cq ¼ ð35� sample CqÞ ð1Þ

Coronavirus antibody assays

PEDV indirect immunofluorescence assay (IFA). IFA plates were prepared by inoculat-

ing confluent monolayers of Vero cells (ATCC1 CCL-81™) in 96-well plates (CoStar™, Corn-

ing1) with 100 μl/well of PEDV (USA/IN19338/2013) at 1 x 103 plaque-forming units/ml. The

plates were then incubated for 18 to 24 h, after which the inoculum was removed and the cell

monolayers fixed with cold acetone:alcohol (70:30) solution (Sigma-Aldrich). Plates were then

air-dried, sealed, and stored at -20°C. To perform the test, serum samples were serially two-

fold diluted (1:40 to 1:320) in PBS (1X pH 7.4) and then 100 μl of each dilution was transferred

to IFA plates and incubated at 37°C for 1 h. After incubation, the diluted serum samples were

removed from test plates, the plates rinsed 3 times with PBS (1X pH 7.4) and 50 μl of 1:50

diluted with fluorescein isothiocyanate (FITC) labeled mouse monoclonal antibody (Kirke-

gaard and Perry Laboratories, Gaithersburg, MD) was added to each well. After a 30 min incu-

bation at 37°C, the plates were rinsed again with PBS (1X pH 7.4) and the cells were observed

under an inverted fluorescent microscope for PEDV-specific cytoplasmic staining.

PEDV whole virus antibody ELISA. PEDV (USA/NC35140/2013) was used in the PEDV

whole-virus based antibody ELISA. In brief, virus was propagated on Vero cells, the flasks sub-

jected to one freeze-thaw, and the harvested material centrifuged at 4,000 x g for 15 min to

remove cell debris. The virus was then pelleted by ultracentrifugation at 140,992 x g for 3 h,

after which the virus pellet was washed twice with sterile PBS (1X pH 7.4). The purified virus

was resuspended in PBS (1X pH 7.4) at a dilution of 1:100 of the original supernatant volume

and stored at -80°C. Following titration and optimal dilution, polystyrene 96-well microtitra-

tion plates (Nalge Nunc Corp.) were manually coated (100 μl per well) with the viral antigen

solution and incubated at 4°C overnight in a closed container containing a towel saturated with

water. After incubation, plates were washed 5 times, blocked with 300 μl per well of a blocking

solution containing 1% bovine serum albumin (Jackson ImmunoResearch Inc., West Grove,

PA), and incubated at 25°C for 2 h. Plates were then dried at 37°C for 4 h and stored at 4°C in a

sealed bag with desiccant packs. Plate lots with a coefficient of variation� 10% were rejected.

ELISA conditions for the detection of anti-PEDV IgA and IgG antibodies in serum and

colostrum/milk (defatted) specimens, including coating and blocking conditions, reagent con-

centrations, incubation times, and buffers, were identical. High positive, low positive, and nega-

tive plate controls, i.e., antibody-positive and -negative experimental serum or milk samples,

were run in duplicate on each ELISA plate. All samples were diluted 1:50, after which plates

were loaded with 100 μl of the diluted sample per well. Plates were incubated at 25°C for 1 h

and then washed 5 times with PBST wash solution (PBS 1X, 0.1% Tween-20, pH 7.4).

To perform the assay, 100 μl of peroxidase-conjugated goat anti-pig IgG (Fc) antibody

(Bethyl Laboratories Inc., Montgomery, TX) diluted 1:20,000 for serum and colostrum/milk

samples or goat anti-pig IgA (Bethyl Laboratories Inc.) diluted 1:3,000 for serum and 1:45,000

for colostrum/milk samples was added to each well and the plates incubated at 25°C for 1 h.

After a washing step, the reaction was visualized by adding 100 μl of tetramethylbenzidine-

hydrogen peroxide (TMB, Dako North America, Inc., Carpinteria, CA) substrate solution to

each well. After 5 min incubation at room temperature, the reaction was stopped by the addition

of 50 μl of stop solution (1 M sulfuric acid) to each well. Reactions were measured as optical

density (OD) at 450 nm using an ELISA plate reader (Biotek1 Instruments Inc., Winooski, VT)
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operated with commercial software (GEN5™, Biotek1 Instruments Inc.). The antibody response

in serum and colostrum/milk samples was represented as sample-to-positive (S/P) ratios:

S=P ratio ¼ ðsample OD� blank well control mean OD=ðpositive control mean OD
� blank well control mean ODÞ ð2Þ

For serum, S/P ratios� 0.80 were considered positive for PEDV IgG antibody [35].

PEDV fluorescent focus neutralization (FFN) assay. Colostrum, milk, and serum sam-

ples were tested for neutralizing antibody. Prior to FFN testing, defatted milk and colostrum

samples were treated with Rennet (Rennet fromMucor miehei, Sigma-Aldrich). In brief, 5 μl

Rennet was added to 1 ml of defatted milk or colostrum and briefly vortexed. The mixture was

then incubated at 37°C for 30 min, vortexed, and then centrifuged at 2,000 x g for 15 min. The

supernatant was then harvested and tested for neutralizing antibody.

To perform the FFN, test samples, antibody-positive control serum, and antibody-negative

control serum were heat inactivated at 56°C for 30 min and then 2-fold serially diluted (1:4 to

1:512) in 96-well dilution plates (Axygen1, Corning1) using post-inoculation medium to give

a final volume of 100 μl. Then, 75 μl of each dilution was transferred to new dilution plate

(Axygen1, Corning1), mixed with 75 μl of PEDV (1 x 103.6 TCID50/ml) to give final serum

dilutions of 1:8 to 1:1024, and incubated at 37°C with 5% CO2 for 1 h. Vero cell confluent

monolayers in 96-well plates (CoStar™, Corning1) were washed twice with post-inoculation

medium, inoculated with 100 μl of the sample-virus mixture, incubated at 37°C with 5% CO2

for 1 h, and washed twice. 100 μl of post-inoculation medium was then added to each well and

the plates incubated at 37°C with 5% CO2 for 48 h. Finally, cells were fixed with 80% cold ace-

tone:alcohol (80:20), stained with FITC-conjugated monoclonal antibody (SD6-29, Medgene

Labs, Brooking, SD) for 1 h, and observed under an inverted fluorescent microscope for

PEDV-specific cytoplasmic staining. Positive neutralizing endpoints were determined as the

highest dilution resulting in a� 90% visual reduction in fluorescing foci relative to the anti-

body-negative serum control. Plates in which the positive control deviated more than 2-fold

from its expected antibody titer were considered invalid.

Analysis

Statistical analyses were performed using SAS1 9.4 (SAS1 Institute Inc., Cary NC, USA). Body

weight, percent change in body weight, body temperature, and fecal shedding (PEDV rRT-PCR

Cq) were analyzed using linear mixed models. Treatment, DPI, and their interaction were ana-

lyzed as fixed effects and piglet and sow were analyzed as random effects. The time to death

was analyzed using proportional hazard regression analyses, with a robust sandwich covariance

matrix estimate to account for the dependence within the same sow. When no statistical signif-

icance was shown in the 6 group model, a 2 group (antibody-positive vs. antibody-negative)

model was run. Percent change in body weight for any DPI was calculated relative to DPI -4:

Percent change ¼ ðweight� weight DPI� 4Þ � 100 ð3Þ

Normal body temperature was defined as values within the 95% confidence interval calcu-

lated for the body temperature data collected on DPIs -4 and -1. The qualitative effect of PEDV

infection body temperature was assessed by analyzing the proportion of piglets within the

“normal range” of body temperature over time post inoculation using one-way ANOVA. The

number of animals with normal body temperature (yes/no) and PEDV fecal shedding (yes/no)

of each group were compared using one-way ANOVA.

Differences among sows in the number of surviving piglets was compared using the Krus-

kal-Wallis test. Differences among treatments in the time to death were analyzed using
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proportional hazard regression analysis with a robust sandwich covariance matrix estimate to

account for dependence within the same sow.

Results

Sows

Sow fecal samples collected prior to inoculation were rRT-PCR-negative for PEDV, TGEV,

and PDCoV. Likewise, serum samples collected from sows at DPI -7 were antibody-negative

by IFA (<1:8) and PEDVWV ELISA (S/P<0.80). On this basis, all sows were considered

PEDV-naïve at the time the experiment commenced.

The 7 sows farrowed a total of 74 liveborn pigs, 3 stillborn pigs, and 4 mummified fetuses

(Table 1). Each piglet litter was kept intact and remained with its dam throughout the study.

One sow and her litter were eliminated from the study on DPI 6 because the sow was agalactic.

The remaining 6 sows were clinically normal throughout the study. No significant difference in

number of survival piglets was detected among the 6 litters (Kruskal-Wallis test).

Sow serum samples collected on DPI -7 had PEDVWV IgG ELISA S/P ratios between 0.2

and 0.6. By DPI 14, S/P ratios ranged from 1.2 to 2.7. The PEDVWV ELISA S/P ratios esti-

mated for IgG and IgA in colostrum (within 48 h post-partum) were 0.97 and 0.16, respec-

tively. Sow milk samples collected on DPI -5 had PEDVWV IgA ELISA S/P ratios between 0.0

and 0.2. By DPI 14, milk S/P ratios ranged between 0.4 and 2.0 (Fig 1). Rising anti-PEDV anti-

body levels in serum and milk indicate that the sows were infected with PEDV over the course

of the experiment, presumably by exposure to PEDV-contaminated piglet feces.

Fig 1. Anti-PEDV IgA in milk (standard deviation upper and lower bounds) based on daily samplings andmean number of piglets per litter (n = 6)
over time post inoculation. No significant difference in survival was detected among the 6 litters (Kruskal-Wallis test).

doi:10.1371/journal.pone.0153041.g001
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Piglets

Prior to PEDV inoculation, all piglets were clinically normal in appearance and behavior. Pig-

lets were confirmed free of PEDV infection prior to inoculation on the basis of negative

rRT-PCR results on individual piglet fecal samples collected on DPI 0.

All piglets had normal feces on the day of inoculation, but 29% (n = 16), 69% (n = 43), and

89% (n = 50) of piglets had semi-solid or watery feces on DPIs 1, 2, and 3, respectively. A grad-

ual resolution in the diarrhea was observed thereafter. Fecal loop samples from� 1 pigs in

each treatment group were PEDV rRT-PCR positive on DPI 1, with all samples positive on

DPI 2. The highest concentration of virus in feces was observed between DPI 2 to 4 (Fig 2a).

All fecal samples from piglets in the antibody-negative control group were positive through

DPI 12. Fecal samples from the single remaining piglet in this group were negative on DPIs 13

and 14. PEDV rRT-PCR negative fecal samples were observed in the antibody-positive groups

beginning on DPI 6, but positive fecal samples were recovered from 40% (n = 6) of antibody-

positive pigs on DPI 14. Statistical analysis found no effect of treatment on the quantity of

virus shed with treatment defined as 6 groups or defined as 2 groups (antibody-positive and

antibody-negative control).

At the time of PEDV inoculation, mean piglet weight by treatment ranged from 1.9 to 2.3

kg. Piglets who survived to the end of the study gained 12.5 to150.0% of their body weight. No

significant difference in the effect of PEDV on body weight was detected either with treatment

defined as 6 groups (5 different PEDV antibody concentrations and an antibody-negative con-

trol) or with treatment defined as 2 groups (antibody-positive and antibody-negative control).

The quantitative effect of PEDV infection on body temperature over time is shown in Fig

2b. No significant difference in body temperature was detected with treatment defined as 6

groups, but a comparison based on 2 groups (antibody-positive vs antibody-negative) showed

a significant difference in body temperature between the two groups on DPIs 4, 5, 6, and 8 (lin-

ear mixed model, p< 0.05).

The qualitative effect of PEDV infection body temperature was assessed by analyzing the

proportion of piglets with "normal" body temperature (yes/no). Body temperature data col-

lected on DPIs -4 to -1 showed a mean piglet body temperature of 39.3°C with a 95% confi-

dence interval of 38.6°C to 40.1°C ("normal range"). All piglets were within the normal range

on DPI 0. Piglets with body temperature below the lower bound of the normal range were

observed from DPI 1 through 12. All survivor piglets had body temperatures within the normal

range on DPIs 13 and 14. A statistical analysis of the body temperature data found no effect of

treatment on the proportion of piglets with normal body temperature either with treatment

defined as 6 groups or defined as 2 groups.

In total, 71% piglets (n = 44) died between 2 and 13 DPI (Fig 2c). Of these, 22.7% (n = 10)

were humanely euthanized because they met previously established clinical criteria (unable to

suckle, reluctant to stand, or� 10% dehydration). Compared to the antibody-negative control

group, a significant difference in time to death (treatment 5, p< 0.05), or a trend toward a dif-

ference (treatment 6, p = 0.11) was detected by hazard regression analysis.

As shown in Table 2, piglet serum samples collected on DPI -4 had FFN antibody titers<1:8,

ELISA IgA S/P ratios ranging from 0.5 to 0.7, and ELISA IgG S/P ratios between 0.6 and 0.7

(IgG). Depending on the treatment, serum samples collected on DPI 0, i.e., 24 h post treatment,

had FFN antibody titers ranging from<1:8 to 1:32 and ELISA S/P ratios of 0.2 to 3.3 (IgA) and

0.5 to 1.4 (IgG). Given the number of sampling points (DPIs -4, 0, 14) and the small sample size

(number of surviving piglets) at the termination of the study, the PEDV antibody response on

DPIs -4, 0, and 14 was analyzed using theWilcoxon rank test. Using this approach, no signifi-

cant differences in FFN, IgA, and IgG serum antibody responses were detected in treated versus
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Fig 2. Treatment responses following inoculation of piglets with porcine epidemic diarrhea virus (USA/IN/2013/19338E). Treatment 1 piglets served
as antibody-negative controls; piglets in treatments 2 to 6 had increasing levels of circulating anti-PEDV antibody. aAdjusted PEDV rRT-PCR quantification
cycle (Cq) = (35 –sample Cq).

doi:10.1371/journal.pone.0153041.g002
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control groups on DPIs -4 and 14, but most treatment groups had significantly higher antibody

responses relative to antibody-negative piglets (treatment 1) on 0 DPI (Table 2).

Discussion

The objective of this experiment was to expand our understanding of immunity against PEDV

by quantifying the effect of circulating passive antibody on the course of PEDV infection in

neonatal piglets using a "passive antibody model". Physiologically, this approach relied on the

fact that antibodies injected into the peritoneum are quickly taken up by the lymphatic system

and enter the circulatory system via the vena cava [36]. Essentially, intraperitoneal injection

gives the same bioavailability as intravenous injection. Thus, it was possible to produce differ-

ent levels of circulating PEDV antibody by intraperitoneal inoculation with specific levels of

concentrated PEDV antibody solution (Table 2).

The passive antibody model has previously been used to study maternally-derived humoral

immunity in mice [37–39], rats [40], and hamsters [41]. In swine, this method was previously

used to study the effect of passive antibody on rotavirus infection [42–45] and porcine repro-

ductive and respiratory syndrome virus [46–47]. Hodgins et al. (1999) found that passive anti-

body provided protection against clinical rotaviral infection, but also suppressed the piglets’

active immune responses [42]. Nguyen et al. (2006) reported that passive antibody protected

neonates against rotavirus and determined that high titers of maternal antibody suppressed

effector and memory B-cell responses [43]. Other workers found that intraperitoneal injection

of PRRSV antibody sufficient to achieve serum neutralizing antibody titers of� 1:16 inhibited

PRRSV replication in 2 -to 5-week-old pigs [46–47].

Table 2. Serum antibody levels among treatment groups by day post inoculation.

Assay Group Day post inoculation

-4 0a 14

1 <1:8 (4.6) <1:8 (4.6) 1:64 (6.1)

2 <1:8 (4.6) 1:5.3 (4.6) 1:19.7 (4.9)

FFN arithmetic mean (SE) 3 <1:8 (4.6) 1:6.1 (4.6)b 1:19.7 (4.9)

4 <1:8 (4.6) 1:8.0 (4.6)b 1:32.0 (5.3)

5 <1:8 (4.6) 1:17.1 (4.6)b 1:11.3 (4.9)

6 <1:8 (4.6) 1:32.0 (4.6)b 1:16.0 (5.3)

1 0.5 (0.2) 0.2 (0.2) 2.2 (0.4)

2 0.7 (0.2) 0.7 (0.2) 2.0 (0.2)

PEDV IgA ELISA least square mean S/P (SE) 3 0.6 (0.2) 1.1 (0.2) 1.9 (0.3)

4 0.6 (0.2) 1.8 (0.2)b 1.3 (0.3)

5 0.6 (0.2) 2.8 (0.2)b 1.2 (0.2)

6 0.7 (0.2) 3.3 (0.2)b 1.4 (0.3)

1 0.6 (0.1) 0.5 (0.1) 1.7 (0.2)

2 0.7 (0.1) 0.7 (0.1)b 1.0 (0.1)

PEDV IgG ELISA least square mean S/P (SE) 3 0.7 (0.1) 0.7 (0.1)b 1.5 (0.2)

4 0.7 (0.1) 0.8 (0.1)b 1.3 (0.2)

5 0.7 (0.1) 1.1 (0.1)b 1.0 (0.1)

6 0.7 (0.1) 1.4 (0.1)b 0.9 (0.2)

a24 hours following intraperitoneal administration of concentrated PEDV antibody
bSignificantly different from Group One (Wilcoxon rank test, p < 0.02)

doi:10.1371/journal.pone.0153041.t002
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In the current experiment, the effect of passive antibody on outcomes associated with

PEDV infection, e.g., body weight, body temperature, survival, PEDV shedding in piglet feces,

and serological responses to infection, was evaluated over a range of antibody treatment levels.

The size of the experiment was limited by the number of piglets within treatments and the

physical and logistical requirements of daily observations, sampling, and handling. The limita-

tions of the experiment were offset by the experimental design. Specifically, the randomized

block design allowed for random allocated of all treatments to all litters, thereby controlling for

differences among sows.

In neonatal piglets inoculated with PEDV under experimental conditions, diarrhea typi-

cally occurs within one DPI [48–49], PEDV is detected in feces within 2 DPI [14, 15, 50], and

mortality commences within 3 DPI [51]. A similar pattern was observed under the conditions

of this experiment. Diarrhea was first observed at one DPI, all fecal samples were PEDV

rRT-PCR positive on DPI 2, and mortality commenced on DPI 2. Statistical analyses found

that circulating PEDV antibody did not protect piglets from the negative effects of PEDV on

growth, reduce or eliminate shedding of PEDV in feces, or affect the humoral immune

response against PEDV infection. However, circulating antibody partially ameliorated the

effect of PEDV infection on body temperature and improved piglet survivability. Specifically,

antibody-positive groups returned to normal body temperature faster (Fig 2b) and demon-

strated higher survivability than PEDV antibody-negative control piglets (Fig 2c). These

results are compatible with previous reports for swine coronaviruses. Shibata et al. (2001)

reported that passive PEDV-specific antibody was effective in preventing PEDV infection

and reduced mortality in 2 day-old piglets [51]. Stepanek et al. (1982) demonstrated that the

presence of sufficient levels of TGEV-specific passive antibody delayed mortality due to

TGEV infection in 4 day-old pigs [52]. The mechanisms responsible for producing these

results have not been established, but we hypothesize that one or more of the following four

mechanisms may be involved:

1. Although viremia was not confirmed in this experiment, a PEDV viremia lasting at least 7

DPI has been reported in young pigs inoculated under experimental conditions [18]. Since

piglets administered concentrated antibody had FFN antibody titers of up to 1:32 at 0 DPI,

it may be hypothesized that circulating neutralizing antibodies delivered via intraperitoneal

administration may have reduced the level and/or the duration of PEDV viremia and modi-

fied the clinical course of the infection. There are no reports on PEDV with which these

results can be compared, but the results would be consistent with a previous report by

Lopez et al. (2007) showing that intraperitoneal administration of PRRSV-neutralizing anti-

body reduced or eliminated PRRSV viremia in young pigs (15 day-old) and delayed trans-

mission to commingled sentinel pigs [47].

2. During PEDV viremia, binding of circulating PEDV antibodies (neutralizing and non-neu-

tralizing) to viral antigenic determinants may have resulted in neutralization, agglutination,

and/or complement fixation. This process could have facilitated the humoral and/or cellular

immune responses by presenting antigen to the appropriate cells (dendritic cells, macro-

phages, and B cells) [53–55].

3. Antibody-dependent cell-mediated cytotoxicity (ADCC) effected by interactions between

antibody and other components of the immune system, e.g. complement, phagocytic cells,

and natural killer cells, could have expedited cell-mediated immune responses (CMI)

against PEDV [56]. ADCC kills antibody-coated infected cells by inducing the expression of

cell death-inducing molecules [57]. Presumably, this mechanism is effective for any PEDV-

infected cells; not only enterocytes. Madson et al. (2015) has reported that, in addition to
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enterocytes, cells in the mesenteric lymph nodes and spleen may stain positive for PEDV by

immunohistochemistry [17].

4. Passively-transferred, circulating PEDV IgG could have passed directly from capillaries into

the small intestine by paracellular leakage and neonatal Fc receptors [42, 45, 58]. If so, the

transported IgG may have neutralized PEDV in the intestinal lumen and/or assisted the

humoral and CMI responses by facilitating uptake of PEDV antigen through receptors on

apical surfaces of microfold cells [58–59]. Again, there is no PEDV research against which

to test this hypothesis, but IgG is known to play an important role against parvovirus infec-

tion in crypt cells [60]. Evidence against this hypothesis is the fact that IgA is believed to

play a primary role in protecting against enteric viruses that infect villous enterocytes, e.g.

TGEV and rotavirus [61], and PEDV primarily infects villous enterocytes [17].

Combining the results of this experiment with previous work reported in the literature leads

to the conclusion that both systemic antibody and maternal secretory IgA in milk contribute to

the protection of the neonatal pig against PEDV infections. Beyond this observation lies a list

of questions, e.g., What mechanism(s) effect protection? Which antibody isotype(s) and at

what concentration are protective? How do the antibody levels and antibody isotypes examined

in this experiment relate to those achieved in production settings by feedback, vaccination, or a

combination of the two? Regardless, it is clear that the optimal protection to piglets will be pro-

vided by dams able to deliver both high antibody titers in colostrum and high titers of secretory

IgA in milk.
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