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AbstractÐA central feature of the evolution of large software systems is that changeÐwhich is necessary to add new functionality,

accommodate new hardware, and repair faultsÐbecomes increasingly difficult over time. In this paper, we approach this phenomenon,

which we term code decay, scientifically and statistically. We define code decay and propose a number of measurements (code decay

indices) on software and on the organizations that produce it, that serve as symptoms, risk factors, and predictors of decay. Using an

unusually rich data set (the fifteen-plus year change history of the millions of lines of software for a telephone switching system), we

find mixed, but on the whole persuasive, statistical evidence of code decay, which is corroborated by developers of the code.

Suggestive indications that perfective maintenance can retard code decay are also discussed.

Index TermsÐSoftware maintenance, metrics, statistical analysis, fault potential, span of changes, effort modeling.
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1 INTRODUCTION

BECAUSE the digital bits that define it are immutable,
software does not age or ªwear outº in the conventional

sense. In the absence of change to its environment, software
can function essentially forever as it was originally
designed. However, change is not absent but ubiquitous
in two principal senses. First, the hardware and software
environments surrounding a software product do change.
For example, hardware is upgraded, or the operating
system is updated. Second, and equally important, the
required functionality (both features and performance)
sometimes changes abruptly. For example, a telephone
system must, over time, offer new features, become more
reliable and respond faster.

Then, necessarily, the software itself must be changed

through an ongoing process of maintenance. As part of our

experience with the production of software for a large

telecommunications system, we have observed a nearly

unanimous feeling among developers of the software that

the code degrades through time and maintenance becomes

increasingly difficult and expensive.
Whether this code decay is real, how it can be character-

ized, and the extent to which it matters are the questions we

address in this paper. The research reported here is based

on an uncommonly rich data set: the entire change

management history of a large, fifteen-year old real-time

software system for telephone switches. Currently, the
system is comprised of 100,000,0001 lines of source code (in

C/C++ and a proprietary state description language) and
100,000,000 lines of header and make files, organized into
some 50 major subsystems and 5,000 modules. (For our

purposes, a module is a directory in the source code file
system, so that a code module is a collection of several files.
This terminology is not standard.) Each release of the
system consists of some 20,000,000 lines of code. More than

10,000 software developers have participated.
In Section 2, we begin with a brief discussion of the

software change process and the change management data
with which we work. The handling, exploration, and
visualization of these data are important issues in their
own right and are treated in [1].

In Section 3, we propose a conceptual model for code
decay: A unit of code (in most cases, a module) is decayed if
it is harder to change than it should be, measured in terms of
effort, interval, and quality. Associated with the model is a
compelling medical metaphor of software as patient, which
enables one to reason in terms of causes, symptoms, risk
factors, and prognoses.

The scientific link between the model and the conclu-
sions is a series of code decay indices (CDIs) presented in
Section 4, which quantify symptoms or risk factors (and so
are like medical tests) or predict key responses (a prog-
nosis). The indices introduced here are directly relevant to
the statistical analyses that follow; many others could be
formulated and investigated.

Our four principal results treat specific manifestations
of decay. Three of these results are evidence that code
does decay: 1) the span of changes, which is shown to
increase over time (Section 5.1), 2) breakdown of modularity,
which is exhibited by means of network-style visualiza-
tions (Section 5.2), 3) fault potential, the likelihood of
changes to induce faults in the software system (in
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Section 5.3, we show that the distribution of faults is
explained by the distribution of large, recent changes to
the software), and 4) prediction of effort quantifies the
impact of decay required to make a change using code
decay indices that encapsulate characteristics of changes
(Section 5.4).

1.1 Related Work

Early investigations of aging in large software systems by

Belady and Lehman [2], [3], [4], reported the near-

impossibility of adding new code to an aged system

without introducing faults. Work such as [5] on software

maintenance for Cobol programs running on an IBM online

transaction processing system addressed program complex-

ity, modularity, and modification frequency as explanatory

variables, but found that these variables accounted only for

12 percent of the variation in the repair maintenance rate.
Bendifallah and Scacchi [6] consider software mainte-

nance and its effect on cost, interval, and quality.

Particularly noteworthy, because of its historical summary

of large scale software development, is [7]. Kemerer and

Ream survey empirical work on software maintenance [8].
Our conceptualization of code decay in medical terms

was inspired by Parnas [9]. In work related to our fault CDI,

Ohlsson and Alberg [10] identify fault-prone modules in

switching system software.
Two early fundamental papers relating software data

collection and its analysis are [11], [12].

2 CHANGES TO SOFTWARE

Our definition of a change to software is driven by the data

that are available: A change is any alteration to the software

recorded in the change history data base. The specific data with

which we deal are described in Section 2.2 and Section 5.
The changes we study fall naturally into three main

classes (see [13] and [14]) that define the evolution of a

software product. Adaptive changes add new functionality to

a system (for example, caller ID in a telephone switch), or

adapt the software to new hardware or other alterations in

its environment. Corrective changes fix faults in the software.

Perfective changes are intended to improve the developers'

ability to maintain the software without altering function-
ality or fixing faults. Perfective maintenance has also been

called ªmaintenance for the sake of maintenanceº or

ªreengineering.º

2.1 The Change Process

For the system we study, changes to the source code follow

a well-defined process. Features (for example, call waiting or
credit card billing) are the fundamental requirements units

by which the system is extended.
Changes that implement a feature or solve a problem are

sent to the development organization as Initial Modification

Requests (IMRs); implementation of a feature typically
requires hundreds of IMRs. The supervisor responsible for

the IMR distributes the work to the developers. Developers

implementing parallel changes (as in [15]) must wait for

unavailable files.
Each IMR generates a number of Modification Requests

(MRs), which contain information representing the work to

be done to each module. (Thus, an IMR is a problem, while

an associated MR is all or part of the solution to the

problem.) To perform the changes, a developer ªopensº the
MR, makes the required modifications to the code, checks

whether the changes are satisfactory (within a limited

context, i.e., without a full system build), and then submits

the MR. Code inspections and integration and system tests
follow.

An editing change to an individual file is embodied in a

delta: The file is ªchecked outº of the version management

system, edited, and then ªchecked in.º Lines added and

lines deleted by a delta are tracked separately. (To change a
line, a developer first deletes it, then adds the new version

of the line.)2

A major organizational paradigm shift (see [16]) for one
of the organizations working on the system during its
lifetime has been a transition from developer ownership of
modules (with a feature implemented by all developers
who own modules that are touched) to developer owner-
ship of features, with the feature owner(s) making changes
wherever necessary. Implications of this are discussed in
Sections 5.1 and 5.4.

2.2 Change Management Data

Data pertaining to the change history of the code itself
reside in a version management system, which tracks
changes at the feature, IMR, MR, and delta levels. Within
the version management system, the structure of the
changes is as follows (see Fig. 1).

Each IMR has an extensive record containing priority,
date opened and closed, point in the development process
when it was initiated (requirements, design, coding, testing,
field operation), and a number of other fields (89 in all).

Data for each MR include the parent IMR, dates and
affected files, and an English text abstract describing the
change and the reasons for it. There is no explicit format on
how and what information is entered in the abstract; the
purpose is for other developers to understand what change
was made and why.
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The data for each delta list the parent MR and the date
and time when the change was submitted to the version
management system, as well as numbers of lines added,
deleted, and unmodified by that change.

Desirable questions for change data to answer are:
WHAT files were changed and which lines were added
and deleted? HOW MANY modules, files, and lines were
affected? WHO made the change? WHY was the change
made, did it add new functionality to the code or fix a fault?
WHEN was the change made? HOW LONG did the change
take in calendar time? HOW MUCH EFFORT did the
change require in developer-hours?

The extent to which the version management database
satisfies these requirements, and at which levels of
aggregation of changes, is shown in Table 1. In Table 1,
ªDº indicates items directly in the database, while ªAº
denotes items obtained by aggregation over constituent
software sub-units. Elements denoted by ªD*º have proble-
matic aspects discussed in [1].

3 A CONCEPTUAL MODEL FOR CODE DECAY

In this section, we explore a medical metaphor: Software
suffering from decay can be thought of as diseased. After
defining code decay in Section 3.1, we list some causes of
the decay disease in Section 3.2. The software ªpatientº may
exhibit the symptoms (Section 3.3), which, as with medical
symptoms, suggest that code decay is present. Risk factors
(Section 3.4) are reasons for concern about decay, even in
the absence of symptoms.

3.1 What is Code Decay?

Code is decayed if it is more difficult to change than it should
be, as reflected by three key responses:

1. COST of the change, which is effectively only the
personnel cost for the developers who implement it,

2. INTERVAL to complete the change, the calendar/
clock time required, and

3. QUALITY of the changed software.

In the system we study, the interval and quality
responses are constrained, schedules must be met, and
quality standards must be attained, so to a significant extent
the key question becomes the cost (effort) necessary to
achieve the requisite interval and quality. Even so, interval
and quality merit study. Prediction of interval, for example,
is crucial in resource allocation decisions. Similarly, quality
during the maintenance process is measurable, in terms of
errors or unexpected behavior introduced into the system
(but later removed).

Several points should be noted. First, code decay is a

temporal phenomenon and it may be useful to add a ªmore

difficult to change than it used to beº phrase to the definition.
Second, not all increase in difficulty results from decay: It

is possible that the inherent difficulty of the desired changes

is increasing.
Third, decay is distinct from the ability of the software to

meet requirements: Code can be ªcorrectº and still be

decayed, if it is excessively difficult to add new function-

ality or make other changes.
Fourth, software that is decaying may nevertheless be

increasing in value. Indeed, the very changes that ªcauseº

decay also increase the value of the software.
Fifth, implicit in our definition is the idea that code decay

is the result of previous changes to the software.3 Thus,

there are ªactionableº means to prevent, retard, or

remediate code decay. However, the ªno decay without

changeº concept operates only at a high level. That a region

of the code can decay as the result of changes elsewhere is

entirely possible.
Finally, the ªharder to change than it should beº aspect

of code decay, while central, is also elusive. Some code is

simply inherently hard to change and to attribute this to

decay is misleading. Many of the code decay indices in

Section 4 adjust for this by means of scaling, for either the

size of code units or time. In addition, difficulty of change is

a function of the developer making the change. A definitive

adjustment for developer ability has not been devised and

usually we must relegate developer variability to ªnoiseº

terms in our models.

3.2 Causes of Code Decay

In a sense, change to code is the cause of decay. As change

is necessary to continue increasing the value of the

software, a useful concept of a cause must allow it to be

present or absent in a project under active development.

Causes of decay reflect the nature of the software itself, as

well as the organizational milieu within which it is

embedded. Examples include:4

1. Inappropriate architecture that does not support the
changes or abstractions required of the system.

2. Violations of the original design principles, which can
force unanticipated changes to violate the original
system assumptions. Changes that match the origi-
nal design tend to be comparatively easy, while
violations not only are difficult to implement, but
also can lead future changes to be difficult as well.
For example, in switching systems, many of the
original system abstractions assume that subscriber
phones remain in fixed locations. The changes
required to support wireless phones that roam
among cell sites were unanticipated by the original
system designers. Note that this cause can be
difficult to distinguish from inappropriate architec-
ture.
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3. Imprecise requirements, which can prevent program-
mers from producing crisp code, cause developers to
make an excessive number of changes.

4. Time pressure, which can lead programmers to take
shortcuts, write sloppy code, use kludges (see
Section 3.3), or make changes without understand-
ing fully their impact on the surrounding system.

5. Inadequate programming tools, i.e., unavailability of
computer-aided software engineering (CASE) tools.

6. Organizational environment, manifested, for instance,
in low morale, excessive turnover, or inadequate
communication among developers, all of which can
produce frustration and sloppy work.

7. Programmer variability, i.e., programmers who cannot
understand or change delicate, complex code written
by their more skilled colleagues.

8. Inadequate change processes, such as lack of a version
control system or inability to handle parallel changes
[15]. (This cause is particularly pertinent in today's
world of Web distribution of open source software.)

Bad project management may amplify the effects of any

of these causes.

3.3 Symptoms of Code Decay

In our conceptual model, symptoms are measurable

manifestations of decay, in the same way that chest

pains are a symptom of heart disease. Some of the code

decay indices in Section 4 are measurements of symp-

toms. Below we list plausible symptoms of decay.

1. Excessively complex (bloated) code is more complicated
than it needs to be to accomplish its task. If
rewritten, bloated code could become easier to
understand and simpler to maintain. Standard soft-
ware ªmetricsº are potential means to measure
complexity, but they are designed to measure de
facto complexity rather than the difference between
de facto and inherent complexity. Based on discus-
sions with developers, one promising candidate is
nesting complexity: The nesting complexity of a line of
code is the number of loops and conditionals
enclosing it.5 An alternative form of complexity,
which is especially troublesome to developers, is
treated in item 6.

2. A history of frequent changes, also known as code
churn, suggests prior repairs and modifications. If
change is inherently risky, then churn signifies
decay.

3. Similarly, code with a history of faults may be
decayed, not only because of having been changed
frequently, but also because fault fixes may not
represent the highest quality programming.6

4. Widely dispersed changes are a symptom of decay
because changes to well-engineered, modularized
code are local. As discussed in Section 5.1, this
symptom produces clear scientific evidence of code
decay.

5. Kludges in code occur when developers knowingly
make changes that could have been done more
elegantly or efficiently.7 While not an ªofficialº
categorization, kludged code is often identified
literally as such in MR abstracts. That kludged code
will be difficult to change is almost axiomatic.

6. Numerous interfaces (i.e., entry points) are cited
frequently by developers when they describe their
intuitive definition of code decay. As the number of
interfaces increases, increasing attention must be
directed to possible side-effects of changes in other
sections in the code.

3.4 Risk Factors for Code Decay

Risk factors, as in medicine, increase the likelihood of code
decay or exacerbate its effect. By themselves, they are not
necessarily indicators or causes of decay, but are cause for
concern even in the absence of symptoms.

1. The Size of a module m, best measured in our
analyses by NCSL�m� (the number of noncommen-
tary source lines8), is clear cause for concern. Each of
the symptoms in Section 3.3 is more likely to be
present in a large module.

2. The Age of code is a clear risk factor, but intuition
regarding age is complicated. On the one hand, aged
code may be a risk factor for decay if the code is
neglected or simply because older code units have
had more opportunity to be changed and their
original environment is less likely to have persisted.
On the other hand, code that is so stable that no
change is necessary may not be decayed at all.
Indeed, because of conflicting pressures, variability
of age within a code unit may be the essential
characteristic.

3. Inherent complexity is a risk factor for decay despite
our defining code decay in a manner that adjusts for
complexity (ªharder to change than it should beº).
Inherent complexity is also relevant when compar-
ing one system to another: Because it is inherently
more complex, real-time software is more likely to
decay than standard MIS applications.

4. Organizational churn (i.e., turnover or reorganization)
increases the risk of decay by degrading the knowl-
edge base and can also increase the likelihood of
inexperienced developers changing the code (see
item 7). Organizational churn is not readily dis-
cerned from the version management database;
however, a parallel organizational study, reported
in part in [16], links decay to events in the history of
AT&T and Lucent.

5. Ported or reused code was originally written in a
different language, for a different system, or for
another hardware platform. Both the porting (reuse)
process itself and the new milieu are risks for decay.

6. Requirements load, when heavy, means that the code
has extensive functionality and is subject to many
constraints. Multiple requirements are hard to
understand and the associated functionality is hard
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8. Obtained by summing over all files f belonging to m.



to implement, resulting in a higher risk of decay. In
addition, a heavy requirement load is likely to have
accreted over time, so that the code is doing things it
was not designed to do.

7. Inexperienced developers can be either new to pro-
gramming or new to particular code. They increase
the risk of decay because of lack of knowledge, a lack
of understanding of the system architecture, and (for
those early in their careers) potential for lower or
less-developed skills.

4 CODE DECAY INDICES

In the software engineering literature there is a rich
history of studies involving software measurement and
measurement theory (see [17]). Our code decay indices
follow in this tradition, by being both quantified and
observable in the version management data base. Pursuing the
medical metaphor, CDIs may be interpreted as quantified
symptoms, quantified risk factors, or prognoses, which
are predictors of the responses (cost, interval, quality).
Ordinarily, prognoses are functions of quantified symp-
toms and risk factors.

In order to define actionable priorities to remediate
decay, indices must encapsulate developer knowledge and
discriminate over both time and location in the software.
Also, several of the indices can be visualized in compelling
ways, as we illustrate in Sections 4.2.4 and 5.2.

4.1 General Considerations

When defining a CDI, one confronts three critical issues.
The first issue is to select appropriate levels of aggregation
for both changes and software units. Of the levels of
changes described in Section 2, MRs seem in most instances
to be the most informative: The associated data sets are rich
enough to be interesting, but not so large as to create
intractability.

For most of the system we study, software can be
aggregated to any of three levels.9 Files are the atomic unit
of software. Modules are collections of related files,
corresponding physically to a single directory in the
software hierarchy. A subsystem is a collection of modules
implementing a major function of the software system. In
our studies, modules typically yield the most insight.

The second issue is scaling: In some cases it is helpful to
scale a CDI to convert it into a rate per unit time or per unit
of software size (usually, NCSL, the number of non-
comment source lines). In addition to being scaled for time,
indices may also be functions of time, in order to illuminate
the evolution of code decay.

The third issue is transformation: An index can sometimes
be improved by transforming a variable mathematically, for
example, by taking logarithms, powers, or roots. In some
cases, the rationale may be physical, while in others it will
be statistical, in order to improve the ªfitº of models.

4.2 Example CDIs

Here, we present example CDIs that appear in the analyses
in Section 5. They represent symptoms, risk factors, and

prognoses of decay. Candidates for other symptoms and
risk factors will be presented in future papers.

We use the following notation: c denotes changes (as
noted above, most often MRs), ` denotes lines of code, f
denotes files, and m denotes modules. None of these objects
are subscripted, so that (for example)

P
c denotes a sum

over all changes.
For a change c and software unit m, c e> m means that

ªc touches m:º some part of m is changed by c. Also 1fAg,
the indicator of the event A, is equal to one if A occurs and
zero otherwise.

In addition, several of the CDIs (all computable directly
from the version management data base) depend on
characteristics of changes:

DELTAS�c� � number of deltas associated with c

ADD�c� � number of lines added by c

DEL�c� � number of lines deleted by c

DATE�c� � the date on which c is completed;

which we term the date of c

INT�c� � the interval of c; the �calendar� time

required to implement c

DEV�c� � number of developers implementing c:

4.2.1 History of Frequent Changes

The historical count of changes is expressed by the CDI

CHNG�m; I� �
X

c e> m

1fDATE�c� 2 Ig; �1�

the number of changes to a module m in the time interval I,
appears in Section 5.2. In other settings, the frequency of
changes may be more relevant, as quantified by

FREQ�m; I� � 1

jIjCHNG�m; I�; �2�

where jIj is the length of the time interval I.

4.2.2 Span of Changes

The span of a change is the number of files it touches (here,
files yield a more sensitive index than modules), leading to
the CDI

FILES�c� �
X

f

1fc e>fg: �3�

In Section 5.4, we will provide evidence that FILES

predicts the effort necessary to make changes. There are
three primary reasons why changes touching more files are
more difficult to accomplish and, hence, that span is a
symptom of decay. First is the necessity to get expertise
about unfamiliar files from other developers; this is
especially vexing in large-scale software, where each
developer has a localized knowledge of the code. Second
is the breakdown of encapsulation and modularity. Well-
engineered code is modular and changes are localized.
Changes spanning multiple files are more likely to modify
an interface. Third is the size: Touching multiple files
significantly increases the size of the change.
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In the subsystem we study (Section 5), FILES increases

over time, so that this CDI produces clear scientific,

symptomatic evidence of code decay, as discussed in

Section 5.1.

4.2.3 Size

The size of a module m has already been defined as

NCSL�m�, the number of noncommentary source lines,

obtained by summing over all files f belonging to m.

Although we do not elaborate in Section 5, extensive

analyses show most standard software ªcomplexityº

metrics ([18]) are almost perfectly correlated with NCSL in

our data sets, so that size is effectively synonymous with

complexity.

4.2.4 Age

We define the age AGE�m� of a software unit m as the

average age of its constituent lines. The use of AGE in a

predictive CDI is illustrated in Section 4.2.5.
Also interesting is the variability of the ages of the lines

in a code unit. The SeeSoft view [19] in Fig. 2 shows the

variability of age in one module. The files are represented

by boxes (labels have been changed for confidentiality) and

the source code lines are represented by colored lines

within the boxes. The lengths of these colored lines are

proportional to the numbers of characters in the lines of

source code, so this view can be interpreted as looking at a

listing of the code from a distance. The color of a line

represents its age: Files in which age is highly variable stand

out with most of the rainbow colors. The files that changed

little since their creation contain mostly a single hue.

4.2.5 Fault Potential

Predictive CDIs are functions of CDIs that quantify

symptoms or risk factors and are intended to predict

the key responses of effort, interval, and quality. We

present three such indices, two dealing with quality and

one with effort, which are discussed more thoroughly in

Sections 5.3 and 5.4.
Predictors of the number of faults that will have to be

fixed in module m (and, thus, of the quality response) in a

future interval of time, taken from [20], include the

weighted time damp model

FPWTD�m; t� �1

X
c e> m; DATE�c�<t

eÿ��tÿDATE�c��

� log ADD�c;m� �DEL�c;m�� �
�4�

and the generalized linear model

FPGLM�m; t� � 2 �
X
c2�

1fc e> mg � �AGE�m�; �5�

where � is the entire set of deltas10 up to time t and AGE is

discussed in Section 4.2.4 and where �, �, 1, and 2 are

estimated using statistical analysis.
Both of these indices illuminate change as the primary

agent creating faults. (Even though faults do not arise

spontaneously, this is not a tautology: The absence of other

terms such as size and complexity is highly informative.)

The indices depict differing temporal effects. In (4), the

effects of changes are ªdampedº and attenuate over time,

while in (5), faults are less likely in older code (provided b is
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while boxes with a single hue represent files that changed little since their creation.

10. Here, changes are deltas rather than MRs.



estimated to be less than one, as in our data). Statistical
analyses of the models appear in Section 5.3.

4.2.6 Effort

One may construct predictors of the effort (person-hours)
required to implement a change by fitting regression
equations for measurements of effort as functions of factors
that affect effort. A sample form for such a regression
relationship is:

EFF�c� � a0 � a1FILES�c� � a2

X
f

1fc e> fgjfj
� a3ADD�c� � a4DEL�c�
� a5INT�c� � a6DEV�c�:

�6�

Here, jf j denotes the size in NCSL of the file f .
One motivation for the form used in (6) is to distinguish

the dependency overhead associated with a change, captured
in the terms involving a0, a1, and a2, from the nominal effort,
represented by the terms involving a3 and a4. The
remaining terms incorporate interval and developer overhead.
A statistical analysis of this index appears in Section 5.4.

5 THE EVIDENCE FOR DECAY

In this section, we discuss some of our major results to date.
All of these analyses are based on a single subsystem of the
code, consisting of approximately 100 modules and 2,500
files. The change data consist of roughly 6,000 IMRs, 27,000
MRs, and 130,000 deltas. Some 500 different login names
made changes to the code in this subsystem.

The results yield very strong evidence that code does
decay. First, in Section 5.1, statistical smoothing demon-
strates that the span of changes (see (3)) increases over time,
which is a clear symptom of code decay. This analysis is
extended, in Section 5.2, by network-based visualizations
showing that the increase in span is accompanied by (and
may cause) a breakdown in the modularity of the code.

Our other results show how decay affects two of the
three key responses, namely, quality and effort. In
Section 5.3, we present models involving the fault
potential CDIs of Section 4.2.5. Finally, in Section 5.4,
we present a statistically estimated version of the CDI
EFF in (6), together with some intriguing implications,
including indications that changes with large spans tend
to require large efforts. This underscores the importance
of the preceding sections that demonstrate increasing
span of changes.

Not all of the evidence is conclusive or complete, and
in some cases, multiple interpretations are possible. For
example, some of the increase in span of changes
(Section 5.1) and decrease in modularity (Section 5.2)
can be attributed merely to growth of the subsystem.
Similarly, the fault potential analysis in Section 5.3,
identifies change as a causal agent for faults, but does
not differentiate decay among modules.

Collectively, the results show that our change-based
conceptual model of decay is the right one. That change is
the agent of decay is borne out by the data, which is crucial
since there are then actionable means to retard or reverse
decay.

5.1 Temporal Behavior of the Span of Changes

The CDI FILES of (3) measures the difficulty of a change by
how many code units (files) need to be changed in order to
implement it. An increase in the span of changes, then, is
symptomatic of decay, as discussed in Section 4.2.2.

Fig. 3 shows that span is increasing for the subsystem
under study. There, we display the chance that at any given
time an MR touches more than one file by smoothing data
in which each point corresponds to an MR. A point's x-
coordinate is time represented by the opening date and its
y-coordinate is one when more than one file is touched and
zero otherwise. Three local linear smooths (see, e.g., [21]
and [22] for introduction and discussion.) are shown in the
top plot. These smooths are essentially weighted local
averages, where the weights have a Gaussian shape and the
widths of the windows (i.e., standard deviation of the
weight function) are h � 0:3 (purple curve), h � 1:5 (multi-
colored curve), and h � 7:5 (blue curve).

The central curve, h � 1:5, shows an initial downward
trend, which is natural because many files are touched by
common changes in the initial development phase,
followed by a steady upward trend starting in 1990. This
last trend reflects breakdown in the modularity of the
code, as we discuss further in Section 5.2. That this is a
substantial increase comes from the fact that values on
the y-axis represent probabilities (local in time) that a
change will touch more than one file, which more than
doubles from a low of less than 2 percent in 1989 to more
than 5 percent in 1996.

In the absence of more detailed analysis, the results in
the top plot in Fig. 3 depend on the window width h. The
larger window width, h � 7:5, shows only the upward
trend, while the smaller window width, h � 0:3, shows a lot
of additional structure, which may be ªmicrotrendsº or may
instead be spurious sampling artifacts. But how can we be
sure? Furthermore, how do we know the features observed
in the h � 1:5 smooth, which contains the important
lessons, are real?

The bottom half of Fig. 3 is a SiZer map,11 which
addresses this issue. Each location corresponds to a date
and to a window width h and is shaded blue (red) when
the smooth at that window width and date is statistically
significantly increasing (decreasing, respectively). Regions
where there is no significant change are shaded in the
intermediate color purple.

The smallest window width, h � 0:3, in the top plot is
represented by the bottom white line in the lower plot and
is shaded purple in the top plot, since this window width is
shaded purple at all dates in the SiZer map. This is
interpreted as ªwhen the data are studied at this level of
resolution, there are no significant increases or decreases,º
i.e., the wiggles in the curve are not statistically significant.

The intermediate window width, h � 1:5, runs through
both the red and blue shaded regions. This same coloring is
used in the curve in the top plot, which shows that the
structure is statistically significant. In particular, there is an
important downward trend at the beginning and upward
trend after 1990.
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11. SiZer, its properties, and some variations are discussed in [23].



The large window width, h � 7:5, runs through the

region that is shaded entirely blue in the bottom plot and,

thus, inherits this color in the top plot. This shows that

when the data are smoothed nearly to the point of doing a

simple linear least squares fit, the resulting line slopes

significantly upwards.
These conclusions are complementary rather than incon-

sistent, because SiZer shows what is happening at each scale

of resolution. When the data are not smoothed too much,

there can be a decrease in one region, which, when the data

are smoothed very strongly, becomes overwhelmed by the

increases elsewhere.

5.2 Time Behavior of Modularity

A key tenet of modern programming practice is modularity:

code functionality should be local, so that changes will be

also. In the system we analyzed, subsystems are divided

into modules by functionality and this division is successful

to the extent which, when working on one module, a

developer need not devote significant attention to the

effects on other modules. Conversely, changes that require

modifications of many modules are likely to be more

difficult to make correctly.
Alone, the increase in span of changes described in

Section 5.1 does not imply breakdown of the modularity of

the subsystem. Some increase in span could reflect simply
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Fig. 3. SiZer maps of numbers of files touched by change through time. The overall trend has been a significant increase in the difficulty of changes.

At a finer resolution, there was a decreasing trend during the developmental phase of the subsystem when changes likely involved multiple files, but

this trend reversed before long.



the growth of the subsystem and even changes of wider

span need not cross module boundaries. The network

visualization tool NicheWorks [24], which helps display

structure (including clusters) in networks, allows us to

address the question of whether modularity is breaking

down over time, and leads to the results in Fig. 4, which

suggest strongly that it is.
The head of each tadpole-like shape in the upper left

panel of Fig. 4 corresponds to a module; the positions of the

modules have been chosen by NicheWorks in a manner that

places pairs of modules nearby if they have been changed

together as part of the same MRs a large number of times.

More precisely, the weights are defined in terms of the

ªnumber of changesº CDI of (1), with that for modules m

and m0 being

w�m;m0� � CHNG�m;m0; I�
4
�����������������������������������������������������������
CHNG�m; I� � CHNG�m0; I�p ; �7�

where I is an interval of time (see below) and where

CHNG�m;m0; I� �
X

c e> m;c e> m0
1fDATE�c� 2 Ig

is the number of MRs touching both m and m0. In the upper
left panel, the heads show this network view using all the
change data through the end of calendar year 1988
(corresponding to one choice of I), while the tails of the
segments display the same view at the end of 1987 (an
earlier choice of I).

In this way, one can see how relationships among
modules evolved through time. In the top panel of Fig. 4,
there are two main clusters of roughly a dozen modules
each. However, in the center panel, which displays the
change data through the end of 1989 in the locations of the
heads (the 1988 data appear here as the locations of the
segments' endpoints), these two clusters have mostly
merged. The merging process continued and at the end of
1996 the clusters are no longer visible. While the logic of the
code was originally intended to see to it that some modules
would be essentially independent of each other, new and
unanticipated functionality may have helped to destroy this
independence.

The weights in (7) constitute a compromise between
simple counts

w�m;m0� � CHNG�m;m0; I�;
which tend to place too close together pairs of modules that
are touched together frequently only because they are
touched large numbers of times in total and

w�m;m0� � CHNG�m;m0; I������������������������������������������������������������
CHNG�m; I� � CHNG�m0; I�p

;
; �8�

which can be interpreted as a correlation (it is dimension-
less and lies between zero and one), but which can
exaggerate relationships between modules that are rarely
touched at all.

One shortcoming is that the weights of (7) (unlike

those of (8)) are not invariant with numbers of changes.

However, the following dispersion analysis provides

further evidence of the decline of modularity. In 1988,

the mean square distance between points in the small,

eleven-point cluster and its centroid is 0:355, while the

average distance between points in the larger, 26-point

cluster and its centroid is 0:526. The intercluster distance,

or the distance between the centroids of the two clusters,

is 2:78. An intuitively appealing measure of distance

between clusters, then, is 2:78=
����������������������������
0:355� 0:526
p � 6:43. The
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Fig. 4. Top: NicheWorks view of the modules in one subsystem using
change data through 1988 to place modules which have been changed
at the same time close to one another. Two clusters of modules are
evident; a module within one of these clusters is often changed together
with other modules in the cluster but not with other modules. Center:
NicheWorks view of the modules in the top left, this time incorporating
the change history through 1989. The clusters that appear in the top left
view are converging in on each other. This suggests that the architecture
that was previously successful in separating the functionality of the two
clusters of modules is breaking down. Bottom: The breakdown
continued and at the end of 1996 there was no suggestion of multiple
clusters of modules.



analogous quantity for 1989 is 1:35=
����������������������������
0:306� 0:419
p � 3:77.

After the large decrease in 1989, this measurement
continues to shrink, albeit not as rapidly, reaching
1:40=

����������������������������
0:330� 0:469
p � 3:56 in 1996.

5.3 Prediction of Faults

In Section 3.1, we identified quality as one of three key
responses to code decay. Here we summarize research
linking faults in the software to symptoms of code decay,
using the predictive CDIs FPWTD of (4) and FPGLM of (5).
More complete discussion of this fault potential modeling
appears in [20]. In this work, the authors counted the
numbers of faults whose fixes touched each of the modules
in a subsystem of the 5ESS2 code in a two year period and
developed statistical models for these fault counts using
measurements on the modules that were calculable before
the start of the two year period.

The thrust of these models is to predict the distribution
of future faults over modules in the subsystem from the
modules' change history. The best models predicted
numbers of faults using numbers of changes to the module
in the past, the dates of these changes (i.e., the negative of
their ages, measured in years), and their sizes, as in (4):

FPWTD�m� /
X

c e> m

e0:75�DATE�c��

log ADD�c;m� �DEL�c;m�� �;
�9�

with the parameter � � :75 determined by statistical
analysis (see [20]). Thus, large, recent changes add the most
to fault potential and the number of times a module has
been changed is a better predictor than its size of the
number of faults it will suffer in the future. That � 6� 0 is the
primary (and direct) evidence that changes induce faults:
Where � � 0, past changes of the same size would be
indistinguishable from one another and, hence, none could
be posited to have any specific effect.

The model (9) does provide evidence that some modules
are more decayed than others. In principle, this issue could
be addressed by allowing � to be module dependent, but
we have not yet done this.

An alternative (and less powerful) model, using the CDI
of (5) and the same data as (9), a generalized linear model, is

FPGLM�m� � :017�
X
c

1fc e> mg � :64AGE�m�: �10�

This model implies that code having many lines that have
survived for a long time is likely to be relatively free of
faults. More precisely, according to (10), code a year older
than otherwise similar code tends to have only two-thirds
as many faults.

One way to evaluate these models is by comparison
with a ªnaiveº model that predicts the number of future
faults in given locations to be proportional to the number
of past faults. As discussed in [20], in some cases, (10) is
only marginally superior to the naive model (as
measured by a Poisson deviance). Nevertheless, this still
means that a model suggesting causality (deltas cause
faults) has the same explanatory power as a model
positing simply that the distribution of faults over
modules is stationary over time.

Simulations of deviances provide strong evidence that
the model (9) is superior to that of (10). In particular, this
means that treating changes individually improves the
predictions.

Equally important is that other variables did not
improve the predictions, once size and time of changes
are taken into account. In particular, predictions do not
improve by including either module size or other
measures (metrics) of software complexity (which in our
data are correlated essentially completely with size).
Thus, changes to code are more responsible for faults
than the complexity of the code.

Moreover, the number of developers touching a module
had no effect on its fault potential.12 One possible
explanation is that strong organization programming
standards attenuate any such effects. The change from code
ownership to change ownership ([16]) is a confounding
factor in this regard.

Finally, concurrent changes with large numbers of other
modules did not contribute to fault potential. In one sense,
this suggests that the decline of modularity described in
Section 5.2 may not be harmful, but since the size of changes
is correlated with their span, it is more likely that we are
simply seeing the size variable mask the effect of span.

5.4 Models for Effort

Here, we assess the evidence for ªbottom lineº relevance of
code decay: Can the effort required to implement changes
be predicted from symptoms and risk factors for decay? The
analysis employs a variant of the predictive CDI EFF of (6),
with the ªsum of touched file sizesº term in (6) omitted. The
results are suggestive but, because of the small sample size,
not definitive.

The model was fit using data from a set of 54 features.
As noted in Section 2.1, features are the units of system
functionality (e.g., call waiting) by which the system is
extended and are too aggregated for most purposes.
However, effort data (person hours) are available only at
this level. (Further analysis of factors affecting effort,
based on larger data sets but requiring the imputation of
effort for individual changes given aggregated effort
values, is in [25].)

Extreme variability of the feature-level data necessitated
taking logarithms of all variables. (The actual transforma-
tion, log�1� ��, avoids negative numbers.) The resultant
model is

log�1� EFF�c�� � :32� :13 �log�1� FILES�c���2

ÿ :09�log�1�DEL�c���2
� :12 log�1�ADD�c�� log�1�DEL�c��
� :11 log�1� INT�c��
ÿ :47 log�1�DELTAS�c��:

�11�
All coefficients shown are statistically significantly different

from zero; the multiple R2 value is :38. Despite the danger
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12. One might expect that modules modified by many developers would
have confused logic as a result of the different styles and, hence, be difficult
to change.



that this model is ªoverfit,º removal of any of the variables

decreases the quality of the fit dramatically.
Some interpretations of (11) seem clear. First, depen-

dence on FILES confirms that the span of changes is indeed
a symptom of decay; that the dependence is quadratic hints
that moderate span may not be serious. Second, as
hypothesized in Section 4.2.6, dependency overhead (in
(11), embodied in EFF�c�) can be distinguished from
nominal effort (terms involving ADD�c� and DEL�c�).

Other interpretations seem more problematic. For
example, the negative coefficient for �log�1�DEL�c���2
deletions are accomplished relatively quickly (which
makes sense), but can also be interpreted as simply
fitting cases in the data where large numbers of lines are
deleted. Similarly, the interaction term between additions
and deletions (log�1�ADD�c�� � log�1�DEL�c��) may
suggest that the hardest changes are those requiring
both additions and deletions, but the high level of
aggregation mandates caution when trying to extrapolate
this to, say, the delta level.

The negative coefficient for log�1�DELTAS�c�� is puz-
zling, since it is difficult to believe that features containing
large numbers of editing changes are somehow easier to
implement. But removing this single term decreases R2

nearly by one-half, so there is no doubt that the effect is
present in the data. Detailed examination of the data
suggests that the negative coefficient is picking up the
approximately five cases (10 percent of the data) in which
effort is large (close to the maximum) effort, but the number
of deltas is very small.

5.5 Confirmatory Evidence

The results reported in this paper are derived primarily
from statistical analysis of change management data. They
are corroborated by results reported in [16], which is part of
the same code decay project.

6 SUMMARY

Using tools developed to handle change management data,
a conceptual model of code decay (associated concepts of
causes, symptoms and risk factors), code decay indices, and
statistical analyses, we have found evidence of decay in the
software for a large telecommunications system.

Four specific analyses were performed. They demon-
strate: 1) The increase over time in the number of files
touched per change to the code, 2) the decline in modularity
of a subsystem of the code, as measured by changes
touching multiple modules, 3) contributions of several
factors (notably, frequency and recency of change) to fault
rates in modules of the code, and 4) that span and size of
changes are important predictors (at the feature level) of the
effort to implement a change.

At the same time, evidence of dramatic, widespread
decay is lacking. Retrospectively, this is not surprising: The
system studied is a fifteen-year old, successful product to
which new features can still be added.

The tools, concepts, and analyses are transferable to any
software project for which comparable change management
data exist. We anticipate that all projects of sufficiently large

scale will exhibit decay to some extent: that is, code decay is
a generic phenomenon.

Current investigations are focusing on the effectiveness
and economic efficiency of means to prevent or retard
code decay, such as perfective maintenance. Whether (in
the medical metaphor), code decay can ultimately be fatal
is not clear. However, there are anecdotal reports of
systems that have reached a state from which further
change is not possible.
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