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Abstract

Skin detection is an important process in many of com-
puter vision algorithms. It usually is a process that starts at
a pixel-level, and that involves a pre-process of colorspace
transformation followed by a classification process. A col-
orspace transformation is assumed to increase separability
between skin and non-skin classes, to increase similarity
among different skin tones, and to bring a robust perfor-
mance under varying illumination conditions, without any
sound reasonings. In this work, we examine if the col-
orspace transformation does bring those benefits by mea-
suring four separability measurements on a large dataset of
805 images with different skin tones and illumination. Sur-
prising results indicate that most of the colorspace transfor-
mations do not bring the benefits which have been assumed.
1

1. Introduction

Skin detection has been gaining popularity and impor-
tance in the computer vision community. It is an essen-
tial step for the important vision tasks including detection,
tracking, and recognition of face and gesture. The process
of skin detection generally is a pixel-level process involv-
ing a pre-process of colorspace transformation and classiˇ-
cation. Many studies describing skin detection have applied
colorspace transformation for the following beneˇts. First,
a certain colorspace transformation is assumed to increase
the separability between skin and non-skin classes thus im-
proving the classiˇcation process. Second, it is assumed to
achieve the illumination invariance. Varying illumination
presents additional challenges to the task of skin detection.
Some works have dropped the illumination component of

1This work was supported, in part, by funds provided by The Univer-
sity of North Carolina at Charlotte. This work was performed under the
auspices of the U.S. Department of Energy by University of California
Lawrence Livermore National Laboratory under contract number UCRL-
JC-149946.

the colorspace. Third, it is assumed to group the colors of
different skin tones together. However, most works have se-
lected a particular colorspace transformation for their bene-
ˇts with a few or no sound proof.

In order to check which colorspace transformation(s)
would bring such beneˇts, we established a sound evalu-
ation framework with the following requirements.

1. Examining with right statistical measurements.
The colorspace transformation is a pre-process. It
should increase the separability between skin and non-
skin classes while decreasing the separability among
skin tones (since they are all in the same class of skin.)
Most of the skin detection methods involve a statistical
classiˇcation and we measure four statistical measure-
ments. Two measurements are based on scatter matri-
ces and other two are based on histogram analysis.

2. Large set of popular colorspace transformations.
We examine eight popular colorspace transformations
including normalized RGB, CIE-Lab, HSI, and SCT.

3. Large and thorough dataset (varying skin tone and
illumination conditions). The dataset must have
many samples of skin and non-skin pixels. The skin
pixel set must include a large number of different
subjects (persons), skin tones, and illumination. We
have collected the images with skin pixels from two
databases of face images, AR dataset at Purdue and
University of Oulo Physics-based Face Database. Our
dataset includes 507 images with skin pixels of 197
subjects, taken by two different cameras, ˇve differ-
ent light types, three different levels of light amount,
and three different levels of skin tones. The set of
images with non-skin pixels has been collected from
the University of Washington's Content-based Image-
Retrieval dataset. The entire dataset consists of 59 mil-
lion pixels.

We attempt to provide the answers to some of popular
claims on the effects of colorspace transformations on the
task of skin detection.
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2. Previous Works

2.1. Comparative Studies

Recent papers on the performance evaluation of col-
orspace transformations for skin detection are summarized.
Zarit et al. [20] compared skin pixel classiˇcation per-
formance of two histogram based skin detection methods,
lookup table method and Baysian method. Five colorspaces
were considered to measure the performance of skin de-
tection methods. In [19], nine chrominance spaces were
compared by the performance of a model based approach
with Mahalanobis metrics for the face detection method.
Tint-Saturation-Luminance (TSL) performed the best fol-
lowed by normalized Red-Green (rg) and CIE-xy in TP and
FP rate in the human face detection. The performances of
skin detection methods were quantitatively assessed in [4].
The skin detection methods experimented in the study are
color transformation using the Red-Green (RG) ratio, lin-
ear color transformation of RGB into YI'Q' colorspace and
skin probability map with RGB colorspace.

2.2. Skin Detection Studies

This section describes related skin detection studies.
Brown et al. [5] used 2D intensity invariant vectors
from each colorspace transformations to train the Self-
Organizing Map (SOM) model. For each of color trans-
formations, 2D “intensity invariant” vectors were extracted
and used to train the SOM model. Hsu et al. [9] used
YCbCr colorspace transformation to detect skin pixels in
the normalized color appearance using “reference white”.
Skin color was modeled using the Gaussian distribution,
then detected by computing Mahalanobis distance. Jones et
al. proposed skin / non-skin models based on distributions
in RGB space for skin detection. A skin pixel classiˇer is
devised through likelihood ratio approach, and a prior prob-
ability was determined based on threshold values et al. [10].
Saber and Tekalp used YES colorspace transformation to
reduce the variations in chrominance caused by luminance
for face detection task [16]. Mean vector and covariance
matrices were estimated for skin classiˇcation in the com-
bination of a universal threshold value obtained by ROC
analysis in the training phase. Sigal et al. [17] computed the
distribution of skin color usingMarkovmodel with adaptive
color histogram. The prediction of colorspace distribution is
performed by modeling evolution of the color distributions
over time using a second-order Markov process. Skin pix-
els in images was manually extracted and labeled into three
levels (skin, non-skin and don't-care) which is similar to the
pixel labels used in our ground truth. Garcia and Tziritas
[8] ˇrst quantized the HSV colorspace with K-Means algo-
rithm to reduce a number of color clusters. Two subspaces

in each YCbCr and HSV with bounding plane equations to
assign a given pixel to skin or non-skin label. Oliver et al.
[13] used spatial coordinates in addition to the normalized
RG to obtain blobs as a low level image feature. By esti-
mating mean vector and covariance matrix for 2D and 3D
blobs, Gaussian mixture models of skin data were obtained
in the colorspace. Fleck et al. [7] presented a skin-detection
method to report if images contain the naked people using
skin ˇlter. The log-transformed colorspaces from RGB have
been used. The skin ˇlter is created through log-opponent
based color representation and texture amplitude in green
channel to distinguish between skin and non-skin pixels.

3 Experimental Methods

3.1 Color Space Transformations

Color of a pixel in image is deˇned as [C0, C1, C2].
The colorspace transformation is a function that converts
[C0, C1, C2] to [C′

0, C
′
1, C

′
2]. All images are captured in

the Red, Green, Blue (RGB) space. We have evalu-
ated eight colorspace transformations : NRGB (normalized
RGB), CIEXYZ, CIELAB, HSI, SCT (Spherical Coordi-
nate Transform) [14], YCbCr, YIQ, and YUV. The RGB
is used as a baseline performance. Frequently, the illumi-
nation component of the colorspace was dropped to make
the skin detection illumination independent. For each col-
orspace, we dropped its illumination component to form 2D
color.

Note that values of each component in [R, G, B] are in
the range of [0, 255] and [r, g, b] (lower-cased) in [0, 1]. The
equations below might not yield the values in [0, 255]. The
values are adjusted so that it ranges from [0, 255], and they
are quantized in 256 levels.

3.2 Dataset

We have collected a total of 805 images of which 507
images contain skin pixels and 298 does not contain skin
pixels.

The skin images are from AR face dataset [12] and
UOPB face dataset [11]. The non-skin images are collected
from University of Washington's content-based image re-
trieval database [1]. AR face dataset includes more than
4,000 frontal color images of 70 men and 56 women. The
dataset varied facial expressions, illumination conditions of
(no additional light, additional left light, additional right
light, additional two lights) and occlusions. The images
were taken at two different times apart by 14 days. No re-
striction on the appearance (such as make-up, hair style and
glasses) was placed. UOPB dataset includes 2,112 frontal
images of 111 different people in 16 camera calibration and
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illumination conditions of horizon, incandescent, uores-
cent and daylight.

3.3 Ground Truth

Figure 1. Sample of GT images. Skin pixels
are colored in black. Difficult and tedious
regions to mark (’don’t care’) are colored in
gray. The background in the skin images is
also marked in gray indicating that those pix-
els did not participate in the evaluation.

The ground truth (GT) is deˇned at pixel-level. We adopt
the three labels method as shown in [3] where each pixel
is labeled as skin (black), non-skin (white), or don't-care
(gray). `Don't care' label is assigned to pixels that are too
ambiguous to mark either way or too tedious to mark skin
or non-skin pixels. Since it is difˇcult to accurately mark
the boundary pixels between skin and non-skin regions, we
label the boundary pixels width of 5 pixels as don't care.
The ground truthers were asked to spend at least 15 minutes
on each image and to start from the most obvious regions.
Figure 1 shows a sample GT of skin image. Since the back-
ground of the skin images was mostly white, we did not use
the pixels of the background as non-skin data. The back-
ground pixels of skin images are labeled as gray indicating
that they were not used for the experiments. For non-skin
images, the entire image is marked as white (non-skin.)

3.4 Performance Metrics

We compare clusters of skin and non-skin samples using

four metrics. tr[SW ]

tr[SB ]
and tr[S−1

W SB ] are based on scatter

matrix. The histogram intersection (HI) and the histogram
χ2 error (HCE) are based on the histogram analysis.

The number of samples in two clusters of skin and non-
skin is close but not identical. And we have noted that
tr[SW ] monotonically increases when more samples added
into the clusters. We have normalized the metrics so they
are not variant to the number of samples.

3.4.1 Scatter Matrix based Metrics

We compute the separability of clusters of skin and non-
skin pixels by computing following scatter matrices. SW

computes the scatterness within cluster while SB computes
the scatterness between clusters [6]. The dataset contains
d-dimensional samples x = [x1, x2, ..., xd], of c clusters.
Each cluster (Di) contains ni samples with the total of n
samples. Thee mean vector of each cluster (mi) and the
total mean vector (m) are deˇned as

mi =
1
ni

∑

x∈Di

x m =
1
n

∑

D

x =
1
n

c∑

i=1

nimi

The scatter matrix for the ith cluster (Si) and its normalized
value (S′i) are computed

Si =
∑

x∈Di

(x−mi)(x −mi)t S′i =
1
ni
Si

The normalized within-cluster scatter matrix (S′W ) and the
normalized between-cluster scatter matrix (S′B) are com-
puted as

S′W =
c∑

i=1

S′i S′B =
c∑

i=1

(mi −m)(mi −m)t

Tighter clusters (with smaller Sw) that are far separated
(with larger Sb) are preferred for easier classiˇcation. We
compute two scalar measurements using the scatter matri-

ces. First, tr[SW ]

tr[SB ]
computes the ratio between traces of SW

and SB . Second, tr[S−1
W SB] compute the invariant measure-

ments as it is also deˇned as

tr[S−1
W SB] =

d∑

i=1

λi

where λ1, ..., λd are the eigenvalues of tr[S−1
W SB ].

3.4.2 Histogram Comparison

Two histograms for colors of skin (HS) and non-skin (HNS)
pixels after a colorspace transform are computed. The his-
tograms are created at the resolution of 256x256x256 for
3D colorspaces and 256x256 for 2D colorspaces.
HI the similarity between two histograms. Let b be the

number of bins in the histograms and each bin can be ad-
dressed by index of j as H(j). We normalized H(j) as

H(j)′ =
1
n
H(j)

Two metrics are computed as following [15, 18].

HI =
b∑

j=1

min(HS(j),HNS(j)) (1)

HCE =
b∑

j=1

(HS(j) −HNS(j))2

HS(j) +HNS(j)
(2)

3
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4 Results

4.1 Overview

In this section, we attempted to answer following three
questions by analyzing the results of nine colorspaces. We
call colorspaces other than the RGB as non-RGB. The color
of pixels are originally represented in the RGB space. So,
transformation of colorspace to a non-RGB colorspace is
considered to be an additional. step. In this paper, the
colorspace tranformation is deˇned as converting the color
from the RGB colorspace to a non-RGB colorspace. To
check if the colorspace transformation does improve the
separability thus improving the skin detection performance,
the separability measurements of the non-RGB colorspaces
are compared against the RGB which is considered as the
baseline performance.

The illumination component of a colorspace has been
frequently eliminated with the belief that such process will
bring the illumination invariance thus improving the skin
detection performance under various lighting conditions.
To examine such belief, we have examined each colorspace
in two dimensions: 2D and 3D. All colorspaces in this study
represent color in 3D. The 2D representation is obtained by
eliminating the dimension of illumination. This yields 18
colorspace settings from the combinations of 9 colorspaces
in 2 dimensions.

As mentioned in previous section, four metrics (two scat-
ter matrix based and two histogram based) are computed
for each colorspace setting yielding 4 (metrics) x 18 col-
orspace settings = 72 values to analyze. For better separabil-

ity, lower tr[SW ]

tr[SB ]
and HI, and higher tr[S−1

W SB] and HCE
are desirable. Note that four different metrics could lead to
different conclusions. We have usedmultiple metrics so that
the conclusion is not depended on a single evaluation func-
tion. We attempt to answer the following three questions.
Questions are answered in following subsections.

Table 1. Performance of All Colorspaces in 2D
and 3D.

color
tr[SW ]
tr[SB ]

tr[S−1
W

SB ] HI HCE

space 2D 3D 2D 3D 2D 3D 2D 3D

CIELAB 4.82 5.35 0.34 0.35 0.12 0.05 1.64 1.86
CIEXYZ 12.02 17.27 1.09 1.20 0.14 0.05 1.60 1.85

HSI 1.91 3.03 1.05 1.12 0.11 0.04 1.67 1.88
NRGB 1.52 1.44 0.89 0.98 0.12 0.11 1.65 1.67
SCT 1.38 5.32 1.10 1.14 0.11 0.04 1.66 1.89

YCbCr 1.19 12.96 1.06 1.20 0.17 0.05 1.51 1.84
YIQ 1.20 15.36 1.06 1.20 0.16 0.05 1.52 1.85
YUV 1.19 12.96 1.06 1.20 0.17 0.05 1.51 1.84

RGB 34.15 12.37 0.86 1.20 0.11 0.03 1.67 1.90

mean 6.60 9.56 0.95 1.06 0.13 0.05 1.60 1.84

4.2 Does colorspace transform help?

The color transformations that are helpful for the task of
skin detection should have metrics better than the baseline
performance. We compared the performance of the non-
RGB colorspaces against the baseline performance of the
RGB. Four metrics are used for comparison separately for
2D and 3D yielding eight conclusions on the effectiveness
of colorspace transform.

Table 1 lists the performance of all colorspaces in 2D
and 3D in all metrics. The number of non-RGB colorspace
settings that performed better than the RGB for each metric
each dimension are listed below. The maximum is eight
corresponding to the number of non-RGB colorspaces.

• tr[SW ]

tr[SB ]
: 8 in 2D, 4 in 3D

• tr[S−1
W SB] 7 in 2D, 0 in 3D

• HI 0 in 2D, 0 in 3D

• HCE 1 in 2D, 0 in 3D.

Note that the observations from four metrics in 2D and
3D were not identical. However, in four out of eight ob-
servations, none of colorspace transformations was better
than the RGB. In one observation (HCE 2D), only the HSI
was better than the RGB. This reveals that in histogram-
based separability measurements (HI and HCE), the im-
provement in separability was minimal.

For the metrics based on scatter matrix, the results were
not less consistent. The number of better non-RGB col-
orspaces were zero in tr[S−1

W SB] - 3D, four in tr[SW ]

tr[SB ]
- 3D,

seven in tr[S−1
W SB] - 2D, eight in tr[SW ]

tr[SB ]
- 2D. In 3D, the

color transformations did not provide much improvement.
The numbers were higher in 2D than 3D in both scatter ma-
trix based metrics indicating that the improvement is more
apparent when the illumination component is eliminated.

Overall, the improvement due to colorspace transforma-
tions was visible in 2D of scatter matrix based metrics.
However, in other metrics especially the histogram based
metrics, the improvement was nearly minimal.

4.3 Does dropping illumination help?

For each metric, there are nine pairs of 2D and 3D perfor-
mances. We performed the pair-T statistical analysis on four
sets of nine pairs to check if the performance of dropping
illumination (2D) is statistically better than the 3D space
(refer to Table 2.)

For HI and HCE, keeping illumination (3D) is statisti-
cally better than dropping the illumination (2D) within 95%
conˇdence interval. For tr[S−1

W SB ], 3D is better than 2D

4
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Table 2. Paired Samples T-Test on 3D and 2D
(illumination dropped) for each metric.

paired differences
95% conf

interv of the
std. error diff

mean std. dev mean lower upper t df sig (2-tailed)
tr[SW ]
tr[SB ]

-2.96 10.71 3.57 -11.20 5.27 -0.83 8 0.43

tr[S−1
W

SB ] -0.12 0.10 0.03 -0.19 -0.05 -3.73 8 0.01

HI 0.08 0.03 0.01 0.06 0.11 7.09 8 0.00
HCE -0.24 0.10 0.033 -0.32 -0.16 -7.21 8 0.00

within 93% conˇdence interval. The mean differences in
tr[SW ]

tr[SB ]
were not statistically signiˇcant.

Overall, the 2D (dropping of illumination component)
was found to actually signiˇcantly decrease the separabil-
ity in 3 out of 4 measurements with 93% conˇdence.

4.4 What is the best colorspace?

We have 18 colorspace settings from the combinations
of 9 colorspaces and 2 dimensions (2D and 3D). By using
four metrics, we ranked the colorspaces for the task of skin
detection to ˇnd which colorspace setting is most suitable
for skin detection.

First, note that the rankings of colorspaces are different
for four metrics; the average of standard deviation of rank-
ings among four metrics for a given colorspace was 4.78.
Note that the rankings between two scatter matrix based
metrics changed much more than between two histogram
metrics. The only changes of ranking betweenHI andHCE
were HSI-2D, NRGB-3D, and RGB-2D. Ranking changes

between tr[SW ]

tr[SB ]
and tr[S−1

W SB] were larger. For instance,

RGB-3D was the best in tr[S−1
W SB] while being 13th (out

of 18) in tr[SW ]

tr[SB ]
. In fact, half of colorspaces faced ranking

changes of 9 or more.

The best colorspaces are YCbCr-2D ( tr[SW ]

tr[SB ]
), RGB-3D

for other three measurements. The fact that the RGB-3D
was the best colorspace settings in three out of four metrics
indicates that (1) the colorspace transformations and (2) the
reduction of illumination component (2D) did not improve
the performance in the task of skin detection.

The ranking was assessed including RGB so the value
ranges from 1 to 9. We treat the performance of RGB as
a baseline and all other colorspaces as color transforma-
tions. Note that the ranking of RGB colorspace was the
ˇrst or the second in ˇve out of eight measurements. For
the histogram-based metrics (HI and HCE), RGB was ac-
tually the ˇrst or second performer in both 2D and 3D. The
RGB-3D (RGB in 3D) was the best in tr[S−1

W SB], HI and

HCE when the 2D and 3D colorspaces (total of 18) were

ranked. However, it was ranked 13th in tr[SW ]

tr[SB ]
. So, most of

colorspace transformations did not help on skin detection.

5 Conclusions

Skin detection is an important process in many of com-
puter vision algorithms. A colorspace transformation is as-
sumed to increase separability between skin and non-skin
classes, to increase similarity among different skin tones,
and to bring a robust performance under varying illumi-
nation conditions, without any sound reasonings. In this
work, we examined if the colorspace transformation does
bring those beneˇts by measuring four separability mea-
surements on a large dataset of 805 images with different
skin tones and illumination. We found that the separabil-
ity between two classes of skin and non-skin was highest in
RGB colorspace (or absence of colorspace transformation)
according to three of four separability metrics. Dropping of
illumination component was found to signiˇcantly worsen
the separability in three of four metrics as well.
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