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Abstract

We show that classical learning methods in-
terpolating the training data can achieve op-
timal rates for the problems of nonparametric
regression and prediction with square loss.

1 Introduction

In this paper, we exhibit estimators that interpolate
the data, yet achieve optimal rates of convergence for
the problems of nonparametric regression and predic-
tion with square loss. This curious observation goes
against the usual (or, folklore?) intuition that a good
statistical procedure should forego the exact fit to data
in favor of a more smooth representation. The family
of estimators we consider do exhibit a bias-variance
trade-off with a tuning parameter, yet this “regular-
ization” co-exists in harmony with data interpolation.

Motivation for this work is the recent focus within the
machine learning community on the out-of-sample per-
formance of neural networks. These flexible models
are typically trained to fit the data exactly (either in
their sign or in the actual value), yet they predict well
on unseen data. The conundrum has served both as a
source of excitement about the “magical” properties of
neural networks, as well as a call for the development
of novel statistical techniques to resolve it.

So, should we be surprised to find a procedure that fits
any amount of data yet generalizes well? An answer
is immediate: No. We can take any procedure with
good out-of-sample performance and modify it on the
training points to fit the outcome variable. Such a
modification on a zero-measure set (under appropri-
ate assumptions) has no effect on the out-of-sample
performance. One can argue, however, that this con-
struction is not “natural.” The aim of this paper is to
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show that a classical local estimation procedure sat-
isfies the desiderata: for an appropriate choice of a
kernel, the method interpolates the data, yet achieves
optimal rates of convergence in the minimax sense.
What is surprising, the optimal rate is achieved point-
wise. Through this pedagogical example we emphasize
that the degree to which a procedure fits the data can
be completely decopled from the notion of overfitting.

Perhaps, some of the misconceptions regarding the
generalization ability of learning methods that fit
training data too well can be attributed to an (incor-
rect) interpretation of the familiar bias-variance car-
toon we find in textbooks (see e.g. [6]):

Model Complexity
HighLow

Training

Error

Test Error

Underfitting Overfitting

In fact, low training error does not necessarily imply
that the model is too complex and we are in the over-
fitting regime.

Let (X,Y ) be a random pair on R
d × R with distri-

bution PXY , and let f(x) = E[Y |X = x] be the re-
gression function. A goal of nonparametric estima-
tion is to construct an estimate fn of f , given a sam-
ple (X1, Y1), . . . , (Xn, Yn) drawn independently from
PXY . A classical approach to this problem is kernel
smoothing. In particular, the Nadaraya-Watson esti-
mator [9, 13] is defined as

fn(x) =

∑n
i=1 YiK

(

x−Xi

h

)

∑n
i=1 K

(

x−Xi

h

) , (1)

where K : Rd → R is a kernel function and h > 0 is a
bandwidth and we assume that the denominator does
not vanish. Appropriate choices of K and h lead to op-
timal rates of estimation, under various assumptions,
and we refer the reader to [12] and references therein.



Does data interpolation contradict statistical optimality?

We consider singular kernels that approach infinity
when their argument tends to zero. It has been ob-
served, at least since [11], that the resulting function
in (1) interpolates the data. We will focus on the par-
ticular kernel

K (u) , ‖u‖−a
I{‖u‖ ≤ 1}, (2)

for some a > 0. Here, ‖·‖ denotes the Euclidean norm.
Our results can be extended to other related singular
kernels, for example, to

K (u) , ‖u‖−a
[1− ‖u‖]2+ (3)

where [c]+ = max{c, 0}, and

K (u) , ‖u‖−a
cos2(π ‖u‖ /2)I{‖u‖ ≤ 1}, (4)

considered in [8, 7]. Also, ‖·‖ can be any norm on R
d,

not necessarily the Euclidean norm.

Our main result, stated precisely in the next section
and proved in Section 3, establishes that

E ‖fn − f‖2L2(PX) , E(fn(X)− f(X))2 ≤ Cn− 2β

2β+d

whenever the regression function f belongs to a Hölder
class with parameter β ∈ (0, 1], and under additional
assumptions stated below. Here C is a constant that
does not depend on n and PX is the marginal distri-

bution of X. The rate n− 2β

2β+d is the classical minimax
optimal rate for Hölder classes [12].

Our result also yields a curious conclusion for the
problem of prediction with square loss. Observe that
excess loss—an object studied in Statistical Learning
Theory—with respect to a Hölder class Σ(β, L), for-
mally defined below, can be written as

E(fn(X)− Y )2 − inf
g∈Σ(β,L)

E(g(X)− Y )2

= E(fn(X)− f(X))2 − inf
g∈Σ(β,L)

E(g(X)− f(X))2

= E(fn(X)− f(X))2

under the assumption that the model is well-specified
(that is, the regression function is in the class). We
remark that the estimator fn is improper, in the sense
that it does not itself belong to the Hölder class (its
smoothness depends on h and, hence, on n). In conclu-
sion, despite the fact that fn is improper and fits the
data exactly, it attains optimal rates for excess loss.
We refer the reader to [10] for further discussion of op-
timal rates in nonparametric estimation and statistical
learning.

Prior work Within the context of pattern classifica-
tion, the 1-Nearest-Neighbor classifier is an example of
an interpolating rule. It is shown in [3] that the limit

(as n tends to infinity) of the classification risk is no
more than twice the Bayes risk. To make k-Nearest-
Neighbor rules consistent, one is required to increase
k with n [4, 2], in which case the rule is no longer
interpolating.

The idea of interpolating the data using singular ker-
nels appears already in [11] and was further developed
in [8, 7], among others. These works were focusing
on deterministic properties of the interpolants and no
statistical guarantees have been established until [5]
have shown consistency of the estimator (1) for the

singular kernel K (u) = ‖u‖−d
, however, without fi-

nite sample guarantees. The recent work of [1] proves
the first (to the best of our knowledge) non-asymptotic
rates for interpolating procedures, yet the guarantees
are suboptimal. The present paper shows that statis-
tical optimality of interpolating rules can indeed be
achieved and it holds under rather standard nonpara-
metric assumptions on the regression function.

2 Main Results

We start with a definition.

Definition 1. For L > 0 and β ∈ (0, 2], the (β, L)-
Hölder class, denoted by Σ(β, L), is defined as follows:

• If β ∈ (0, 1], the class Σ(β, L) consists of functions
f : Rd → R satisfying

∀x, y ∈ R
d, |f(x)− f(y)| ≤ L ‖x− y‖β . (5)

• If β ∈ (1, 2], the class Σ(β, L) consists of continu-
ously differentiable functions f : Rd → R satisfy-
ing for all x, y ∈ R

d

|f(x)− f(y)− 〈∇f(y), x− y〉 | ≤ L ‖x− y‖β
(6)

where 〈·, ·〉 denotes the inner product.

We assume the following.

(A1) For any x ∈ R
d, the expectation E[Y |X = x] =

f(x) exists and E[ξ2|X = x] ≤ σ2
ξ < ∞, where

ξ = Y − E[Y |X] = Y − f(X).

(A2) The marginal density p(·) of X exists and satisfies
0 < pmin ≤ p(x) ≤ pmax for all x on its support.

The Nadaraya-Watson estimator for a singular kernel
K is defined as

fn(x) =















Yi if x = Xi for some i ∈ [n]

0 if
∑n

i=1 K
(

x−Xi

h

)

= 0,
∑n

i=1
YiK( x−Xi

h )
∑

n
i=1

K( x−Xi
h )

otherwise.

(7)
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Note that setting here fn(Xi) = Yi is not an artificial
perturbation. Indeed, for kernel (2) or other kernel
with singularity at 0, it is just a proper way of com-
pleting the definition of fn(·) by continuity.

The two main results for this estimator are now stated.

Theorem 1. Assume that f ∈ Σ(β, Lf ) for β ∈ (0, 1],
Lf > 0. Let Assumptions (A1) and (A2) be satisfied,
and 0 < a < d/2. Then for any fixed x0 ∈ R

d in
the support of p the estimator (7) with kernel (2) and

bandwidth h = n− 1
2β+d satisfies

E[(fn(x0)− f(x0))
2] ≤ Cn− 2β

2β+d

where C > 0 is a constant that does not depend on n.

Theorem 2. Assume that f ∈ Σ(β, Lf ) for β ∈ (1, 2],
Lf > 0. Let Assumptions (A1) and (A2) be satis-
fied, and 0 < a < d/2. Assume in addition that, for
all x, y in the support of p, we have |p(x) − p(y)| ≤
Lp ‖x− y‖β−1

, Lp > 0. Then for any fixed x0 ∈ R
d

such that the Euclidean ball of radius h centered at x0

is contained in the support of p, the estimator (7) with

kernel (2) and bandwidth h = n− 1
2β+d satisfies

E[(fn(x0)− f(x0))
2] ≤ Cn− 2β

2β+d

where C > 0 is a constant that does not depend on n.

In particular, the pointwise mean squared error (MSE)
bound of Theorem 1 immediately implies that the inte-
grated MSE with respect to the marginal distribution
of X satisfies

E

∫

Rd

(fn(x)− f(x))2p(x)dx ≤ Cn− 2β

2β+d ,

assuming that f is bounded on the support of the
marginal density p.

3 Proofs

Without loss of generality, consider the problem of es-
timating f(x0) at x0 = 0, assuming it is in the support
of p and |f(x0)| < ∞.

Consider the event

E =

{

n
∑

i=1

Kh(Xi) 6= 0

}

= {∃i = 1, . . . , n : ‖Xi‖ ≤ h}

and observe that

P
(

Ē
)

≤
(

1− Cpminh
d
)n ≤ exp

{

−Cpminnh
d
}

for a constant C > 0 that does not depend on
n. On the event Ē , we have fn(0) = 0 and thus
the contribution to expected risk is at most ME =

f(0)2 exp
{

−Cpminnh
d
}

, a lower-order term compared
to the remaining calculations.

On the event E , the estimator fn(0) is equal to

f̄n(0) =

∑n
i=1 YiKh(Xi)
∑n

i=1 Kh(Xi)

(modulo an event of zero probability with respect to
the joint distribution of X1, . . . , Xn), where

Kh(x) , K(x/h).

Set ξi = Yi − f(Xi). Let EY denote the expectation
with respect to Y1, . . . , Yn, conditional on X1, . . . , Xn.
We have the following “bias-variance” decomposition

E[(fn(0)− f(0))2]

≤ E[(f̄n(0)− EY f̄n(0) + EY f̄n(0)− f(0))2I{E}] +ME

= E[(f̄n(0)− EY f̄n(0))
2I{E}]

+ E[(EY f̄n(0)− f(0))2I{E}] +ME .

It holds that, on the event E ,

EY f̄n(0) =

∑n
i=1 f(Xi)Kh(Xi)
∑n

i=1 Kh(Xi)

and, hence, the variance term is

σ2(0) , E[(f̄n(0)− EY f̄n(0))
2I{E}] (8)

= E

[

(∑n
i=1 ξiKh(Xi)
∑n

i=1 Kh(Xi)

)2

I{E}
]

≤ σ2
ξσ

2
X ,

where

σ2
X , nE

[

K2
h(X1)

(
∑n

i=1 Kh(Xi))
2 I{E}

]

.

On the other hand, the bias1 is

b2(0) , E[(EY f̄n(0)− f(0))2I{E}] (9)

= E

[

(∑n
i=1(f(Xi)− f(0))Kh(Xi)

∑n
i=1 Kh(Xi)

)2

I{E}
]

.

The following lemmas control each of the above expres-
sions under various assumptions on f and the marginal
density p. We will denote by C positive constants that
can vary from line to line.

3.1 Bounding the Variance

Lemma 1. Let Assumptions (A1) and (A2) hold.
Then,

σ2(0) ≤
Cσ2

ξ

nhd
. (10)

1To be precise, this term includes variance due to ran-
dom X, as will be clear from Lemma 3.
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Proof. Introduce the random variables

ηi = I{‖Xi‖ ≤ h}.

They are i.i.d. and follow the Bernoulli distribution
with parameter

p̄ , P (‖X1‖ ≤ h) ≥ c0pminh
d

where c0 > 0 depends only on d. Then

σ2
X ≤ nE

[

K2
h(X1)

(
∑n

i=1 Kh(Xi))
2 I

{

n
∑

i=1

ηi ≤
np̄

2

}

I{E}
]

+ nE

[

4

(np̄)2
K2

h(X1)

]

(11)

where we have used the fact that

Kh(Xi) ≥ ηi, i = 1, . . . , n.

Change of variables yields

nE[K2
h(X1)] ≤ nhdpmax

∫

Rd

K2(u)du. (12)

Since the kernel K is radially symmetric and sup-
ported on the unit Euclidean ball, the last expression
is bounded from above by

Cnhdpmax

∫ 1

0

r−2ard−1dr ≤ C2nh
d

whenever d−2a−1 > −1 (equivalently, a < d/2). Here
C,C2 are positive constants depending only on d. It
follows that

nE

[

4

(np̄)2
K2

h(X1)

]

≤ 4

(c0pminnhd)2
C2nh

d ≤ C

nhd
.

To conclude the proof, we analyze the first term in
(11):

nE

[

K2
h(X1)

(
∑n

i=1 Kh(Xi))
2 I

{

n
∑

i=1

ηi ≤
np̄

2

}

I{E}
]

≤ nP

(

n
∑

i=1

ηi ≤
np̄

2

)

= nP

(

n
∑

i=1

ηi − np̄ ≤ np̄

2

)

.

By Bernstein’s inequality, the last expression is at most

n exp

{

− (np̄/2)2

2(np̄(1− p̄) + np̄/3)

}

≤ n exp

{

−3np̄

32

}

≤ n exp
{

−Cnhd
}

.

3.2 Bounding the Bias

Lemma 2. Let β ∈ (0, 1], Lf > 0, and assume that
f ∈ Σ(β, Lf ). Then

b2(0) ≤ L2
fh

2β .

Proof. Since f ∈ Σ(β, Lf ) we have, on the event E ,
∣

∣

∣

∣

∑n
i=1(f(Xi)− f(0))Kh(Xi)

∑n
i=1 Kh(Xi)

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

∑n
i=1 Lf ‖Xi‖β Kh(Xi)
∑n

i=1 Kh(Xi)

∣

∣

∣

∣

∣

≤ Lfh
β .

The last step holds because the kernel Kh is zero out-
side of the Euclidean ball of radius h.

Lemma 2 can be extended to smoothness β ∈ (1, 2]
under an additional assumption on the marginal den-
sity.

Lemma 3. Let β ∈ (1, 2], Lf > 0, and f ∈ Σ(β, Lf ).
Assume that the density p of the marginal distribution
of X satisfies p ∈ Σ(β − 1, Lp), and p(x) ≥ pmin > 0
for all x in the support of p. Then

b2(0) ≤ (Lf + ‖∇f(0)‖Lpp
−1
min)h

2β + σ2
X .

Proof. We write (9) as b2(0) = E

[

∑n
i,j=1 GiGj I{E}

]

where

Gi =
(f(Xi)− f(0))Kh(Xi)

∑n
i=1 Kh(Xi)

.

For i 6= j we can write

E[GiGj I{E}]
= E [(f(Xi)− f(0))(f(Xj)− f(0))A(Xi, Xj)]

where

A(Xi, Xj) =
Kh(Xi)Kh(Xj)

(
∑n

i=1 Kh(Xi))
2 I{E} ≥ 0.

We omit for brevity the dependence of A(Xi, Xj) on
(Xk, k 6= i, k 6= j). Thus,

E
′[GiGj I{E}]

=

∫

Rd

∫

Rd

(f(xi)− f(0))(f(xj)− f(0))

×A(xi, xj)p(xi)p(xj)dxidxj

where E
′ denotes the conditional expectation over

(Xi, Xj) for fixed (Xk, k 6= i, k 6= j). Let us define

R(xi) = f(xi)− f(0)− 〈∇f(0), xi〉
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and R(xj) = f(xj)− f(0)− 〈∇f(0), xj〉 .
Then

E
′[GiGj I{E}]

=

∫

Rd

∫

Rd

〈∇f(0), xi〉 〈∇f(0), xj〉

×A(xi, xj)p(xi)p(xj)dxidxj

+ 2

∫

Rd

∫

Rd

〈∇f(0), xi〉R(xj)

×A(xi, xj)p(xi)p(xj)dxidxj

+

∫

Rd

∫

Rd

R(xi)R(xj)A(xi, xj)p(xi)p(xj)dxidxj

where the factor 2 arises from symmetry considera-
tions. Now observe that

∫

Rd

〈∇f(0), xi〉A(xi, xj)p(0)dxi = 0

for any xj since the function under the integral is odd
for any fixed (Xk, k 6= i, k 6= j). Applying this ob-
servation for both xi and xj in the first term of the
above decomposition, as well as for the second term,
we obtain

E
′[GiGj I{E}]

=

∫

Rd

∫

Rd

〈∇f(0), xi〉 〈∇f(0), xj〉

×A(xi, xj)(p(xi)− p(0))(p(xj)− p(0))dxidxj

+ 2

∫

Rd

∫

Rd

〈∇f(0), xi〉R(xj)

×A(xi, xj)(p(xi)− p(0))p(xj)dxidxj

+

∫

Rd

∫

Rd

R(xi)R(xj)A(xi, xj)p(xi)p(xj)dxidxj .

Condition (6) implies that |R(xi)| ≤ Lf ‖xi‖β . Next,
recall that A is zero whenever either ‖xi‖ > h or
‖xj‖ > h. Using Cauchy-Schwarz inequality for the
inner products and the Hölder assumption on p, we
conclude that

E
′[GiGj I{E}]

≤ B2L2
ph

2β

∫

Rd

∫

Rd

A(xi, xj)dxidxj

+ 2BLfLph
2β

∫

Rd

∫

Rd

A(xi, xj)p(xj)dxidxj

+ L2
fh

2β

∫

Rd

∫

Rd

A(xi, xj)p(xi)p(xj)dxidxj

where B = ‖∇f(0)‖2. Using the lower bound pmin

on the density, completing the square and taking the
expectation with respect to (Xk, k 6= i, k 6= j), we
establish that E[GiGj I{E}] is bounded above by

h2β(BLpp
−1
min + Lf )

2
E

[

Kh(Xi)Kh(Xj)

(
∑n

i=1 Kh(Xi))
2 I{E}

]

.

On the other hand, the sum of diagonal elements is

n
∑

i=1

E[G2
i I{E}] = nE

[

K2(X1)

(
∑n

i=1 Kh(Xi))
2 I{E}

]

,

which is precisely the variance term σ2
X . Finally,

∑

i 6=j

E[GiGj I{E}]

= h2β(BLpp
−1
min + Lf )

2
E

[

∑

i 6=j Kh(Xi)Kh(Xj)

(
∑n

i=1 Kh(Xi))
2 I{E}

]

≤ h2β(BLpp
−1
min + Lf )

2
E

[

∑n
i,j=1 Kh(Xi)Kh(Xj)

(
∑n

i=1 Kh(Xi))
2 I{E}

]

≤ h2β(BLpp
−1
min + Lf )

2.

3.3 Proofs of Theorem 1 and 2

The two theorems follow immediately from Lemmas 1,
2, and 3 by balancing n exp

{

−Cnhd
}

+ C
nhd + Ch2β

with h = n− 1
2β+d .

4 Discussion

We presented a proof of concept: an interpolating rule
can achieve optimal rates for the problems of nonpara-
metric estimation and prediction with square loss. Our
proof technique extends to other kernels where the in-
dicator over the unit Euclidean ball in (2) is replaced
with a function that dominates an appropriately scaled
indicator. The analysis also works for non-singular
kernels under the assumption of square integrability
(required only in Eq. (12)).

We observe that by thresholding the singular kernel at
a value κ, one can control the degree of fitting the data
in a manner that is decoupled from the bias-variance
trade-off achieved through h.

We also remark that local polymnomial estimators [12]
with an interpolating kernel as in (2) can be shown to
achieve optimal rate n−2β/(2β+1) for all β > 0 and
d = 1. The proof will be included in a full version of
this paper.

While each pair (Xi, Yi) is fit exactly by the proposed
estimator, the influence of the datapoint is local. In
aggregate, however, the function fn is being “pulled”
towards the true regression function f . Whether a sim-
ilar phenomenon occurs in other interpolating rules—
such as overparametrized neural networks—requires
further investigation.
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5 Visualization

The figures below show interpolations with kernels (2) and (3). While both achieve optimal rates of convergence
in this simple one-dimensional problem, the latter kernel appears to be less irregular. Indeed, unlike (2), kernels
(3) and (4) produce continuous functions.

Figure 1: Interpolation with K (u) = ‖u‖−a
I{‖u‖ ≤ 1}, a = 0.49, and various values of h.

Figure 2: Interpolation with K (u) = ‖u‖−a
[1− ‖u‖]2+, a = 0.49, and various values of h.
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We now compare Figures 1 and 2 to those with a non-singular kernel. We remark that choices of bandwidth h
differ depending on the kernel, and direct comparisons for the same value across kernels might not be meaningful.

Figure 3: Comparison: non-singular Epanechnikov kernel K (u) = (3/4)(1− ‖u‖2)I{‖u‖ ≤ 1}.

Figure 4: Comparison: non-singular Gaussian kernel K (u) = (1/
√
2π) exp

{

−‖u‖2
}

. Note the altered choices

of h.

Figure 5 below shows a comparison between the interpolating kernel 3 and the Gaussian kernel for binary-valued
data. We observe the more global effect that each point has on the behavior of the solution with the Gaussian
kernel, in comparison to the singular kernel. Understanding properties of the plug-in classifier sign(fn) under
various margin conditions appears to be an interesting direction of further research.
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Figure 5: Interpolation with K (u) = ‖u‖−a
[1− ‖u‖]2+, a = 0.49, for binary-valued Y .

Figure 6: Comparison: non-singular Gaussian kernel K (u) = (1/
√
2π) exp

{

−‖u‖2
}

for binary-valued Y . Note

the altered choices of h.
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gosi. A probabilistic theory of pattern recognition.
Springer, 1996. 2

[5] Luc Devroye, Laszlo Györfi, and Adam Krzyżak.
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