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A long-standing question in biology and economics is whether individual organisms evolve to behave as if they were striving

to maximize some goal function. We here formalize this “as if” question in a patch-structured population in which individuals

obtain material payoffs from (perhaps very complex multimove) social interactions. These material payoffs determine personal

fitness and, ultimately, invasion fitness. We ask whether individuals in uninvadable population states will appear to be maxi-

mizing conventional goal functions (with population-structure coefficients exogenous to the individual’s behavior), when what

is really being maximized is invasion fitness at the genetic level. We reach two broad conclusions. First, no simple and general

individual-centered goal function emerges from the analysis. This stems from the fact that invasion fitness is a gene-centered

multigenerational measure of evolutionary success. Second, when selection is weak, all multigenerational effects of selection can

be summarized in a neutral type-distribution quantifying identity-by-descent between individuals within patches. Individuals then

behave as if they were striving to maximize a weighted sum of material payoffs (own and others). At an uninvadable state it

is as if individuals would freely choose their actions and play a Nash equilibrium of a game with a goal function that combines

self-interest (own material payoff), group interest (group material payoff if everyone does the same), and local rivalry (material

payoff differences).

KEY WORDS: inclusive fitness, uninvadable, game theory, maximizing behavior, Nash equilibrium.

Individuals do not consciously strive to maximize anything;

they behave as if maximizing something. It is exactly the same

“as if” logic that we apply to “intelligent genes.” Genes manip-

ulate the world as if striving to maximize their own survival.

They do not really “strive,” but in this respect they do not differ

from individuals. Dawkins (1982, p. 189)

The fundamental unit of behavior in the life and social sci-

ences is the action. In decision theory (e.g., Kreps 1988; Binmore

2011), an individual’s behavior is modeled as a choice of action

or sequence of conditional actions from a set of feasible actions.

This choice is guided by a striving to maximize some goal func-

tion, such as, for instance, one’s own material well-being, or some

altruistic or spiteful goal. The outcome of an individual’s choice

in general also depends on (perhaps random) events in the in-

dividual’s environment, in which case the individual is assumed

to strive to maximize the expected value of its goal function. In

many, if not most cases, the environment partly consists of other

decision makers, equipped with their feasible action sets and goal

functions. Then, the expectation is also taken with respect to oth-

ers’ choice of action, which in turn may depend on those other

individuals’ expectations about “our” decision-maker’s choice.

Such interdependent decision problems are called games, and an

individual’s plan for what action to take under each and every cir-

cumstance that can arise in the interaction is then called a strategy

for that player. A collection or profile of strategies, one for each

individual, is a (Nash) equilibrium if no individual can increase

its goal function value by a unilateral change of its strategy.

A long-standing question in evolutionary biology is whether

natural selection leads individual organisms to behave as if they

were maximizing some goal function. Because resources are
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limited, the material consequences for, and hence fitness of,

one individual usually depends not only on the individual’s own

actions, but also on the actions of others. It is thus as if the or-

ganisms were caught in a game. If the resulting behaviors can

be interpreted as if each individual was choosing a strategy to

maximize a goal function, this will be of importance for the un-

derstanding and prediction of behavior. This is not only of interest

to biology, but also to the social sciences, and in particular to eco-

nomics, which is largely built on the supposition that individual

behavior can be explained as the outcome from maximization of

the expected value of some goal function.

In early evolutionary biology, the question of maximizing

behavior was addressed by way of investigating optimality prop-

erties of mean fitness (defined as mean fertility or survival) under

allele frequency change (Fisher 1930; Wright 1942; Kingman

1961). The underlying scheme was that natural selection invari-

ably increases mean fitness and thus evolves individuals to express

optimal actions given current environmental conditions. This has

typically been investigated in settings with no social interactions

(Wright 1942; Kingman 1961), that is, where the fitness of an in-

dividual does not depend on others’ actions. Although in this case

natural selection leads to an increase in mean fitness in the one

locus case, it does often not do so in the multilocus case (Moran

1964; Ewens 2004, 2011). This suggests a priori that individuals

are unlikely to behave as if they maximized their fitness.

For social interactions, Hamilton (1964) proved that mean

inclusive fitness increases under additive gene action in a pop-

ulation under allele frequency change. Organisms should thus

evolve to behave in such a way that their inclusive fitness is max-

imized. Hamilton’s (1964) concept of inclusive fitness is based

on a measure of fitness that is ascribed to a genotype or an al-

lele (Hamilton 1964, p. 6). The inclusive fitness of an allele at

a particular gene locus is the heritable part of the fitness of an

average carrier of that allele, but where the source of variation of

that fitness is decomposed into the effect of the allele in the carrier

and that in other individuals from the population, hence the term

“inclusive.” Inclusive fitness is frequency independent under ad-

ditive gene action and weak selection (although Hamilton’s 1964

model allows to capture strategic interactions arising from inter-

dependency in actions, see Rousset 2004). But this will generally

be obtain as selection can be frequency-dependent at the genetic

level at a given locus. Hence, even in the one-locus case it is not

generally true that natural selection results in individuals behav-

ing as if they strived to maximize their inclusive fitness (sensu

Hamilton 1964).

One fundamental message of the population-genetic assess-

ment of optimization under allele frequency change (Moran 1964;

Ewens 2004, 2011) is that fitness maximization does not in general

lead to individual-centered maximizing behavior under short-term

evolution. However, concepts of fitness maximization can never-

theless be illuminating under long-term evolution because they

then allow characterization of evolutionarily stable states (Eshel

1991, 1996; Eshel et al. 1998). It is indeed well-established that

the maximization of the growth rate of a nonrecombining herita-

ble trait (here taken to be a gene) when rare—invasion fitness—

provides a condition of uninvadability of a mutant allele in a

resident population, and this is a defining property of an evolu-

tionarily stable state (Eshel 1983; Ferrière and Gatto 1995; Eshel

et al. 1998; Rousset 2004; Metz 2011).

Because different alleles have different phenotypic effects

(e.g., result in different streams of actions), the range of such

effects can be conceived as the effective strategy space of the

“strategic gene” (Haig 1997, 2012). From a gene’s perspective

(Dawkins 1978), invasion fitness can be regarded as the goal

function a gene is striving to maximize. This is quite distinct from

the goal function (if any such exists) that is to explain an individ-

ual’s behavior, who can potentially interact with all others in the

population. In order to answer the question as to whether at an

evolutionary uninvadable state each individual appears to behave

as if it were striving to maximize some individual-centered goal

function, it is necessary to establish a link between invasion fitness

(gene-centered perspective) and individual maximizing behavior

(individual-centered perspective).

We are certainly not the first to explore these links. How-

ever, we feel that no previous study in this area has attempted

to integrate evolutionary population dynamics, game theory, and

behavioral ecology in such an exploration. In particular, dynamic

conditions under which strategically interacting individual or-

ganisms behave as if they were maximizing some goal function

in spatially structured populations appear to be lacking in three

respects.

First, research in theoretical biology on the link between in-

vasion fitness and maximizing behavior usually restricts attention

to situations where the effect of an individual’s action on the re-

production or survival of others does not depend on the actions

of any other individual (Grafen 2006), or else it does not make

this restriction, but assumes that an individual’s goal is not af-

fected by others’ actions (Gardner and Welch 2011; Lehmann and

Rousset 2014). Noninterdependence of effects of actions on sur-

vival and reproduction holds in interactions in which the effects

of actions on the fitness of others are additively separable, or more

generally, in what we here call strategically neutral games (Alger

and Weibull 2012). This is, arguably, a rare case in practice. Al-

though work on the relation between evolution and maximizing

behavior in economics emphasizes the strategic interdependency

of actions (e.g., Bergstrom 1995; Dekel et al. 2007; Heifetz et al.

2007; Alger and Weibull 2013), it is generally based on panmic-

tic population assumptions, although natural populations tend to

exhibit limited dispersal (Clobert et al. 2001), and this critically

affects invasion fitness (e.g., Nagylaki 1992; Rousset 2004).
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Second, even though spatial population structure is usually

taken into account in evolutionary biology, previous work on

maximizing behavior often endorsed a concept of uninvadability

derived from natural selection over only a single demographic (or

reproductive) time period, the initial period in which the mutant

arises (e.g., Grafen 2006, p. 553). By considering only one single

demographic time period, in isolation from all others, however,

one is likely to miss out fluctuations of mutant frequency whose

average over multiple periods leads to the build-up of genetic as-

sociations that determine invasion fitness. For instance, genetic

relatedness between interacting individuals is generally a multi-

generational measure of statistical association, which captures

the average effects of (random) genetic drift and natural selection

on mutant frequency change (Rousset 2004; Roze and Rousset

2008).

Finally, if organisms behave as if they maximized some goal

function, does their “free choice” occur at the level of individual

actions, sequence of (conditional) actions, or at the level of whole

decision systems for taking actions? Although behavioral ecology

tends to emphasize that natural selection leads organisms to have

phenotypes that maximize fitness (Alcock 2005), it usually also

emphasizes the constraints that endogenously link actions from

one moment to the next (McNamara and Houston 1999; Fawcett

et al. 2012), which precludes (the appearance of) free choice. It

thus remains unclear in evolutionary biology at which phenotypic

level maximizing behavior is generally conceived (if at all).

The aim of this article is to fill these gaps and to provide

connections between (1) explicit population-dynamic evolution-

ary uninvadability, (2) game-theoretic equilibrium in strategic in-

teractions between individuals, and (3) behavioral ecology for-

mulations of behavior under different constraints. To that aim, we

develop a mathematical model of multimove strategic interactions

and evolution in a spatially structured population, within which

we formalize notions of personal fitness and invasion fitness, and

derive from them goal functions that individual organisms will,

through their behavior, appear to be maximizing, while what is in

fact being maximized is invasion fitness.

The rest of the article is organized as follows. First, we present

a multimove model of behavior under social interactions based on

the state-space approach of behavioral ecology (McFarland and

Houston 1981; Enquist and Ghirlanda 2005), and define uninvad-

ability of mutant behavior by building on established results for

the invasion of single mutant types in spatially structured popula-

tion (in particular the branching-process approach of Wild 2011,

which subsumes invasion fitness as given by the expected number

of successful emigrants produced by a single immigrant; Metz

and Gyllenberg 2001; Ajar 2003). Second, we connect behavioral

ecology formulations of behavior to the standard game-theoretic

concept of behavior (Fudenberg and Tirole 1991; Osborne and

Rubinstein 1994), and postulate two goal functions for social

interactions that are well anchored in the social evolution and in-

clusive fitness literature. This allows us to state the “as if” question

in terms of well-established game theoretic concepts. We show

that neither of the two goal functions leads to general equivalence

between uninvadability and maximizing behavior.

Then, we turn to the analytically less forbidding case of weak

selection and suggest a third goal function, which has not been

studied before. Here, we establish a positive result and show that

maximizing behavior under this goal function is indeed equiva-

lent with uninvadability under essentially all conditions on be-

havior in social interactions. Finally, we discuss our results and

interpretation in terms of maximizing behavior under behavioral

constraints.

Model
BIOLOGICAL ASSUMPTIONS

Life cycle

We consider a population of haploid individuals structured into

an infinite number of patches (or islands), each subject to exactly

the same environmental conditions and consisting of exactly N

adult individuals (i.e., Wright’s 1931, infinite island model of

dispersal). The life cycle of individuals in this population con-

sists of the following events that occur over one demographic

time period. (1) As an outcome of social interactions with oth-

ers, each adult individual produces asexually a large number of

offspring and then either survives into the next demographic time

period or dies with a probability independent of age. (2) Each off-

spring either disperses or remains in its natal patch, and each mi-

grant disperses to a uniformly randomly chosen non-natal patch.

(3) In each patch the random number of aspiring offspring, some

native and some immigrant from other patches, compete for the

breeding spots vacated by the death of adults. In each patch exactly

N individuals survive this density-dependent competition.

We assume that the probability for an offspring to migrate is

always positive. No other assumption about fecundity, survival,

migration, or competition is made at this stage of the analysis.

In particular, the demography allows for exactly one, several,

or all adults to die per demographic time unit (overlapping and

nonoverlapping generation models).

Behavior in social interactions

We envision social interactions as being extended over social time

periods although they take place within one single demographic

time period (stage [1] in the life cycle until [2] starts). We thus

deal with two time scales, one (slow) for the demographic events,

and one fast for social interactions taking place over possibly

several social time periods. The model thus covers both one-shot

and repeated interactions.

1 8 6 0 EVOLUTION JULY 2015
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Table 1. Formal definition of the main functions and notation for vectors.

Function Definition

di : Si → !(Ai ) Decision rule, where Si is the set of internal states and !(Ai ) the set of probability

measures on the set Ai

gi : Si × Ei → !(Si ) Transition rule, where Ei is the set of information i can receive

xi : Hi → !(Ai ) Behavior strategy, where Hi is the set of all possible histories of information. That is,

Hi = ∪t∈THi (t), where Hi (t) = (Ei )
t and Hi (1) = ∅, where T is the set of social

time periods

h : " → B Developmental function, where B is the set of behavior rules

z : "
N × !("N ) → R+ Generic notation for the expected value of quantitative phenotype outcomes. This can be

fitness w, fecundity f (or survival), material payoff π, or utility u

θ−i = (θ1, .., θi−1, θi+1, .., θN ) Vector of dimension N − 1 of patch neighbor type- profiles; θ−i ∈ "
N−1

x−i = (x1, .., xi−1, xi+1, .., xN ) Vector of dimension N − 1 of patch neighbor strategy- profiles; x−i ∈ X N−1

xx = (x, ...., x) Vector of dimension N − 1 of patch neighbor strategy- profiles when all neighbors carry

resident strategy x

x̃−i Vector of dimension N − 1 of (hypothetical) patch neighbor strategy profiles, such that,

for a given true patch neighbor strategy-profile x−i and strategy xi of individual i ,

either x̃ j = x j or x̃ j = xi for each j '= i

Pk(x−i ) Set of (hypothetical) patch neighbor strategy-profiles; x̃−i such that x̃ j = xi for k − 1

components and x̃ j = x j for all other components

φ Population-wide distribution of patch type-profiles; φ ∈ !("N )

1θ Degenerate population-wide patch type-profile distribution that places unit probability

on the homogeneous θ patch type-profile.

Following established lines in behavioral ecology (e.g.,

McFarland and Houston 1981; Leimar 1997; Enquist and

Ghirlanda 2005), we take the action (e.g., a motor pattern, a

signal, or a transfer of resources to a neighbor) as the fundamen-

tal behavioral unit by which an individual interacts with others in

each social period. The set of feasible actions available to indi-

vidual i (where i ∈ {1, 2, ..., N }) in a given patch is denoted Ai ,

and the action taken by that individual at social time t ,

ai (t) = di (si (t)), (1)

is assumed to be determined by the individual’s internal state si (t),

which belongs to the set Si of internal states that an individual

can be in, and di is its decision rule (see Table 1 for a formal

definition of functions and notations).

An individual’s (internal) state changes (possibly stochas-

tically) over time, and the state of individual i at any

time t > 1,

si (t) = gi (si (t − 1), ei (t − 1)), (2)

is assumed to be determined by the individual’s state si (t − 1)

in the previous social time period and the information ei (t − 1)

obtained during that time period, where Ei is the set of information

it can receive. This information could consist of any more or less

noisy private or public signals about the individual’s own action

and/or that of others. A simple example is the (public) profile of

actions ei (t) = (a1(t − 1), .., aN (t − 1)) taken by all individuals

in individual i’s patch, but the information could also consist of

the actions taken by individuals on other patches.

We call the tuple bi = (di , gi , si (1),Ai ,Si , Ei ) the behavior

rule of individual i . This rule defines how the individual acts

and reacts to others in the sequence of social interactions within

one demographic time period. When the set of internal states is

finite (infinite), a behavior rule is a finite (infinite) state machine

(Minsky 1967), and as such neural networks or universal Turing

machines can be implemented by a behavior rule (Haykin 1999).

Individual types and personal fitness

We assume that the behavior rule of an individual is fixed at birth

and determined by its type, which is inherited faithfully from its

parent. The set of admissible types is denoted " and θi denotes the

type of individual i , which determines its behavior rule by way of

the developmental function h: bi = h(θi ) (Table 1). Because inter-

actions, in general, may occur between individuals from the same

or different patches, any phenotype of an individual may depend

not only on its own type, but also on the types of its patch neighbors

and the types of individuals taken at large from the population. For

instance, the survival or the actions expressed by individual i in

the social interactions may depend on the types of others because

these actions depend on the state the individual is in, which itself

is a function of environmental information (eqs. 1 and 2).

A fundamental feature of the infinite island model is that the

phenotypic effects of individuals in other patches on a given in-

dividual is, by the law of large numbers, nonstochastic, however,

and depends only on averages (Chesson 1981). This implies that

a given phenotype of an individual can be expressed as a function

EVOLUTION JULY 2015 1 8 6 1
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of the individual’s own type, the type profile of its patch neigh-

bors, and the distribution of type profiles across all patches in the

population at large. One such phenotype that will play a funda-

mental role in our analysis is the personal fitness of an individual,

which we define as an individual’s expected number of surviving

descendants (possibly including the individual itself, for demo-

graphics where adults may survive) after one demographic time

period. In the island model, this can then be written for individual

i as w(θi , θ−i ,φ), where θi is the individual’s type, θ−i is the

patch neighbor type profile (thus excluding i’s type, see Table 1),

and φ is the population-wide distribution of patch type-profiles.

Due to migration and competition for breeding spots, an

individual’s personal fitness will in general depend on the vital

rates (fecundity and survival) and migration rates among its patch

neighbors and in the population at large (e.g., Frank 1998; Rousset

2004). Fitness then depends on vital rates (see Box 1 for an

example), and these in turn depend on the behaviors during the

social interactions, which in turn depend on the behavior rules of

population members, so that, ultimately, fitness depends on the

distribution of (mutable) types in the population (see Fig. 1).

Box 1. Individual fitness under a Moran process. An

example of a fitness function for the island model can be ob-

tained by assuming a Moran process (Ewens 2004), where

exactly one randomly sampled adult on each patch dies per

demographic time period (Mullon and Lehmann 2014). As-

suming that all offspring have the same migration probability

m, the fitness of a focal individual i is given by:

w(θi , θ−i ,φ) = 1 −
µ(θi , θ−i ,φ)

∑N
j=1 µ(θ j , θ− j ,φ)

+
1

N

[

(1 − m) f (θi , θ−i , φ)

(1 − m) 1
N

∑N
j=1 f (θ j , θ− j ,φ) + m f̄ (φ)

+ mf (θi , θ−i ,φ) (B-a)

×

∫

"N

1

(1 − m) 1
N

∑N
h=1 f (θh , θ−h ,φ) + m f̄ (φ)

φ(dθ)

]

.

The first two terms constitute the part of fitness stem-

ming from own survival; that is, it represents the probabil-

ity of survival, where the death probability is of the form

µ(θi , θ−i ,φ)/[
∑N

j=1 µ(θ j , θ− j ,φ)], where µ(θi , θ−i ,φ) is the

death-factor for individual i . The third term, with square

brackets, is the part of fitness stemming from settlement of

offspring in vacated breeding spots. This depends on the

fecundity f (θi , θ−i ,φ) of individual i (defined as its expected

number of offspring produced in a demographic time unit)

and also on the average fecundity in the population as a

whole, f̄ (φ) =
∫

"N [ 1
N

∑N
h=1 f (θh, θ−h,φ)]φ(dθ), where, for

any patch-profile θ =(θ1, .., θN ) ∈ "
N , the integrand is the av-

erage fecundity of the N individuals in the patch. The first term

inside the square brackets in equation (B-a) is the individual’s

fitness through its philopatric offspring, each of whom com-

petes for the local vacated breeding spot with all philopatric

offspring from the same patch and with all migrating offspring

from other patches who also aspire for this breeding spot. The

second term inside the square brackets is the focal individual’s

fitness stemming from its dispersing progeny to other patches.

The fecundity f (θi , θ−i ,φ) and death factors

µ(θi , θ−i ,φ) are vital rates that depend on the material

payoff obtained in social interactions, where the material

payoff depends on the stream of actions taken over all social

time periods. These actions in turn depend on the behavior

rules of interacting individuals and ultimately on their types.

This hierarchical dependence is illustrated in Figure 1.

We will assume, for analytical tractability, that any pheno-

type of an individual is expressed unconditionally on age (neither

their own nor others’) and does thus not vary with demographic

time (above and beyond variations due to changes in the type

distribution). Recalling that all individuals are subject to the same

environmental conditions (i.e., there is no class structure, Taylor

1990), any nonmutable phenotype of a given individual i , such

as for instance fitness w(θi , θ−i ,φ), can then be considered to be

invariant under permutation of the elements of the type profile

θ−i of its patch neighbors, and this symmetry across neighbors

will be assumed throughout.

UNINVADABILITY

Suppose that initially the population is monomorphic for some

resident type θ and that a single individual mutates to some new

type τ. Will this mutant type “invade” the population? If the resi-

dent type θ is such that any mutant type τ ∈ " goes extinct with

probability one, we will say that θ is uninvadable. Uninvadability

could also informally be thought of as evolutionary stability as

it is similar to the verbal definition of the latter (Maynard Smith

and Price 1973). But this terminology will not be used here,

because it differs from the formal definition of evolutionary sta-

bility (Maynard Smith and Price 1973), which subsumes that an

evolutionarily stable state should be an attractor of the evolution-

ary dynamics.

In order to get a grip on uninvadability, consider a single

individual of type θ′ ∈ {τ, θ} in one patch, to be called the focal

patch, in a population that is otherwise monomorphic for type θ.

Through reproduction, this individual may found a lineage with

local descendants and, through migration, descendants reaching

adulthood in other patches. Owing to our life cycle assumptions,

the probability that the offspring of a migrant descendant of the

lineage-founding individual will migrate back to the focal patch

is zero. As a consequence, the lineage descending from the initial

1 8 6 2 EVOLUTION JULY 2015
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Figure 1. Illustration of the dependence of the fitness of a focal individual (here individual 1) on a focal patch on the various components

of the model in the island model of dispersal. Fitness, w, is a function of the vital rates of patch members such as fecundity, f , or death

factor µ, and on the vital rates of individuals from other patches. Vital rates in turn depend on the behaviors of all individuals, more

exactly on the action streams, a(1), a(2), a(3)..., during the social time period. The action streams are determined by the behavior rules,

b, of individuals, and the behavior rules themselves depend on evolvable (potentially multidimensional) traits, the individual’s type, θ.

founder will eventually go extinct locally and the population can

be taken to be virtually monomorphic for θ.

With this assumption, we can define the lineage fitness of a

type θ′ ∈ {τ, θ} as

W (θ′, θ) =

N
∑

k=1

∑

θ−i ∈Sk (θ′,θ)

w(θ′, θ−i , 1θ)qk(θ′, θ). (3)

This is the average personal fitness of a randomly drawn member

of the local lineage, where the average is taken over the (finite)

lifespan of this local lineage when the population is otherwise

monomorphic for type θ . Lineage fitness depends on three quan-

tities. First, w(θ′, θ−i , 1θ) is the personal fitness of a member i of

the local lineage, whose type is θ′, on a patch with neighbor type-

profile θ−i , when the population at large is monomorphic in type

θ, for which case the patch type-profile distribution is denoted 1θ.

Second, qk(θ′, θ) is the probability that the neighbor type-profile

θ−i of a given focal individual of type θ′ will consist of exactly

k − 1 other local lineage members (see Box 2 for details and on

how the associated probability distribution allows us to define

relatedness between patch members). Finally, Sk(θ
′, θ) is the set

of neighbor type-profiles θ−i such that exactly k − 1 neighbors

are also members of the local lineage.

A necessary and sufficient condition for a type θ to be unin-

vadable is that no mutant type τ has a lineage fitness above that

of the resident, in other words it should solve the maximization

problem

max
τ∈"

W (τ, θ). (4)

This shows that lineage fitness is a measure of invasion fitness,

which takes into account all consequences of the discrete and

finite nature of patches on selection (see proof in Appendix SA).

In particular, W (τ, θ) − W (θ, θ) has the same sign as the growth

rate of a mutant when rare in the population, which is the usual

and general measure of invasion fitness (Ferrière and Gatto 1995;

Caswell 2000; Metz 2011).

Now that we have a grip on how to evaluate the uninvadability

of types, and therefore also of behavior rules, we proceed to define

maximizing behavior.

Box 2. Local type-profile distribution and relatedness.

The type-profile distribution in equation (3) is given by:

qk(θ′, θ) =

(

N − 1

k − 1

)−1

pk(θ′, θ), (B-b)

where the factorial accounts for all the ways that a profile of

length N − 1 can contain k − 1 lineage members, and

pk(θ′, θ) =
ktk(θ′, θ)

∑N
h=1 hth(θ′, θ)

(B-c)

is the probability, for a randomly drawn local lineage mem-

ber, to have k − 1 other local lineage members. This de-

pends on the expected sojourn time tk(θ′, θ) (number of demo-

graphic time periods) the lineage consists of k ∈ {1, .., N }

members. This sojourn time is finite because the size of

the local lineage founded by a single founder has ex-

actly one absorbing state, namely, the extinction of the lo-

cal lineage (k = 0) when migration is positive (see Ap-

pendix SD for details). Equation (B-c) thus gives the experi-

enced lineage-size distribution; the probability distribution of
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lineage size—the number of individuals who are identical

by descent—as experienced by a randomly drawn lineage

member.

A standard statistic representing the magnitude of

identity-by-descent is the pairwise relatedness between patch

members (Wright 1931; Frank 1998; Rousset 2004). We here

use the relatedness measure defined as:

r (θ′, θ) =

N
∑

k=1

k − 1

N − 1
pk(θ′, θ), (B-d)

which is the probability that a local lineage member’s ran-

domly drawn neighbor will also be a lineage member, that is,

that they both descend from the founder of the local lineage.

For θ′ = θ, the expression on the right-hand side of (B-d) boils

down to the standard coefficient of relatedness evaluated in the

neutral process—that is, when every individual has exactly the

same fitness (e.g., Crow and Kimura 1970; Rousset 2004). For

instance, for the Moran island model one obtains

r (θ, θ) =
1 − m

1 − m + Nm
, (B-e)

which displays the canonical feature that relatedness is de-

creasing in the migration probability and in patch size (calcu-

lations for the Moran process are given in Appendix SD).

MAXIMIZING BEHAVIOR

A key step in our approach consists in noting that our defini-

tion of a behavior rule can implement that of a behavior strategy

as defined in noncooperative game theory (see Fudenberg and

Tirole 1991 or Osborne and Rubinstein 1994). To see the connec-

tion between behavior rules and behavior strategies, suppose that

gi concatenates the most recent information to all previous in-

formation (by setting si (1) = ∅ and si (t) = (si (t − 1), ei (t − 1))

for all t > 1). Then, an individual’s internal state si (t) in social

time period t > 1 depends on the whole history of information up

to time t − 1, that is, si (t) = (ei (1), ..., ei (t − 1)) for t > 1 [the

whole history of actions if ei (t) = (a1(t − 1), .., aN (t − 1))]. In

this case, the set of internal states is given by the set Hi of all pos-

sible histories of information available to individual i [all possible

histories of actions if ei (t) = (a1(t − 1), .., aN (t − 1)), see Box 2

for details on Hi ]. We denote by xi the decision rule of individual

i in this specific case where the internal state records the whole

history of information until the time point where a decision has

to be taken (see Table 1). In game-theoretic terminology xi is a

behavior strategy.

With this precise concept of a strategy (xi ) in hand, we can

formally represent interactions in the population at large as a game

with infinitely many players, where all players use strategies from

the same strategy set, denoted X . To this end, it is necessary to

define each player’s utility or goal function, that is, the function

that describes the value that the player attaches to every possible

strategy profile. Let u(xi , x−i ,φ) represent how individual i val-

ues that particular strategy constellation (xi , x−i ,φ), where xi is

its own strategy, x−i is the strategy profile for its patch neighbors,

and φ here stands (by slight abuse of notations) for the patch-

profile distribution in the population at large. Thus, u is a goal

function for individual i and we assume it to be symmetric in the

same way as the fitness and fecundity functions are.

This setup then defines a symmetric normal-form game that

we denote by G = (N, X, u), where the first item is the (infinite)

set of players, the second item is the strategy set for each player,

and the third item is each player’s goal function u. A canonical

concept for prediction of behavior in such a game is Nash equi-

librium, strategy profiles in which no individual can get a higher

utility by a unilateral deviation. We denote by XE(u) ⊆ X the set

of symmetric Nash equilibrium strategies (equilibria in which all

players use the same strategy), and we will only consider such

equilibria throughout. We then have that x ∈ XE(u) if and only if

xi = x solves the maximization problem

max
xi ∈X

u(xi , xx , 1x ) , (5)

where xx denotes the (N − 1)- dimensional vector whose com-

ponents all equal x . In other words: if all other individuals in the

population use strategy x , and individual i was free to choose its

strategy xi and its goal was to maximize the function u, then it

would do the same as the others, that is, choose xi = x . Thus, the

strategies x in the set XE(u) are precisely those that are compat-

ible with each individual maximizing its goal function when all

the others use strategy x .

THE “AS IF” QUESTION

We are now ready to make a link with the evolutionary model

presented above. To that end, suppose that there is a one-to-one

correspondence between an individual’s type and its strategy, that

is, an individual’s type directly determines its behavior strategy.

Formally, let the set of types ", on which natural selection oper-

ates, be the same as the set X of behavior strategies, from which

individuals make their choices.

Then, the personal fitness of i writes w(xi , x−i ,φ) . A strat-

egy x is then uninvadable if and only if satisfies the uninvadability

maximization problem (eq. 4 with " = X ). Let XU denote the set

of uninvadable strategies. The “as if” question can then be stated

as follows. Does there exist a goal function u for which the set

XE(u) of (symmetric) Nash equilibrium strategies is the same as

the set XU of uninvadable strategies?

At first sight, it may seem that the lineage fitness function,

W (y, x) (see eq. 3), would fit the bill. However, this is not true

because lineage fitness is a multigenerational measure of fitness

and is a function of only two strategies, y and x , whereas the “as
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if” question requires a goal function that depends on the whole

population strategy-profile in a given generation. Nevertheless,

lineage fitness W can be thought of as the goal function of a

focal “strategic gene” (Dawkins 1978; Haig 1997, 2012); that

is, a gene attempting to maximize its own transmission across

generations in a population where individuals behave according to

the strategy of another gene, the focal’s gene coplayer. According

to this interpretation, strategy x is uninvadable if and only if the

type pair (x, x) constitutes a Nash equilibrium in the symmetric

two-player game in which strategies are elements of X and the

game payoff to a strategy y, when played against a strategy x , is

lineage fitness W (y, x).

Returning to the “as if” question, we consider two individual-

centered goal functions that allow individuals to rank strategy

constellations. First, we consider the goal function defined by

uA(xi , x−i ,φ) = w(xi , x−i ,φ) + r (x̄, x̄)
∑

j '=i

w(x j , x− j ,φ), (6)

where r (x̄, x̄) is the pairwise relatedness between patch members

(see Box 2) and x̄ is the average strategy used in the population at

large. This goal function is the individual’s own personal fitness

plus the personal fitness of all other individuals in the population

weighted by their relatedness to the individual in question, and

is in line with textbook representations of inclusive fitness (e.g.,

Alcock 2005) but is at variance with the concept of inclusive

fitness described in Hamilton (1964).

The second individual-centered goal function that we con-

sider is closer to the lineage-fitness function and defined by

uB(xi , x−i ,φ) =

N
∑

k=1

∑

x̃−i ∈Pk(x−i )

w(xi , x̃−i ,φ)qk(x̄, x̄) , (7)

where the qks are as defined in the lineage fitness function (eq.

B-b in Box 2) and Pk(x−i ) is the subset of (hypothetical) patch

neighbor strategy profiles x̃−i such that exactly k − 1 components

of the (true) neighbor patch strategy profile x−i have been replaced

by i’s strategy xi , whereas the remaining N − k components of

x̃−i are identical to those in x−i (see Table 1). This goal function

is thus the average personal fitness of individual i , where the

weight attached to the event that k − 1 neighbors use the same

strategy as the individual itself is the probability that k − 1 of a

focal individual’s neighbors belong to i’s lineage, according to the

experienced type-profile distribution in the evolutionary model.

Uninvadability and Maximizing
Behavior
FIRST-ORDER CONDITIONS

We are now in a position to relate the set of Nash equilibrium

strategies, under each of the two goal functions, to the set of

strategies that are uninvadable. To that end, we will start by

considering the simple case where strategies can be represented

as real numbers in some open set X . Owing to equation (4), any

uninvadable such strategy x ∈ X must then satisfy the first-order

condition

∂W (y, x)

∂y

∣

∣

∣

∣

y=x

= w1(x, xx , 1x ) + r (x, x)(N − 1)wN (x, xx , 1x )

= 0, (8)

where w j (x, xx , 1x ) is the partial derivative of w(xi , x−i ,φ) with

respect to its j th argument (for j = 1, ..., N ), evaluated in the

monomorphic state when all individuals in the population play

strategy x (Appendix SB). The expression in equation (8) is the

usual selection gradient on a mutant strategy in the island model

(Rousset 2004, chapter 7); that is Hamilton’s (1964) inclusive

fitness effect. The first term represents the (direct) effect on a

focal individual’s personal fitness from an infinitesimal change

of its own strategy, whereas the second term represents the (in-

direct) effect on the same individual’s personal fitness from an

infinitesimal change of the strategy of all its N − 1 patch neigh-

bors, weighted by pairwise relatedness in the neutral process.

Uninvadability requires that the inclusive fitness effect be nil.

It turns out that the inclusive fitness effect must also be nil

(eq. 8 must hold, Appendix SB) for a strategy x to be a symmetric

Nash equilibrium strategy under any of the two goal functions, uA

or uB. This suggests that there may be a link between maximizing

behavior and uninvadability, but not how strong the link is. Sup-

pose we have found a unique strategy that meets this first-order

condition and that is also uninvadable. Then, we still do not know

if this strategy is a Nash equilibrium strategy in the population

game GA = (N, X, uA) or GB = (N, X, uB). Indeed, for either

game, equilibrium requires, among other things, that the second-

order condition be met, but this condition is not necessarily the

same as that for univadability. Next, we develop a numerical ex-

ample to show that these conditions may very well differ.

COUNTEREXAMPLE

To see that that there can be a mismatch between uninvadabil-

ity and maximizing behavior, let us consider a simple example

of pairwise interactions (N = 2) in which expected fecundity is

linear-quadratic in the two players’ strategies,

f (x, y) = ϕ[1 + αx − βxy − γx2], (9)

for some (large) baseline fecundity ϕ common to every individual

in the population, and where x is the strategy of the focal indi-

vidual, y that of its patch neighbor, and α, β, γ are parameters.

This fecundity function f can be thought of as special case of

the Cournot duopoly model (e.g., Fudenberg and Tirole 1991).

Assuming a Moran reproductive process with fecundity effects
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Figure 2. Graphs of the second-order derivatives given by equations (D-9) and (D-10) in Appendix SD as functions of migration m

evaluated at x∗ (eq. 10) for the Cournot game (eq. 9) under a Moran process when N = 2. The first row of panels is for α = β = 1, and

γ = 1 (γ = 0.5) for the plain (dashed) line. The second row of panels if for α = 1, β = 2, and γ = 0.01 (γ = 0.005) for the plain (dashed)

line. The third row of panels if for α = 1, β = −1, and γ = 0.5 (γ = 0.1) for the plain (dashed) line.

and without survival effects (Box 1, eq. B-a) and substituting fe-

cundity (eq. 9) into personal fitness (eq. B-a) and then into the

inclusive fitness effect (eq. 8) along with the relatedness for the

Moran process (eq. B-e) shows that there is a unique element

satisfying the first-order condition

x∗ =
α(3 − m)

2γ(3 − m) + 2β(2 − m)
. (10)

For α = β = γ = 1, this strategy x∗ is uninvadable, x∗ ∈

XU, and is also a Nash equilibrium strategy with respect to goal

function uA, x∗ ∈ XE(uA), whereby XE(uA) = XU (see Fig. 2).

In other words, maximizing behavior under uA is equivalent with

uninvadability for these parameter values. Suppose now that α =

1, β = 2, and γ = 0.01. Then it is still true that x∗ is uninvadable,

x∗ ∈ XU. However, for low values of m > 0 , x∗ is no longer a

Nash equilibrium strategy (Fig. 2). One can then find a threshold

value for m ∈ (0, 1), above which XE(uA) = XU and below which

x∗ /∈ XE(uA) (in which case XE(uA) = ∅). Thus, maximizing

behavior with respect to the uA goal function is not equivalent to

behavior that is uninvadable when m is small.

Conversely, a strategy may be a Nash equilibrium strategy

without being uninvadable. To see this, consider the case α = 1,

β = −1, and γ = 0.5. Then x∗ is a Nash equilibrium strategy, but

for low values of m (low migration rates) it is not uninvadable

(Fig. 2). One can then find a threshold value (Appendix SB) for

m ∈ (0, 1), above which XE(uA) = XU and below which x∗ /∈ XU

(in which case XU = ∅ ). Thus, again, maximizing behavior with

respect to the goal function uA is not equivalent to behavior that

is uninvadable when m is small, that is, when dispersal is limited,

which entails that identity-by-descent among group members is
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strong and kin selection is important (qk + 0, r + 0). Then, if

fitness depends nonlinearly on the strategies, relatedness alone

cannot describe the exact pattern of genealogical relationship be-

tween carriers of the strategies within patches (as it is only a

summary statistic), and a comparison of the uA goal function to

lineage fitness (compare eqs. 3 and 6) reveals that we should ex-

pect a mismatch between the outcome of maximization of these

two functions. Moreover, this mismatch is likely to be less serious

for the uB goal function as it will occur only if selection affects

the genealogical relationship between individuals (compare eqs. 3

and 7). This intuition is confirmed by the results that we present

next.

TWO POSITIVE RESULTS

We now characterize the conditions for the mismatch between

maximizing behavior and uninvadability for the uA and uB goal

function, respectively, in the case when the first-order condition

has a unique solution. To that aim, it will be useful to introduce

the following definitions. The strategies are (local) strategic com-

plements, strategically neutral, or strategic substitutes in terms of

personal fitness at x if, respectively, they mutually reinforce each

other’s fitness effects, they have no impact on each other’s fitness

effects, or they weaken each other’s fitness effects (formally, if

wi j(x, xx , 1x ) is positive, zero, or negative for all i, j ∈ {1, .., N }

with i '= j , where wi j is the second-order partial derivative of

w(xi , x−i ,φ) with respect to its i th and j th arguments, evaluated

at a monomorphic resident x). Finally, we say that a strategy is

(locally) relatedness increasing, relatedness neutral, or related-

ness decreasing if it has a positive, zero, or negative effect on

relatedness (formally if the derivative r1(x, x) = ∂r (y, x)/∂y|y=x

of relatedness with respect to its first argument is positive, zero,

or negative).

With these definitions we can then establish sufficient con-

ditions, in terms of the strategic character of the interaction

and the relatedness effect of strategies for the following rela-

tions between uninvadability and maximizing behavior to obtain:

(1) XU ⊆ XE(uA), (2) XE(uA) ⊆ XU, and (3) XE(uA) = XU (see

Box 3 and proof Appendix SB). Let us consider the case when

x is uninvadable. In case (1), x is also an equilibrium strategy in

the game GA. In other words, an outside observer may interpret

the behavior of the individuals in the population as maximizing

with respect to the goal function uA. In case (2), either x is an

equilibrium strategy in GA or else this game has no equilibrium

strategy. In other words, an outsider who knows that GA has at

least one Nash equilibrium may again interpret the evolutionarily

selected behavior of the individuals in the population as maxi-

mizing behavior with respect to the goal function uA. By contrast,

if GA has no equilibrium, then the outsider observing a strategy

that is uninvadable cannot interpret it as being the outcome of

maximizing uA. Finally, case (3) obtains when the strategies are

relatedness neutral and strategically neutral. In particular, unin-

vadability is the same thing as maximizing behavior under the

goal function uA in pure decision problems, interactions in which

personal fitness depends only on the individual’s own action (then

strategies are strategically neutral).

Box 3. Relation between maximizing behavior and un-

vadability. The forthcoming conditions apply when there is

only a single strategy x that satisfies the joint first-order con-

dition of maximizing behavior and unvadability (eq. 8).

Goal function uA:

(1) If r1(x, x)wN (x, xx , 1x )0 and the strategies are strategic

complements at x in terms of fitness, then XU ⊆ XE(uA).

(2) If r1(x, x)wN (x, xx , 1x ) ≤ 0 and the strategies are strate-

gic substitutes at x in terms of fitness, or r1(x, x)

wN (x, xx , 1x ) ≥ 0 and the strategies are strategically neu-

tral at x in terms of fitness, then XE(uA) ⊆ XU.

(3) If r1(x, x)wN (x, xx , 1x ) = 0 and the strategies are strate-

gically neutral at x in terms of fitness, then XE(uA) = XU.

Goal function uB:

(1) If r1(x, x)wN (x, xx , 1x ) > 0, then XU ⊆ XE(uB).

(2) If r1(x, x)wN (x, xx , 1x ) < 0, then XE(uB) ⊆ XU.

(3) If r1(x, x)wN (x, xx , 1x ) = 0, then XE(uB) = XU.

By contrast, the goal function uB has a closer tie than uA

to uninvadability as the sufficient conditions for the relations be-

tween uninvadability and maximizing behavior to hold can be

expressed solely in terms of the relatedness effect of strategies,

and are thus less demanding (see Box 3). Comparing the con-

ditions for uA and uB in Box 3, one sees that an uninvadable

strategy can be an equilibrium strategy in game GB without being

an equilibrium strategy in game GA. By contrast, an uninvadable

strategy cannot be an equilibrium strategy in GA without also be-

ing an equilibrium strategy in GB. Similarly, there are situations

in which an equilibrium strategy in game GB is also uninvadable

without being an equilibrium strategy in the game GA, whereas

the reverse case cannot arise.

The link between natural selection, as expressed by unin-

vadability, and “as if” maximizing behavior is hence in general

stronger for the goal function uB than for the goal function uA.

Moreover, it is sufficient that strategies are relatedness neutral

for evolution to result in the same behaviors “as if” maximiza-

tion under goal function uB. Fo instance, in the above example

(eq. 9) under a Moran process, maximizing behavior with respect

to the uB goal function is equivalent to uninvadability because x∗

(eq. 10) is relatedness neutral.
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Finally, note that if m = 1 (the population is panmictic),

then qk(θ′, θ) = 1 for k = 1 (hence zero for all other k), and

r (x, x) = 0, in which case uA and uB both reduce to w(xi , x−i ,φ).

Maximizing personal fitness is then equivalent to maximizing lin-

eage fitness (eq. 3). We conclude that in a panmictic population the

correspondence between maximizing behavior and uninvadabil-

ity obtains (XE(uB) = XE(uA) = XU), and this holds for general

strategy spaces.

Weak Selection
UNINVADABILITY

We now turn to the study of uninvadability under weak selection

and assume that types can only affect fecundity or survival, but not

both simultaneously and also do not affect individuals’ migration

rate, which henceforth is constant. Suppose that types affect only

fecundity and assume that the expected fecundity of any individual

i can be written under the form

f (θi , θ−i ,φ) = ϕ [1 + δπ(θi , θ−i ,φ)] , (11)

where π can be thought of as the expected material payoff ob-

tained during the stage of social interactions (stage (1) of the

life cycle). The parameter δ ≥ 0 represents the intensity of se-

lection. If δ = 0, then every individual has exactly the same

fecundity and hence same fitness, which entails that the evolu-

tionary process is neutral. The assumption behind equation (11)

is that fecundity can be expressed in terms of material payoff

such that the outcome of the interaction affects reproduction only

weakly, which can be justified by noting that fitness can depend

on many other phenotypes, such as morphology and physiology

(which under the time span considered are taken to be fixed in the

population).

If the type θi affects the survival of an adult individual i (e.g.,

eq. B-b), then a positive relationship between material payoff

and individual survival, in the same vein as in equation (11),

can be postulated. Irrespective of specification, most standard

models of evolutionary population dynamics (e.g., Frank 1998;

Ewens 2004; Rousset 2004 and eq. B-b) exhibit the following

three canonical properties: (1) personal fitness is increasing in the

fecundity (or survival) of the individual, and therefore also in the

individual’s material payoff π(θi , θ−i ,φ); (2) personal fitness is

decreasing in the fecundity (or survival) of the individual’s patch

neighbors, and therefore the fitness of an individual i is decreasing

in the material payoff π(θ j , θ− j ,φ) to a patch neighbor j '= i ;

(3) an individual’s personal fitness is more sensitive to changes in

its own fecundity (or survival) than to changes in any (individual)

neighbor’s fecundity (or survival). In the subsequent analysis, we

will focus on the class of evolutionary dynamics under which

fitness functions exhibit these qualitative properties.

We show in Appendix SC that under these assumptions, and

for δ close to zero, the lineage fitness to type θ′ ∈ {θ, τ} can be

expressed in terms of the lineage payoff to type θ′ in a resident θ

population,

$(θ′, θ) =

N
∑

k=1

∑

θ−i ∈Sk (θ′,θ)

πR

(

θ′, θ−i , 1θ

)

q◦
k . (12)

Here, q◦
k is the profile distribution evaluated at δ = 0, which entails

that the evolutionary process is neutral and independent of types,

and

πR(θi , θ−i , 1θ) = π(θi , θ−i , 1θ) −
λ

N − 1

∑

j '=i

π(θ j , θ− j , 1θ)

(13)

is the payoff advantage to a focal individual i over its patch neigh-

bors. The parameter λ is “the spatial scale of density-dependent

competition” (Frank 1998, p. 115), a parameter that takes values

between zero and one and quantifies the intensity of local competi-

tion between patch members for breeding spots. An increase in the

average material payoff to the focal individual’s patch neighbors

by a small amount δ would increase the local density-dependent

competition experienced by the focal individual (during stage [4]

of its life cycle) by δλ. Hence, if λ = 0, the lineage payoff to any

type θ′ ∈ {θ, τ} in a resident θ population is simply the material

payoff to a carrier of type θ′ in such a population. By contrast, if

λ = 1, then the lineage payoff is the material payoff of carriers

of type θ′ over patch neighbors (see Appendix SC for examples

of how λ values can be derived from demographic processes). As

such, the parameter λ captures any “spite” effect due to the fi-

nite number of individuals within patches (e.g., Gardner and West

2004).

We will call a type θ ∈ " uninvadable under weak selection

if it solves the maximization problem (4) when δ goes to zero.

One can show that this is equivalent with maximization of lineage

payoff, namely solving the maximization problem

max
τ∈"

$(τ, θ). (14)

The fact that attention may be restricted to only material

payoffs is a consequence of the assumptions that fitness increases

(approximately) linearly with material payoff (for small δ > 0)

and that the migration probability is the same for all individuals.

Indeed, under the latter assumption, fitness depends on individ-

uals’ strategies only through material payoffs. Second, the fact

that the probability weights in equation (12) are given by the neu-

tral population process is again a consequence of weak selection;

indeed, in the limit when δ goes to zero, fitness is the same for

everyone.
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MAXIMIZING BEHAVIOR

We can now turn to the “as if” question under weak selection.

In contrast to the analysis under strong selection, here we do not

make any structural assumption about the set X , which may be of

arbitrarily dimension. We consider the goal function uC defined

by

uC(xi , x−i ,φ) =

N
∑

k=1

∑

x̃−i ∈Pk (x−i )

πR(xi , x̃−i ,φ) q◦
k . (15)

This goal function represents the individual’s expected payoff

advantage over its patch neighbors, where the expectation is taken

with respect to the local lineage distribution in the neutral process.

Let XUW ⊆ X denote the set of uninvadable strategies under

weak selection. Uninvadability under weak selection coincides

exactly with maximizing behavior with respect to the uC goal

function, that is,

XE(uC) = XUW. (16)

In sum, in a model with no assumptions on the specifics of the

nature of the social interaction (one-shot or multistage, observed

or unobserved actions of patch members, etc.), we find that under

weak selection evolution selects behaviors that are identical with

those that emerge if individuals strive to maximize uC. This is our

main positive result (see Appendix SC for a proof).

EXAMPLE

When N = 2, the goal function (eq. 15) for an individual i who

plays xi = x, whereas its patch neighbor plays x−i = y can be

written as

uC(x, y,φ) = (1 − λ) (1 − r ) π(x, y,φ) + (1 − λ)rπ(x, x,φ)

+λ (1 − r ) [π(x, y,φ) − π(y, x,φ)] . (17)

This is a weighted sum of three terms, where the weight

(1 − λ)(1 − r ) is given to one’s own payoff, the weight (1 − λ)r

to the payoff that each individual would obtain had the other in-

dividual used the same strategy, and the weight λ(1 − r ) is given

to the individual’s payoff advantage.

For a Moran process (Box 1), we have r = (1 − m)/(1 + m)

(this follows from eq. B-e) and λ = (1 − m)2/[2 − (1 − m)2]

(see Appendix SA). Inserting this along with the material payoff

function π(x, y,φ) = αx − βxy − γx2 (which captures the same

social interaction as eq. 9) into equation (17), we obtain that

the first-order condition ∂uC(x, y,φ)/∂x |y=x = 0 has a unique

solution given by equation (10). Hence, if this strategy also satis-

fies the second-order condition ∂
2uC(x, y,φ)/∂x2|y=x < 0, then

this strategy is the unique symmetric Nash equilibrium strategy

in the population game GC = (N, X, uC). By the result given in

equation (16), this strategy is then also the unique uninvadable

strategy. In this example, the second-order condition boils down

to (1 − m)(2 − m)β + (3 − m)γ > 0.

Discussion
We have examined whether, in a patch-structured population, a

strategy that is uninvadable can be interpreted as being freely

chosen by individuals who seek to maximize some individual-

centered goal function. For the purpose of analyzing this “as if”

question, we have examined individual-centered goal functions

that are expressed in terms of personal fitness or personal material

payoff. These candidate functions are analytically operational and

also transparent in the sense that they explicitly depend on the

fitnesses of, or material payoffs to, the individual and its partners

engaged in the social interaction at hand, weighted by certain

“population-structural” coefficients exogenous to the individual.

Our results can be summarized as follows:

(1) Arbitrary selection strength. We studied two individual-

centered goal functions, one in line with the textbook rep-

resentation of inclusive fitness (uA, eq. 6) and one (uB, eq. 7)

that is closer to a population-statistical version of inclusive

fitness. It turns out that neither goal function gives rise to “as

if” behavior in general although the population-statistical ver-

sion fares better (results Box 3). An important exception is the

case of strategically neutral interactions, for which both goal

functions (uA and uB) fare equally well.

(2) Weak selection. We studied a third individual-centered goal

function (uC, eq. 15) that is a certain weighted average of

material payoffs to oneself and one’s patch neighbors. This

goal function gives rise to “as if” behavior regardless of the

complexity and strategic nature of the social interaction.

We will now discuss more in detail the scope and interpreta-

tion of these results.

PATCHES, FAMILIES, AND PANMICTIC POPULATIONS

Our analysis shows that, even when a concept of invasion-fitness

maximization applies under strong selection (lineage fitness in

our formalization), the “as if” notion of an individual as an

agent maximizing a goal function with population-structure co-

efficients exogenous to its own behavior does not necessarily

obtain. This stems from the fact that lineage fitness generally

depends on the full distribution of types that a carrier of the

mutant trait is exposed to, and this distribution in turn depends on

the expression of the mutant and resident type in past generations.

Hence, lineage fitness is a complex multigenerational measure

of invasion fitness, where the distribution of types is endoge-

nously determined and thus depends on selection. Because this

dependency is endogenous by nature, a goal function representing
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lineage fitness cannot in general be written as a linear combina-

tion of personal fitness functions with population-structure coef-

ficients that are independent of the fitness of the different types

and thus of selection.

This argument applies regardless of the dimensionality of the

type space. Hence, our results (Box 3) establish the fact that, in

general, no full correspondence exists between the set of Nash

equilibria induced by maximizing behavior under conventional

goal functions and the set of uninvadable strategies. But there are

exceptions to these negative results. For instance, in evolution-

ary biology and evolutionary game theory the canonical model of

social interactions is symmetric pairwise interactions in a panmic-

tic population (e.g., Maynard Smith 1982; Eshel 1983; Weibull

1997), which, by definition, is a situation where there is no lo-

cal competition and no relatedness. In this case, lineage fitness

is proportional to personal fitness, which in turn is an affine in-

creasing function of material payoff. Then, an individual-centered

goal function that produces “as if maximizing” behavior can be

readily found and is directly given by the material-payoff func-

tion of the social interaction, which implies that uninvadability

is equivalent to equilibrium play in the social interaction. Our

model allows for a direct extension of this case to multiplayer

interactions within groups of any size in a panmictic population,

a case that has been extensively studied in evolutionary biology

(e.g., the “haystack” model, Maynard Smith 1964, or the “group-

selection” and “founder effect” models, Wilson 1975; Cohen and

Eshel 1976). This is a general result, regardless of the game being

played between group members.

Other general cases of maximizing behavior can be found

by considering pairwise interactions among family members in

a panmictic population, for instance interactions among siblings

(or parent–offspring interactions) before the round of complete

dispersal, where the kinship structure is determined in a sin-

gle episode of reproduction and does not depend on the type

distribution when mutants are rare. For this case, invasion fit-

ness is proportional to a convex combination of (1) a mu-

tant’s material payoff when matched with another mutant and

(2) a mutant’s material payoff when matched with a resident,

with a constant weight r placed on the first payoff. Namely,

W (y, x) ∝ rπ(y, y) + (1 − r )π(y, x), where r is pairwise relat-

edness (Day and Taylor 1998), which does not depend on the

types. In this case, uninvadability is equivalent with maximizing

behavior under the individual-centered goal function uF(y, x) =

rπ(y, y) + (1 − r )π(y, x) because XE(uF) = XU. This goal func-

tion was used in Bergstrom (1995) for interactions between full

siblings and analyzed more generally in Alger and Weibull (2013),

and it is equivalent to the uC goal function in the absence of ri-

valry and when the material payoff does not depend on the be-

havior of individuals in other patches (eq. 17). Hence, in family-

structured populations maximizing behavior can obtain for all

games under the condition that relatedness is not affected by

selection.

More generally, as discussed above, what renders a general

“as if maximizing” representation unfeasible when population-

structure coefficients are exogenous to the individual, is the fact

that a population’s genetic structure generally depends on selec-

tion. It would thus be useful for future research to delineate the

instances of family (or spatially) structured populations where in-

vasion fitness depends on population-structural coefficients that

are independent of selection or only weakly affected by it.

WEAK SELECTION

Under weak selection, all earlier events of selection can be sum-

marized by a neutral distribution of types independent of the

mutant, and which quantifies the effects of the kinship struc-

ture induced by limited dispersal on an individual’s goal function

(the distribution qk is independent of the mutant, see eq. 12).

Hence, an individual-centered goal function, with population-

structural coefficients independent of selection, can be found.

We showed that, regardless of the complexity of social inter-

actions, individuals who maximize their average payoff advan-

tage would choose, in equilibrium, strategies that are uninvad-

able. We note that this result is nevertheless not fully general

as it applies only to traits affecting survival or reproduction, but

not migration rates or other traits modifying the genetic system

(i.e., modifier traits).

Although we rule out modifier traits by assumption, we

impose virtually no restrictions on the games individuals play.

Our weak-selection result covers maximizing behavior for games

where strategies are strategic substitutes or complements, and

the special case of strategically neutral games. A special case of

strategically neutral games are games in which the payoff function

is additively separable in the strategies used by different group

members. In such games, a goal function that takes the same

form as the uA goal function (eq. 6), but where fitness is replaced

by material payoff, would also produce “as if maximizing” be-

havior. This is analogous to the situation considered in Grafen

(2006), so our results match his results about “optimization of in-

clusive fitness” with constant environmental states. Strategically

neutral games can be viewed as independent decision problems,

one for each player, and so the concept of Nash equilibrium to

characterize maximizing behavior is not needed in this special

situation. This is probably the reason why this fundamental con-

cept does not appear previously in the literature in evolutionary

biology on maximizing behavior in the context of interactions

between relatives (e.g., Grafen 2006; Gardner and Welch 2011), a

literature that usually deals only with strategically neutral games.

This previous work also endorses a concept of uninvadability of

a resident type evaluated from the action of natural selection over

only a single demographic time period, the initial period where
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the mutant arises (e.g., Grafen 2006, p. 553), and which is in

general dynamically insufficient to ascertain the stability of a res-

ident type when interactions occur between relatives (Lehmann

and Rousset 2014). By contrast, uninvadability in our analysis is

ascertained from a multigenerational measure of invasion fitness

(lineage fitness), which is consistent with standard evolutionary

analysis (Ferrière and Gatto 1995; Metz and Gyllenberg 2001;

Rousset 2004).

Finally, it is worth noting that because different goal func-

tions can produce the same behavior, the goal functions introduced

in the “as if” approach are not uniquely defined. For instance,

any strictly increasing transformation of a given goal function

returns a new goal function with the same set of maximands.

Nevertheless, the goal function producing “as if” behavior that

we have identified (uC, see eq. 15) combines three components

that are likely to appear generally (see also eq. 17). These are (1)

a “self-interest” component (one’s own material payoff), which

ultimately results from fitness depending on the individual’s own

material payoff; (2) a “group-interest” component (group material

payoff that would arise if others behaved like oneself), whereby

individuals can be thought as evaluating the consequences of their

behaviors on average group material payoff by assuming that oth-

ers would choose the same behavior, and which ultimately results

from identity-by-descent within patches and cause individuals

to express identical strategies; and, (3) a “competitiveness” or

“rivalry” component (material payoff differences), which results

from local competition in a spatially structured population, which

makes the fitness of an individual decrease in the others’ material

payoffs.

These last two components are direct consequences of lim-

ited dispersal. They are the goal-oriented behavioral consequences

of kin-selected benefits (or costs) and kin competition, the two

fundamental and general additional components of the selection

pressure on any social behavior induced by limited dispersal (e.g.,

Grafen 1984; Queller 1994; West et al. 2002; Rousset 2004). Note

that the “group-interest” component of the goal function uC, can

be thought of as representing “Kantian morality” (see Alger and

Weibull 2013, section 6.2 for a discussion of this). We also conjec-

ture that the three qualitative components of the uC goal function

will also emerge under more realistic demographics, such as class

or demographically structured populations, something that could

be detailed in future work. Finally, we note that if we follow

Dawkins (1978, p. 63) and define inclusive fitness as “that prop-

erty of an individual organism which will appear to be maximized

when what is really being maximized is gene survival,” then the

uC goal function can be thought of as a representation of inclusive

fitness.

CONSTRAINED BEHAVIOR

We formulated the relationship between maximizing behavior

and uninvadability in terms of individuals (freely) choosing their

strategies, where a strategy is a complete plan of action for all

possible contingencies. As is well-known in game theory (see,

e.g., van Damme 1987), a (behavior) strategy profile is a Nash

equilibrium if and only if it prescribes optimal continuation play

from every information set that is reached with positive probability

(while actions, or continuation play, at unreached information sets

need not be optimal).

Consider a social interaction in which each participant has

a behavior rule that implements a behavior strategy for that indi-

vidual. A situation in which each action in the continuation play

from any information set onwards can evolve to optimality en-

tails that the set S of states of an individual is very large. This

has been used in models without social interactions in behav-

ioral ecology (i.e., decision problems where individuals interact

with their exogenous environment, e.g., McNamara and Houston

1999). But it is rarely (if ever) considered in biological models of

social interactions, as the set S of states is usually taken to be of

small dimension, a modeling choice often following from the ob-

servation that most animals (including human) decision making

is cognitively bounded (Fawcett et al. 2012). A low-dimensional

state space cannot represent the whole history of actions H, and

the behavior rule itself is further usually assumed to depend only

on a low-dimensional evolvable type. A low-dimensional behavior

rule can thus fundamentally constrain the flexibility of behavior

in social interactions, and this curtails the possibility of actions

that are all optimal along the path of play.

The interpretation of maximizing behavior can accommo-

date such mechanistic constraints by assuming that individuals

choose the parameters (or variables) of the behavior rule among

the given set of alternatives (in Appendix SC we develop a model

illustrating these concepts where individuals play a repeated game

but have a memory of step one). In other words, the parameters

determining the mechanism that generates actions (the behavior

rule) are optimal for each individual, in terms of the goal function

uC, when these parameters take the values that are uninvadable,

and can thus be interpreted as being the results of maximizing

behavior. This reasoning applies to any trait affecting any be-

havior rule, such as traits affecting cognitive properties such as

memory size, learning speed, or internal reward systems involved

in decision making. In sum, the interpretation in terms of maxi-

mizing behavior can be applied to both flexible and constrained

behavior, and any evolvable phenotype determining a proximate

mechanism that generates actions can be interpreted as a strategy

in a corresponding game.
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EVOLUTIONARY SELECTION OF GOAL FUNCTIONS

Our “as if” question led us to posit three alternative individual-

centered goal functions and to compare the strategies that would

result from maximization of these goal functions to those being

selected for by way of natural selection. However, under environ-

mental variability, selection may act directly at the level of goal

functions in cognitively sophisticated organism, and so to speak

delegate the (free) choice of action(s) to the individual. One may

then ask which goal functions will be selected for (hence the goal

function itself becomes an evolving “strategy”). This question is

distinct from the “as if” question addressed here and has been an-

alyzed previously by economists (Alger and Weibull 2012, 2013,

and references therein) and biologists (Akçay et al. 2009; Akçay

and Van Cleve 2012). The present modeling framework could be

applied to such an analysis, in which case each type would define

a goal function, and the set of types would be all the goal functions

that the organism’s cognition and physiology could implement.

Importantly, as suggested by the contrasting results in Alger and

Weibull (2012) and Alger and Weibull (2013) , in such an analysis

it will matter if organisms can recognize each others’ type or not.

We conjecture (by extrapolating from the analysis in Alger and

Weibull 2013 and our results here) that when evolution occurs at

the level of goal functions and organisms cannot recognize each

others’ type, the uC goal function (eq. 15) is uninvadable under

weak selection. Under strong selection, however, all caveats about

the correspondence between uninvadability and maximizing be-

havior discussed above may be expected to apply to the evolution

of goal functions when organisms cannot recognize each other’s

type.

Conclusion
Because in our model there are no genetic constraints, evolvable

traits can be thought of as being coded by a one-locus genetic ba-

sis. Our model thus provides a framework in which the conditions

are ideal for identifying maximizing behavior under evolutionary

dynamics. Within this framework we show that when social inter-

actions are modeled as games between population members, there

is only a partial correspondence between gene-centered maxi-

mization and conventional individual-centered maximization, un-

less selection is weak. But individuals can still be the instruments

of the gene’s goal, and our results are consistent with the view

that this is the level at which adaptation and thus maximizing be-

havior can be conceived in complete generality (Dawkins 1978;

Haig 2012).
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Supplementary material for “Does evolution lead to maximizing

behavior?” by L. Lehmann, I. Alger, and J. Weibull

Appendix A: univadability

We here prove that a mutant type τ appearing initially as a single copy on a single focal

island of the population, which is otherwise fixed for the resident θ, will go extinct with

probability one if, and only if, θ solves the problem max
τ∈Θ W (τ, θ); that is, if, and only if,

W (τ, θ) ≤ W (θ, θ) for all τ ∈ Θ. Our proof below follows the line of arguments developed

in Mullon et al. (in preparation) and that builds on Wild (2011).

Denote byMi(t) the random number of patches in the population with i ∈ I = {1, 2, ..., N}

mutants at demographic time t, and letM(t) = (M1(t), . . . ,MN(t)) be the associated random

vector.

Starting with a single initial mutant in the focal patch at time t = 0, i.e., M(0) =

(1, 0, . . . , 0), we are interested in finding an operational necessary and sufficient condition

for the mutant type to go extinct in finite time with probability one; formally, a condition

for Pr [M(t) = 0 for some t ∈ N | M(0) = (1, 0, . . . , 0)] = 1. To that end, we first note that

our assumption that there is an infinite number of islands implies that the stochastic process

{M(t)}t∈N is a multi-type branching process (Wild, 2011), which is equivalent to assuming

that only residents immigrate to the focal patch when the mutant is globally rare. Because

we are only interested in characterizing extinction, it is sufficient to focus on matrix A(τ, θ)

whose (i, j) entry is the expected number of patches with i ∈ I mutants (of type τ) that

are produced over one demographic time period by the focal patch when this has j ∈ I

mutants and when the population is otherwise monomorphic for type θ. It then follows from

standard results on multi-type branching processes (Karlin and Taylor, 1975, p. 412) that

Pr [M(t) = 0 for some t | M(0) = (1, 0, . . . , 0)] = 1 if and only if the leading eigenvalue of

A(τ, θ) is less than or equal to 1, i.e., if, and only if ρ(A(τ, θ)) ≤ 1 where ρ(A(τ, θ)) denotes

the spectral radius of A(τ, θ). It thus remains to (a) find an expression for A(τ, θ) under our

biological assumptions, and (b) show that ρ(A(τ, θ)) ≤ 1 is equivalent to W (τ, θ) ≤ W (θ, θ).
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Following our life-cycle assumptions, one can write

A(⌧, ✓) = Q(⌧, ✓) + E(⌧, ✓), (A-1)

where Q(⌧, ✓) is the matrix for which the component in row i and column j is the probability

that the focal patch with j ∈ I mutants turns into a patch with i ∈ I mutants, and where

the transition probabilities are independent of the state M. Thus, Q(⌧, ✓) is the transient

matrix of the Markov chain, describing the subpopulation of mutants in the focal patch, with

state space {0, 1, 2, ..., N}. This Markov chain has the local extinction of the mutant type

as its unique absorbing state. We also have that,

E(⌧, ✓) =

















✏1(⌧, ✓) ✏2(⌧, ✓) . . . ✏N(⌧, ✓)

0 0 . . . 0
...

...
. . .

...

0 0 . . . 0

















, (A-2)

where ✏j(⌧, ✓) is the expected number of patches with one mutant that are produced by

mutant emigration from the focal patch, when the focal patch is in state j. All other entries

of matrix E(⌧, ✓) equal zero since when the number of islands is infinite, the probability that

two or more offspring from the same patch settle on the same island through dispersal is

zero. To see this, note what happens in the case where the number of patches is finite: then

the probability that a given breeding spot on a given patch is settled through dispersal by

an offspring of an individual from the focal patch is of order O(m/(ND)), where D is the

number of patches. The probability that two or more such offspring settle in the same patch

is of order O(m2/(ND)2) or smaller. Summing over all patches, the probability that two or

more offspring from the same individual settle on the same patch through dispersal is thus

at most of order m2/(N2D), and hence goes to zero as D → ∞. Therefore, the focal patch

with j mutants can only turn a patch with zero mutants into one with a single mutant.

Since

⇢(A(⌧, ✓)) ≤ 1 ⇐⇒ ⇢(A(⌧, ✓)− I) ≤ 0. (A-3)

Using eq. (A-1), we have

⇢(A(⌧, ✓)− I) ≤ 0 ⇐⇒ ⇢ (E(⌧, ✓)− (I−Q(⌧, ✓))) ≤ 0. (A-4)
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The matrix I−Q(⌧, ✓) is non-negative, since all components of Q are between zero and one.

In addition, A(⌧, ✓) − I has non-negative off-diagonal entries, and E(⌧, ✓) is non-negative.

Therefore, we can apply the first-generation-theorem (Thieme, 2009, Theorem 2.1) to obtain

the equivalence

⇢(A(⌧, ✓)− I) ≤ 0 ⇐⇒ ⇢
�

E(⌧, ✓)(I−Q(⌧, ✓))−1
�

≤ 1. (A-5)

By construction of E(⌧, ✓), the matrix E(⌧, ✓)(I−Q(⌧, ✓))−1 is upper triangular, and all its

diagonal elements except the first are zero. Since the eigenvalues of a triangular matrix equal

its diagonal entries, the leading eigenvalue of E(⌧, ✓)(I−Q(⌧, ✓))−1 equals its first diagonal

element. This is given by
P

N

k=1
✏k(⌧, ✓)tk(⌧, ✓), where tk(⌧, ✓) is the expected number of time

steps (sojourn time) that a patch that started with a single mutant spends with k mutants

(owing to the fact that the component (i, j) of matrix (I−Q(⌧, ✓))−1 corresponds to the

expected sojourn time of the Markov chain in state i when initially starting the process in

state j and excluding mutant immigration, Grinstead and Snell, 1997). Therefore,

⇢(A(⌧, ✓)) ≤ 1 ⇐⇒

N
X

k=1

✏k(⌧, ✓)tk(⌧, ✓) ≤ 1. (A-6)

Condition (A-6) is equivalent to the non-invasibility condition for the mutant proposed

by Metz and Gyllenberg (2001) for continuous-time processes and Ajar (2003) for discrete-

time processes, and proven to guarantee the local asymptotic instability of the deterministic

dynamical system describing the growth of the mutant type when rare under a continuous

time process (Massol et al., 2009).

We now proceed to re-write condition (A-6) in terms of fitness. The expected number

of descendants of a single mutant (⌧) individual in the focal patch in state k ∈ I (that is,

the personal fitness of a mutant in a patch with k mutants), conditional on the rest of the

population being monomorphic for ✓, can be written as

wk(⌧, ✓) = �k(⌧, ✓) + ✏k(⌧, ✓)/k, (A-7)

where �k(⌧, ✓) denotes the expected number of descendants in the focal patch produced

through philopatry by a single mutant in the focal patch in state k ∈ I, conditional on the rest
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of the population being monomorphic for ✓, while ✏k(⌧, ✓)/k is the corresponding expected

number of emigrant offspring produced by a single mutant. Then, because
PN

k=1 ktk(⌧, ✓)

counts the total local number of mutants during the lifespan of the lineage, and this is equal

to 1+
PN

k=1 �k(⌧, ✓)ktk(⌧, ✓) (the founding mutant plus the total number of local descendants,

Mullon and Lehmann, 2014), we have, from eq. (A-7), the equality

N
X

k=1

✏k(⌧, ✓)tk(⌧, ✓)− 1 =
N
X

k=1

[wk(⌧, ✓)− 1] ktk(⌧, ✓). (A-8)

Setting

Λ(⌧, ✓) =
N
X

k=1

[wk(⌧, ✓)− 1] ktk(⌧, ✓), (A-9)

we have

⇢(A(⌧, ✓)) ≤ 1 ⇐⇒ Λ(⌧, ✓) ≤ 0. (A-10)

Since we assume no class structure (no roles) within patches, individuals of a given type

are exchangeable within patches and types can be allocated randomly to neighbors of a focal

individual. Because of the symmetry of the personal fitness function w(✓i,θ−i, 1θ), we can

write

wk(⌧, ✓) =
X

θ
−i∈Sk(τ,θ)

✓

N − 1

k − 1

◆

−1

w(⌧,θ−i, 1θ), (A-11)

where Sk(⌧, ✓) is the set of all subsets of {⌧, ✓}N−1 with exactly k − 1 individuals having

type ⌧ . Substituting into eq. A-9, and denoting by t̄(⌧, ✓) =
PN

k=1 ktk (⌧, ✓) the total sojourn

time, produces

Λ(⌧, ✓) =
N
X

k=1

2

4

X

θ
−i∈Sk(τ,θ)

w(⌧,θ−i, 1θ)
�

N−1
k−1

� − 1

3

5 ktk(⌧, ✓)

=
N
X

k=1

X

θ
−i∈Sk(τ,θ)

"

w(⌧,θ−i, 1θ)
ktk(⌧, ✓)
�

N−1
k−1

�

#

−

N
X

k=1

ktk(⌧, ✓)

= t̄(⌧, ✓)

2

4

N
X

k=1

X

θ
−i∈Sk(τ,θ)

w(⌧,θ−i, 1θ)qk(⌧, ✓)− 1

3

5 , (A-12)

where we used

qk(⌧, ✓) =

✓

N − 1

k − 1

◆

−1
ktk(⌧, ✓)

t̄(⌧, ✓)
. (A-13)
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Setting

W (τ, θ) =
N
X

k=1

X

θ
−i∈Sk(τ,θ)

qk(τ, θ)w(τ,θ−i, 1θ), (A-14)

we finally obtain

Λ(τ, θ) = t̄(τ, θ) [W (τ, θ)− 1] . (A-15)

Since W (θ, θ) = 1, and since t̄(τ, θ) ≥ 1, it follows that

Λ(τ, θ) ≤ 0 ⇐⇒ W (τ, θ) ≤ W (θ, θ). (A-16)

Appendix B: univadability and maximizing behavior

First-order conditions

We here prove that the inclusive fitness effect must be nil for a strategy x to be uninvadable,

or to be a symmetric Nash equilibrium strategy under any of the two goal functions, uA or

uB. As noted in the main text, eq. 4 implies that for x to be uninvadable it must be that,

given x, y = x is a local maximum of

W (y, x) =
N
X

k=1

X

x
−i∈Sk(y,x)

qk(y, x)w(y,x−i, 1x). (B-1)

The first step of the proof consists in showing that the expression for ∂W (y, x)/∂y|y=x is

the inclusive fitness effect (eq. 8 of the main text). We begin by noting that thanks to the

permutation invariance of w with respect to the components of x−i, for any x−i ∈ Sk (y, x),

we can write x−i =
�

y(k−1),x(N−k)
�

, where y(k−1) is the (k − 1)-dimensional vector whose

components all equal y, and x(N−k) is the (N − k)-dimensional vector whose components all

equal x. By a slight abuse of notation, we drop the parentheses around y(k−1),x(N−k), and

write

w(y,x−i, 1x) = w
�

y,y(k−1),x(N−k), 1x
�

. (B-2)

Using this notation,

W (y, x) =
N
X

k=1

✓

N − 1

k − 1

◆

qk(y, x)w
�

y,y(k−1),x(N−k), 1x
�

. (B-3)

5



Writing wj for the partial derivative of w with respect to its j-th argument, where j =

1, ..., N , we have

∂W (y, x)

∂y
=

N
X

k=1

✓

N − 1

k − 1

◆

∂qk(y, x)

∂y
w
�

y,y(k−1),x(N−k), 1x
�

�

+

N
X

k=1

"

✓

N − 1

k − 1

◆

qk(y, x)
k
X

j=1

wj

�

y,y(k−1),x(N−k), 1x
�

#

. (B-4)

Noting that for y = x, w
�

y,y(k−1),x(N−k), 1x
�

= w
�

x,x(N−1), 1x
�

, which is independent

of k so that it can be factored out in the first term, and using

pk(y, x) =
ktk(y, x)

t̄(y, x)
(B-5)

(see Box 2), we obtain

∂W (y, x)

∂y

�

�

�

�

y=x

= w
�

x,x(N−1), 1x
�

N
X

k=1

"

∂pk(y, x)

∂y

�

�

�

�

y=x

#

+

N
X

k=1

"

pk(y, x)
k
X

j=1

wj

�

y,y(k−1),x(N−k), 1x
�

#�

�

�

�

�

y=x

. (B-6)

This expression can be further simplified by noting that

N
X

k=1

 

∂pk(y, x)

∂y

�

�

�

�

y=x

!

=
∂

∂y

 

N
X

k=1

pk(y, x)

!�

�

�

�

�

y=x

=
∂

∂y
(1)

�

�

�

�

y=x

= 0. (B-7)

Hence,

∂W (y, x)

∂y

�

�

�

�

y=x

=
N
X

k=1

"

pk(y, x)
k
X

j=1

wj

�

y,y(k−1),x(N−k), 1x
�

#�

�

�

�

�

y=x

. (B-8)

Permutation invariance further implies that for any j ≥ 2, wj

�

x,x(N−1), 1x
�

= wN

�

x,x(N−1), 1x
�

(it’s as if the individual whose marginal type change is under consideration were systemat-

ically labeled to appear as the last component in the vector x
(N−1)). Noticing also that

6



PN

k=1

⇥

pk(y, x)w1

�

y,y(k−1),x(N−k), 1x
�⇤�

�

y=x
= w1

�

x,x(N−1), 1x
�

, we can write:

∂W (y, x)

∂y

�

�

�

�

y=x

= w1

�

x,x(N−1), 1x
�

+
N
X

k=2

"

pk(y, x)
k

X

j=2

wj

�

y,y(k−1),x(N−k), 1x
�

#
�

�

�

�

�

y=x

= w1

�

x,x(N−1), 1x
�

+
N
X

k=2

⇥

pk(x, x) (k − 1)wN

�

x,x(N−1), 1x
�⇤

= w1

�

x,x(N−1), 1x
�

+

(N − 1)wN

�

x,x(N−1), 1x
�

N
X

k=2



(k − 1) pk(x, x)

(N − 1)

�

= w1

�

x,x(N−1), 1x
�

+ r(x, x)(N − 1)wN

�

x,x(N−1), 1x
�

, (B-9)

where in the last line we used the definition of relatedness given in Box 2. This last line is

the inclusive fitness effect (eq. 8 of the main text), and where in the main text we used the

notation xx for x(N−1).

Turning now to the goal functions, we start with the uA function defined in eq. 6 of

the main text. A necessary condition for a strategy x to be a symmetric Nash equilibrium

strategy of GA = (N, X, uA) is that, if all the other players except player i use strategy x,

strategy x satisfy the first-order condition for a local maximum for individual i:

∂uA(xi,x
(N−1),φ)

∂xi

�

�

�

�

xi=x

= 0. (B-10)

Note that in the second term in the uA goal function (eq. 6 of the main text), xi appears

exactly once in x
−j, for each j. By permutation invariance, we can without loss of generality

assume that xi appears as the last component in each x
−j, so that, for each j, the partial

derivative of w(xj,x−j,φ) with respect to xi writes wN(xj,x−j,φ). Moreover, since x̄ = x if

all other individuals uses strategy x, we obtain

∂uA(xi,x
(N−1),φ)

∂xi

�

�

�

�

xi=x

= w1(x,x
(N−1), 1x) + r(x, x) (N − 1)wN

�

x,x(N−1), 1x
�

, (B-11)

which coincides with the inclusive fitness effect (eq. 8 of the main text).

Next, we turn to the uB goal function defined in eq. 7 of the main text. A necessary

condition for a strategy x to be a symmetric Nash equilibrium strategy of GB = (N, X, uB)
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is that, if all the other players except player i use strategy x, i.e., if x
−i = x(N−1), strategy

x satisfy the first-order condition for a local maximum for individual i:

∂uB(xi,x
(N−1),φ)

∂xi

�

�

�

�

xi=x

= 0. (B-12)

Permutation invariance implies

uB(xi,x
(N−1),φ) =

N
X

k=1

qk(x̄, x̄)

✓

N − 1

k − 1

◆

w
⇣

xi,x
(k−1)
i ,x(N−k),φ

⌘

. (B-13)

Supposing now that everyone in the population except individual i uses strategy x, and

applying observations made earlier in this proof, we obtain

∂uB

�

xi,x
(N−1),φ

�

∂xi

�

�

�

�

�

xi=x

=

"

N
X

k=1

qk(x, x)

✓

N − 1

k − 1

◆ k
X

j=1

wj

⇣

xi,x
(k−1)
i ,x(N−k),φ

⌘

#�

�

�

�

�

xi=x

= w1

�

x,x(N−1), 1x
�

+ (N − 1)wN

�

x,x(N−1), 1x
�

N
X

k=2

(k − 1) pk(x, x)

(N − 1)

= w1

�

x,x(N−1), 1x
�

+ r(x, x)(N − 1)wN

�

x,x(N−1), 1x
�

, (B-14)

which again coincides with the inclusive fitness effect (eq. 8 of the main text).

Second-order conditions

We here prove the two results in Box 3 by evaluating the second-order conditions for unin-

vadability and for the symmetric Nash equilibrium under uA and uB.

Lineage fitness

Suppose that XD = {x}, for some x ∈ X. We have

∂2W (y, x)

∂y2
=

N
X

k=1

✓

N − 1

k − 1

◆

∂2qk(y, x)

∂y2
w
�

y,y(k−1),x(N−k), 1x
�

�

+

2
N
X

k=1

"

✓

N − 1

k − 1

◆

∂qk(y, x)

∂y

k
X

j=1

wj

�

y,y(k−1),x(N−k), 1x
�

#

+

N
X

k=1

"

✓

N − 1

k − 1

◆

qk(y, x)
k

X

j=1

k
X

`=1

wj`

�

y,y(k−1),x(N−k), 1x
�

#

. (B-15)
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As noted above, we need to evaluate this expression at y = x. Since w
�

y,y(k−1),x(N−k), 1x
��

�

y=x
=

w
�

x,x(N−1), 1x
�

, which is independent of k, and given the definition of qk(y, x), when evalu-

ated at y = x, the first line in eq. B-15 may be written as

w
�

x,x(N−1), 1x
�

N
X

k=1

∂2pk(y, x)

∂y2

�

�

�

�

y=x

= w
�

x,x(N−1), 1x
� ∂2

∂y2

N
X

k=1

pk(y, x)|y=x

= w
�

x,x(N−1), 1x
� ∂2

∂y2
(1) = 0. (B-16)

Next, and disregarding the constant 2, the second line in eq. B-15 may be rewritten as

follows:

N
X

k=1

✓

N − 1

k − 1

◆

∂qk(y, x)

∂y
w1

�

y,y(k−1),x(N−k), 1x
�

�

�

�

�

�

�

y=x

+

N
X

k=2

"

✓

N − 1

k − 1

◆

∂qk(y, x)

∂y

k
X

j=2

wj

�

y,y(k−1),x(N−k), 1x
�

#
�

�

�

�

�

y=x

= w1

�

x,x(N−1), 1x
� ∂

∂y

N
X

k=1

pk(y, x)

�

�

�

�

�

y=x

+

+
N
X

k=2

✓

N − 1

k − 1

◆

∂qk(y, x)

∂y
(k − 1)wN

�

x,x(N−1), 1x
�

��

�

�

�

y=x

. (B-17)

The first term on the right-hand side of this equality equals zero (see eq. B-7). Turning

now to the second term, by factoring out wN

�

x,x(N−1), 1x
�

, by multiplying and dividing by

(N − 1), and by using the definition of qk (see Box 2), this term writes

(N − 1)wN

�

x,x(N−1), 1x
�

N
X

k=2



∂pk(y, x)

∂y

(k − 1)

(N − 1)

��

�

�

�

y=x

= (N − 1)wN

�

x,x(N−1), 1x
� ∂

∂y

N
X

k=2



(k − 1) pk(y, x)

(N − 1)

�

�

�

�

�

�

y=x

= (N − 1)wN

�

x,x(N−1), 1x
�

r1(y, x)|y=x . (B-18)

Finally, we proceed to rewriting the third line in the original expression (eq. B-15). Using
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permutation invariance, we obtain the following expression:

w11

�

x,x(N−1), 1x
�

+

(N − 1)w1N

�

x,x(N−1), 1x
�

N
X

k=1



(k − 1) pk(y, x)

(N − 1)

�

�

�

�

�

�

y=x

+

(N − 1)wN1

�

x,x(N−1), 1x
�

N
X

k=1



(k − 1) pk(y, x)

(N − 1)

�

�

�

�

�

�

y=x

+

(N − 1)wNN

�

x,x(N−1), 1x
�

N
X

k=1



(k − 1) pk(y, x)

(N − 1)

�

�

�

�

�

�

y=x

+

(N − 2) (N − 1)w2N

�

x,x(N−1), 1x
�

N
X

k=1



(k − 2) (k − 1) pk(y, x)

(N − 2) (N − 1)

�

�

�

�

�

�

y=x

. (B-19)

Using the coefficient of pairwise relatedness, r(y, x), as well as the coefficient of triplet

relatedness,

r̃(y, x) =
N
X

k=1

(k − 2)(k − 1)

(N − 2)(N − 1)
pk(y, x), (B-20)

and recalling that w1N = wN1, the third line expression in eq. B-15 may thus be written:

w11

�

x,x(N−1), 1x
�

+ 2 (N − 1)w1N

�

x,x(N−1), 1x
�

r(x, x)+

(N − 1)wNN

�

x,x(N−1), 1x
�

r(x, x)+

(N − 2) (N − 1)w2N

�

x,x(N−1), 1x
�

r̃(x, x). (B-21)

Collecting the expressions for the second and third lines in eq. B-15 (respectively in eq. B-

18 and eq. B-21), and writing r1(x, x) for r1(y, x)|y=x, the expression in eq. B-15 writes:

∂2W (y, x)

∂y2

�

�

�

�

y=x

= w11

�

x,x(N−1), 1x
�

+ r(x, x) (N − 1)wNN

�

x,x(N−1), 1x
�

+

r(x, x)2 (N − 1)w1N

�

x,x(N−1), 1x
�

+

r̃(x, x) (N − 2) (N − 1)w2N

�

x,x(N−1), 1x
�

+

r1(x, x)2 (N − 1)wN

�

x,x(N−1), 1x
�

, (B-22)

which is consistent with eq. 9 of Ajar (2003) and eq. 29 of Wakano and Lehmann (2014).
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Goal function uA

We now turn to the uA goal function. By Result 1, and given that XD is a singleton,

XD = {x}, a necessary condition for x to be a symmetric Nash equilibrium strategy in

the population game GA = (N, X, uA) is ∂2uA(xi,x−i,φ)/∂x
2
i |xi=x ≤ 0, and a sufficient

condition is that this inequality hold strictly. By permutation invariance, we can without

loss of generality assume that xi appears as the last component in each x
−j in the expression

for uA (see definition of uA in the main text) for each j, the partial derivative of w(xj,x−j,φ)

with respect to xi writes wN(xj,x−j,φ), and the second-order partial derivative with respect

to xi writes wNN(xj,x−j,φ). Moreover, since x̄ = x if all other individuals use strategy x in

eq. 6 of the main text, we immediately obtain

∂2uA(xi,x−i,φ)

∂x2
i

�

�

�

�

xi=x

= w11

�

x,x(N−1), 1x
�

+ r(x, x) (N − 1)wNN

�

x,x(N−1), 1x
�

. (B-23)

Suppose now that x ∈ XU; then ∂2W (y, x)/∂y2|y=x ≤ 0. By comparing eq. B-22 and

eq. B-23, it immediately follows that if the sum of the three last terms in eq. B-22 is strictly

positive, ∂2uA(xi,x−i,φ)/∂x
2
i |xi=x < 0, in which case x ∈ XE(uA). The conditions stated in

part (a) of Result 3 in Box 3 are sufficient for the sum of the three last terms in eq. B-22 to

be strictly positive.

Suppose now that x ∈ XE(uA); then ∂2uA(xi,x−i,φ)/∂x
2
i |xi=x ≤ 0. By comparing eq. B-

22 and eq. B-23, it immediately follows that if the sum of the three last terms in eq. B-22

is strictly negative, ∂2W (y, x)/∂y2|y=x < 0, in which case x ∈ XU. The conditions stated in

part (b) of Result 3 in Box 3 are sufficient for the sum of the three last terms in eq. B-22 to

be strictly negative.

Finally, if the sum of the three last terms in eq. B-22 equals zero,

∂2W (y, x)

∂y2

�

�

�

�

y=x

=
∂2uA (xi,x−i,φ)

∂x2
i

�

�

�

�

xi=x

, (B-24)

in which case XE(uA) = XU. The conditions stated in part (c) of Result 3 in Box 3 are

sufficient for the sum of the three last terms in eq. B-22 to equal zero.
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Goal function uB

The proof is qualitatively similar to the previous one. By Result 1, and given that XD is

a singleton, XD = {x}, a necessary condition for x to be a symmetric Nash equilibrium

strategy in the population game GB = (N, X, uB) is ∂2uB(xi,x−i,φ)/∂x
2
i |xi=x ≤ 0, and a

sufficient condition is that this inequality hold strictly. By permutation invariance, we can

without loss of generality assume that xi appears as the last component in each x
−j in the

expression for uB (see eq. 7 of the main text), so that, for each j, the partial derivative of

w(xj,x−j,φ) with respect to xi writes wN(xj,x−j,φ), and the second-order partial derivative

with respect to xi writes wNN(xj,x−j,φ). Moreover, since x̄ = x if all other individuals use

strategy x, we immediately obtain

∂2uB(xi,x−i,φ)

∂x2
i

= w11

�

x,x(N−1), 1x
�

+ r(x, x) (N − 1)wNN

�

x,x(N−1), 1x
�

+

r(x, x)2 (N − 1)w1N

�

x,x(N−1), 1x
�

+

r̃(x, x)(N − 2)(N − 1)w2N

�

x,x(N−1), 1x
�

. (B-25)

Suppose now that x ∈ XU; then ∂2W (y, x)/∂y2|y=x ≤ 0. By comparing eq. B-22 and

eq. B-25, it immediately follows that if the last term in eq. B-22 is strictly positive, i.e., if the

condition stated in part (a) of Result 4 in Box 3 is satisfied, ∂2uB(xi,x−i,φ)/∂x
2
i |xi=x < 0,

in which case x ∈ XE (uB).

Suppose now that x ∈ XE (uB); then ∂2uB(xi,x−i,φ)/∂x
2
i |xi=x ≤ 0. By comparing eq. B-

22 and eq. B-25, it immediately follows that if the last term in eq. B-22 is strictly negative,

i.e., if the condition stated in part (b) of Result 4 in Box 3 is satisfied, ∂2W (y, x)/∂y2|y=x < 0,

in which case x ∈ XU.

Finally, if the last term in eq. B-22 equals zero, i.e., if the condition stated in part (c) of

Result 4 in Box 3 is satisfied, ∂2W (y, x)/∂y2|y=x = ∂2uB (xi,x−i,φ) /∂x
2
i |xi=x, in which case

XE (uB) = XU.
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Appendix C: weak selection

We here prove the weak selection results for uninvadability (eq. 14 of the main text) and

maximizing behavior (eq. 16 of the main text). We start by evaluating personal fitness under

weak selection. By using a first-order Taylor expansion of the fitness of a focal individual i

in a focal patch, with respect to δ and evaluated at δ = 0, we can write

w(θi,θ�i, 1θ) = 1 + δ

h

af

⇣

π(θi,θ�i, 1θ)� π(θ(N), 1θ)
⌘

�an
X

j 6=i

 

π(θj,θ�j, 1θ)� π(θ(N), 1θ)

N � 1

!#

+O(δ2), (C-1)

where af and an are coefficients that depend on structural demographic parameters, such as

patch size and migration rate, and θ
(N) is the N -dimensional vector whose components all

equal θ. This expansion for fitness follows from four facts about w(θi,θ�i, 1θ): (i) to the first

order in δ, fitness is necessarily an affine (linear plus constant) function in the payoff of each

individual in the population; (ii) each individual j 2 I with j 6= i has the same effect on the

fitness of the focal individual i (permutation invariance of payoff effects of neighbors); (iii)

each individual from each patch different from the focal patch has the same effect on the

fitness of focal i (permutation invariance of payoff effects of individuals in different patches

when they all carry x); and (iv) total selective effects (here total effects of payoff on fitness)

must sum to zero in a monomorphic population, as the expected change in type number or

frequency is necessarily nil (Lehmann and Rousset, 2009, p. 38).

Owing to the assumption (introduced in section 2.3) that the fitness of an individual is

monotonic increasing in its payoff and bounded by it, we have 0 < af  1. Owing to the

assumption that the fitness of an individual is monotonic decreasing in the payoff of its patch

neighbors, and that the negative effect on fitness of a single patch neighbor having its payoff

varied is not larger than the positive effect of the focal having its own payoff varied, we have

0  an  af. Letting

λ = an/af, (C-2)

13



we conclude that 0  λ  1. Factoring out af > 0 from eq. C-1, we obtain:

w(θi,θ�i, 1θ) = 1 + δaf

"

π(θi,θ�i, 1θ)� λ

X

j 6=i

π(θj,θ�j, 1θ)

N � 1
� (1� λ)π(θ(N), 1θ)

#

+O(δ2).

(C-3)

This shows that the coefficient λ quantifies the proportion of density-dependent competition

that is local, among patch members, and thus defines the spatial scale of density-dependent

competition (Frank, 1998, p. 115).

As an illustration, in the Moran island model, and thus using the fitness function given

in Box 1 along with the fecundity function (eq. 9 of the main text, our corresponding death-

factor in Box 1), a Taylor expansion and subsequent rearrangement yields

λ =

8

<

:

(N�1)(1�m)2

N�(1�m)2
for fecundity effects

1 for survival effects.
(C-4)

We now note that when types only affect material payoff, vital rates (fecundity and

survival) are the same for all types when δ = 0. Hence, also fitness is then type independent

and thus equal to 1 (set δ = 0 in the fitness function in Box 1 when fecundity is given by eq. 9).

All these quantities are then exchangeable variables between individuals; the population is

monomorphic and the resulting evolutionary process is neutral (Crow and Kimura, 1970;

Gillespie, 2004; Ewens, 2004). Under this neutral process, that is independent of resident

type θ, the experienced lineage-size distribution (see Box 2) takes a value determined solely

by local sampling drift (see e.g., in Crow and Kimura, 1970; Ewens, 2004; Rousset, 2004 for

an explicit example). We denote by q�k the associated type-profile distribution, where the

superscript � signifies that a quantity is evaluated at the neutral process when δ = 0. Hence,

we can write

qk(θ
0, θ) = q�k +O(δ), (C-5)

where O(δ) is the deviation (relative to the neutral process) of the type profile distribution

induced by selection (i.e., δ > 0) that is at most of order δ.

From eq. C-3 and eq. C-5 we have

w(θ0,θ�i, 1θ)qk(θ
0, θ) = qk(θ

0, θ)+δaf

h

πR(θ
0,θ�i, 1θ)� (1� λ)π(θ(N), 1θ)

i

q�k+O(δ2), (C-6)
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where the notation of the payoff advantage

πR(θi,θ�i, 1θ) = π(θi,θ�i, 1θ)−
λ

N − 1

X

j 6=i

π(θj,θ�j, 1θ), (C-7)

was introduced in the main text (eq. 13).

Substituting this into lineage fitness (eq. A-14) produces

W (θ0, θ) =
N
X

k=1

X

θ�i2Sk(θ0,θ)

w(θi,θ�i, 1θ)qk(θ
0, θ)

= 1 + δaf

N
X

k=1

X

θ�i2Sk(θ0,θ)

h

πR(θ
0,θ�i, 1θ)− (1− λ)π(θ(N), 1θ)

i

q�k +O(δ2). (C-8)

Hence, to the first order in selection intensity δ, the expectation of fitness is taken over the

neutral experienced lineage-size distribution, which is a common result of evolutionary dy-

namics that applies both to finite and infinite populations (Roze and Rousset, 2003; Rousset,

2004; Lehmann and Rousset, 2009; Lessard, 2009)

Combining eq. C-8 with the definition of lineage payoff (eq. 12 of the main text):

Π(θ0, θ) =
N
X

k=1

X

θ�i2Sk(θ0,θ)

πR(θ
0,θ�i, 1θ)q

�
k, (C-9)

we can write lineage fitness as

W (θ0, θ) = 1 + δaf

h

Π (θ0, θ)− (1− λ)π(θ(N), 1θ)
i

+O(δ2). (C-10)

Neglecting higher order terms in δ in this equation allows us to write the condition for

uninvadability [W (τ, θ) ≤ W (θ, θ) for all τ ∈ Θ] for weak selection as Π(τ, θ) ≤ Π(θ, θ) for

all τ ∈ Θ, which implies that θ is uninvadable if and only if

θ ∈ argmax
τ2Θ

Π(τ, θ). (C-11)

From eq. C-11 a necessary and sufficient condition for x to be uninvadable under weak

selection is

x ∈ argmax
y2X

Π(y, x), (C-12)
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where

Π(y, x) =
N
X

k=1

X

x
−i2Sk(y,x)

q�k πR(y,x�i, 1x), (C-13)

which, using the same notation as before, can be written as

Π(y, x) =
N
X

k=1

✓

N − 1

k − 1

◆

q�k πR

�

y,y(k�1),x(N�k), 1x
�

=
N
X

k=1

p�k πR

�

y,y(k�1),x(N�k), 1x
�

. (C-14)

Hence, eq. C-12 writes

x ∈ argmax
y2X

N
X

k=1

p�k πR

�

y,y(k�1),x(N�k), 1x
�

. (C-15)

We turn now to the goal function uC defined in the main text (eq. 15), which is

uC(xi,x�i,φ) =
N
X

k=1

X

x̃
−i2Pk(x−i)

q�kπR(xi, x̃�i, 1x) . (C-16)

A strategy x is a symmetric Nash equilibrium strategy of GC = (N, X, uC) if and only if

it is optimal for each individual i to play x if all the other players also play x. Thus, and

noting that if all the other players except player i use strategy x we can write x�i = x(N�1),

the necessary and sufficient condition for x to be a symmetric Nash equilibrium strategy of

GC = (N, X, uC) writes:

x ∈ argmax
xi2X

uC

�

xi,x
(N�1), 1x

�

. (C-17)

By permutation invariance,

uC

�

xi,x
(N�1), 1x

�

=
N
X

k=1

p�k πR

⇣

xi,x
(k�1)
i ,x(N�k), 1x

⌘

, (C-18)

where x
(k�1)
i is the (k− 1)-dimensional vector whose components all equal xi. So eq. C-17 is

identical with eq. C-15, which establishes Result 6.

16



Appendix D: Moran process calculations

Sojourn times

We here evaluate the different results for our examples based on the Moran process (along

similar lines as in Mullon and Lehmann, 2014). The key is to obtain an expression for ti(τ, θ),

which is obtained from the (transient) transition matrix Q(τ, θ) (see eq. A-1) with element

qij(τ, θ) giving the probability that the focal patch with j ∈ I = {1, 2, ..., N} mutants turns

into a patch. Since for a Moran process only one individual in a patch can be replaced per

unit of demographic time, the Markov chain describing local lineage is a birth-death process

(e.g, Karlin and Taylor, 1975), whose transition probabilities for transient states are

qij(τ, θ) =

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

b̃j(τ, θ), if i = j + 1 (“birth” of a mutant)

d̃j(τ, θ), if i = j − 1 (“death” of a mutant)

1− (b̃j(τ, θ) + d̃j(τ, θ)) if j = i (“no change”)

0 otherwise.

(D-1)

Standard results on birth-death processes (e.g., Ewens, 2004, eq. 2.160, Mullon and Lehmann,

2014, eq. 8) show that when the initial state of the chain is one mutant, we have

ti(τ, θ) =
1

d̃1(τ, θ)

i�1
Y

k=1

b̃k(τ, θ)

d̃k+1(τ, θ)
. (D-2)

In order to evaluate the b̃k’s and d̃k’s explicitly in terms of model parameter, we start to

denote by fk(θ
0, θ) and µk(θ

0, θ), respectively, the fecundity and death-factor of a single type

θ
0
∈ {τ, θ} individual when there are exactly k mutants among its patch neighbors (see Box

2). Then, for the Moran process (Box 1) we have:

b̃k(τ, θ) =
(N − k)µk(θ, θ)

kµk�1(τ, θ) + (N − k)µk(θ, θ)



(1−m)kfk�1(τ, θ)

(1−m) [kfk�1(τ, θ) + (N − k)fk(θ, θ)] +mNf0(θ, θ)

�

,

(D-3)

where the first factor is the probability that a resident is chosen to die and thus vacates a

breeding spot and the second factor (term in square brackets) is the probability that this
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vacated breeding spot is occupied by a mutant. Hence, we have

d̃k(τ, θ) =



1−
(N − k)µk(θ, θ)

kµk(τ, θ) + (N − k)µk(θ, θ)

�



1−
(1−m)kfk(τ, θ)

(1−m) [kfk(τ, θ) + (N − k)fk(θ, θ)] +mNf0(θ, θ)

�

. (D-4)

It now remains to express the fk’s and dk’s in terms of the fecundity and risk-factor

functions f(θi,θ�i,φ) and µ(θi,θ�i,φ). Owing to permutation invariance (and recalling the

argument leading to eq. A-11), we have

fk(θ
0, θ) =

X

θ
−i2Sk(τ,θ)

✓

N − 1

k − 1

◆

�1

f(θ0,θ�i, 1θ), for k = 1, 2, ..., N − 1

µk(θ
0, θ) =

X

θ
−i2Sk(τ,θ)

✓

N − 1

k − 1

◆

�1

µ(θ0,θ�i, 1θ), for k = 1, 2, ..., N − 1. (D-5)

On substitution of eqs. D-2–D-4 into lineage fitness (eq. A-14) along with the fitness

function of the Moran process (Box 1 of the main text), we have all the elements to compute

lineage fitness exactly under the Moran process for games of arbitrary complexity.

Neutral distribution

Setting τ = θ in eqs. D-2–D-4, we can compute the full neutral distribution of types (Box

2), which gives

pk(θ, θ) =
kmN

m+N − 1

k�1
Y

i=1

(1−m)i(N − i)

(i+ 1)(N − (i+ 1)(1−m))
, (D-6)

and on substitution into the expression for relatedness in Box 2 (by setting θ0 = θ) produces

r(θ, θ) =
1−m

1−m+Nm
. (D-7)

The same result can be obtained by using a standard (and simpler) identity-by-descent

argument (e.g., Karlin, 1968; Rousset, 2004), implying that relatedness satisfies

r(θ, θ) = (1−m)

✓

1

N
+

(N − 1)

N
r(θ, θ)

◆

, (D-8)

whose solution results again in eq. D-7.
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Cournot game example

We here evaluate the second order conditions for the Cournot game discussed in section

“Uninvadability and maximizing behavior” of the main text under a Moran process when

N = 2 and with constant death rate. Substituting the fitness function of the Moran process

(Box 1) and eqs. D-2–D-5 into lineage fitness (eq. A-14) along with the game payoff function

(eq. 9 of the main text), allows us to readily compute (using Wolfram Mathematica 10) the

second order condition (eq. B-22) at the unique element of XD (see eq. 10 of the main text),

which can be simplified to

∂2W (y, x)

∂y2

�

�

�

�

y=x=x∗

= −
m [β(1−m)(2−m) + γ(3−m)]A

(1 +m) (A+ α2(3−m) [β(1−m) + γ(3−m)])
, (D-9)

where A = 4 [β(2−m) + γ(3−m)]2 ≥ 0.

Substituting the fitness function of the Moran process (Box 1), the game payoff function

(eq. 9 of the main text), strategy x∗ (eq. 10 of the main text), and the associated relatedness

(eq. D-7) into eq. B-23 yields

∂2uA

�

xi,x
(N−1), 1x

�

∂x2
i

�

�

�

�

�

xi=x=x∗

= −B
⇥

−2α2β2(1−m)3

+γ(3−m)
�

γ(3−m)2
�

α2 + 4γ
�

+ 4β2(2−m)2 + β(3−m)C
�⇤

, (D-10)

where

B =
4m [γ(3−m) + β(2−m)]2

(1 +m) [(3−m) [βC + γ(3−m) (α2 + 4γ)] + 4β2(2−m)2]2
≥ 0, (D-11)

and C = 8γ(2−m) + α2(1−m) ≥ 0.

Finally, substituting eqs. D-2–D-5 into the expression for relatedness (Box 2) along with

the game payoff function (eq. 9) allows us to compute (using Wolfram Mathematica 10) the

relatedness effect of strategy x∗ (eq. 10 of the main text), which is

∂r(y, x)

∂y

�

�

�

�

y=x=x∗

= r1(x
∗, x∗) = 0. (D-12)
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Appendix E: constrained behavior

Here we present a model of repeated interactions where there are mechanistic constraints

between moment-to-moment actions. This allows us to illustrate how this changes the in-

terpretation of maximizing behavior relative to the case where all actions can be optimal

on the path of play. To that end, we consider a multi-move game where individuals have a

memory of step one, and stay with the Moran process under N = 2. A typical example is an

infinitely repeated prisoner’s dilemma where individuals can only react to the last action of

their partner (e.g., McNamara et al., 1999; Taylor and Day, 2004; André and Day, 2007). The

simplest setting therein is maybe provided by the so-called continuous prisoner’s dilemma

with linear reactive “strategies,” where ai(t) ≥ 0 is the level of investment in cooperation by

individual i in social period t of the repeated game, and is given by
8

<

:

a1(t) = α + θ1a2(t− 1)

a2(t) = α + θ2a1(t− 1)
for t = 1, 2, ... (E-1)

where α > 0 is an exogenous initial donation, and a1(0) = a2(0) = α. Here θi ∈ Θ = (0, 1)

represents the evolvable response slope of individual i on the level of investment of its partner

in the previous round. For this model, the decision rule is

di(si(t)) = α + θisi(t) with si(t) = a�i(t− 1) and si(0) = 0. (E-2)

Given some material payoffs in each round t = 0, 1, 2, ... uninvadability of θ can be

evaluated, for example, in terms of the long-run average material payoff. This average

is well-defined, since both individuals’ actions increase monotonically over social time and

converge to the within-period action pair
8

<

:

a⇤
1
= α(1 + θ1)/(1− θ1θ2)

a⇤
2
= α(1 + θ2)/(1− θ1θ2).

(E-3)

Hence, if the material payoffs in each time period of the repeated interaction are given by

ψ(a, a0), where a is own action and a0 the other individual’s action, then the long-run average

material payoff within the demographic time period to an individual with trait θ interacting

with an individual with trait θ0 is

π(θ, θ0,φ) = ψ



α(1 + θ)

1− θ0θ
,
α(1 + θ0)

1− θ0θ

�

. (E-4)
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For the sake of illustration, suppose the function ψ is linear-quadratic:

ψ(a, a0) = βaa0 − γa2 (E-5)

for some β, γ > 0. Substituting the resulting payoff function into lineage payoff (eq. C-9) and

computing the first-order condition for a type θ ∈ (0, 1) to be a locally uninvadable shows

that XUW is a singleton set with unique element

θ⇤ =
1− (2−m) (β/γ − 1)

1 + (2−m) (β/γ − 1)
. (E-6)

The necessary second-order condition for uninvadability is γ ≤ β for a panmictic population

(m = 1), and m(2β − γ)5/(β − γ)3 ≤ 0 for m close to zero. The second-order condition is

complicated for intermediate values of m. But since a necessary condition for θ⇤ ∈ (0, 1) is

that γ < β, the two boundary cases are sufficient to illustrate the fact that limited disper-

sal tends to destabilize the candidate uninvadable point; θ⇤ is uninvadable in a panmictic

population, while for strong population structures θ⇤ is invadable.

By Result 6, the locally uninvadable type θ⇤ is also the unique symmetric Nash equi-

librium strategy x⇤ when individuals’ goal function is uC and X = Θ = (0, 1). But is it

behaviorally/biologically reasonable to interpret the reaction slope as a strategy x⇤, chosen

by individuals? Under the infinitely repeated prisoners’ dilemma (eqs. E-1–E-4), the reac-

tion slope θ determines the decision rule of individuals (eq. E-2). From a game-theoretic

viewpoint, this constrained repeated prisoners’ dilemma is a one-shot game, where each

player only has one choice, namely what reaction slope x ∈ X = Θ = (0, 1) to use through-

out the whole social interaction. Hence, the reaction slope is now the player’s strategy in

a simultaneous-move one-shot game with material payoff from playing strategy x0 against

strategy x given by eq. E-4 with θ0 replaced by x0 and θ by x. The interpretation in terms

of maximizing behavior is then that individuals choose how strongly to react to the other

player’s last action, within the given class of affine functions.
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