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Abstract.Quantum oscillation amplitudes of multibandmetals, such as high-Tc superconductors in the normal
state, heavy fermions or organic conductors, are generally determined through Fourier analysis of the data even
though the oscillatory part of the signal is field-dependent. It is demonstrated that the amplitude of a given
Fourier component can strongly depend on both the nature of the windowing (either flat, Hahn or Blackman
window) and, since oscillations are obtained within a finite field range, the window width. Consequences on the
determination of the Fourier amplitudes, hence of the effective masses, are examined in order to determine the
conditions for reliable data analysis.
1 Introduction

Quantum oscillations, the extrema of which are periodic in
inverse magnetic field, are known to provide valuable
information for the study of Fermi surface of metals. In
particular, in addition to their frequencies which are
directly related to the closed orbit areas on the Fermi
surface, field and temperature dependence of their
amplitudes allows for the determination of the effective
masses and scattering rates [1]. Multiband metals such as
heavy fermions [2] or high-Tc superconducting iron
chalcogenides [3–6] have a complex Fermi surface due to
numerous sheets crossing the Fermi level, giving rise to
many orbits under a magnetic field, hence to a complex
quantum oscillation spectrum. Besides, in the case where
magnetic breakdown (MB) or quantum tunneling of quasi-
particles between orbits occurs, as in many organic metals
[7,8], additional orbits are further generated. In such cases,
data can be readily derived through a Fourier analysis,
allowing discrimination between the various frequencies.
The point is that the amplitude of quantum oscillations is
field dependent. Therefore, strictly speaking, they are not
periodic in inverse field. The question that arises is then to
determine to what extent reliable temperature- and field-
dependent amplitudes can be derived from the Fourier
analysis of such field-dependent data.

In the following, we consider the organic metal
u-(ET)4ZnBr4(C6H4Cl2), for which the de Haas–van
Alphen (dHvA) and Shubnikov–de Haas (SdH) oscillations
were extensively studied [9] in pulsed magnetic fields of
up to 55 T. As it is the case of many compounds based
on the bis(ethylenedithio)tetrathiafulvalene molecule
ean-yves.fortin@univ-lorraine.fr
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(abbreviated as ET), this compound illustrates the model
Fermi surface proposed by Pippard to compute magnetic
breakdown amplitudes of multiband metals [10]. As
reported in reference [9] and depicted in Figure 1, its
Fermi surface is composed of one strongly two-dimensional
closed orbit (a) and a pair of quasi-one-dimensional sheets
giving rise in a magnetic field to the orbit b originated from
MB. As a result, the oscillation spectrum is composed of
many frequencies which are linear combinations of the
frequencies linked to the a and b orbits. Amplitudes
relevant to these combinations are strongly influenced by
oscillations of the chemical potential in the magnetic field
[9,11]. Nevertheless, it appears that this phenomenon has
negligible influence on the amplitude of the dominant
components a and b, allowing relevant data analysis on
the basis of the Lifshitz–Kosevich formalism [12].

Rather than bringing additional information on this
compound, the aim of this paper is to determine to what
extent the Fourier analysis is able to yield reliable values of
physical parameters of interest, in particular effective
masses and scattering rates (through the Dingle tempera-
ture). To this purpose, we will consider the b orbit [9], with
frequency f0= fb=4534 T, effective massm*=mb=3.4me
and TD=0.8K (this latter parameter being dependent on
theconsideredcrystal), andwhich involvesnoreflectionsand
fourtunnelingswithMBfieldB0=26T.Thiscomponentwill
serve as a basis to determine the influence of the windowing
(nature and width) on the Fourier amplitude evaluation.
2 Methodology

At a fixed temperatureT, a given Fourier component of the
oscillatory part of magnetization (dHvA oscillations) and
conductivity (SdH oscillations) can be generally written
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Fig. 1. Fourier analysis of de Haas–van Alphen oscillations of
the organic metal u-(ET)4ZnBr4(C6H4Cl2), obtained with
Blackman, Hahn and flat windows in the field range 40–56 T
at 2K, see text for details. Vertical lines are marks calculated
with fa=930 T and f0 = fb=4534 T. The insert displays the
Fermi surface in which the a and b orbits are indicated (data
are from Ref. [9]).

1 At the lowest temperature (2 K) and highest field (55 T), i.e.
lowest u0Tmbx values explored in reference [9], this approxima-
tion overestimates the amplitude of the considered b component
by less than 3%. Accordingly, the relevant reported mass plots are
linear (see also Fig. 4a).
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as A(x)=A0(x)sin(2pf0x+f), where x = 1/B, f0 is the
frequency and f is, for normal metals, the Onsager phase,
generally equal to the product of p and the harmonic
number. In the framework of the Lifshitz–Kosevich and
Falicov–Stachowiak formalism [1,12,13], the amplitude is
given by a product of amplitude damping factors A0(x)
∝RTRDRMB for a given field direction (in which case the
spin damping factor is a field- and temperature-
independent prefactor). For a two-dimensional orbit, the
thermal, Dingle and MB damping factors are given by the
expressions RT= u0Tm*x/ sinh (u0Tm*x), RD ¼ e�u0TDm

�x

and RMB ¼ e�ntB0x=2ð1� e�B0xÞnr=2, respectively, where
u0= 2p2kBme(e�h)

�1= 14.694 T/K, m* is the effective
mass and TD is the Dingle temperature (TD= �h/2pkBt,
where t is the relaxation time). nt and nr are the number
of tunneling and reflections the quasi-particles are facing
during their travel along a MB orbit with a MB gap B0. In
the following, we will consider dHvA oscillations relevant
to the above-mentioned b orbit. Since measured magnetic
torque t is related to magnetization M as t=M�B, the
Fourier amplitude can be written as

A0ðxÞ∝ Tmb

sinh ðu0TmbxÞ exp ½ � ðu0TDmb þ 2B0Þx�: ð1Þ

At high-enough values of u0Tm*x, A0(x) can be approxi-
mated as

A0ðxÞ≃ a0 exp ð�lxÞ; ð2Þ
No-p
where a0 is a temperature-dependent prefactor (a0∝T) and
l= u0(T+TD)mb+2B0.

1 This approximation provides a
single parameter characterizing the field dependence of
the amplitude: the largest the l, the steepest the field
dependence. For u-(ET)4ZnBr4(C6H4Cl2), explored l
values are within 194 T at 2K and 305 T at 4.2K. Due
to large Dingle temperature, even larger values are
obtained for the high-Tc superconductor FeSe, for which
l varies from 250 T at 1.6K to 370 T at 4.2K [6].

Since the signal amplitude is field-dependent, window-
ing [14–18] is mandatory in order to determine the Fourier
amplitude at a given inverse field value x. The inverse field
range Dx is within xm and xM (Dx= xM� xm) and centered
on x ¼ ðxm þ xMÞ=2. In order to explore the influence of
windowing on the Fourier amplitude, flat, Hahn and
Blackman windows are considered in the following:
w(x)= 1, wðxÞ ¼ {1þ cos ½2pðx� xÞ=Dx�}=2, and wðxÞ ¼
0:42þ 0:5 cos ½2pðx� xÞ=Dx� þ 0:08 cos ½4pðx� xÞ=Dx�,
respectively, within the range xm to xM and w(x)= 0
everywhere else. We can write more generally the window
function as wðxÞ ¼Pp

n≥ 0 cn cos ½2pnðx� xÞ=Dx�, where
p = 0, 1, 2 for a flat, Hahn and Blackman window,
respectively, but this can be generalized for higher values of
p with appropriate coefficients. Discrete Fourier trans-
forms are obtained as

Fðf;x Þ ¼ 2

Dx

Z xM

xm

A0ðxÞ sin ð2pf0xþ fÞwðxÞ

exp ð � 2ipfxÞdx: ð3Þ
Analytical solution of equation (3) is given in the

Appendix (Eq. (A.5)) for f= f0. The modulus of Fðf0;xÞ
defines the Fourier amplitude AF ðxÞ ¼ jFðf0;xÞj=c0. For
finite l and f0 ≫ l, equation (A.4) holds, yielding

AF ðxÞ ¼A0ðxÞc�1
0

sinh ðlDx=2Þ
lDx=2

�
Xp
n¼0

ð�1Þncn ðlDx=2Þ2
ðlDx=2Þ2 þ p2n2

: ð4Þ

AF ðxÞ can also be obtained by numerical resolution of
equation (3), whereA0ðxÞ is either given by equation (2) or
by experimental data of reference [9]. Available frequencies
are bounded by the Raleigh frequency (fmin= 1/Dx) and by
the Nyquist frequency (fmax=1/2dx, for data sampled
at evenly spaced dx values). Accordingly, Dx is kept above
1/f0, and dx is always small enough to ensure that fmax is
much higher than f0 [19].

3 Results and discussion

The Fourier analysis displayed in Figure 1 shows that the
largest (smallest) secondary lobes and the smallest
(largest) peak width are obtained for the flat (Blackman)
2



Fig. 2. Fourier amplitude AF ðxÞ relevant to the b component of the organic metal u-(ET)4ZnBr4(C6H4Cl2) at (a) 4.2K (l=305 T)
and (b) 2.0K (l=194 T), normalized to the oscillation amplitude predicted by the Lifshitz–Kosevich formula A0ðxÞ as a function
of the inverse field window Dx for flat, Hahn and Blackman windows, at x=1/38 T and (c) for Blackman window at various x
values. Solid symbols are deduced from experimental data reported in Ref. [9]. Solid lines are obtained from numerical resolutions of
equation (3).
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window, while the Hahn window provides intermediate
behaviour, as widely reported [14–18].

Discrepancy between amplitude AF ðxÞ deduced from
the Fourier analysis within a finite field range 1/xM to 1/xm
and the actual Fourier amplitude A0ðxÞ given by
equation (2) can be evaluated through the ratio
AF ðxÞ=A0ðxÞ, which should be equal to 1. According to
thedata inFigure 2, a strong increase of this ratio is observed
as Dx increases. Furthermore, for a given window width
Dx, it increases as l increases, e.g. by increasing the
temperature, while as the mean magnetic field (1=x)
decreases, it grows staying on the same curve, as reported
in Figure 2c. The most dramatic effect is observed for the
flat window, indicating that smooth windowing is neces-
sary to get amplitudes as reliable as possible since, more
specifically, AF ðxÞ=A0ðxÞ grows as AF ðxÞ=A0ðxÞ≃
sinhðlDx=2Þ=ðlDx=2Þ in this case.

In line with equation (4), the ratio AðxÞ=A0ðxÞ
depends only on the product lDx for a given window
type. Hence, strictly speaking, the Fourier analysis yields
reliable amplitudes for finite Dx in the case of field-
independent signal (l=0) only. Unfavourably, moderate
oscillations of the Fourier amplitude is however observed
for small Dx, in particular for the flat window. It can be
checked that these oscillations are periodic in Dx, their
frequency being just f0, in agreement with equation (A.5).
This feature brings us to consider the influence of the
quantum oscillation frequency on the data. As reported in
Figure 3, the Fourier amplitude AF ðxÞ is dominated by
the monotonous term of equation (A.5), yielding equa-
tions (A.4) and (4), in the case of large-enough frequency
and Dx. In contrast, large oscillations of both the Fourier
amplitude and the frequency of the Fourier peaks (which
is no more equal to f0 in this case) are observed for low
frequencies.

This effect is relevant in the case of slow magnetic
oscillations, such as superconducting iron-based chalco-
genides [3–6] and in semimetal BaNiS2 [20], where
frequencies as low as 37 T are reported. Also, slow
frequency phenomena are present in magnetoresistance
No-p
oscillations of organic conductors [21] or high-Tc super-
conductors [22] due to the mixing of two close frequencies,
the amplitude of which is still in debate [21]. In these cases,
Fourier amplitudes can depend strongly on the windowing
process.

In addition, whereas only the envelope of AF ðxÞ, i.e.
A0ðxÞ, is relevant for the Fourier amplitude at high Dx,
Onsager phase-dependent data are observed in Figure 3
for low frequencies. In short, Dx must be both small
enough to avoid the amplitude overestimation predicted
by equation (A.5) and large enough to avoid the
undulations reported in Figure 3 in this case. As a
consequence, reliable data can hardly been deduced
from the Fourier analysis of low-frequency quantum
oscillations.

Since l depends on temperature, the discrepancy
between the actual and Fourier amplitudes for large Dx
depends on temperature as well. This may lead to a
significant error on the effective mass deduced from
temperature dependence of the amplitude (the so-called
mass plot), as evidenced in Figure 4a, and hence on the
determination of the scattering rate through Dingle plots
as well. As reported in Figure 4b and c, underestimation of
mb by about 30% is obtained for a flat window at
x=1/32 T�1 for Dx=0.026 T�1 (i.e. in the field range
23–56 T). About 50% would be reached at x=1/56 T�1 for
the same Dx value (field range within 32 and 193 T).
Smaller although significant errors are obtained for Hahn
(not shown) and Blackman windows, e.g. 15 and 13%,
respectively, for x=1/32 T�1 and Dx=0.026 T�1.
4 Conclusion

Amplitude of field-dependent quantum oscillations de-
duced from the Fourier analysis is overestimated even
though it is widely used, as reported in the literature.
Analytical formulas accounting for this phenomenon
are discussed in this manuscript. Most dramatic effects
are observed for steep field-dependent amplitudes
3



Fig. 3. Inverse field window width (Dx) dependence of (a), (c) Fourier amplitude and (b), (d) frequency for (a), (b) flat and (c), (d)
Blackman window for various oscillation frequencies f0 and l=305 T. The Onsager phase is f=0 and f=p for solid and dashed lines,
respectively. Black solid line in (a) stands for equation (4).

Fig. 4. (a) Mass plots relevant to the b component of the organic metal u-(ET)4ZnBr4(C6H4Cl2), with effective mass mb=3.44,
deduced from the Fourier analysis for x=1/32 T, in the temperature range 1.5–4.5K. Blue and red symbols are data obtained with
Blackman and flat windows, respectively. Solid squares and circles are data for Dx=0.00093 T�1 and 0.0265 T�1, respectively. Solid
lines are best fits to the Lifshitz–Kosevich formula. For large Dx, both the Fourier amplitude increases and the slope decreases yielding
underestimated effective mass. Such fittings yield data of Figure 4b and c, where the effective mass is plotted versus the inverse field
window width (Dx) and mean inverse field value (x) for (b) Blackman and (c) flat window. At high field (i.e. small x) and large field
window width (Dx), strong underestimation of the effective mass is obtained.
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determined using flat windows with large width. Never-
theless, acceptable discrepancy with actual amplitude is
obtained with Blackman window of moderate width for
high-enough frequencies. In contrast, oscillations with
low frequencies such as that observed in iron-based
chalcogenides superconductors must be considered with
care since Dx must be both small enough to avoid
overestimated amplitude and large enough to avoid
No-p
spurious effects observed coming close to the inverse of
the Raleigh frequency.
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Appendix: Analytical expression of the
Fourier transforms

In general, we can write the window function wðxÞ ¼Pp
n≥ 0 cn cos ½2pnðx� xÞ=Dx�, where p=0, 1, 2 stands for

a flat, Hahn and Blackman window, respectively, and
the condition

Pp
n¼0 cn¼ 1. These coefficients are given

numerically by {c0 ¼ 1}Flat, {c0 ¼ 0:5; c1 ¼ 0:5}Hahn and
{c0 ¼ 0:42; c1 ¼ 0:5; c2¼ 0:08}Blackman. Equations (2) and
(3) lead to

Fðf0;xÞ¼
1

Dx

Xp
n¼0

cn
X
e¼± 1

�
Z xM

xm

A0ðxÞ sin ð2pf0xþ fÞe�2ipf0x�2ipneðx�xÞ=Dxdx
ðA:1Þ

for f = f0, x¼x¼ ðxM þ xmÞ=2 and A0(x)= a0e
�lx.

Writing Fðf0;xÞ ¼
P

ncn
P

e¼± 1Fne in equation (A.1),
one can compute individually Fne, which leads after
integration to

Fne ¼ 2a0e
2ipnex=Dxþif

iDx

� e�lnex
sinhðlneDx=2Þ

lne
� e�Lnex

sinhðLneDx=2Þ
Lne

� �
;

ðA:2Þ

where we have defined lne= l+2ipne/Dx and Lne=
l+4ipf0+ 2ipne/Dx. This expression does not depend
on f up to a global sign, for the values f=0, p.
Assuming f0 ≫ l, only the first term in bracket will
contribute toFne. Since sinh(lneDx/2)= (� 1)nsinh(lDx/2),
one obtains

Fne ≃
2a0e

�lxþif

iDx
ð�1Þn sinhðlDx=2Þ

lþ 2ipne=Dx
: ðA:3Þ

After summing over e, the Fourier transform is finally
equal to

Fðf0;xÞ≃
� iA0ðxÞeif sinhðlDx=2Þ

lDx=2

Xp
n¼0

ð�1Þncn ðlDx=2Þ2
ðlDx=2Þ2 þ p2n2

:

ðA:4Þ
The exact formula is obtained by incorporating the

contribution from the second term of equation (A.2),
involvingLne andwhich induces oscillations as a function of
No-p
x and Dx, with frequency f0

Fðf0;x Þ ¼ � iA0ðxÞeif
X
n≥ 0

ð�1Þncn

sinh ðlDx=2Þ
lDx=2

ðlDx=2Þ2
ðlDx=2Þ2 þ p2n2

� e�4ipf0x

"

cos ð2pf0DxÞ sinh ðlDx=2Þ½
þ i sin ð2pf0DxÞ cosh ðlDx=2Þ�

ðlþ 4ipf0ÞDx=2
{ðlþ 4ipf0ÞDx=2}2 þ p2n2

�
: ðA:5Þ

As Dx goes to zero for finite l in equation (A.4), it yields
the Fourier amplitude jFðf0;xÞj ≃A0ðxÞc0. As a result,
one defines AF ðxÞ ¼ jFðf0;xÞj=c0 in order to normalize
the function with respect to A0ðxÞ in this limit. While
sinh (lDx/2)/(lDx/2) goes to 1 asDx goes to zero, the other
contributions in equation (A.5), which involve oscillatory
terms periodic in Dx with the frequency f0, grow
simultaneously. They are responsible for the oscillatory
behaviour reported in Figures 2 and 3. In particular, in this
limit, if we take into account all the contributions in
equation (A.5), one obtains

lim
Dx!0

Fðf0;xÞ≃ 2c0A0ðxÞeif�2ipf0x sin ð2pf0xÞ: ðA:6Þ

Furthermore, as discussed in Section 2, AF ðxÞ=A0ðxÞ
depends only on l at a given Dx.
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