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Abstract. Mercury is one of the most toxic substances known to humans. It has been introduced into the human environment

and has also been widely used in medicine. Since circumstantial evidence exists that the pathology of Alzheimer’s disease (AD)

might be in part caused or exacerbated by inorganic mercury, we conducted a systematic review using a comprehensive search

strategy. Studies were screened according to a pre­defined protocol. Two reviewers extracted relevant data independent of each

other. One thousand and forty one references were scrutinized, and 106 studies fulfilled the inclusion criteria. Most studies were

case control or comparative cohort studies. Thirty­two studies, out of 40 testing memory in individuals exposed to inorganic

mercury, found significant memory deficits. Some autopsy studies found increased mercury levels in brain tissues of AD patients.

Measurements of mercury levels in blood, urine, hair, nails, and cerebrospinal fluid were inconsistent. In vitro models showed

that inorganic mercury reproduces all pathological changes seen in AD, and in animal models inorganic mercury produced

changes that are similar to those seen in AD. Its high affinity for selenium and selenoproteins suggests that inorganic mercury

may promote neurodegenerative disorders via disruption of redox regulation. Inorganic mercury may play a role as a co­factor

in the development of AD. It may also increase the pathological influence of other metals. Our mechanistic model describes

potential causal pathways. As the single most effective public health primary preventive measure, industrial, and medical usage

of mercury should be eliminated as soon as possible.
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INTRODUCTION

Mercury (hydrargyrium = Hg) is well known as

the most toxic, non­radioactive element, with a well­
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described neurotoxicology [1–4]. There are various
forms of mercury: Organic mercury and inorganic mer­
cury (IM), which includes elemental mercury (Hg◦)
and mercury ions (Hg+ and Hg++). Mercury has been
used by humans since ancient times, when the Chinese
and Romans used mercury sulfide (cinnabar) for red dye
and ink. Widespread use of inorganic mercury started
around 1830, when dental amalgams became popular,
and calomel (mercury chloride) was used as teething
powder in infants [5]. In the early 1900s, the organ­
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ic mercurial ethyl­mercury was synthesized, and has

been used until today as a fungicidal and antimicrobial

agent.

Mercury toxicity arises from several strands: Ele­

mental or metallic mercury (Hgo) is the only metal that

is liquid at room temperature and can evaporate quick­

ly. As mercury vapor, it is taken up via the lungs, and

80% of it is absorbed. Due to its uncharged mono­

atomic form, it is highly diffusible and lipid soluble.

It crosses the blood­brain barrier easily, as well as the

lipid bilayers of cells and cell organelles, such as mi­

tochondria. Mercury vapor also penetrates the mucosa

and connective tissue of the oral or nasal cavities and

may be transported into nerve cells [6–8]. Intracellu­

larly, it is oxidized from its comparatively inactive Hg◦

state to its ionic form, Hg++. This mercuric ion reacts

immediately with intracellular molecules or structures

(e.g., enzymes, glutathione, tubulin, ion channels, or

transporters), inhibiting their activities and interfering

with normal cellular function.

Very low levels (180 nM) of Hg++ decrease glu­

tathione levels (GSH) and increase oxidative and ni­

trosative stress, which may lead to cytotoxicity [9]. The

extraordinarily high affinity of Hg++ for selenium, and

selenoproteins (dissociation constant = 10−45) [10]

can disrupt cellular redox balance [11,12], especially in

the brain, which uniquely depends upon selenoenzymes

for antioxidant protection and hence selenium [13,14].

The role of extracellular thiol groups for the transport

and absorption of organic mercurials is well described

for methylmercury [15], but for IM, their role as a vec­

tor is still under discussion. When bound to a thi­

ol group (e.g., cysteine) methylmercury can cross the

blood brain barrier easily and is transported into glial

cells and neurons using molecular mimicry [16], where

it is converted to IM. Due to its charge it is less able

to cross cell membranes and can be trapped in cells

and held within the brain. Further, IM has a very high

affinity for thiol groups and forms strong bonds with

them, giving rise to the term “mercaptans” [15,17,18].

The brain is the major target organ for elemen­

tal, gaseous Hgo. The half­life of mercury in the

brain is unclear. Modeling mercury deposition in the

brain using autopsy data of traffic victims and intake

streams through food yielded a half­life estimate of 22

years [19], and autopsies of proven clinical cases of

Hgo poisoning have found high mercury levels in the

brain as long as 17 years after the event [20,21].

In contrast, the half­life of mercury in the body is

around 30 to 60 days [22]. IM binding to seleni­

um is almost irreversible and contributes to its long­

term brain retention [23,24]. Mercury from gaseous

sources, such as coal burning, and from human activ­

ities through waste water, is accumulated in the food

chain, and comes back to humans mainly via fish as

methyl­mercury. Methyl­mercury is also transported

via the bloodstream to the brain, where it is again con­

verted to IM. Administration of oral methyl­mercury to

non­human primates yielded a plasma clearance half­

life of 21 days, while the half­life for clearance of IM

from the brain was too slow to be estimated (> 120

days) during a 28 day washout period [25]. IM outside

of the brain is accumulated in the kidneys, and is slowly

excreted.

The potential role for mercury toxicity in Alzheimer’s

disease (AD) stems from (i) the relevance of the gaseous

phase of elemental mercury for the brain with (ii) sub­

sequent transformation to ionic mercury, and (iii) the

conversion of methyl­mercury to inorganic mercury

(Hg++) in the brain. Humans take in about 2.4 µg

of organic mercury per week, if consuming one fish

meal per week, 2.3 µg of which is retained [22]. The

main source for the intake of Hgo are dental amalgam

fillings [22]. Such fillings consist of 50% of mercury,

which evaporates at a slow rate,but is released at a high­

er rate, when the fillings are put in place or removed.

From this source, and other, less common ones, 1.2 to

27.0 µg of Hgo are taken up per day, and 1.0 to 22.0 µg

of Hgo are retained. Other variable factors of mercury

release include the number, age, and size of the fillings,

the presence of dental alloys, individual chewing habits

and drinking hot liquids, as well as bruxism.

AD, first described in 1907, is one of the major forms

of dementia, with about 15–50% of over 80 year old

elderly being affected [26–34]. Currently about 24 mil­

lion people worldwide suffer from dementia, with the

numbers projected to double every 20 years [29], and

by 2050 nearly 1 in 45 Americans are predicted to suffer

from AD [35]. Since the population of most countries

is aging, the problem will continue to increase. As of

1998, the lifetime risk of a 55 year old healthy woman

developing dementia was 33% compared to 16% for

men [27].

Clinically, AD reveals itself through increasing cog­

nitive decline, impaired attention and short­term mem­

ory, and, at later stages, other forms of cognitive in­

competence, such as impaired language, face recogni­

tion, spatial orientation, and hearing. Pathologically,

this is thought to result from a gradual build up of amy­

loid plaques that form as a consequence of amyloid­β

(Aβ) being produced at a higher rate than can be re­

moved [36]. Amyloid plaques induce inflammation and
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free oxygen radical production,which eventually yields
a self­reinforcing cycle of neuroinflammation, neu­
rodegeneration, and further inflammation. A second,
apparently independent process, involves hyperphos­
phorylation of the tau­protein, which leads to a break­
down of microtubules and the neuronal cytoskeleton.
Accumulating neurofibrillary tangles (NFT) promote
neuroinflammation and reinforce the cycle [37]. Both
these processes play a pathological role in the causa­
tion of AD [38], potentially exacerbated by deficient
micro­vascularization in the brain [31,39].

The degeneration process starts in the entorhinal cor­
tex and the basal ganglia, especially in the nucleus
basalis Meynert, spreads to the hippocampus, and even­
tually affects other parts of the cortex as well. Due to
the loss of neurons of the projective cholinergic system,
brain cognitive functions such as short term memory
are the first to be noticeably affected.

At present, we do not know what causes AD. Sev­
eral genetic factors contributing to AD have been re­
vealed [36,40], however, no clear­cut genetic cause has
been isolated. Apolipoprotein E (ApoE) genotype is a
consistent risk factor [41–46], and the ε4 genotype con­
fers up to a 15­fold risk relative to the ε3 genotype [47,
48], which is the most widely distributed, whereas the
ε2 genotype is protective. However, it is not entire­
ly clear, how this risk can be fitted within a mecha­
nistic model. ApoE is a transporter protein that may
also operate as a free­radical scavenger. It is impor­
tant to notice here that all three ApoE forms consist
of 299 amino­acids, and the only differences are that
ApoE ε4 has an arginine in position 112 and 158, where
ApoE ε2 has two cysteines, and ApoE ε3 one argi­
nine and one cysteine [49]. Interestingly, cysteine con­
tains a sulfhydryl, which is capable of binding metals,
especially bivalent metals such as lead, copper, zinc,
and mercury. This has led to the hypothesis that the
well­known differential genetic epidemiology of ApoE
might have to do in part with the differential detoxifi­
cation capacity regarding mercury [50], and potentially
other metals as well. The ApoE lipoprotein complex
is taken up into neurons via the ApoER2 receptor. Se­
lenoprotein P (SelP), which provides selenium for se­
lenoprotein synthesis, is also taken up by ApoER2 [51].
Differential competition for uptake between ApoE iso­
forms and SelP might therefore affect selenoprotein
status and vulnerability to oxidative stress. Notably,
SelP is physically associated with both Aβ plaques and
NFTs in the AD brain [52], further suggesting a role
for impaired selenoprotein function in AD pathology.

Because of the potential relevance of mercury as a
causal factor for initiating AD, we set out to system­

atically review the literature. Because of the apparent

special relevance of IM, we restricted our review to this

form of mercury. Other forms of mercury toxicity, such

as ethylmercury added as a preservative to vaccines, or

methylmercury from fish, or the presence of other met­

als, like aluminum or lead, may synergistically enhance

IM toxicity. This will be reviewed separately.

METHODS

We aimed at capturing all relevant papers that con­

tained the semantic fields of “Alzheimer”, “mercury”

and “neurotoxic”, limiting them to IM, using the strat­

egy most appropriate for each database. We searched

the following databases: EMBASE (Excerpta Medi­

ca); HSDB (Hazardous Substances Data Base); XTOX­

LINE; MEDLINE; Biosis; Science Citation Index;

Publisher databases of Kluwer, Springer, Thieme from

their start date to 2006.

Since each database has a different structure and the

thesaurus available differs among them, we devised

a new search strategy for each one. A full report,

containing each strategy in detail, can be obtained from

the authors [53]. An example of the Medline search

strategy is reproduced in Table 1.

We included studies using any type of research de­

sign and any type of work relevant to the topic of

this review. We excluded studies that were published

in a language other than German or English and that

were irrelevant for this topic. All titles and abstracts

of the references that were retrieved were scrutinized

by two independent reviewers, and original papers re­

trieved. For each paper whose inclusion was not imme­

diately clear, two reviewers discussed the inclusion and

reached consensus in all cases. Reference lists of all

included papers were hand searched for more relevant

articles, again by two independent reviewers.

Duplicates were eliminated. References fulfilling

inclusion criteria were checked as full papers, for in­

clusion by two independent reviewers. All articles

were coded for their potential internal validity follow­

ing the procedures adopted by Dettenkofer and col­

leagues [54]. Other types of publications were coded

as animal experiments or in vitro experiments. Cod­

ing was done by two independent reviewers, and in

case of differing opinion a third reviewer’s opinion was

heard. Controlled studies used, as a rule, unaffected

controls that were normally matched for age and gen­

der, unless specified otherwise. Trace metal detection

followed the state of the art of the time and used mostly



360 J. Mutter et al. / Inorganic Mercury and Alzheimer’s Disease

Table 1

Example search profile: Medline

# Search history Results

1 exp Mercury Poisoning/ 3067

2 exp Mercury Compounds/ 1883

3 Mercury/ 11760

4 Dental Amalgam/ 6745

5 amalgam$.ti. 4408
6 mercur$.ti. 9274

7 (mercury or mercuy).rw. 12909

8 or/1­7 mercury, amalgam 22355

9 exp Organomercury Compounds/ 8757

10 dementia/ or alzheimer disease/ or tauopathies/ 45869

11 tau Proteins/ 2905

12 exp Neurofibrils/ 3680

13 exp Axons/ 38597
14 exp Cytoplasmic Streaming/ 6597

15 exp Nerve Degeneration/ 14016

16 neurotoxicity syndromes/ or exp mercury poisoning, nervous system/ 612

17 (neurotoxic$ or neuro toxic$ or neurodegenerati$ or neuro degenerati$ or neuropatholog$

or neuro patholog$ or neurophysiolog$ or neuro physiolog$).ti.

14556

18 or/10­17 Alzheimer, neurotoxicity 113817

19 (organic adj2 mercur$).tw. 644
20 (organomercur$ or organo mercur$).tw. 490

21 (methylmercur$ or methyl mercur$ or phenylmercur$ or phenyl mercur$ or ethylmercur$

or ethyl mercur$ or aethylmercur$ or aethyl mercur$).tw.

3173

22 Mehg.tw. 507

23 or/19­22 4042

24 9 or 23 organic merury 10063

25 8 not 24 Exclude organic mercury 18828

26 18 and 25 272
27 (dement$ or alzheimer$).ti. important notions in title 32100

28 (17 or 27) and (5 or 6) important notions in title 73

29 28 not 24 exclude organic mercury 42

30 26 or 29 (combine notions in title and MeSH, specific search) 272

31 exp Nervous System Diseases/ci, pa, pp, et [Chemically Induced, Pathology, Physiopathol­

ogy, Etiology]

537567

32 exp Nervous System/pa, ch, pp, de [Pathology, Chemistry, Physiopathology, Drug Effects] 380626

33 31 or 32 broader search with MeSH tree

nervous system and nervous system diseases

793625

34 33 and 25 combine broader MeSH­trees withmercury 765

35 exp *Nervous System Diseases/ci, pa, pp, et specific:

focussing on broader MeSH­Tree

277713

36 exp *Nervous System/pa, ch, pp, de more specific:

focussing on broader MeSH­Tree

169402

37 35 or 36 405919
38 37 and 25 combine broad MeSH­Trees (focus) with mercury 438

39 exp case­control studies/ Nr. 39­66: search study designs 234292

40 exp Cohort studies/ 466831

41 Cross­sectional studies/ 47823

42 exp risk/ 333093

43 Odds ratio/ 18629

44 exp epidemiologic factors/ 570299

45 or/39­44 1220586
46 et.fs. 1286714

47 ep.fs. 538694

48 ge.fs. 1159441

49 pc.fs. 518779

50 ae.fs. 782299

51 po.fs. 43531
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Table 1, continued

# Search history Results

52 to.fs. 174881

53 ci.fs. 323514

54 or/46­53 3806275
55 et.xs. 4024450

56 54 or 55 4947481

57 cohort$.tw. 60478

58 case control$.tw. 25716

59 case comparison.tw. 255

60 case referent.tw. 458

61 risk$.tw. 449172
62 (causation$ or causal$).tw. 28325

63 Odds ratio$.tw. 32567

64 (etiol$ or aetiol$).tw. 117475

65 or/57­64 627662

66 45 or 56 or 65 5574948

67 30 and 66 (specific MeSHs and study designs) 223

68 38 and 66 (Focus MeSH­Tree and study design, more spezific search) 361

69 34 and 66 (MeSH­Tree and study design, sensitive search ) 608
70 (letter or editorial or comment).pt. 690654

71 Case Report/ 1096485

72 70 or 71 publication types from 70 und 71 1688674

73 67 not 72 exclude these publication types from 70 and 71(specific MeSHs) (163) (1 twice → 162)

74 68 not 72 exclude publication types from 70 and 71 (MeSH Focus) 282

75 69 not 72 exclude publication types from 70 and 71 (broad MeSH) 478

76 74 not 73 (Focus MeSH without specific MeSHs) 206

77 76 or 73 369
78 75 not 77 (final MeSHs without specific and focus) 150

79 73 or 76 or 78 518

Same strategy – locating reviews

80 Review.pt. 961226

81 79 and 80 Reviews (all languages, all articles)) 72

82 79 not 81 all articles, without reviews (all languages) 448

83 limit 82 to (german or english) limit articles to German and English 342 (1 in duplicate)

cold vapor fluorescence spectroscopy and instrumental

neutron activation analysis.

Because of the extremely heterogeneous nature of

the material, we present it in a condensed form and
conduct a simple vote count, following the conclusions

of the authors.

RESULTS

Out of the 158 studies deemed potentially relevant,

86 were included after in­depth scrutiny (precision =
86/1041 = 0.082). Further checks of reference lists

uncovered another 22 relevant studies. An updated
search after one year produced another study. Out of

these, 15 were only available as abstracts. One study

was published twice. Further, 18 of these studies were

reviews and were excluded, making the full sample 88
studies (see Fig. 1). A summary of findings is presented

in Table 2.

One of the studies was a meta­analysis [55]. Out of

44 studies on documented mercury exposure in workers

the analysis synthesized 12 formally and quantitatively.

Typical controls consisted in age and gender matched

healthy individuals. The effect­sizes for attention mea­
sures and memory measures were significant and in

the medium range (effect size g [according to Hedges
and Olkin [56], a more conservative estimate of a stan­

dardized mean difference than the more widely used

Cohen’s d] = −0.46 for attention and g = −0.40 for
memory) when exposed and non­exposed groups were

compared. Exposed individuals excreted between 18 to

34 µg Hg/g creatinine on average in urine. There was
a dose­response relationship between mercury expo­

sure and decrease in performance measures. All of the

studies included in the meta­analysis are also primary
studies in the present review.

Mercury exposure in workers

Studies on current exposure of workers to mer­
cury [57–69] were mostly conducted on workers in in­

dustry (chlorine­alkaline factories, thermometer facto­

ries, mercury extraction plants), and in one case on gold
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Fig. 1. Flow diagram of study inclusion.

miners in the Philippines who use large amounts of mer­

cury without any protection [59]. Correlations between
the amount of Hg excreted in urine and measures of

cognitive abilities (memory tests, attention span) were

always significant and negative, i.e., the more mercury
excreted the worse the test results. Although all studies

except one had control groups, the differences between

exposed and control groups were not always significant
and clear­cut. The Mt. Diwata Study [59] might give

a hint as to why: although there was a significant cor­

relation between mercury excretion and clinical symp­

toms, as well as test results, and although the workers
were clearly exposed to large amounts of mercury, the

correlations were moderate and showed great variation

across individuals. Some individuals showed severe
clinical signs of mercurialism, but excreted hardly any

mercury, whereas others excreted much more, but had

fewer clinical problems. Also, the control group living
downstream by the sea showed little difference in ex­

cretion rates compared to the mercury exposed group.

It is very likely, the authors concluded, that depending

on individual factors mercury might be excreted at dif­
ferent rates and captured in body compartments for a

long time, making urinary excretion of mercury a very

unreliable marker both of mercury load and of clinical
significance.

Studies on past exposures to high doses of mercury

spanned times between five and 30 years after the ex­

posure. Five of these studies were on groups of work­
ers after their exposure, four were case histories. Four
studies [70–73] show evidence that workers exposed
to mercury 5 to 18 years previously still had signif­
icantly worse results in neurological tests and clini­
cal symptoms than those without significant exposure,
even though one study had excluded all neurologically
and psychiatrically ill persons. The study that found
no significant differences [74] investigated workers 30
years after exposure. Although differences from con­
trols were not significant, clinical signs such as tremor
and lack of coordination were documented in exposed
workers only.

Dentists and their staff are professionally exposed
to low doses of mercury long term. All studies found
significant correlations between level of mercury in
blood, urine, nails, hairs, or air, and results for the tests
used in the respective studies (neurological, psycholog­
ical, or both) [75–83]. One study found more physi­
cal and psychological symptoms in dentists and their
personnel than in controls [84], and one single­group
cross­sectional study found moderate to severe devia­
tions from norm results of a standardized neuropsycho­
logical test­battery (memory, attention, language tasks,
visuo­spatial capacity) in 17% of the tested persons and
one standard­deviation from population norms for the
group as a whole [85]. One study that used sodium­2,3­
dimercapto­propane­1­sulfonate (DMPS) found better
correlations of symptoms and test results with mercury
burden after the application of this chelating agent,
which points to the fact that mercury can be trapped
in body compartments [86]. Blood mercury levels and
mini­mental state examinations (a standard examina­
tion to quickly assess cognitive functioning) do not al­
ways correlate, as can be seen in one general population
study on low level exposure [87].

Health effects of dental amalgams

Studies on health effects in persons with amalgams
have been largely negative [88–93]. The only study
showing effects involved a young sample (mean age
22.4 and 23.3 years respectively), where the control
group had never had any exposure to amalgam [94].
There was a positive correlation between number of
fillings and mercury excretion in urine and hair, as well
as with forgetfulness and symptoms. All other studies
in this section investigated older people. Patients with
no teeth left, usually the older ones, often did worse
than those with teeth and amalgams. Clearly, with­
out detailed knowledge of the previous history of den­
tal treatment regarding actual mercury exposure it is
difficult to draw any conclusions from such studies.
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Mercury exposure, accumulation, and excretion in AD

patients

AD patients are an obvious choice for studies of po­

tential long term effects of mercury exposures. In a

prospective cohort study there was a negative correla­

tion between mercury content in nails and age or pro­

gression of dementia, respectively [95]. Since mercury

content in nails reflects the mercury load over the past

few weeks and its excretion, this finding means that

more severely demented people do not excrete as much

mercury as less severely ill patients. This might be due

to the fact that their body is less able to excrete mercury,

or mercury has been excreted earlier on, or perhaps a

reduction in the proportion of mercury distributed to the

periphery versus the brain with AD progression. Alter­

natively, this finding could indeed suggest that higher

levels of mercury protect against severe AD, although

this possibility is counter­intuitive.

A cross­sectional controlled study found differences:

significantly more Hg in plasma and non­significantly

more in cerebrospinal fluid of AD patients [96]. In a

series of small studies there was more Hg excretion in

urine of AD patients than in age­matched controls, and

less Hg in blood of AD patients. These findings were,

however, not significant due to the small sample size

of nine patients only [97]. A retrospective cohort study

found a probable exposure to mercury in 4.1% of 170

patients with AD and 2.4% likely exposure in controls,

but the results relied upon retrospective recall by rela­

tives [98]. One study found a non­significantly differ­

ent higher amount of Hg in hair of ill patients compared

with controls [99], while another found that the number

of amalgam fillings was not different in 66 AD patients

compared to controls [100]. AD patients had higher

blood mercury levels in one study,which was correlated

with higher Aβ levels in cerebrospinal fluid [101]. Four

of nine autopsy studies document various changes in

AD brains that are suggestive of mercury effects: One

study treated brains of control persons with an EDTA­

mercury complex and found that the interaction of GTP

with β­tubulin was compromised similar to what they

saw in AD brains [102].

Another study found significantly more mercury in

81 brain samples of 14 AD patients compared with

age­matched controls, and more mercury in grey mat­

ter of AD brains compared with white matter. Mer­

cury accumulated in the cerebellum, thalamus, puta­

men, and in the upper parietal and occipital lobes of

AD patients’ brains [103]. Thompson and colleagues

found significantly higher mercury levels in the amyg­

dala, the nucleus basalis Meynert and non­significantly

higher levels in the hippocampus of 14 AD patients
compared with age­matched controls [104], while an­
other study found significantly higher mercury levels in

microsomes from AD brains [105]. One study reported
higher mercury levels in brains and lower mercury lev­
els in nails of 3 AD patients compared to 10 controls but

due to the small patient number cannot be considered
conclusive [106]. Four studies found either no signifi­
cant differences or slightly and non­significantly lower

levels in AD brains compared with controls [107–110].

Experimental animal and in vitro studies

Eight animal studies were included. Five of them
showed that in rats which had been exposed to mer­
cury vapors, mercury content of brain tissue was high­

er than in controls [111–115]. In one study where
rats took up Hg++ with food, GTP­tubulin interac­
tions were observed that were similar to those known

from AD brains [116]. Two studies found that Purkinje
cells of the cerebellum were specifically prone to ac­
cumulate mercury after exposure of the animals [117,

118], while another one documented the inhibition of
ADP­ribosylation in vitro and in vivo [119]. ADP­
ribosylation inhibits tubulin polymerization and leads
to depolymerization of microfilaments [120]. The lat­

ter finding is interesting in so far as ADP­ribosylation
is an important DNA repair mechanism that is activated
under conditions of oxidative stress which is normally

found to be enhanced in AD patients [121].
In vitro studies produced the following results:

Mercury interferes with polymerization of micro­

tubules [122,123], increases secretion of both 1–40
and 1–42 forms of Aβ and promotes hyperphospho­
rylation of tau protein [9,124–127], changes mito­

chondrial structure inducing a stress­response in astro­
cytes [128], and interferes with cell­maturation [129]
or other aspects of cell functioning, such as DNA re­

pair, glutathione level, or linkage and structure of mi­
crotubules [119,130,131]. Mercury disturbs the inter­
action between tubulin and GTP [132], and the chelator

DMSA can reverse this process [133], while amalgam
exposure is toxic for nerve cells in vitro [134]. Mercury
interferes with membrane structures, leading to axonal
degeneration and neurofibrillary aggregates [135].

DISCUSSION

This systematic review produced a mixed and para­

doxical picture: Experimental studies in animals and in
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vitro systems not only confirmed the well­known toxi­

cology of mercury, but also reproduced the pathologi­

cal signs of AD quite accurately and without any neg­

ative results: hyperphosphorylation of tau protein, the

degeneration of microtubules, and the increased forma­

tion of Aβ protein. Animal studies also confirmed that

mercury vapor, inhaled in low doses, accumulates in

the brain.

Human studies, however, do not parallel this clear

picture. Studies of exposed workers demonstrate quite

clearly that continuous contact with mercury as an oc­

cupational hazard leads to effects on memory, atten­

tion and produces a variety of symptoms. Some of

them, such as memory and attention deficits are rele­

vant to AD, others, like sleep disturbance, mood swings

or pain are rather non­specific. A meta­analysis con­

firms significant effect sizes, but they are only medium

sized. Autopsy studies speak a mixed language: while

some find more mercury content in brain tissues of AD

patients, some do not. Some of the autopsy studies

are fraught with potential problems: gross averaging

of mercury content across large brain areas, long lags

between autopsy and measurement, not taking into ac­

count the volatile nature of Hg. This may decrease Hg

values in specimens through deposition of Hg in plastic

test tubes over several months as described by Hock and

colleagues [101]. In addition, the lack of staging of AD

brains makes it impossible to draw firm conclusions

especially from the studies reporting no effects.

Quite naturally, there is a lack of good evidence for

our study question in human studies. Experimentation

is prohibited for obvious ethical reasons, and evidence

has to come from indirect sources. Exposure to high

and low doses of mercury through the workplace has

unequivocally led to neuropsychological deficits, both

in workers (high doses) and in dental personnel (low

dose exposure). The question not answered by our da­

ta is whether such mild cognitive deficits in attention

and memory will transition into dementias. This ques­

tion could only be answered by large longitudinal stud­

ies which do not exist. However, we do know from

autopsy studies that brains of deceased persons with­

out any clinical signs of dementia show pathological

symptoms of degeneration pathognomic for AD at later

stages [136], making it quite plausible that a patholog­

ical process might start many years before it manifests

clinically as AD. Hence, it would be crucial to study

larger cohorts of exposed persons longitudinally.

Epidemiological studies that have correlated the in­

cidence of dementia with dental status have in gen­

eral been unable to find any evidence for such a cor­

relation, and these negative findings are normally cit­
ed in support of the lack of harmful effects of amal­
gams. Most of these studies have investigated cohorts
that were comparatively old and have used the present
count of amalgam fillings to estimate the mercury load
across a lifespan. None of these studies has taken into
account the fact that most people who do not have teeth
any longer at old age or who have dental repairs other
than amalgam will have had amalgams in their teeth
at previous times. This might explain the counterintu­
itive findings of some studies that many amalgam fill­
ings correlate with better cognitive status: those with
less fillings at present were likely to have had more
earlier and thus have a higher likelihood of mercury
accumulation in their lifetime and hence have a worse
cognitive status at the time of measurements, when no
fillings were present any longer, giving persons with
“more amalgam fillings” a spurious benefit over those
with “no or less amalgam fillings” [137,138]. Strictly
speaking, such studies should not even be considered
to bring clarity to the debate, since they are of doubt­
ful methodological quality. However, since they are
among the most cited ones we thought it is important
to include these studies in the current review and qual­
ify their validity. Indeed, the only study in our sample
that had a completely amalgam free control showed ef­
fects: there was more excretion of mercury in urine and
hair directly related to the number of fillings and more
symptoms, including forgetfulness, in those exposed to
amalgam compared to amalgam free controls. Howev­
er, since the individuals in that study were rather young
and no longitudinal data exist, this can only be taken
as a hint. Longitudinal studies of cohorts completely
free of amalgams compared with cases with amalgams
would be a way of answering the question conclusively.
These studies do not exist.

The findings of this review, thus, are paradoxical
and pose a challenge: experimental data from animal
research and in vitro studies strongly suggest an in­
fluence of inorganic mercury on the nervous system,
but epidemiological and other studies suggest a much
weaker relationship. It is likely that two processes play
a modifying role here: Humans may be differentially
susceptible to mercury toxicity, as compared to other
species, and some individuals might be better able to
chelate and detoxify mercury than others, reducing the
strength of correlations between mercury exposure and
AD.

A mechanistic model of mercury toxicity

Genetic risk factors for AD can provide the basis for
differential susceptibility to the neurotoxic effects of
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mercury, particularly since genetic variation is robust

among humans, as compared to inbred laboratory ani­

mals. Thus the influence of any single factor in a mul­

tifactorial disorder such as AD is dependent upon the

presence of other factors. For an environmental factor

such as mercury, the extent of genetic loading, as well

as the presence of other environmental factors, will de­

termine the magnitude of its contribution. Indeed, in

the absence of genetic risk factors, exposure to an envi­

ronmental factor may not cause disease. In other words,

an environmental stressor can reveal genetic limitations

which otherwise might not be associated with patho­

logical consequences. In the case of AD, age­related

metabolic changes undoubtedly enhance risk, and mer­

cury’s high affinity for selenoproteins and thiols makes

redox and methylation metabolism especially promi­

nent targets for its toxicity [10–12,24,139].

The ability to maintain a homeostatic balance be­

tween reduction and oxidation (i.e., redox equilibrium)

is essential for all cells, and the ability of selenium

and sulphur to reversibly transfer electrons makes them

ideal for redox buffering. This role is particularly im­

portant in the brain, since CSF levels of cysteine, the

limiting material for glutathione synthesis, are more

than 100­fold lower than in plasma [140], while oxygen

consumption is disproportionately higher. To meet this

higher demand for antioxidant, selenoproteins, such as

thioredoxin reductases and glutathione peroxidases and

SelP, play a more prominent role in the brain [13,14],

and mechanisms have evolved to assure an adequate

selenium supply to the brain, even when other tissues

are depleted [14,141]. Selenoprotein mRNAs contain

one or more UGA codons, which normally terminate

translation but in the presence of a selenocysteine inser­

tion sequence (SECIS) they effect direct incorporation

of a selenocysteine into the nascent peptide chain. Se­

lenocysteine tRNA is initially loaded with serine which

is subsequently converted to a selenocysteine in a reac­

tion with activated selenide (SeP) [142]. Mercury’s ex­

tremely high affinity for selenium can potentially cause

a functional selenium deficiency in the brain, interfer­

ing with its critical role in maintaining redox equilibri­

um.

SelP contains ten selenocysteine residues and is con­

sidered to be the primary source of selenium for cel­

lular synthesis of other selenoproteins, which typical­

ly contain only a single selenocysteine in their ac­

tive site [143]. SelP forms higher order multimeric

complexes with inorganic mercury and free selenium,

and, although it has 10 selenocysteines, and 17 cys­

teine residues, it has been estimated that a single SelP

molecule can bind more than 100 molecules of mer­

cury [144]. Thus SelP not only serves as a selenium

reservoir to support selenoprotein synthesis, but may

also function as a high­affinity binding site for mercury,

protecting other selenoproteins from its toxic effect.

In the brain, a remarkably high level of SelP is found

in ependymal cells [145], whose asymmetric division

gives rise to neural stem cells in the subventricular

zone and subgranular layer [146,147]. Accordingly,

ependymal cells have the highest level of glutathione,

more than 10­fold higher than neurons, and 3­fold high­

er than astrocytes [148]. Mercury potently interferes

with neural stem cell development [149,150], which

could contribute to reduced cortical and hippocampal

neuronal density in AD. SelP gene expression in hu­

man brain increases with age [151], and its expression

level is higher in AD patients [152]. Moreover, SelP

is preferentially associated with amyloid plaques and

NFTs [52], which may limit its utilization for synthesis

of other selenoproteins.

Neurons take up SelP via the lipoprotein receptor

ApoER2 [51], suggesting that the adequacy of selenium

supply to the cell might be related to the differential

competition between variant forms of ApoE and SelP.

Indeed, in a Chinese cohort, carriers of the ApoE4 allele

had significantly lower selenium levels, as measured in

nail samples [153]. ApoER2 also mediates signalling

by reelin, which guides neural migration into layers

of the cortex and promotes synaptic memory [154].

Increased levels of Aβ or low levels of SelP impair

synaptic memory, which can be offset by increased

reelin [155]. Thus ApoER2 is a critical nexus, at which

the roles of SelP, ApoE, and Aβ are integrated, linking

ApoE4 to selenium status.

Elevated plasma levels of homocysteine (HCY) in

AD have been reported in numerous studies, as con­

firmed by a systematic review [156], and the rate of

cognitive decline is related to the extent of HCY el­

evation [157]. Formed during methylation reactions,

HCY is converted to methionine by the vitamin B12

and methyl­folate­dependent enzyme methionine syn­

thase, which is highly sensitive to cellular redox sta­

tus and is potently inhibited by mercury in cultured

human neuronal cells [158] at levels found in post­

mortem brain [159]. Plasma levels of B12 and fo­

late are lower in AD patients [160–162], and a genetic

polymorphism in methionine synthase (MTR 2756 C

> G) has been associated with AD in several [163–165]

but not all [166,167] studies. Similarly, genetic vari­

ants of methylenetetrahydrofolate reductase (MTHFR),

which provides methylfolate for methionine synthase,
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have been linked to AD in some studies [168–172],

including a meta­analysis [173]. Lower methionine

synthase activity increases levels of both HCY and S­

adenosylhomocysteine (SAH), a general inhibitor of

methylation, while lowering the level of the methyl

donor S­adenosylmethionine (SAM). Lower SAM lev­

els in CSF and brain of AD subjects have been reported

by most [174–176], but not all [177] studies. The com­

bined influence of lower SAM and higher SAH dramat­

ically inhibits methylation reactions and the value of

SAM/SAH is correlated with CSF levels of phospho­

rylated tau [178].

We recently found a progressive decrease in methio­

nine synthase mRNA levels in human cortex across the

lifespan, amounting to more than several hundred­fold

Muratore et al., unpublished observotion. Since low­

er methionine synthase activity increases diversion of

HCY toward glutathione synthesis [179], this remark­

able decrease appears to be an adaptive response to

increased antioxidant demand with age, and implies

that methylation capacity gradually decreases with age.

Taken together, the above findings suggest that genetic

variations affecting methylation metabolism may con­

tribute to differential mercury susceptibility, and that

impaired methylation may account for some of mer­

cury’s neurotoxic actions, particularly in aged individ­

uals.

The mechanism linking impaired methionine syn­

thase activity to the primary pathological features of

AD has been greatly illuminated by recent studies de­

tailing the regulation of protein phosphatase 2A (PP2A)

by methylation [180–183]. PP2A is responsible for

de­phosphorylation of tau and a decrease in its activi­

ty leads to tau hyperphosphorylation and formation of

NFTs. Methylation of the catalytic subunit of PP2A,

increases its activity and decreases tau phosphoryla­

tion, while folate­deficiency, which lowers methionine

synthase activity, has the opposite effect [184]. Re­

duced PP2A activity also increases Aβ production, so

impaired methylation can contribute to both NFTs and

amyloid plaque formation [182].

An integration of the foregoing metabolic relation­

ships is provided in Fig. 2. In summary, mercury’s

high affinity for selenium, and for SelP in particular,

disrupts redox regulation, which inactivates methion­

ine synthase, increasing HCY and SAH while lower­

ing SAM levels. The resultant decrease in methylation

of PP2A can promote tau hyperphosphorylation and

Aβ secretion. Accumulation of Aβ can interfere with

ApoER2­mediated SelP uptake, further limiting sele­

nium availability and creating a self­reinforcing patho­

Fig. 2. Mechanistic summary of mercury actions in relation to

the primary pathological features of AD. Formation of both Abe­

ta­containing amyloid plaques and tau­containing neurofibrillary tan­

gles is promoted by phosphorylation, which can be decreased by the
protein phosphatase 2A (PP2A). PP2A activity is enhanced by its

methylation, which is in turn dependent upon the ratio of SAM to

SAH and the activity of methionine synthase, which is highly redox

sensitive. During oxidative stress, methylation of PP2A is decreased

favoring accumulation of hyperphosphorylate d tau and phosphory­

lated amyloid precursor protein­β (APPβ). Selenoproteins, includ­

ing selenoprotein P (SelP), thioredoxin reductases (TrxR) and glu­
tathione peroxidases (GPx), are critical for maintaining normal redox

status in the brain, including adequate levels of reduced glutathione

(GSH). SelP, the major source of intracellular selenium for synthesis

of selenoproteins, is taken up via the apolipoprotein E receptor­2

(ApoER2), which also traffics ApoE and Reelin. Binding of SelP

to amyloid plaques and neurofibrillary tangles may restrict selenium

availability for selenoprotein synthesis, thereby promoting oxidative

stress. The exceptionally high affinity of mercury for selenocys­
teine causes an essentially irreversible inhibition of selenoproteins,

increasing oxidative stress and inhibiting the activity of methionine

synthase, resulting in lower PP2A activity. By virtue of its high

capacity for binding mercury, SelP, including SelP bound to amyloid

plaques and neurofibrillary tangles, may partially protect other se­

lenoproteins. Accumulation of mercury in the brain, in excess of the

ability of SelP to fully buffer its toxicity, can therefore contribute to

oxidative stress and apoptosis in AD.

logical cycle. The normal age­related decrease in me­

thionine synthase causes this cycle to emerge in later

life, particularly in the presence of genetic risk factors

affecting redox buffering or methylation status. More­

over, we propose that the contributory role of accumu­

lated mercury to AD disease depends upon these same

genetic risk factors.

Our review of the literature has identified serious

knowledge gaps: No solid longitudinal evidence exists,

linking mercury toxicity with AD. At the moment, the

evidence consists of pieces of the puzzle that are co­

herent and suggestive, but not absolutely compelling.

Long­term studies are needed that could predict a tran­
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sition from early stages of cognitive impairment to full­

blown dementia as a function of mercury load through

amalgams and other sources. However, individual dif­

ferences in detoxification capacity and genetic vulnera­

bility make this a daunting task. We hope that the mech­

anistic relationships outlined above provide a molecu­

lar framework which can help to clarify the relationship

between mercury and AD.

The situation, it seems to us, is comparable to the

status of knowledge in the 1970s regarding the rela­

tionship between smoking and cancer. There was some

experimental evidence. There was a little epidemiolog­

ical data. However, based on methodological dogma,

a lot of the epidemiological evidence was dismissed.

It was an uphill battle, mainly against strong econom­

ic interests, to make the public aware of the dangers

and it took more than 20 years to transform knowledge

into legislation and behavior. We have a very similar

situation nowadays regarding the relationship between

mercury and AD (and potentially other neurological

diseases) [185–189]. The evidence is highly sugges­

tive, but some links are missing. Inertia and econom­

ic interests due to the potential cost of litigation are

drivers for maintaining the status quo, whereas the dan­

ger of inactivity and the huge costs of dementia care

for public health urge us to become active. The data

we have reviewed present a case for caution against

complacency. There is a chance of false positives here

and we might be overestimating the role of mercury on

dementia, but the danger of doing so is comparatively

small in the face of the danger of overlooking such a

relationship or coming to a wrong negative conclusion.

While there are clearly knowledge gaps to be filled, we

feel that the available data are strongly suggestive of

a potential causal link between mercury and AD. We

therefore suggest the removal of mercury from public

and ecologic circuits and replacing it wherever possi­

ble by less toxic alternatives. This would be a sensible

public health measure that is supported by current data.

ABBREVIATIONS

SelP – Selenoproteine P

TrxR – thioredoxin reductase

GPx – glutathion reductase

GSH – glutathione

HCY – homocysteine

SAH – S­adenosylhomocysteine

SAM – S­adenosylmethionine

MET – methionin

PP2A – phosphatase 2 A

Phospho – phosphorylation

APP – amyloid precursor protein

Abeta – amyloid beta

ApoE – apolipoprotein e

ApoER2 – apolipoprotein e receptor
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