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Abstract

Cognitive control is a framework for understanding the neuropsychological processes that underlie the successful completion of

everyday tasks. Only recently has research in this area investigated motivational contributions to control allocation. An important

gap in our understanding is the way in which intrinsic rewards associated with a task motivate the sustained allocation of control. To

address this issue, we draw on flow theory, which predicts that a balance between task difficulty and individual ability results in the

highest levels of intrinsic reward. In three behavioral and one functional magnetic resonance imaging studies, we used a naturalistic and

open-source video game stimulus to show that changes in the balance between task difficulty and an individual’s ability to perform the

task resulted in different levels of intrinsic reward, which is associated with different brain states. Specifically, psychophysiological

interaction analyses show that high levels of intrinsic reward associated with a balance between task difficulty and individual ability are

associated with increased functional connectivity between key structures within cognitive control and reward networks. By compar-

ison, a mismatch between task difficulty and individual ability is associated with lower levels of intrinsic reward and corresponds to

increased activity within the default mode network. These results suggest that intrinsic reward motivates cognitive control allocation.
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Planning, goal maintenance, performance monitoring, re-

sponse inhibition, and reward processing are key features of

cognitive control (Miller, 2000; Miller & Cohen, 2001).

However, much of the work in this area has largely ignored

motivation despite the fact that it is theorized to play a role in

control allocation and task performance (Braver et al., 2014).

Recent attempts at integrating these two constructs have large-

ly focused on the ways in which reward expectation motivates

the allocation of control (Botvinick & Braver, 2014). A key

finding demonstrates that control allocation is a function of

anticipated task difficulty and expected rewards where

humans strive to find an optimal balance between the two

(Kool & Botvinick, 2014). Upon task completion,

consummatory reward mechanisms track task-related out-

comes and motivate subsequent behavior to maximize future

rewards (O’Doherty et al., 2004). By comparison, the way in

which task-related intrinsic rewards (Deci & Ryan, 1985) mo-

tivate the sustained allocation of cognitive control during task

execution remains largely unknown (Braver et al., 2014).

Mounting evidence has demonstrated that increased ex-

trinsic rewards (e.g., monetary payments) are associated

with increases in sustained task performance and in-

creased neural activity in attentional, reward, and cogni-

tive control networks (Engelmann, Damaraju, Padmala, &

Pessoa, 2009; Locke & Braver, 2008). Similarly, the in-

trinsically rewarding nature of self-determined choice has

been shown to elicit activity in reward-network structures

and corresponds with increases in task enjoyment and

performance (Kang et al., 2009; Leotti & Delgado,

2011; Murayama et al., 2015). Although robust evidence

shows that, under some circumstances, demanding tasks

can be intrinsically rewarding (for a review, see: Inzlicht,

Shenhav, & Olivola, 2018), it is unknown how intrinsic

rewards resulting from task demands (and not from

choice) motivate cognitive control allocation. This may

be due, at least in part, to the difficulty of manipulating

task-based intrinsic reward in a laboratory setting.
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Flow theory (Csikszentmihalyi, 1975) offers a potential

solution for overcoming this challenge. Flow theory posits

that the sustained execution of a task is experienced as being

intrinsically rewarding when there is a balance between the

task’s difficulty and an individual’s ability to meet the task’s

demands (for a modern treatment, see Inzlicht et al., 2018). By

comparison, the theory predicts that a mismatch between task

difficulty and individual ability leads to different psychologi-

cal states. Tasks for which difficulty is greater than individual

ability leads to a state of anxiety, whereas tasks for which

difficulty is less than individual ability leads to boredom

(Nakamura & Csikszentmihalyi, 2005).

Importantly, flow is experienced as intrinsically rewarding

such that that participants undertake a flow-inducing task Bfor

its own sake, with little concern for what they will get out of it,

even when it is difficult^ (Csikszentmihalyi, 1990, p. 71).

While flow states have been observed across a diversity of

activities, including musical composition, athletics, creative

and artistic work, etc., they also are shown to emerge during

video game use as enjoyable video games depend on a balance

between game difficulty and player ability (Sherry, 2004).

Evidence using a video game stimulus demonstrates that

allowing for task difficulty to vary in relationship to individual

ability results in a curvilinear relationship where self-reported

intrinsic reward is low when difficulty ≠ ability and high when

difficulty ≈ ability (Keller & Bless, 2008). A recent behavioral

and psychophysiological study using a racing video game also

showed that the flow state (difficulty ≈ ability) resulted in the

highest levels of absorption, attentional effort, and efficient

gaze compared with conditions where difficulty ≠ ability

(Harris, Vine, & Wilson, 2017a).

Progress also has been made towards understanding the

neural basis of flow. Specifically, the synchronization theory

of flow predicts intrinsically rewarding state of flow results

from a network synchronization process between structures

within cognitive control and reward networks when task dif-

ficulty ≈ individual ability (Weber, Huskey, & Craighead,

2016; Weber, Tamborini, Westcott-Baker, & Kantor, 2009).

In two independent functional magnetic resonance imaging

studies (fMRI), subjects answered math problems during a

fMRI scanning session (Ulrich, Keller, & Grön, 2016b;

Ulrich, Keller, Hoenig, Waller, & Grön, 2014). Problems that

matched subject’s ability corresponded to the highest levels of

intrinsic reward compared with problems that were too easy or

difficult. This balance between difficulty and ability also was

associated with increased activity in attentional and cognitive

control structures, particularly the inferior frontal gyrus (IFG),

anterior insula, and the superior and inferior parietal lobes

(SPL, IPL). Increased activity was observed in the dorsal stri-

atum (both caudate nucleus and putamen), regions implicated

in consummatory reward processing (O’Doherty et al., 2004;

Satterthwaite et al., 2007) and performance monitoring during

cognitive control (Berkman, Falk, & Lieberman, 2012).

Similar experimental paradigms using video game stimuli in-

dicate that a balance between difficulty and ability corre-

sponds with activation in attentional (lateral prefrontal cortex,

cerebellum, thalamus, SPL) and reward (caudate nucleus, nu-

cleus accumbens, putamen) structures (Klasen, Weber,

Kircher, Mathiak, & Mathiak, 2012; Yoshida et al., 2014).

These results provides preliminary support for synchroniza-

tion theory’s structural predictions (for a recent review, see

Harris, Vine, & Wilson, 2017b).

By comparison, a mismatch between difficulty and ability

is associated with lower levels of intrinsic reward and in-

creased levels of activity among default mode network struc-

tures (DMN; Ulrich, Keller, & Grön, 2016a; Ulrich et al.,

2014). Similar findings have been observed in a study using

a naturalistic video game stimulus (Mathiak, Klasen,

Zvyagintsev, Weber, & Mathiak, 2013). Moreover, sustained

performance on difficult cognitive tasks has been shown to

exhaust subjects, resulting in a shift from activity in

frontoparietal control networks to the DMN (Esposito, Otto,

Zijlstra, & Goebel, 2014). These results suggest that intrinsic

reward may motivate task engagement and be a key factor

driving shifts in brain-network organization between one op-

timized for cognitive control and one that characterizes task

disengagement. Converging evidence shows that the insula

plays a key role in shifting between these networks (Chang,

Yarkoni, Khaw, & Sanfey, 2013) where changes in activity

within this structure predict task disengagement (Meyniel,

Sergent, Rigoux, Daunizeau, & Pessiglione, 2013).

These results suggest that task-related intrinsic reward

modulates the allocation of cognitive control during task per-

formance and that variation in intrinsic reward impacts

networked brain connectivity patterns. Accordingly, and con-

sistent with flow theory, we predict that self-reported intrinsic

reward should be highest when task difficulty ≈ individual

ability compared with conditions where task difficulty ≠ indi-

vidual ability. If true, then synchronization theory predicts

functional connectivity between key structures within the cog-

nitive control and reward networks when task difficulty ≈

individual ability but not when difficulty ≠ individual ability.

To date, much of the flow literature has relied on self-report

measures administered after a flow-inducing task. As a source

of convergent validity, and to overcome potential limitations

associated with self-reports (Nisbett & Ross, 1980), we also

included an online behavioral measure for evaluating our ex-

perimental manipulation. Previous experimentation has

shown a curvilinear relationship between motivation and at-

tentional engagement (Lang, 2000). Within the context of mo-

tivated attentional engagement, such results have a straight-

forward interpretation. All other things being equal, subjects

should allocate more attentional resources to motivationally

relevant tasks compared with less motivationally relevant

tasks. It follows that tasks perceived as having higher levels

of intrinsic reward should be more motivationally relevant
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than tasks that are perceived as having lower levels of intrinsic

reward. Therefore, subjects should show more attentional en-

gagement when intrinsic reward is high compared with low.

To test this, we had subjects perform a secondary task reaction

time procedure (STRT; Lang, Bradley, Park, Shin, & Chung,

2006) while playing the experimental video game stimulus.

We predicted that reaction times will show an inverted U-

shaped pattern where attentional engagement with the video

game stimulus is highest (and therefore STRTs are the longest)

when task difficulty ≈ individual ability compared to condi-

tions where task difficulty ≠ individual ability.

This manuscript details the validation of an experimental

protocol for manipulating intrinsic reward and its application

to an fMRI context. Our results provide self-report, behavior-

al, and neuropsychological evidence (using both brain activa-

tion and functional connectivity analyses) demonstrating a

relationship between intrinsic reward and cognitive control.

We conclude with a discussion of the implications of our find-

ings, consider how our behavioral paradigm answers recent

calls for more naturalistic experimental designs within cogni-

tive neuroscience literature, and outline next-steps for future

research in this area.

Methods

General overview

Three behavioral experiments were conducted to evaluate a

novel procedure for manipulating and measuring the relation-

ship between task difficulty, individual ability, intrinsic re-

ward, and cognitive control. This procedure was then adapted

to an fMRI context. All four experiments shared the same

conceptual logic such that subjects played a video game while

responding to a STRT measure (Figure 1). We detail differ-

ences in gameplay and STRT parameters below.

SubjectsHuman subjects in each experiment were drawn from

a pool of students at the University of California Santa

Barbara (Table 1; final n's for experiment: one = 122, two =

110, three = 87, fMRI = 18). Subjects in all experiments (be-

havioral and fMRI) were screened prior to participation and

were not recruited if they had participated in any of the previ-

ous studies. Accordingly, subjects in all experiments did not

have prior experience with the video game stimulus or exper-

imental paradigm. The University’s Institutional Review

Board approved all experiments. Subjects in the fMRI exper-

iment were right-handed, had normal or corrected to normal

vision, and did not demonstrate any contraindication to fMRI

scanning. Experiment three showed that self-reported video

game ability was a significant predictor of actual video game

performance. Accordingly, subjects were not recruited for the

fMRI study if they reported very high or low video game

ability.

Previous behavioral research evaluating engagement with

video games has shown considerable variability in effect sizes

(Raines, Levine, & Weber, 2018; Sherry, 2001). Accordingly,

small effects were assumed when calculating a power analysis

for the first behavioral experiment with subsequent behavioral

experiments seeking to maintain comparable sample sizes. The

fMRI sample size corresponded to related studies reported in

the literature (Desmond & Glover, 2002; Friston, 2012). One

run for one subject was excluded from the fMRI experiment

due to equipment malfunction; two subjects voluntarily with-

drew from the study during initial structural image acquisition.

Naturalistic video game stimulus In experiments 1 and 2, par-

ticipants played Star Reaction (ABiGames), a point-and-click

style video game where subjects used their cursor to collect

star-shaped targets that were displayed at different locations on

a screen while avoiding rings that bounced around the screen.

Thirteen levels incrementally manipulated difficulty by altering

the number of targets a subject needed to collect, the number of

objects to be avoided, and the rate at which these objects moved

around the video game window. While useful for initial testing,

Star Reaction offered few options for interface customization,

thereby limiting experimental control. To overcome this issue,

an open-source variant called Asteroid Impact (CC BY-SA 4.0)

was developed for experiment three and the subsequent fMRI

experiment. Asteroid Impact was designed to have similar me-

chanics to Star Reaction while allowing for tighter experimental

control (the experimental video game stimulus and its supporting

documentation can be downloaded from: https://github.com/

richardhuskey/asteroid_impact).

Secondary task reaction timemeasurement Subjects complet-

ed a STRT measure while playing the experimental video

game (Figure 1). STRTs were defined as the latency between

the onset time of a stimulus (trial) and the moment when a

subject responded with a key press. For experiments 1 and 2,

each condition included 48 trials that lasted for 1,500 ms.

Only visual trials were used in experiment 1, whereas half of

the visual trials were replaced with auditory trials (sine wave-

form, 440.0 Hz) in experiment 2. The intertrial interval (ITI)

for each trial was calculated by adding a sample of normally

distributed randomly generated numbers (M = 1,969 ms, SD =

1,000 ms) to a baseline of 1,500 ms. In experiment 3 and the

fMRI experiment, 24 visual trials were shown for each condi-

tion. The ITI for these trials was jittered around a truncated

Gaussian distribution with a floor of 1,500 ms and a standard

deviation of 2.0. In the behavioral experiment, subjects

responded to STRT trials by using their nondominant hand

to press the spacebar key on a computer keyboard. In the

fMRI experiment, subjects used the thumb on their left hand

(all subjects were right-handed) to press a button on an MRI
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safe button box. Trials were shown in one of five possible

locations on a second screen in the behavioral experiment

and were shown in one of four possible locations on the same

screen in the fMRI experiment.

Measuring intrinsic reward In experiments 1 and 2, intrinsic

reward was measured using a 4-item, 7-point scale (Bowman,

Weber, Tamborini, & Sherry, 2013; Weber, Behr, & Bates,

2014). Experiment 3 used the Event Experience Scale, a better

Table 1 Summary statistics describing the subject samples in all four experiments.

n Mean age (std. dev.) % Female (% Male) Mean self-reported video

game ability (std. dev.)*

Experiment 1 122 19.40 (1.21) 64.8 (35.2) 1.80 (1.21)

Experiment 2 110 20.48 (1.93) 70.9 (29.1) 1.64 (0.85)

Experiment 3 87 19.49 (1.44) 77.0 (23.0) 3.23 (1.63)

fMRI Experiment 18 22.83 (4.02) 77.8 (22.2) 3.00 (1.03)

*Self-reported video game ability was measured using a 4-item scale in experiments 1 and 2 and with a 7-item scale in experiment 3 and the fMRI study.

Figure 1. Schematic of the experimental paradigm. In all experiments,

the subject’s goal was to use their mouse to collect targets while avoiding

asteroids and responding to STRT trials as quickly as possible. For the

behavioral experiments (A), visual STRT trials appeared in one of five

different locations on a second screen. In the fMRI experiment (B), STRT

trials appeared on the same screen in one of four different locations.While

each experiment (behavioral or fMRI) required subjects to complete

conceptually similar tasks (C), the number of STRT trials and the

duration of each condition differed across experiments.
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validated and more widely usedmeasure of task-related intrin-

sic reward (Jackson & Marsh, 1996). Specifically, self-

reported intrinsic reward was measured using the 4-item, 5-

point autotelic experience subscale. Items on this scale includ-

ed: BI really enjoyed the experience^; BI loved the feeling of

performance and want to capture it again^; BThe experience

left me feeling great^; and BI found the experience extremely

rewarding.^

Measuring individual differences in intrinsic reward sensitiv-

ity Experiment 3 measured intrinsic reward sensitivity, which

is understood as a trait-level measure, using the 4-item, 5-

point autotelic personality subscale of the Activity

Experience Scale (Jackson & Eklund, 2004).

Measuring video game ability It is possible that subject's video

game ability explains differences in self-reported intrinsic re-

ward as well as STRT performance. Accordingly, video game

ability was included as an a priori defined covariate of no

interest. In experiments 1 and 2, video game ability was evalu-

ated using a 4-point single-item measure where subjects were

asked to Bindicate their general video game skill.^ In experi-

ment 3 and the fMRI study, this was changed to a 7-point

single-item measure. In addition, and based on evidence that

performance on different cognitive tasks correlates with video

game ability (Bowman et al., 2013; Sherry, 2004), established

behavioral measures of targeting (Watson & Kimura, 1989),

attentional vigilance (Robertson, Manly, Andrade, Baddeley,

& Yiend, 1997), dual-tasking ability (Erickson et al., 2007),

and three-dimensional mental rotation (Peters et al., 1995) were

collected as independent behavioral proxies for video game

ability in experiment 3 (Figures 2, 3, 4 and 5).

Three-dimensional mental rotation The redrawn Vandenberg

and Kuse mental rotations test (Peters et al., 1995) was admin-

istered in two three-minute runs. For each run, subjects were

shown 12 three-dimensional reference shapes. For each refer-

ence shape, subjects were asked to identify which two (out of

four) shapes matched the reference. Subjects were given a

point if they correctly identified both shapes (M = 7.298, SD

= 3.894, range = 0–22).

Sustained attention response test Following Robertson et al.

(1997), subjects were shown a series of numbers (1–9) in five

different font sizes for 250 ms (font sizes were balanced across

all values). The trial was then masked for 900 ms. Subjects

were instructed to press a key as quickly as possible for all

numbers (a go trial) except the number 3 (a no-go trial). A total

of 225 trials were shown, 25 of which were no-go trials.

Mirroring previous studies (Unsworth et al., 2015), the two

dependent measured included: (1) accuracy operationalized as

the frequency count of no-go trials where a key press was

withheld (M = 21.824, SD = 2.780, range = 11–25) and (2)

the standard deviation of reaction times for correct go trials (M

= 453.012, SD = 87.169, range = 102.07–544.40).

Dual-task paradigm Consistent with Erickson et al. (2007),

subjects were shown two types of trials (single-mixed, dual-

2.a

3.a

4.a

Figure 2. Example of the redrawn Vandenberg and Kuse mental rotations test (Peters et al., 1995). This test was conducted as a potential measure of

video game skill in experiment 3.
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mixed), which lasted for 2,500 ms and were separated by a

500-ms fixation cross. In single mixed trials, subjects were

shown one of four possible stimuli: >, <, a red square, or a

green square. Each stimulus was mapped to a specific key and

subjects were instructed to press the correct key as quickly as

possible when a trial was shown without sacrificing accuracy.

In the dual-mixed condition, two of four possible stimuli were

shown, and subjects were instructed to press the two keys that

corresponded to each stimulus. A total of eight combinations

of single- and dual-mixed trials were possible. Each was pre-

sented a total of 20 times in a randomized order. Two depen-

dent measures were assessed: (1) accuracy, the total number of

dual-mixed trials where both keys were correctly pressed (M =

67.279, SD = 13.495, range = 5–79), and (2) variability in task

updating/monitoring for dual-mixed trials, operationalized

as the standard deviation of Reaction Time 2–Reaction Time

1 for all correct dual mixed trials (M = 182.566, SD = 92.079,

range = 14.25–612.65).

Figure 3. Experimental schematic of the sustained attention response test (Robertson et al., 1997). This test was conducted as a potential measure of

video game skill in experiment 3.
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Figure 4. Experimental schematic of the dual-tasking paradigm (Erickson et al., 2007). This test was conducted as a potential measure of video game

skill in experiment 3.
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Targeting task Subjects targeting abilities were evaluated

using a dart-throwing procedure (Watson & Kimura, 1989).

A 60-cm diameter circular target with the bullseye 152 cm

from the floor was fixed to a wall 3 m from where subjects

stood. Subjects completed 25 overhand throws of a 25-gram

dart using their dominant hand. The distance of each throw

from the center was recorded in millimeters and averaged for

each subject (M = 137.838, SD = 27.085, range = 70.89–

207.00). Smaller values indicated greater accuracy.

Behavioral localizer tasks This fMRI experiment used n-back

and gambling tasks (Figures 6–7) to localize behaviorally the

neural activations in cognitive control and reward regions of

interest (respectively). These tasks were selected a priori to

allow us to define seed regions of interest (ROIs) for psycho-

physiological interaction analyses (PPI, see below) where the

ROIs were defined by two tasks that were independent of our

main behavioral manipulation. This decision had two benefits.

First, using independently localized ROIs prevented circular-

ity in our analysis that might otherwise inflate our statistical

results. Moreover, these localizer tasks were selected because

they also were used in the Human Connectome Project, which

helps to integrate our findings within the broader literature.

The n-back task was used to behaviorally localize function-

al activity in cognitive control regions of interest. The n-back

task was selected as it shows reliable activation patterns across

subjects (Drobyshevsky, Baumann, & Schneider, 2006), ses-

sions (Caceres, Hall, Zelaya, Williams, & Mehta, 2009), and

does not show gender differences (Schmidt et al., 2009). In a

series of 2 runs, subjects were shown 320 trials where each

trial was a randomly selected letter from A–Z that was shown

for 1,000 ms. In the 2-back condition, subjects were required

to press a key when the letter shown was the same as one

shown two trials back. In the 0-back condition, subjects

pressed a key when the trial showed the letter X. Each run

followed a 2-back (40 trials), 0-back (40 trials), 2-back (40

trials), and 0-back (40 trials) pattern. Subjects were instructed

to prioritize accuracy before speed. The 2-back and 0-back

conditions were modeled in a block design with a 2-back >

0-back contrast in subsequent fMRI data analyses. A priori

hypothesized seed ROIs (in MNI152 space) for the PPI anal-

ysis were generated based on peak activations resulting from

this contrast and included: right DLPFC (32, 54, 10), left

DLPFC (−32, 54, 10), right thalamus (16, −16, 10), and the

left thalamus (−8, −10, −2). Additionally, our primary brain

activation analysis (discussed below) implicated an additional

Figure 5. Experimental schematic of the targeting task (Watson & Kimura, 1989). This test was conducted as a potential measure of video game skill in

experiment 3.

A

R

K

C

K

X

F

1000 ms

1000 ms

1000 ms

1000 ms

1000 ms

1000 ms

1000 ms

Time

Figure 6. Experimental schematic of the N-back procedure. This task

was conducted in the fMRI experiment to independently localize

cognitive control ROIs
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interesting a posteriori region of interest, which we also were

able to localize independently by using the n-back task. This

was the right insula (40, 16, −6).

Structures within the reward network were behaviorally

localized using a gambling task that has been shown to acti-

vate the basal ganglia reliably (Delgado, Nystrom, Fissell,

Noll, & Fiez, 2000; May et al., 2004; Tricomi, Delgado, &

Fiez, 2004). In this task, subjects were shown a series of cards

with a numeric value of 1–9. During an initial guessing period

(2,500 ms), subjects were asked to indicate if they thought

value of the card was greater than or less than 5. Subjects were

then shown the outcome of their guess (1,000 ms) and then a

fixation cross during the post-outcome period (11,500 ms) for

a cumulative trial duration of 15,000 ms. A total of 100 trials

were shown across 5 runs. Subjects were rewarded 1 dollar for

correct guesses, lost 50 cents for incorrect guesses, and did not

win or lose any money for tie trials. The ratio of wins, losses,

and ties was set at 40:40:20 (balanced across all runs). Neural

activity during the post-outcome period was modeled in an

event-related design with a wins > loss contrast. Seed ROIs

(in MNI152 space) for the PPI analysis were generated based

on peak activations resulting from this contrast and included:

right ventral striatum/nucleus accumbens (10, 16, −6), left

ventral striatum/nucleus accumbens (−10, 16, −6), right dorsal

striatum/putamen (16, 12, −6), and the left dorsal striatum/

putamen (−18, 12, 6).

Procedures Subjects provided informed consent before each

experiment was conducted. Self-reported video game ability,

intrinsic reward sensitivity, and baseline reaction times were

collected at the beginning of each experiment. Subjects then

familiarized themselves with the video game stimulus by read-

ing the rules and by repeatedly playing the video game’s first

level for a period of 2 minutes. Subjects then played three

randomly ordered conditions that manipulated low-difficulty,

high-difficulty, and balanced-difficulty (see Figure 1c for a

conceptual schematic). Subjects were instructed to try to com-

plete as many levels as possible during each condition. The

low-difficulty condition (ability > difficulty) was operational-

ized as repeated play of the video game’s first and least chal-

lenging level, whereas the high-difficulty condition (ability <

difficulty) required repeated play of the most challenging level.

Of critical importance for flow theory is the way in which

task difficulty is balanced with individual ability. In the

balanced-difficulty condition (ability ≈ difficulty), video game

difficulty and player ability were matched by incrementally

increasing the game’s difficulty after a subject completed a

level. This manipulation relies on a logic common to video

game design (Koster, 2005) where once an individual has

developed sufficient skill to beat one level, the next level is

incrementally more difficult. This simple procedure ensures

that task difficulty is constantly matched with individual abil-

ity. In the present study, the balanced-difficulty condition

started on the game’s second level. Each level required sub-

jects to collect a certain number of targets. Level difficulty

increased once subjects had collected all targets for a given

level. In experiments 1 and 2, video game difficulty was de-

termined based on the default Star Reaction settings. Asteroid

Impact allowed us to tune the video game’s parameters in

order to adjust difficulty. The parameters used in experiment

3 and the fMRI study are now discussed in more detail.

The low-difficulty condition required subjects to collect

three targets while avoiding just one object. By comparison,

the high-difficulty condition required that subjects collect 25

targets while avoiding seven objects of varying sizes that trav-

eled at different speeds. The balanced-difficulty condition

+

2500 ms guessing period

500 ms outcome (loss)

2500 ms guessing period

500 ms outcome (win)

500 ms card value

11,500 ms post-outcome period

500 ms card value
Time

11,500 ms post-outcome period
+

Figure 7. Experimental schematic of the Gambling task procedure. This task was conducted in the fMRI experiment to independently localize

reward ROIs
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incrementally increased difficulty by modifying four parame-

ters: (1) the number of targets to collect, (2) the number of

objects to avoid, (3) the rate at which objects moved, and (4)

the size of the objects to be avoided. Extensive pretesting (not

reported in this manuscript, although experiment three reports

the validation of these pretests) was conducted to determine

the correct parameters for each of these settings. Such a design

draws directly from flow theory by assuming that task-related

intrinsic reward is not driven by actual task outcomes (e.g.,

performance) but instead by the perception of a balance be-

tween task difficulty and individual ability. Importantly, this

assumption is corroborated by a large body of literature

(Csikszentmihalyi, 1975, 1990). We also provide empirical

support for the assumption that self-reported intrinsic reward

is highest during the balanced difficulty condition (see Results

section) and thereby validate our experimental procedure.

In experiments 1 and 2, each condition lasted for a total of 4

minutes. Because experiment 3 was designed to validate an

fMRI procedure that would employ a block-design, and a 4-

minute block is rather long and may create confounds with

low-frequency scanner noise, we shortened each condition to 2

minutes in experiment 3 and the fMRI experiment. Self-reported

measures of intrinsic reward were collected after each experi-

mental condition in the behavioral experiments. Subjects com-

pleted each condition just once in experiments 1, 2, and 3, and

these orders were randomized for all subjects. In the fMRI ex-

periment, subjects completed a total of four runs where each run

included all three conditions where each condition was separated

by 57 s of rest (black screen) and 8 s of instructions. Conditions

in the fMRI experiment were shown in a counterbalanced order.

Researchers were not blind to the conditions.

In experiment 3, subjects then completed the three-

dimensional mental rotation, attentional vigilance, dual-

tasking, and targeting measures. In the fMRI experiment, sub-

jects then completed an n-back and gambling task to localize

independently the neural activity in key cognitive control and

reward network regions of interest.

STRT and self-report data analysis The STRT data analysis

plan was determined a priori, and the same analytic approach

was applied for all experiments. All STRT observations were

capped at 1,500 ms, and the harmonic mean response time

was calculated for each subject for each condition (for

extended justifcation for this analytic decision, see Ratcliff,

1993). Repeated measures ANCOVAs were calculated to as-

sess how intrinsic rewards and reaction times differed across

experimental conditions. In each model, the variable of inter-

est (i.e., reaction time, self-reported intrinsic reward) was in-

cluded as a within-subjects factor, and condition order was

included as a between-subjects factor to control for possible

order effects. Self-reported video game ability and baseline

reaction time covariates also were included in models evalu-

ating reaction times. Statistics from the multivariate tests are

reported as these are more robust against any violations of

assumptions of normalcy and sphericity.

fMRI acquisition, preprocessing, and analysis Data were ac-

quired on a 3-tesla Siemens Magnetom Prisma scanner.

Following recommendations established by the Human

Connectome Project (Ugurbil et al., 2013), a multiband echo

planar gradient sequence measured the blood oxygenated

level-dependent contrast (TR = 720.0 ms, TE = 37.0 ms, FA

= 52 degrees, FOV = 208 mm, multi-band acceleration factor

= 8) with each volume consisting of 72 interleaved slices with

a 2-mm isotropic spatial resolution acquired parallel to the

AC-PC plane. A high-resolution T1-weighted sagittal se-

quence of the whole brain (TR = 2500.0 ms, TE = 2.22 ms,

FA = 7 degrees, FOV = 241 mm, 0.9-mm isotropic resolution)

was collected before functional scanning.

Data preprocessing and analysis was performed using FEAT

(fMRI Expert Analysis Tool v6.0) from the Oxford Center for

Functional MRI of the Brain (FMRIB) Software Library (FSL

v5.0) using a three-stage pipeline (Weber, Mangus, & Huskey,

2015). The first stage included brain extraction (BET; Smith,

2002), spatially aligning volumes to a common coordinate sys-

tem (MCFLIRT; Jenkinson, Bannister, Brady, & Smith, 2002),

and spatial smoothing (7-mm FWHM kernel). In the second

step, an independent components analysis (ICA-AROMA;

Pruim, Mennes, van Rooij, et al., 2015; Pruim, Mennes,

Buitelaar, & Beckmann, 2015) was applied to the filtered data

to remove motion artifacts. Finally, the functional data were

high-pass filtered (sigma = 360.0 s), coregistered to T1-

weighted anatomical scans (FLIRT; Jenkinson et al., 2002;

Jenkinson & Smith, 2001), registered to the MNI152 standard

template using a nonlinear transformation (FNIRT; Andersson,

Jenkinson, & Smith, 2007a, 2007b), prewhitened, and fit to a

general linear model (GLM).

We first conducted analyses to evaluate brain activation in

response to our experimental manipulation. Accordingly, a

series of first-level GLMs were estimated for all subjects for

all runs for the Asteroid Impact experimental conditions. Each

block design model included an explanatory variable (EV) for

each condition (i.e., low-difficulty, balanced-difficulty, high-

difficulty), fixed for the entire duration of each condition, 120

s, which was convolved with a hemodynamic response func-

tion (gamma convolution = 6 s, SD = 3). Temporal derivatives

of each EV also were included as covariates of no interest.

Following a similar analytical logic established in related stud-

ies (Ulrich et al., 2016b, 2014), planned contrasts modeled

neural activations unique to each condition. These contrasts

included: balanced-difficulty > low- and high-difficulty (2,

−1, −1), balanced-difficulty > low-difficulty (1, −1),

balanced-difficulty > high-difficulty (1, −1), low-difficulty >

balanced-difficulty (1, −1) high-difficulty > balanced difficul-

ty (1, −1), and high-difficulty > low-difficulty (1, −1)

contrasts.
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These first-level models were then carried forward into a

second-level mixed effects analysis (FLAME; Beckmann &

Smith, 2004; Woolrich, Behrens, Beckmann, Jenkinson, &

Smith, 2004). No additional contrasts were constructed at

the second-level. In line with recommendations for applying

cluster-based corrections for multiple comparisons (Eklund,

Nichols, & Knutsson, 2016; Woo, Krishnan, & Wager,

2014), we applied a cluster-based procedure to correct for

multiple comparisons (Worsley, 2001) with a cluster defining

threshold of Z = 3.1 and a cluster extent threshold of p <

0.0001. Structures were evaluated using FSL’s probabilistic

atlases and were cross-referenced with the Neurosynth data-

base (Yarkoni, Poldrack, Nichols, Van Essen, &Wager, 2011).

A series of psychophysiological interaction analyses (PPI;

Friston et al., 1997; Huskey, 2016) were then modeled to

evaluate task-modulated functional connectivity between

structures within cognitive control and reward networks. As

discussed above, seed regions of interest (ROIs) were defined

independently of our primary experimental task based on

functional activations in the n-back and gambling localizer

tasks. A 3-mm sphere was drawn around peak voxels for each

ROI (in MNI152 space), warped to each subject’s native

space, and used to extract the neural timeseries from filtered

functional data for each subject for each run. The first level

PPI model included an indicator variable that encoded the

balanced-difficulty > low-difficulty and high-difficulty con-

trast, a physiological EV, and an interaction term. Second level

mixed-effects models were then estimated for each seed ROI.

Given that PPI analyses tend to suffer from decreased statisti-

cal power (Friston et al., 1997; O’Reilly, Woolrich, Behrens,

Smith, & Johansen-Berg, 2012) FSL’s default cluster-based

correction for multiple comparisons was applied with a cluster

defining threshold of Z = 2.3 and a cluster extent threshold of

p < 0.05. PPI results are reported for the interaction term,

which reflects task-modulated changes in connectivity for

the balanced-difficulty condition.

Results

Behavioral validation experiments (experiments one,
two, and three)

Experiments one and two tested if manipulating a naturalistic

video game stimulus modulated task engagement and intrinsic

reward. Measures used to assess intrinsic reward showed high

internal consistency in both experiments one (Cronbach's α =

0.906) and two (Cronbach's α = 0.896) and the overall intrinsic

reward models were significant for experiment 1 (Wilks’ λ =

0.511, F(2,115) = 54.964, p < .001) and experiment 2 (Wilks’ λ

= 0.710, F (2,103) = 21.027, p < 0.001). Significant results also

were observed when modeling STRTs to visual trials in exper-

iment 1 (Wilks’ λ = 0.654, F(2,113) = 29.842, p < 0.001) and

experiment 2 (Wilks’ λ = 0.868, F(2,101) = 7.684, p < 0.001),

and for reaction times to auditory trials in experiment 2 (Wilks’

λ = 0.822, F(2,101) = 10.937, p < 0.001). In both experiments,

and consistent with previous findings, intrinsic reward was the

greatest in the balanced-difficulty condition. The reaction time

data also showed an inverted U-shaped pattern where the lon-

gest reaction times were observed during the balanced-

difficulty condition.

Experiment 3 tested whether the video game ability covariate

is best evaluated using self-report or behavioral measures as well

as the hypothesis that individual differences in intrinsic reward

sensitivity predict task performance (Buetti & Lleras, 2016).

Bivariate Pearson correlations were calculated to assess the rela-

tionship between subject’s performance on each behavioral mea-

sure of ability and the total number of targets they successfully

collected (M = 230.88, SD = 24.14, range = 119.00–274.00)

while using Asteroid Impact (a measure of overall video game

performance; Table 2). Self-reported video game ability (r =

0.337, p = 0.002), the standard deviation of reaction times during

the dual-mixed procedure (r = −0.221, p = 0.043), and three-

dimensional mental rotation ability (r = 0.287, p = 0.008) were

Table 2 Pearson correlations between theoretical predictors of task performance and actual Asteroid Impact video game performance. These data were

collected in experiment 3.

1 2 3 4 5 6 7 8 9

1 Video game performance 1

2 Self-reported ability .337** 1

3 Targeting -.06 -.053 1

4 Dual-mixed accuracy .095 .045 -.042 1

5 Dual-mixed std. dev. -.221* -.083 .150 -.609** 1

6 SART accuracy .187 .135 -.002 .368** -.094 1

7 SART std. dev. -.001 -.147 .283** -.063 .131 -.131 1

8 Autotelic Personality .104 .087 -.037 -.115 .029 .026 .085 1

9 Mental Rotation Ability .287** .400** -.051 .179 -.173 .189 -.016 .253* 1

*Correlation is significant at the p = 0.05 level (two-tailed).

**Correlation is significant at the p = 0.01 level (two-tailed).
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significantly correlated withAsteroid Impact performance. These

three variables were then regressed on Asteroid Impact perfor-

mance to further characterize the nature of this relationship. Self-

reported video game ability was entered into the first block (ad-

justed R2 = 0.094, F(1,82) = 9.628, p = 0.003) with dual-mixed

standard deviation, three-dimensional mental rotation ability, and

two- and three-way interaction terms entered in the second block

(adjusted R2 change = 0.012, F(5,77) = 2.646, p = 0.022). Self-

reported video game ability was the only variable that signifi-

cantly predicted Asteroid Impact performance (B = 0.324, p =

0.003). Therefore, it was again used as a covariate in subsequent

reaction time analyses.

For experiment 3, the items used to assess self-reported

intrinsic reward showed acceptable internal consistency

(Cronbach's α = 0.751) and the overall repeated measures

ANCOVA models were significant for intrinsic reward

(Wilks’ λ = 0.406, F(2,80) = 58.432, p < 0.001) and reaction

time (Wilks’ λ = 0.310, F(2,78) = 86.698, p < 0.001). Again,

intrinsic reward was the greatest and response times to a

distracting secondary task were longest in the balanced-

difficulty condition (Tables 3 and 4). The results from these

three studies demonstrate that the experimental paradigm suc-

cessfully manipulated levels of intrinsic reward and task dif-

ficulty. These results also suggest that, within the context of

this experimental procedure, the STRTs may serve as a behav-

ioral correlate of intrinsic reward.

Brain imaging experiment (study 4)

As a manipulation check, and reconfirming the pattern ob-

served in behavioral experiments 1, 2, and 3, STRTs measured

during the fMRI experiment were the longest in the balanced-

difficulty condition (Wilks’ λ = 0.095, F(2,9) = 42.96, p <

0.001; Table 4). Therefore, and following the rationale present-

ed in the Introduction, we infer that our experimental procedure

successfully manipulated intrinsic reward in an fMRI context.

Brain mapping results The brain mapping analysis yielded

several clusters (Tables 5, 6 and 7). Consistent with previous

findings (Klasen et al., 2012; Ulrich et al., 2016b, 2014;

Yoshida et al., 2014), results show that the balanced-

difficulty condition elicited robust neural activity in cognitive

control, attentional, and reward structures. Specifically, the

balanced-difficulty > low-difficulty and high-difficulty con-

trast (Figure 8A) revealed broad activity in structures associ-

ated with cognitive control (dorsolateral prefrontal cortex;

DLPFC), orienting attention (SPL, precentral gyrus), and at-

tentional alerting (dorsoanterior insula). Neural activity also

was observed in the putamen, a structure implicated in pro-

cessing consummatory rewards during cognitive control tasks

(Satterthwaite et al., 2007). Group-level parameter estimates

for the DLPFC and putamen showed the characteristic

inverted-U shaped pattern (Figure 9). The balanced-

difficulty > low-difficulty as well as the balanced-difficulty

> high-difficulty contrasts also were evaluated to aid in inter-

pretation of these results. Activations in these contrasts are

quite similar to the balanced-difficulty > low-difficulty and

high-difficulty contrast. In fact, a comparison of the

balanced-difficulty > low-difficulty and high difficulty to the

balanced-difficulty > low-difficulty (Table 8) activation tables

shows largely identical activations. However, the balanced-

Table 3 Means and standard errors for self-reported intrinsic reward

Low-difficulty condition

mean (std. error)

(a)

Balanced-difficulty condition

mean (std. error)

(b)

High-difficulty condition

mean (std. error)

(c)

Experiment 1 12.721 (0.487)b,c 17.523 (0.426)a 16.617 (0.528)a

Experiment 2 15.084 (0.594)b,c 18.821 (0.520)a 17.589 (0.628)a

Experiment 3 16.562 (0.298)b,c 17.431 (0.333)a,c 12.694 (0.339)a,b

For each row, superscripted text indicates statistically significant pairwise comparisons after a Bonferroni correction for multiple comparisons at the p <

0.05 level.

Note that experiments 1 and 2 used a 4-item, 7-point scale (Bowman, Weber, Tamborini, & Sherry, 2013; Weber, Behr, & Bates, 2014), whereas

experiment 3 used the 4-item, 5-point autotelic experience subscale (Jackson & Marsh, 1996).

Table 4 Means and standard errors for secondary task reaction times

(STRTs) to visual and auditory trials

Low-difficulty

condition mean

(std. error) (a)

Balanced-difficulty

condition mean

(std. error) (b)

High-difficulty

condition mean

(std. error) (c)

Experiment

1 Visual

509.491

(9.399)b,c
594.163 (11.624)a,c 536.250

(10.905)a,b

Experiment

2 Visual

542.059

(11.464)b
589.354 (13.357)a 559.434 (13.028)

Experiment

2

Auditory

546.189

(12.941)b,c
618.888 (15.367)a 609.970

(13.575)a

Experiment

3 Visual

394.638

(6.473)b,c
516.009 (11.398)a,c 448.549

(11.480)a,b

Experiment

4 Visual

577.022

(16.383)b
702.562 (17.768)a,c 575.727

(39.386)b

For each row, superscripted text indicates statistically significant pairwise

comparisons after a Bonferroni correction for multiple comparisons at the

p < 0.05 level.
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difficulty > high-difficulty contrast (Table 9) elicits activation

in sensorimotor areas (e.g., premotor cortex, cerebellum, an-

terior precuneus), which are largely absent in the balanced-

difficulty > low-difficulty and high-difficulty contrast.

Further still, it is possible that the high-difficulty condition

required similar levels of prefrontal control and reward pro-

cessing as the balanced-difficulty condition. The high-

difficulty > low-difficulty contrast also was evaluated to tease

out differences between these conditions (Table 10). While

both the balanced-difficulty > low-difficulty and high-

difficulty > low-difficulty contrasts show similar activation

patterns in occipital cortex, superior and middle frontal gyri,

only the balanced-difficulty > low-difficulty contrast shows

activations in cognitive control, reward, and salience network

Table 5 Neural activity in the balanced-difficulty > low-difficulty & high-difficulty contrast; cluster corrected for multiple comparisons with a cluster

defining threshold of Z = 3.1 and a cluster extent threshold of p < 0.0001; coordinates are in MNI152 space

Structure Laterality Cluster Size Maximum Z-score Coordinates

Superior frontal gyrus Right 22775 7.13 24, 2, 50

Precentral gyrus Left 6.46 -26, -8, 48

Central precuneus Right 6.33 6, -50, 50

Superior parietal lobule Right 6.19 28, -48, 66

Superior parietal lobule Left 6.19 -32, -60, 64

Cerebellum Right 6785 5.59 8, -62, -56

Cerebellum Right 5.53 24, -56, -20

Cerebellum Right 5.37 30, -54, -26

Cerebellum Right 5.35 6, -70, -14

Occipital fusiform gyrus Right 5.21 26, -64, -16

Cerebellum Left 5.21 0, -76, -32

Dorsoanterior insula Left 615 4.83 -32, 12, 6

Putamen Left 4.70 -22, -2, 4

Putamen Left 4.68 -30, 20, 10

Putamen Left 4.67 -26, 14, 0

Posterior insula Left 3.8 -42, -2, 6

Pallidum Left 3.79 -22, -6, -4

Table 6 Neural activity in the low-difficulty > balanced-difficulty contrast; cluster corrected for multiple comparisons with a cluster defining threshold

of Z = 3.1 and a cluster extent threshold of p < 0.0001; coordinates are in MNI152 space.

Structure Laterality Cluster size Maximum Z-score Coordinates

Superior lateral occipital cortex Left 1539 6.75 -42, -76, 42

Superior lateral occipital cortex Left 6.24 -54, -72, 36

Superior lateral occipital cortex Left 6.06 -44, -64, 30

Superior lateral occipital cortex Left 5.59 -54, -66, 34

Superior lateral occipital cortex Left 5.49 -48, -66, 38

Ventromedial prefrontal cortex Left 1207 4.83 0, 28, -14

Paracingulate cortex Right 4.65 8, 42, -4

Anterior cingulate cortex Right 4.5 2. 36. -8

Anterior cingulate cortex Left 4.18 -2, 42, 4

Paracingulate cortex Left 4.15 -4, 44, -6

Ventromedial prefrontal cortex Right 4.12 10, 48, -12

Posterior cingulate gyrus Left 967 5.59 -10, -44, 34

Ventral posteromedial cortex Left 5.07 -2, -60, 16

Ventral posteromedial cortex Left 4.72 -4, -66, 24

Ventral posteromedial cortex Left 4.47 -8, -54, 10

Posterior precuneus Right 4.42 2, -70, 30

Posterior cingulate gyrus Left 4.41 -8, -54, 28
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structures such as the DLPFC, putamen, caudate nucleus,

dorsoanterior, and posterior insula.

By comparison, the low-difficulty > balanced-difficulty

contrast (Figure 8B) showed activity in structures com-

monly implicated in the DMN, particularly the dorsal

and ventral medial prefrontal cortex (PFC), ventral

posteromedial cortex, temporal pole, and hippocampus.

Finally, the high-difficulty > balanced-difficulty contrast

(Figure 8C) revealed activity in the occipital fusiform gy-

rus, temporal pole, orbitofrontal cortex, and inferior tem-

poral gyrus.

PPI results A series of PPI analyses was then conducted to

characterize functional connectivity patterns between key

cognitive control and reward structures in the balanced-

difficulty condition > low- and high-difficulty condition.

Independent seed ROIs were defined a priori for anticipatory

(nucleus accumbens) and consummatory (putamen) reward

structures as well as key cognitive control (dorsolateral pre-

frontal cortex, thalamus) ROIs. An a posteriori, and therefore

exploratory, seed ROI also was evaluated for the right

dorsoanterior insula—a structure that was implicated in the

brain mapping results.

In the balanced-difficulty > low- and high-difficulty

contrast, the bilateral nucleus accumbens showed function-

al connections with the occipital pole, paracingulate

cortex, central operculum, DLPFC, middle temporal gyrus,

and temporal-occipital fusiform cortex (Table 11; Figure

10a), whereas the bilateral DLPFC seed exhibited connec-

tivity with the orbitofrontal cortex (OFC), frontopolar cor-

tex, STG, central precuneus, and occipital fusiform gyrus

with several clusters extending into the anterior cingulate

(ACC) and paracingulate (PCC) cortices (Table 12; Figure

10b). Significant results were not observed when seeding

from the putamen or thalamus.

When evaluating the exploratory ROIs, a seed ROI in the

right dorsoanterior insula showed connectivity with somato-

sensory cortices, medial PFC, temporal and occipital cortex

(Table 13; Figure 10c).

Discussion

Our self-report, behavioral, and fMRI hypotheses were largely

supported. These results contribute to the nascent body of

literature investigating the contributions of cognitive control

and motivation to sustained control allocation during cogni-

tively demanding tasks. In our study, we experientially ma-

nipulated the balance between task difficulty and individual

ability, which resulted in different levels of intrinsic reward.

Consistent with previous research (Keller & Bless, 2008;

Ulrich et al., 2016b, 2014; Yoshida et al., 2014), a balance

Table 7 Neural activity in the high-difficulty > balanced-difficulty contrast; cluster corrected for multiple comparisons with a cluster defining threshold

of Z = 3.1 and a cluster extent threshold of p < 0.0001; coordinates are in MNI152 space.

Structure Laterality Cluster Size Maximum Z-score Coordinates

Visual cortex Left 4914 7.01 -12, -90, 4

Occipital pole Left 6.94 -6, -94, 14

Occipital pole Left 6.74 -20, -94, 24

Visual cortex Left 6.72 -14, -82, -10

Occipital fusiform gyrus Left 5.60 -28, -76, -8

Occipital pole Left 5.19 -2, -92, 30

a b c

0 7.13 0 6.75 0 7.01

Figure 8. Neural activations for each experimental condition. (a)

Balanced-difficulty > Low-Difficulty and High-Difficulty contrast, (b)

Low-Difficulty > Balanced-Difficulty contrast, and (c) High-Difficulty

> Balanced-Difficulty contrast. Red indicates lower significant Z-scores,

whereas yellow indicates higher significant Z-scores. All results are clus-

ter corrected for multiple comparisons at Z = 3.1, p < 0.0001. Figure

generated using BrainNet Viewer (Xia, Wang, & He, 2013).
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between task difficulty and individual ability resulted in the

highest levels of self-reported intrinsic reward. Moreover,

high levels of intrinsic reward corresponded to increased

task-related attentional engagement as demonstrated by longer

reaction times in the balanced-difficulty condition compared

to the low- and high-difficulty conditions. This result also is

reflected in the neuroimaging data. Differential levels of mo-

tivation were associated with different brain sates. We now

turn our focus to these key findings and their broader

implications.

Figure 9 Group-level parameter estimates for the DMPFC (34, 44, 32), VMPFC (0, 28, -14), and Putamen (-22, -2, 4). These voxels were selected based

on peak activations reported in the brain activation analysis for each experimental condition.

Table 8 Neural activity in the balanced-difficulty > low-difficulty contrast; cluster corrected for multiple comparisons with a cluster defining threshold

of Z = 3.1 and a cluster extent threshold of p < 0.0001; coordinates are in MNI152 space.

Structure Laterality Cluster size Maximum Z-score Coordinates

Cerebellum Left 24244 8.1 -14, -60, -50

Superior parietal lobule Right 7.15 14, -70, 58

Superior lateral occipital cortex Right 6.99 22, -64, 52

Superior lateral occipital cortex Left 6.83 -16, -76, 52

Superior parietal lobule Left 6.82 -10, -60, 60

Superior parietal lobule Left 6.76 -20, -60, 56

Precentral gyrus Left 9047 7.87 -28, -8, 48

Superior frontal gyrus Right 7.67 24, 2, 52

Superior frontal gyrus Right 7.58 26, 2, 56

Superior frontal gyrus Left 6.51 -22, 6, 54

Superior frontal gyrus Left 6.37 -26, 4, 60

Paracingulate cortex Right 6.24 2, 14, 46

Middle frontal gyrus Left 852 5.12 -28, 30, 28

Middle frontal gyrus Left 4.46 -40, 32, 26

Inferior frontal gyrus Left 4.26 -40, 26, 20

Middle frontal gyrus Left 4.24 -34, 24, 24

Dorsolateral prefrontal cortex Left 3.94 -36, 40, 22

Dorsolateral prefrontal cortex Left 3.75 -32, 38, 40

Dorsoanterior insula Left 839 5.82 -30, 22, 6

Putamen Left 4.32 -22, -2, 4

Caudate nucleus Left 3.59 -18, 20, 10

Posterior insula Left 3.48 -34, 0, 2
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Reward-processing and cognitive control

The behavioral and self-report measures indicate a successful

experimental manipulation. Our fMRI results suggest intrigu-

ing updates to the nascent literature on cognitive control and

motivation. First, our brain mapping results conform to previ-

ous findings implicating intrinsic reward processing during

cognitive control tasks. Our novel contribution is in elucidat-

ing the functional connections between these structures. Of

particular interest is the relationship between anticipatory

and consummatory rewards during cognitive control. Our

GLM-based results showed that the balanced-difficulty con-

dition, relative to conditions of low- and high-difficulty, elic-

ited activity in the putamen. This fits nicely with the notion

this structure is implicated in consummatory reward process-

ing (O’Doherty et al., 2004; Satterthwaite et al., 2007) and that

a balance between task difficulty and individual ability elicits

strong activity in this structure (Ulrich et al., 2016b, 2014).

However, a balance between difficulty and ability also has

been shown to elicit activity in the ventral striatum, particu-

larly the nucleus accumbens (Klasen et al., 2012). How do we

account for these seemingly contradictory findings? One

Table 9 Neural activity in the balanced-difficulty > high-difficulty contrast; cluster corrected for multiple comparisons with a cluster defining threshold

of Z = 3.1 and a cluster extent threshold of p < 0.0001; coordinates are in MNI152 space

Structure Laterality Cluster size Maximum Z-score Coordinates

Premotor cortex Left 10750 6.1 0, -2, 58

Premotor cortex Left 5.56 -24, -20, 72

Premotor cortex Left 5.43 -34, -22, 70

Intraparietal sulcus Left 5.42 -30, -38, 44

Premotor cortex Left 5.41 -28, -18, 72

Cerebellum Right 2490 6.31 24, -58, -22

Temporal occipital fusiform cortex Right 5.25 24, -46, -22

Temporal occipital fusiform cortex Right 4.9 42, -52, -26

Cerebellum Right 4.46 26, -60, -50

Cerebellum Right 4.18 4, -72, -30

Anterior precuneus Right 583 4.71 8, -46, 58

Central precuneus Right 4.55 8, -50, 48

Anterior precuneus Right 3.87 -2, -52, 64

Anterior precuneus Left 3.81 -12, -48, 48

Anterior precuneus Left 3.66 -8, 58, 60

Table 10 Neural activity in the high-difficulty > low-difficulty contrast; cluster corrected for multiple comparisons with a cluster defining threshold of

Z = 3.1 and a cluster extent threshold of p < 0.0001; coordinates are in MNI152 space

Structure Laterality Cluster size Maximum Z-score Coordinates

Occipital pole Left 21666 7.72 -24, -92, 20

Occipital pole Right 7.67 -8, -94, -2

Occipital fusiform gyrus Left 7.59 -14, -86, -10

Occipital fusiform gyrus Left 7.47 -12, -86, -18

Lateral occipital cortex Left 7.25 -44, -78, 8

Occipital pole Left 6.96 -4, -98, 18

Superior frontal gyrus Right 923 5.79 26, 4, 56

Superior frontal gyrus Right 5.56 26, 6, 62

Superior frontal gyrus Right 4.35 16, 2, 72

Premotor cortex Right 4.15 12, 10, 68

Ventroanterior insula Left 718 5.52 -32, 22, -6

Precentral gyrus Left 573 5.05 -34, -4, 50

Middle frontal gyrus Left 4.41 -30, 0, 60

Superior frontal gyrus Left 3.75 -22, 8, 56

Precentral gyrus Left 3.30 -44, 0, 32
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possible answer is found in our PPI results when seeding from

the ventral striatum. We show that the nucleus accumbens is

more strongly functionally connected with the DLPFC when

task difficulty is balanced with individual ability than when

there is a mismatch between difficulty and ability. This result

is consistent with the view that these two structures are impli-

cated in reward anticipation and cognitive cost calculation

(Botvinick, Huffstetler, & McGuire, 2009; Kool, McGuire,

Wang, & Botvinick, 2013).

With that said, we did not design our study to manipulate

directly the reward expectation, so it is difficult to tell if our

results support the view that reward anticipation and con-

sumption is dissociated between the dorsal and ventral stria-

tum (O’Doherty et al., 2004) or, as some have suggested, if

these structures subserve a common function related to either

evaluating the cognitive costs associated with earning a par-

ticular reward (Vassena et al., 2014) or in consummatory re-

ward processing (Pauli et al., 2016). It is entirely possible that

there is no single neural correlate of intrinsic reward. Indeed,

one current perspective argues that intrinsic and extrinsic re-

wards may not be dissociable at the neuroanatomical level, but

instead at the temporal level where extrinsic rewards are tem-

porally immediate and tangible where intrinsic rewards are

less tangible and more temporally disperse (Braver et al.,

2014). Our current study provides preliminary support for this

view.

Admittedly, the naturalistic paradigm used in this study

sacrifices some experimental control, and this poses some

Table 11 Psychophysiological interaction results when seeding from

the bilateral (right: 10, 16, -6; left: -10, 16, -6) nucleus accumbens in

the balanced-difficulty > low-difficulty and high-difficulty contrast;

cluster corrected for multiple comparisons with a cluster defining thresh-

old of Z = 2.3 and a cluster extent threshold of p < 0.05; coordinates are in

MNI152 space.

Structure Laterality Cluster Size Maximum Z-score Coordinates

Occipital pole Left 1442 6.18 -34, -96, 4

Superior lateral occipital cortex Left 3.96 -22, -74, 48

Paracingulate cortex Right 841 4.32 4, 22, 44

Middle frontal gyrus Left 3.73 -34, 34, 34

Superior frontal gyrus Left 3.67 -18, 26, 42

Paracingulate cortex Right 3.60 10, 36, 36

Central operculum Right 578 4.64 44, -12, 22

Precentral gyrus Right 3.42 34, 0, 36

Middle frontal gyrus Right 3.19 44, 14, 32

Dorsolateral prefrontal cortex Left 541 3.88 -30, 60, 8

Caudate nucleus Left 3.74 -8, 12, 12

Middle temporal gyrus Right 398 4.23 52, -50, 6

Superior temporal gyrus Right 3.40 58, -12, -8

Tempo-occipital fusiform cortex Left 378 3.70 -30, -52, -20

Lingual gyrus Left 3.42 -20, -44, -14

Hippocampus Left 2.93 -32, -34, -14

Figure 10. Psychophysiological interaction analyses when seeding from

the (a) bilateral (right: 10, 16, −6; left: −10, 16, −6) nucleus accumbens, (b)

bilateral (right: 32, 54, 10; left: −32, 54, 10) dorsolateral prefrontal cortex,

and (c) right (40, 16, -6) dorsoanterior insula. This figure shows the

balanced-difficulty > low-difficulty and high-difficulty contrast. Red indi-

cates lower significant Z-scores, while yellow indicates higher significant

Z-scores. All results are cluster corrected for multiple comparisons at Z =

2.3, p < 0.05. Figure generated using BrainNet Viewer (Xia et al., 2013).
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interpretation difficulties. While the putamen often is associ-

ated with reward processing, it also is implicated in task-learn-

ing. Specifically, the putamen shows strong activation for nov-

el tasks, but this activation decreases for learned tasks (Jimura,

Cazalis, Stover, & Poldrack, 2014a). Our decision to make

two conditions consistent in terms of video game state (i.e.,

repeated play of the easiest or hardest conditions) may have

allowed subjects to "learn" the low- and high-difficulty con-

ditions, whereas the balanced-difficulty condition may be un-

derstood as a series of unlearned tasks. Putamen activation

Table 12 Psychophysiological interaction results when seeding from

the bilateral (right: 32, 54, 10; left: -32, 54, 10) dorsolateral prefrontal

cortex in the balanced-difficulty > low-difficulty and high-difficulty

contrast; cluster corrected for multiple comparisons with a cluster defin-

ing threshold of Z = 2.3 and a cluster extent threshold of p < 0.05;

coordinates are in MNI152 space.

Structure Laterality Cluster size Maximum Z-score Coordinates

Orbitofrontal cortex Left 6615 5.12 -36, 32, -8

Superior temporal gyrus Left 4.97 -58, -10, -8

Middle frontal gyrus Left 4.73 -46, 22, 26

Frontopolar cortex Left 6110 5.03 -8, 62, 28

Subcallosal cortex Right 4.78 2, 24, -12

Superior frontal gyrus Right 4.48 10, 24, 60

Frontopolar cortex Right 4.34 8, 52, 42

Superior temporal gyrus Right 1887 5.10 54, -26, 0

Posterior insula Right 4.08 36, -16, 8

Secondary somatosensory cortex Right 3.84 44, -14, 22

Broca’s area Right 1271 4.16 58, 26, 22

Orbitofrontal Left 3.91 24, 34, -10

Temporal pole Right 3.57 48, 24, -18

Central precuneus Left 754 4.12 -10, -48, 36

Ventral posteromedial cortex Left 3.83 -4, -56, 14

Visual cortex Right 3.28 4, -66, 8

Anterior precuneus Left 3.13 -2, -48, 60

Occipital fusiform gyrus Left 690 4.58 -16, -86, -18

Occipital pole Left 3.24 -12, -98, -4

Table 13 Psychophysiological interaction results when seeding from

the right (40, 16, -6) dorsoanterior insula in the balanced-difficulty >

low-difficulty and high-difficulty contrast; cluster corrected for multiple

comparisons with a cluster defining threshold of Z = 2.3 and a cluster

extent threshold of p < 0.05; coordinates are in MNI152 space.

Structure Laterality Cluster size Maximum Z-score Coordinates

Primary somatosensory cortex Right 15664 5.28 44, -22, 64

Primary motor cortex Right 5.18 12, -30, 74

Inferior frontal gyrus Right 5.00 56, 18, 26

Secondary somatosensory cortex Right 4.93 44, -10, 20

Hippocampus Left 4.89 -24, -30, -10

Dorsomedial prefrontal cortex Right 4415 4.81 4, 62, 14

Superior frontal gyrus Left 3.95 4, 28, 50

Ventromedial prefrontal cortex Left 3.80 -8, 46, -16

Superior lateral occipital cortex Left 1096 3.98 -52, -72, 28

Angular gyrus Left 3.93 -52, -60, 28

Middle temporal gyrus Left 724 4.12 -58, -52, 0

Superior temporal gyrus Left 3.45 -50, -16, -10

Superior lateral occipital cortex Right 644 3.65 50, -62, 42

Inferior parietal lobule Right 3.45 58, -58, 36

Inferior frontal gyrus Left 544 3.53 -46, 32, -4

Orbitofrontal cortex Left 3.35 -24, 34, -14

Frontopolar cortex Left 2.97 -42, 40, -2

Subcallosal cortex Right 546 4.28 2, 30, -18

Caudate nucleus Left 2.71 -10, 14, 6
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also has been shown to increase during a response-inhibition

task among subjects with high behavioral performance and

decrease among subjects with low behavioral performance

(Jimura et al., 2014b). Liberally interpreted, this suggests that

putamen activation should increase in response to high behav-

ioral performance. In our study, the low-difficulty condition

yielded fast reaction times (high-behavioral performance) and

was easy such that subjects had high levels of video game

performance. Inconsistent with the liberal interpretation that

putamen activation tracks high behavioral performance pre-

sented above, we see the highest levels of putamen activation

in the balanced-difficulty > low-difficulty contrast (but not

also in the balanced-difficulty > high-difficulty contrast). A

more stringent test would be among conditions that are simi-

larly novel and do not afford task-learning. This presents an

interesting opportunity for future research.

Similarly, the nucleus accumbens demonstrates sensitivity

not only to extrinsic (e.g., monetary) reward anticipation but

also to positive performance feedback (Daniel & Pollmann,

2010). We admit that experimentally accounting for this con-

found is not trivial. In our study, the balanced-difficulty con-

dition provided positive performance feedback by increasing

level difficulty (which remained invariant for the low- and

high-difficulty conditions). However, positive performance

feedback also was received during the low-difficulty condi-

tion when subjects successfully completed a level as they

received a message indicating that they had beaten the level

(this is the same message that subjects received in the

balanced- and high-difficulty conditions). Accordingly, nu-

cleus accumbens activation driven solely by level-

completion feedback would be lost in the balanced-

difficulty > low-difficulty contrast. It follows then, that re-

maining nucleus accumbens activation should track increases

in difficulty, more closely aligning with the view presented

above that this structure, in conjunction with the DLPFC,

tracks reward anticipation and cognitive cost calculation.

Nevertheless, this remains an important and unresolved issue

for flow research as immediate and clear performance feed-

back is understood as a causal antecedent of flow

(Csikszentmihalyi, 1990). Therefore, any manipulation of

task-difficulty with individual ability is inherently conflated

with different patterns of performance feedback.

Ultimately, the methodological limitations arising from the

difficulty of manipulating intrinsic reward in a lab-setting con-

strain our interpretation of the results while suggesting new

avenues for future research. Even with these considerations in

mind, our results show that a balance between task difficulty

and individual ability modulates reward-related subcortical

processing and that these structures are functionally connected

with frontocontrol structures during a cognitive control task.

This finding provides novel evidence that intrinsic reward is

associated with the allocation of cognitive control during

sustained task performance.

Low levels of intrinsic reward and contributions
to DMN activity

In the present study, we show different brain activity and

functional connectivity patterns in the balanced-difficulty con-

dition compared to the low-difficulty and high-difficulty con-

ditions. While the balanced-difficulty condition elicited activ-

ity in structures commonly implicated in cognitive control and

reward processing, the low-difficulty condition showed acti-

vations in the DMN. Such a finding is consistent with previ-

ous results showing that the DMN is down-regulated when

there is a balance between task difficulty and individual ability

(Ulrich et al., 2016a). Further evidence shows that failures to

suppress the DMN are associated with lapses in attention

(Weissman, Roberts, Visscher, & Woldorff, 2006) and de-

creased performance during cognitive control tasks (Kelly,

Uddin, Biswal, Castellanos, & Milham, 2008).

Interestingly, we also see that STRTs were generally

faster during the low-difficulty condition. This result, in

conjunction with the observed activations in key DMN

structures, provides additional evidence that the low-

difficulty condition required low levels of cognitive con-

trol. Moreover, it contextualizes the extent to which low-

difficulty tasks can be performed automatically or at least

with very low levels of cognitive control (Vatansever,

Menon, & Stamatakis, 2017). This, combined with previ-

ous evidence showing that boring video game play

(Mathiak et al., 2013) and a mismatch between difficulty

and ability (Ulrich et al., 2016a, 2016b, 2014), is associ-

ated with DMN activity, provides converging evidence

that different levels of intrinsic reward may be driving

the shift between DMN activation during low-difficulty

and cognitive control network activation during the

balanced-difficulty conditions.

Less clear is why similar DMN activation patterns were not

observed in the high-difficulty condition. One possible expla-

nation might be found in the STRT patterns observed during

this condition. There is some evidence that attention to a sec-

ondary task does not necessarily increase when the primary

task is difficult or even in response to increases in extrinsic

rewards (Buetti & Lleras, 2016). Our high-difficulty condition

had the second longest STRTs across all three of our behav-

ioral studies. This suggests that subjects may have allocated

more cognitive resources to the video game stimulus during

this condition, even though the condition was rated as being

comparatively low in intrinsic reward. Further experimenta-

tion is needed to determine if and at what level of mismatch

between task difficulty and individual ability results in levels

of task disengagement that correspond to DMN activation.

One intriguing possibility implicated by our exploratory

PPI analyses is that the dorsoanterior insula may be involved

in shifts between DMN and cognitive control networks.

Foundational empirical investigations provide a network-
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level model for these switches (Sridharan, Levitin, & Menon,

2008), which is further supported by meta analytic results

from Neurosynth (Yarkoni et al., 2011), implicating the insula

(and broader salience network) in shifts between cognitively

demanding tasks and task disengagement (Chang et al., 2013).

The consistency between structures identified in our study

with those identified in the reward-motivated cognitive con-

trol literature hints at a network-level architecture. Follow-up

work using Asteroid Impact or similar naturalistic tasks should

adopt the latest methodological advances in network neuro-

science (Bassett & Sporns, 2017) to interrogate the way in

which shifts in motivation drive dynamic shifts between

frontoparietal control and DMN as facilitated by the insula.

Motivation drives task-related attentional
engagement

One critique of the emerging cognitive control and motivation

literature is that the highly controlled experimental tasks

employed typically rely on extrinsic and not intrinsic rewards

(Braver et al., 2014). In this study, we sacrificed some experi-

mental control in favor of developing a task that allowed for

modulating intrinsic rewards. As a failsafe, we used STRTs as

a behavioral measure of the extent to which variation in intrinsic

reward entrained attentional engagement with the task. The ra-

tional for this measure capitalizes on the insight that motivation

has a curvilinear influence on task-related attentional engagement

(Lang, 2000). This result is born out in our STRT data and is

consistent with previous findings (Lang et al., 2006). That our

STRT data show the same inverted U-shaped pattern as our self-

reported intrinsic rewardmeasure suggests that STRTsmay serve

as a behavioral correlate of intrinsic reward, particularly during

motivationally relevant tasks. With that said, two important con-

straints are worth noting. First, the absolute mean STRT differ-

ences between conditions are quite small, thereby obscuring in-

ferences about themagnitude of intrinsic rewards. A second issue

is that STRTs are only a useful index of intrinsic reward when

there is a firm understanding of how the stimulus balances task

difficulty and individual ability. Nevertheless, our behavioral and

neuroimaging results demonstrate that intrinsic reward motivate

different levels of task engagement.

The synchronization theory of flow: alternative
theoretical explanations and future opportunities

The results reported in this manuscript are situated within the

context of reward-motivated cognitive control (Botvinick &

Braver, 2014; Braver et al., 2014). Specifically, we used flow

theory (Csikszentmihalyi, 1975) as a guide for manipulating

intrinsic reward and the synchronization theory of flow

(Weber et al., 2009) as a guide for making informed predic-

tions about the neural basis of flow experiences. Accordingly,

and consistent with the latest developments in flow theory

(Harris et al., 2017b; Weber et al., 2016), we interpret our

findings in terms of intrinsic-reward motivated cognitive con-

trol. Our results seem to fit nicely with both theory and previ-

ously published empirical results.

Some readers might question our decision to frame these

issues in terms of cognitive control. From its earliest concep-

tualization, cognitive control research has focused on the pro-

cesses that enable goal-directed behavior (Miller, 2000; Miller

& Cohen, 2001), which modern evidence shows is motivated

by reward (Botvinick & Braver, 2014; Braver et al., 2014).

Such a high-level process necessarily requires multiple lower-

level processes including attention, working memory, reward

processing, sensory motor coordination, etc. We consider at-

tention (using STRTs) and reward processing (using self-

report) in the present study, but most certainly do not account

for these other processes. One might reasonably ask, if atten-

tion is a component of the process of interest, why not frame

this manuscript in classic attentional terms (Fan, McCandliss,

Fossella, Flombaum, & Posner, 2005; Posner, Inhoff,

Friedrich, & Cohen, 1987; Raz & Buhle, 2006)?

Interestingly, the original formulation of synchronization

theory did exactly that (see p. 406 in Weber et al., 2009),

framing flow from Posner’s tripartite theory of attention

(Posner et al., 1987). While synchronization theory originally

acknowledged executive attention as a potential component of

flow, the theory primarily considered the phenomenon in

terms of better specified processes (Raz & Buhle, 2006), such

as alerting and orienting attention. The theory was later

reformulated in terms of cognitive control to better specify

the goal-directed nature of flow experiences (Weber et al.,

2016). While cognitive control and executive attention both

explain a considerable number of empirical findings and are

often used to interpret similar processes (Long &Kuhl, 2018),

there are important distinctions between the two models

(Petersen & Posner, 2012). Once a sufficient body of evidence

has accumulated in this area, it will be important to examine

which model best accounts for the data.

Until then, and as we have taken pains to point out above, the

potential for alternate explanations exists. The conditions in the

present study do not systematically vary or otherwise control for

a number of potential confounds including different event rates,

different levels of feedback, different levels of visual complexity,

etc. These differences allowed us to manipulate the balance be-

tween individual ability and task difficulty, which is central to

flow theory. Along the way, we have endeavored to account for

alternate explanations introduced by these confounds. Despite

these limitations, we see results that are consistent with previous

studies, which give us confidence in the findings.

Future research should, to the extent that is possible, seek to

resolve these issues. We admit, as others have before us (Bohil,

Alicea, & Biocca, 2011; Maguire, 2012; K. Mathiak & Weber,

2006; Spiers & Maguire, 2007), that designing naturalistic inter-

ventions with suitable levels of experimental control is a
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nontrivial task. However, and as has been forcefully argued by

Marr (1982) and his contemporaries (Krakauer, Ghazanfar,

Gomez-Marin, Maciver, & Poeppel, 2017), a focus on naturalis-

tic behavior is essential if we are to advance our understanding to

the mind/brain. To that end, we are pleased to offer an open-

source stimulus, Asteroid Impact, so that interested researchers

can adapt, replicate, and extend the paradigm in their own labo-

ratories (Poldrack et al., 2017).

Conclusions

In their earliest writings, Miller and Cohen (Miller, 2000;

Miller & Cohen, 2001) indicated that motivation may play a

role in cognitive control. In the decades that have followed,

most of the research in this area has treated the two as sepa-

rable processes by choosing to focus on cognition rather than

motivation. However, an emerging perspective argues that

higher order cognitions and their resulting behaviors are not

easily reducible to their lower-level constitute parts, especially

when considering the relationship between cognition and mo-

tivation (Pessoa, 2008). Our results fit within this framework

by showing how task-elicited differences in motivation are

associated with shifts in task-related reward perceptions, at-

tentional allocation, and control allocation.
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