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Does it make sense to target one 
tumor cell chemotactic factor or its receptor 
when several chemotactic axes are involved 
in metastasis of the same cancer?
Mariusz Z. Ratajczak1,2*, Malwina Suszynska1,2 and Magda Kucia1,2

Abstract 

The major problem with cancer progression and anti-cancer therapy is the inherent ability of cancer cells to migrate 

and establish distant metastases. This ability to metastasize correlates with the presence in a growing tumor of cells 

with a more malignant phenotype, which express certain cancer stem cell markers. The propensity of malignant cells 

to migrate and their resistance to radio-chemotherapy somewhat mimics the properties of normal developmentally 

early stem cells that migrate during organogenesis in the developing embryo. In the past, several factors, including 

cell migration-promoting cytokines, chemokines, growth factors, bioactive lipids, extracellular nucleotides, and even 

H+ ions, were found to influence the metastasis of cancer cells. This plethora of pro-migratory factors demonstrates 

the existence of significant redundancy in the chemoattractants for cancer cells. In spite of this obvious fact, signifi-

cant research effort has been dedicated to demonstrating the crucial involvement of particular pro-metastatic factor–

receptor axes and the development of new drugs targeting one receptor or one chemoattractant. Based on our own 

experience working with a model of metastatic rhabdomyosarcoma as well as the work of others, in this review we 

conclude that targeting a single receptor–ligand pro-metastatic axis will not effectively prevent metastasis and that 

we should seek other more effective therapeutic options.
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Introduction
Metastasis is responsible for more than 90 % of cancer-

associated mortality, and preventing its occurrence is a 

therapeutic priority in clinical oncology [1]. Several fac-

tors have been identified that induce the migration of 

cancer cells, both in the process of directional cell migra-

tion known as chemotaxis [2] and the random multi-

directional migration termed chemokinesis [2]. Both 

of these processes (Fig.  1) lead to egress of cancer cells 

from the primary tumor, relocation to distant sites, and 

the establishment of metastases. Usually, chemotaxis 

and chemokinesis together play a role in the motility of 

cancer cells. However, depending on the type of a given 

tumor, various chemotactic factors may promote more of 

one or the other cell-trafficking mechanism.

�e list of candidate metastatic factors for cancer 

cells is very long and includes cell migration-promot-

ing chemokines (e.g., stromal-derived factor 1, SDF-1), 

growth factors (e.g., hepatocyte growth factor/scatter fac-

tor, HGF/SF), bioactive lipids (e.g., sphingosine-1-phos-

phate, S1P; ceramide-1-phosphate, C1P), extracellular 

nucleotides (e.g., ATP, UTP), and even H+ ions [3–10]. 

�e migration of cancer cells may also be affected by cer-

tain hormones (e.g., follicle-stimulating hormone, FSH; 

luteinizing hormone, LH), cleavage fragments of the 

complement cascade (C3 and C5 cleavage fragments; C3a 

and C5a, respectively), components of the coagulation 

cascade (e.g., thrombin), and certain danger-associated 
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molecular pattern molecules (DAMPs; e.g., S100 pro-

teins) [11–16].

Pro-metastatic factors activate various specific, corre-

sponding types of receptors, including cytokine recep-

tors, tyrosine kinase receptors, and G protein-coupled 

receptors. Signals transduced from these receptors acti-

vate similar signaling pathways involved in the regulation 

of cell migration or adhesion and affect elements of the 

intracellular cytoskeleton [17–19].

�e redundancy of factors and receptors involved in 

migration of cells in the same type of cancer poses an 

important question: Is it reasonable to target particular 

pro-migratory axes when several other pro-metastatic 

axes exist for a given tumor cell? Moreover, in most of 

the published reports demonstrating migration, “supra-

physiological concentrations” of pro-metastatic factors 

were employed at doses not encountered in normal tis-

sues and that may not be relevant to clinical situations. In 

addition, the responsiveness of primary tumor cells may 

change over time as a malignancy progresses and could 

be affected by several additional clinical problems that 

emerge in patients, such as infections or organ failure.

In this review we will summarize several years of expe-

rience in identifying and blocking crucial pro-metastatic 

axes involved in the metastasis of human rhabdomyo-

sarcoma (RMS) cells [6, 12, 20–25]. Our observations, 

obtained with an RMS cell metastasis model, are also 

relevant to other types of malignancies, as significant 

redundancy in pro-metastatic ligand–receptor axes exists 

for almost all tumor types studied so far.

Rhabdomyosarcoma as a model to study cancer 
metastasis
Rhabdomyosarcoma (RMS) is the most common soft-

tissue sarcoma of adolescence and childhood and report-

edly accounts for 5 % of all malignant tumors in patients 

under 15  years of age [26]. Two major histological sub-

types have been described: alveolar rhabdomyosarcoma 

(ARMS) and embryonal rhabdomyosarcoma (ERMS) 

[27]. ARMS is associated with more aggressive behavior 

and a worse prognosis than ERMS [28]. Together with 

neuroblastoma, nephroblastoma, and Ewing’s sarcoma, 

RMS belongs in the family of so-called “small round blue 

tumor cells”, which often infiltrate bone marrow (BM). 

�ese tumor cells on BM smears are sometimes misdiag-

nosed as acute leukemia cells [29, 30].

�e two types of RMS show differences at the molec-

ular level. ARMS is characterized by the translocation 

(2;13)(q35;q14) in 70 % of cases and the variant translo-

cation (1;13)(p36;q14) in a smaller percentage of cases 

[31, 32]. �ese translocations disrupt the PAX3 and 

PAX7 genes on chromosomes 2 and 1, respectively, and 

the FOXO1 gene on chromosome 13, which leads to the 

generation of PAX3–FOXO1 and PAX7–FOXO1 fusion 

genes. PAX3–FOXO1 and PAX7–FOXO1 fusion pro-

teins have enhanced transcriptional activity compared 

with wild type PAX3 and PAX7 and are postulated to play 

a role in cell survival and dysregulation of the cell cycle 

in ARMS [31]. Since there are also ARMS cases that are 

fusion-negative and have a better outcome than fusion-

positive cases, it was more recently recommended that 

RMS should be classified into fusion-positive (PAX3–

FOXO1 and PAX7–FOXO1) and fusion-negative tumors 

[7]. In our experiments over the past 15  years to study 

RMS metastasis, we have employed several human RMS 

cell lines, including both fusion-positive (e.g., RH28, 

RH30, RH41) and fusion-negative (e.g., JR, RD, RH18, 

RH36, SMS-CTR) tumor cell lines [8, 20, 21]. Some of 

our results were subsequently verified in primary RMS 

patient tissue samples [25, 33].

However a lot of progress has been made to understand 

pathogenesis of RMS, the origin of cells that gives rise 

in skeletal muscle tissue to this malignancy is still under 

debate. It has been proposed that, while low-passage 

mesenchymal stem cells (MSCs) can generate ARMS, 

low-passage myoblasts can form ERMS [34–36]. On 

the other hand, RMS cells express several cancer testis 

antigens (CTAs), which are characteristic of germline-

derived cells [37–41]. �is observation makes a some-

what hypothetical connection to a concept presented 

150  years ago by Rudolf Virchow [42] and Julius Con-

heim [43], who proposed the “embryonic rest hypothesis 

of cancer development” [44]. According to this hypoth-

esis, certain malignancies may develop from dormant 

Chemotaxis - direc�onal

Chemokinesis - random

Fig. 1 The difference between chemotaxis and chemokinesis. 

Cells may respond to a pro-migratory factor in two different ways: 

by directed movement, in the process chemotaxis, or by random 

multidirectional movement, in the process of chemokinesis. Both 

mechanisms may be involved in egress of cancer cells from the 

primary tumor
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embryonic or germ cells residing in adult tissues [44]. In 

this context, small round blue cell tumors, (e.g., RMS) 

that express several CTA antigens are potential candi-

dates to form such malignancies. �is hypothesis, how-

ever, requires further study. In any case, RMS cell lines, 

which are endowed with migratory potential, are a con-

venient model for studying cancer metastasis.

Assays with which to study the metastasis 
of cancer cells
�e metastatic potential of tumor cells can be studied by 

employing several complementary assays. �e most con-

venient is the Transwell migration assay, which employs 

two chambers separated by a porous membrane [45]. �e 

cells to be tested are loaded into the upper chamber, and 

the chemoattractant is added to the lower chamber. �e 

readout in this assay is the number of cells that migrate 

from the upper to the lower chamber in response to a 

chemotactic factor, which is a process known as chemo-

taxis. �is system also allows us to measure random cell 

migration, which is a process known as chemokinesis 

[45]. In order to study chemokinesis, a pro-metastatic 

factor is added to both the lower and upper chambers, 

and chemokinesis is said to occur when a gradient is 

missing between chambers and cells still migrate to the 

lower chamber from the upper chamber (Fig. 2).

In contrast to in vitro Transwell migration, another rel-

atively easy in vivo assay with which to study the metas-

tasis of human cancer cells is the “cancer cell seeding 

assay” developed by us [8, 20–22] (Fig.  3). �is assay is 

based on intravenous injection of tumor cells into immu-

nodeficient mice; 24–48 h later, the organs are extracted 

to detect the presence of human cells. Human cells in 

murine tissues can be detected directly by FACS if the 

injected cells carry fluorescent markers (e.g., transduced 

with the gene encoding GFP protein or labeled ex  vivo 

with PKH26) or indirectly by detecting human DNA 

in murine tissues using RQ-PCR (e.g., to detect human 

DNA specific for α satellite sequences) and comparing 

the amplification result to a standard curve established 

by mixing human and murine cells in different ratios [8, 

20]. From the percentage of human DNA present in DNA 

extracts, we can estimate how many human cells were 

present in a given organ using this standard curve [8, 24]. 

Before injection into experimental animals, the cancer 

cells may be stimulated with pro-metastatic factors or 

exposed to the inhibitor of their corresponding receptors.

By employing this in  vitro Transwell assay and the 

in  vivo cancer cell seeding efficiency assay, it is possi-

ble, in a relatively easy way, to study the contribution of 

several potential pro-metastatic factor–receptor axes to 

cancer metastasis and to test the efficacy of various anti-

metastatic strategies [8, 21, 22, 33].

“The never‑ending story” of pro‑metastatic factors 
for RMS cells
In the past 15  years we have identified several factors 

involved in directing the migration of RMS cells and thus 

potentially directing metastasis of this tumor. �e first 

factors that we studied were cytokines with chemotactic 

activity, known as chemokines [6, 9, 20–22]. Chemokines 

regulate the migration of several types of normal cells, 

activate seven-transmembrane-domain G protein-cou-

pled receptors, and it is not surprising that they also che-

moattract cancer cells [18, 23, 36, 46–48]. For example, 

we demonstrated that SDF-1, by engaging both CXCR4 

and CXCR7 seven-transmembrane-domain receptors, 

promotes migration of RMS cells and could be respon-

sible for their metastasis to BM [6, 22]. Specifically, we 

showed that RMS cells respond robustly to gradients of 

SDF-1 employed at high concentrations, and this migra-

tion was inhibited by blocking CXCR4 with small-mol-

ecule antagonists [6]. Later on, when a new ligand for 

CXCR4, the chemokine macrophage migration inhibitory 

factor (MIF), had been described [49], we also confirmed 

that it may direct migration of CXCR4+ RMS cells [21]. 

Since RMS cells express CXCR7, they may also respond 

to another chemokine, interferon-inducible T cell alpha 

chemoattractant (I-TAC) [22]. �e role of chemokines in 

regulating the biology of RMS cells is even more compli-

cated, as RMS cells may secrete interleukin 8 (IL-8). Since 

they do not express the corresponding receptors (CXCR1 

and CXCR2), IL-8 secreted by RMS cells exerts paracrine 

effects on the surrounding microenvironment and stimu-

lates tumor angiogenesis [50].

RMS cells also respond to several growth factors that 

engage receptors with intrinsic tyrosine kinase activity 

[18, 51]. It has been reported that insulin-like growth fac-

tor 1 and 2 are not only RMS growth-promoting factors 

but are also potent chemotactic factors for these cells [18, 

Chemotaxis – direc�onal

migra�on

Upper 
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Lower 
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Chemokinesis – random

migra�on

FACTOR

Fig. 2 In vitro Transwell migration assay. Cells to be tested are placed 

in the upper chamber, and the migration-promoting factor to be 

tested for chemotaxis is placed in the lower chamber. If the factor is 

to be tested for chemokinesis, it is added at the same time to both 

upper and lower chambers. Cells that migrate to the lower chamber are 

counted and compared with cells that had migrated in medium with-

out the pro-migratory factor (the control Transwell inserts)
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Recipient mice – immunodeficent 

strains for human cells (irradiated 

by 360 cGy), syngeneic mice for 

murine cell lines

24 h

Tested human or murine cancer 

cells – primed by pro-metasta�c 

factor or exposed to receptor 

inhibitor 

Cells are injected 

intravenously

24-48 h

Organs removed for 

analysis

DNA purifica�on from 

isolated organs

Detec�on of human-murine 

chimerism level by qRT-PCR

Cell suspension
Cell suspension

Detec�on of fluorochrome

labeled (e.g., PKH20) 

tested cancer cells 

Detec�on of green 

fluorescence protein (GFP)  

transduced tested cancer cells 

Fig. 3 In vivo seeding efficiency assay for human cells. Human cells exposed ex vivo (primed) to a pro-metastatic factor or a receptor blocking 

agent are subsequently injected i.v. into immunodeficient mice. Mice can be additionally irradiated with 360 cGy. The number of human cells can 

be detected in murine organs by FACS (after labelling cells with fluorochrome or transducing with GFP) or by detecting the level of human DNA in 

murine organs
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52–54]. In our own work we also confirmed that hepato-

cyte growth factor/scatter factor (HGF/SF) promotes 

migration and adhesion of RMS cells by engaging the 

c-Met receptor [20].

Another group of factors that may direct migration of 

RMS cells are cytokines, and our recent research demon-

strated the involvement of erythropoietin in enhancing 

the pro-metastatic potential of this tumor [55]. Erythro-

poietin is very often employed in patients to ameliorate 

chemotherapy-induced anemia [56]. �erefore, erythro-

poietin supplementation in RMS patients may have the 

unwanted side effect of stimulating tumor progression.

In addition to peptide-based factors, such as cytokines, 

chemokines, and growth factors, another potent class of 

pro-metastatic factors for RMS cells that we have identi-

fied is bioactive lipids. In our recent work we have dem-

onstrated that the pro-metastatic potential of RMS cells 

is enhanced by the presence of sphingosine-1-phosphate 

(S1P), ceramide-1-phosphate (C1P), lysophosphatidyl-

choline (LPC), and its derivative, lysophosphatidic acid 

(LPA) [25]. All these bioactive lipids strongly enhance 

motility and adhesion of human RMS cells, and, more 

importantly, these metastatic-associated phenomena 

were observed at physiological concentrations of these 

lipids that naturally occur in biological fluids [25].

Moreover, a novel class of factors that we identified that 

may enhance the migration of RMS cells is gonadal and 

pituitary sex hormones (SexHs) [55]. SexHs are involved 

in skeletal muscle development and regeneration, and we 

found that follicle-stimulating hormone (FSH) and lute-

inizing hormone (LH) receptors are expressed in estab-

lished human RMS cell lines as well as in primary tumor 

samples isolated from RMS patients. We also found that 

human RMS cell lines responded both to pituitary and 

gonadal SexH stimulation by enhanced proliferation, 

chemotaxis, and cell adhesion [55]. �e expression of 

functional SexHs by RMS cells suggests, as mentioned 

above, their developmental relationship with certain 

developmentally early stem cells deposited in adult tis-

sues [57, 58].

Finally, metastasis and migration of RMS cells are also 

affected by several other factors, such as extracellular 

microvesicles (ExMVs) [59, 60], thrombin [12], and even 

extracellular nucleotides (e.g., ATP, UTP) [24]. �e list of 

these factors is still open, and new candidates are being 

identified.

Other strategies to inhibit the metastasis of cancer 
cells
Based on our results for a model of RMS metastasis, we 

conclude that there are multiple redundant pro-meta-

static axes for this tumor. �erefore inhibition of one of 

these axes will not prevent pro-metastatic responsiveness 

of the cells to other axes. Instead, most ideal anti-met-

astatic treatment should target common mechanisms 

involved in the metastatic process.

One of these possibilities is to target signaling pathways 

involved in cell migration such as intracellular kinases 

that are known to promote this process (e.g., p42/44 

MAPK, AKT, or PKC). However, since these signaling 

kinases are involved in the regulation of many physiologi-

cal processes, it would be difficult to target them without 

unpredictable side effects.

Another potential strategy would be to enhance the 

expression of certain stress-specific pathways that inhibit 

cell migration. One such strategy that we recently identi-

fied is to upregulate heme oxygenase 1 (HO-1) in cancer 

cells (manuscript in preparation). Small-molecule induc-

ers of this stress-induced enzyme are available, and our 

preliminary results in several tumor models demonstrate 

the efficacy of such treatment in inhibiting the spread of 

cancer cells [61, 62]. However, in parallel we have to take 

into consideration other potential pleiotropic effects of 

HO-1 on tumor cells.

Finally, we have proposed that a pro-metastatic 

microenvironment may be induced in healthy tissues in 

response to radio-chemotherapy [63, 64]. While there 

are several well-known side effects of chemotherapy 

and radiotherapy that are mainly related to toxicity and 

the impaired function of several organs, the induction 

of a pro-metastatic microenvironment is still, surpris-

ingly, not widely acknowledged [63, 64]. We proposed 

that toxic damage in various organs leads to upregula-

tion in “bystander” tissues of several chemotactic factors, 

which attract circulating stem cells for regeneration but 

unfortunately also provide chemotactic signals to attract 

cancer cells that survived the initial treatment [63]. �is 

mechanism may play an important role in the metastasis 

of cancer cells to organs such as bones, lungs, and liver, 

which are highly susceptible to chemotherapeutic agents 

as well as ionizing irradiation. We have demonstrated 

that this side effect of radio-chemotherapy can be amelio-

rated by administration of non-steroid anti-inflammatory 

drugs (e.g., ibuprofen) or steroids at the time of admin-

istration of radiochemotherapeutic treatment [63]. �is 

strategy may effectively ameliorate collateral induction of 

pro-metastatic factors in various organs and tissue. Based 

on our experimental data these new potential therapeutic 

strategies shall be tested in the clinical settings.

Conclusions
As mentioned in introduction metastasis is responsible 

for more than 90  % of cancer-associated mortality and 

therefore the clinical need to prevent or target metasta-

sis is one of the therapeutic priorities in clinical oncology. 

Our long-standing studies on the mechanisms involved in 
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cancer metastasis by employing RMS cells as a model sys-

tem clearly show that targeting a single receptor–ligand 

axis may slow down but will not prevent cancer cells from 

undergoing metastasis, as several redundant pro-metastatic 

receptor–ligand axes exist. Moreover, based on the litera-

ture and taking into consideration that multiple pro-met-

astatic factors have also been identified for other types of 

malignancies, the general conclusions of this review apply 

also to other tumors. �erefore, there is an urgent need to 

develop more efficient anti-metastatic therapies that will 

simultaneously target the response of cancer cells to all 

pro-metastatic factors (e.g., by intracellular upregulation of 

HO-1) or even to employ as a prophylactic treatment drugs 

(e.g., steroids or anti-inflammatory drugs) that prevent 

induction of a pro-metastatic microenvironment induced in 

various organs after radio-chemotherapy. �ese new poten-

tial anti-metastatic strategies could be combined with sur-

gical treatment and/or cancer immunotherapy. A variety of 

novel surgical approaches as well as strategies to stimulate 

the immune system to destroy growing tumors are available 

including T-cell adoptive transfer combined with inteleu-

kin-2 therapy, genetically engineered T cells specialized to 

recognize tumor antigens or autologous immune enhance-

ment therapy using patient’s own peripheral blood-derived 

NK cells or other relevant immune cells [65–67].
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