K orteweg, A ., K räussl, R ., and V erwijmeren, P. (2016) Does it pay to invest in art? A selection-corrected returns perspective. Review of Financial Studies, 29(4), pp. 1007-1038. (doi:10.1093/rfs/hhv062)

There may be differences between this version and the published version. Y ou are advised to consult the publisher's version if you wish to cite from it.
http://eprints.gla.ac.uk/123152/

Deposited on: 01 September 2016

Enlighten - Research publications by members of the University of Glasgow http://eprints.gla.ac.uk

Does it Pay to Invest in Art? A Selection-Corrected Returns Perspective

Arthur Korteweg
Marshall School of Business, University of Southern California

Roman Kräussl

Luxembourg School of Finance, and Goizueta Business School, Emory University

Patrick Verwijmeren

Erasmus School of Economics, University of Melbourne, and University of Glasgow

We thank Andrew Karolyi (the editor), two anonymous referees, Andrew Ang, Stephen Brown, Les Coleman, Elroy Dimson, Will Goetzmann, Bruce Grundy, Chad Kendall, Bryan Lim, Stefano Lovo, Andrew Metrick, George Parker, Caroline Sasseville, Christophe Spaenjers, Mark Westerfield, and participants at the 2013 European Finance Association meetings and the 2014 "Art: Minds and Markets" conference at Yale University. We are grateful to Elroy Dimson, Paul Marsh, and Mike Staunton for sharing their global equities and bonds data and to Andrew Ang, Dimitris Papanikolaou, and Mark Westerfield for sharing their code for computing optimal portfolio allocations with illiquid assets. Supplementary results and details of the estimation procedure can be found on The Review of Financial Studies Web site. Send correspondence to Arthur Korteweg, Marshall School of Business, University of Southern California, 3670 Trousdale Parkway, Los Angeles, CA 90089-1427, USA; telephone: (213) 740-0567. E-mail: korteweg@marshall.usc.edu.

Abstract

This paper shows the importance of correcting for sample selection when investing in illiquid assets that trade endogenously. Using a sample of 32,928 paintings that sold repeatedly between 1960 and 2013, we find an asymmetric V-shaped relation between sale probabilities and returns. Adjusting for the resulting selection bias cuts average annual index returns from 8.7% to 6.3%, lowers Sharpe ratios from 0.27 to 0.11 , and materially impacts portfolio allocations. Investing in a broad portfolio of paintings is not attractive, but targeting specific styles or top-selling artists may add value. The methodology naturally extends to other asset classes. (JEL D44, G11, Z11)

Over the last three decades investors have started allocating increasingly larger shares of their portfolios to alternative assets. Many of these alternative asset classes, such as private equity and real estate, and even certain traditional assets, such as corporate bonds, are highly illiquid, complicating return evaluation. In particular, when sales are endogenously related to the performance of the asset, a sample selection problem arises that is pervasive across asset classes. This paper develops a methodology to quantify the magnitude of the selection bias and demonstrates its empirical first-order importance when evaluating investment performance and constructing optimal portfolios that include alternative assets.

Since the turn of the millennium, paintings (and other collectibles) have garnered increasing interest among alternative asset investors. Fueled by a strong rise in global wealth (and high net worth individuals, in particular), and the search for yield in an environment of low interest rates and stock returns, the art ${ }^{1}$ auction market doubled in sales volume between 2002 and 2013. By 2013, the global art market, though considerably smaller than real estate, was at least as large as the venture capital market in terms of sales and assets under management. ${ }^{2}$ In recent years, institutional funds have sprung up to allow investors access to diversified investments in art, and by 2013 , there were 104 art institutional funds in existence. ${ }^{3}$ According to the Art \& Finance Report 2014, a joint publication by Deloitte Luxembourg and ArtTactic, wealthy investors allocate 6% to 18% of their total wealth to art and collectibles (depending on the region), and the majority

[^0]of wealth managers and family offices strongly believe that there is a role for art in wealth management (Picinati di Torcello and Petterson 2014).

The role of art in investments is still a hotly debated topic among practitioners and academics. While the academic literature has traditionally found that the returns on art are lower than those on stocks (see Frey and Eichenberger 1995 and Burton and Jacobsen 1999 for an overview), recent studies have found that there may be value in including art in investment portfolios, partly due to art's low-or even negative-correlation with other asset classes (see the review in Ashenfelter and Graddy 2003; see recent work by Mei and Moses 2002 and Taylor and Coleman 2011). Renneboog and Spaenjers (2013) find that although the Sharpe ratio for art does not surpass that for stocks and bonds, it is higher than for other popular alternative asset classes, such as commodities and real estate. Moreover, art has performed very well in recent years, as underscored by the greater than 100% increase in the popular Mei and Moses index between 2002 and 2013, a time period that is excluded from the earlier academic studies.

Constructing an art index and computing the return to art investing is a nontrivial exercise, as prices are observed only when the artwork sells, not at fixed intervals. Goetzmann $(1993,1996)$ argues that these sales are endogenous and conjectures that paintings that have appreciated in value are more likely to come to market, resulting in high observed returns for paintings that sell, relative to the population. As a result, the observed price appreciation is not representative of the entire market for paintings. In fact, in periods with few sales, it is possible to observe high and positive returns even though the overall values of paintings are declining. Consistent with this notion, the realization utility model of Barberis and Xiong (2012) predicts that large gains are indeed more likely to be realized than small ones. However, in their model, losses are realized purely due to random liquidity shocks, and the probability of a sale is unrelated to the size of the loss. Another
set of theories predicts that the probability of a sale increases with the size of the loss, resulting in a V-shaped relation between sale probabilities and returns. For example, this happens if the incidence of liquidity shocks is correlated with the size of the loss, ${ }^{4}$ or if people trade off incurring a loss with a reset of their reference points (Ingersoll and Jin 2013). On the other hand, Meng (2014) predicts that loss aversion can lead to the exact opposite, that is, an inverse V-shaped relation. Quantifying the relation between returns and sale probabilities in illiquid assets, and the direction and magnitude of the resulting selection bias are therefore important empirical questions that have thus far proven difficult to answer, in large part due to lack of empirical methods.

We present a new and flexible econometric model of art indices, based on the framework developed by Korteweg and Sorensen (2010, 2014), that generalizes the standard repeat sales regression (RSR; see Bailey, Muth, and Nourse 1963; Case and Shiller 1987) to correct for selection bias in the sample of observed sales. This model explicitly specifies the entire path of potentially unobserved valuations and returns between sales, as well as the probability of observing a sale at each point in time and estimates the selection-corrected price for each individual artwork at each point in time, even when it is not sold. We also use the price information in failed auctions (called "buy-ins"), which are typically ignored in the literature.

Using Bayesian MCMC methods, we estimate the model on a new proprietary auction data set, from which we construct the largest sample of repeat sales of paintings in the literature to date, with 32,928 paintings being sold a total of 69,103 times between 1960 and 2013. To our knowledge, ours is the first paper to use this data set.

[^1]We find that the relation between the change in the value of paintings since purchase and the probability of a sale is V -shaped, such that large gains are more likely to be realized than small gains, and large losses are more likely than small ones. Ben-David and Hirshleifer (2012) also find a V-shaped relation for stock sales by retail investors, but unlike their results, we find a significant jump in the probability of a sale when a painting turns from a marginal loss to a marginal gain. This implies that gains are usually more likely to be realized than losses, consistent with the disposition effect as hypothesized by Goetzmann (1993, 1996).

Our results show that selection bias is of first-order economic importance. The difference between our selection-corrected index and the standard (non-corrected) RSR index is economically and statistically large, and robust across specifications. Normalizing indices at 100 in 1960, the RSR index is 5,429 in 2013, the end of our sample period, whereas the selection-corrected index ends around 1,895 . This implies that the average annual return on the corrected index is 6.3%, which is 28% lower than the 8.7% average return on the uncorrected RSR index. The annual Sharpe ratio drops nearly 60%, from 0.27 to 0.11 .

The strength of the selection bias varies strongly in both the time series and the cross-section. The bias may even reverse in times of large art market downturns, when large losses are overrepresented in the data due to the V-shaped relation between returns and sale events. This also causes excess volatility in the uncorrected index. We find evidence of both these effects in the data. In the cross-section, the more popular painting styles typically sell for smaller gains, while people wait for higher gains before selling unpopular styles. This is consistent with increased speculative selling of popular paintings (c.f. the model by Lovo and Spaenjers 2014) and amplifies the selection bias on gains.

Selection bias has important implications for asset allocation decisions. Over our sample period, a mean-variance investor who ignores selection bias would allocate a portfolio weight of one-quarter to one-third to a broadly diversified portfolio of art that aims to track the aggregate art market (with the remainder allocated to global stocks, corporate bonds, real estate, and commodities). The investor thinks that this portfolio has a Sharpe ratio of 0.64 . However, since art returns are subject to selection bias, the Sharpe ratio is in fact only 0.50 , which is 22% less than the investor's perception, and 14% lower than the 0.59 Sharpe ratio of a portfolio that excludes art altogether. Correcting for selection bias, the investor should optimally forego investing in a broad art portfolio, barring substantial nonmonetary utility from owning and enjoying art (Mandel 2009). ${ }^{5}$ This result is robust to the effects of illiquidity, transaction costs, and higher moments of art returns on portfolio allocations. We do find suggestive evidence that there may be value in following a targeted strategy aimed at a particular style, or at top-selling artists.

This is not the first paper to consider sample selection in illiquid assets. The issue was first raised in the real estate literature by Case, Pollakowski, and Wachter (1991) and Haurin and Hendershott (1991). Subsequent work used standard Heckman models to estimate the bias (e.g., Jud and Seaks 1994; Gatzlaff and Haurin 1997, 1998; Munneke and Slade 2000, 2001; Hwang and Quigley 2004; Goetzmann and Peng 2006), an approach that was also adopted for other assets, such as venture capital (Hwang, Quigley, and Woodward 2006) and art (Collins, Scorcu, and Zanola 2007; Zanola 2007). However, the Heckman approach is problematic as it ignores the underlying dynamics of the price and selection processes. In contrast, our model produces the

[^2]unconditional price path of all paintings, which is useful in quantifying the size of the selection bias in returns, among other applications.

Our paper is most closely related to Cochrane (2005) and Korteweg and Sorensen (2010), who consider venture capital returns, and Korteweg and Sorensen (2014), who examine the distribution of loan-to-value ratios in residential real estate. These papers also impose a selection equation on top of the price process. However, the approach in the Cochrane and KortewegSorensen papers imposes a linear and continuous relation between returns and the selection variable that determines sale probabilities. Our model is more flexible, allowing for both nonlinearities and discontinuities. Our results show that these features are economically important, providing a more realistic and more nuanced picture of selection bias, including its time-series and cross-sectional variation. In addition, we exploit the information in failed auctions, and we show how to estimate separate style indices. The above papers also do not consider optimal portfolio allocations.

The methodology developed in this paper extends naturally to other illiquid assets. For example, the model can easily accommodate structural corporate bond pricing equations, which are highly nonlinear in the state variable, or an "under-water" effect in homeownership, where homeowners are unable to move if their home value drops below the outstanding mortgage balance, causing a discontinuity in sales probabilities. The information in unsold real estate listings is akin to buy-ins and can be taken into account in the model. Uncovering these relations in other asset classes and quantifying their impact on the size and direction of the bias in returns is an important avenue for future work.

1. Art Market and Price Data

Following the extant art literature, we use auction prices to construct price indices. Many paintings sell in public auctions, and auction data are more reliable and more easily obtained than privatemarket data (i.e., gallery or direct-from-artist prices). It is generally accepted that auction prices set a benchmark that is used in the private market (Renneboog and Spaenjers 2013).

Our auction data come from the Blouin Art Sales Index (BASI), an independent database of artwork sold at over 350 auction houses worldwide, including Christie's and Sotheby's. BASI sources its data from Hislop's Art Sales Index, the primary source of price information in the world of fine art, supplemented with catalog data from auction houses (both electronic and hard copy). BASI is presently the largest known database of artwork, containing roughly 4.6 million works of art (of which 2.3 million are paintings) by more than 225,000 individual artists over the period 1922 to 2013.

For each painting sold in our data set, we have detailed information about the painting, the artist, and the auction. We know the painting's title, artist, year of creation, size, whether it was signed or stamped by the artist, and its medium (e.g., "oil on canvas", or "acrylic on board"). The database also categorizes each painting into one of six main styles as defined by Christie's and Sotheby's: Post-war and Contemporary, Impressionist and Modern, Old Masters, American, 19th Century European, and a residual "Other" style category. For each artist, we observe their name, nationality, year of birth, and year of death (where applicable). We also know the date of the auction and the auction house at which the painting was brought for sale.

Prior to the auction, auction house experts provide high and low price estimates between which they expect the painting to sell. Sellers set a reserve price (usually called "reservation price" in economics), which is the lowest price the seller is willing to accept. Auction houses do not
disclose the reserve price, but auction rules require it to be set at or below the low price estimate. The auction is conducted as an ascending bid (i.e., English-style) auction, where the auctioneer calls out increasingly higher prices. When a bid is solicited that no other bidder is prepared to exceed, the auctioneer strikes his hammer, and-provided it exceeds the reserve price-the painting is sold at this highest bid price (called the "hammer price"). In our data, we convert all hammer prices and price estimates to U.S. dollars using the spot rate at the time of sale. The hammer price excludes any transaction costs that the buyer pays to the auction house.

If the highest bid did not surpass the reserve price, the painting remains unsold, and it is said to be "bought in." ${ }^{6}$ Starting in 2007, we observe when a painting is bought in, and we have information about the painting, the artist, and the auction event. Beggs and Graddy (2008) study 43 paintings that were bought in and find that they experience lower future returns than paintings without a buy-in. Since buy-ins contain price information, we will use them in some of our estimates.

Our price index methodology relies on paintings that sell repeatedly. We construct a sample of repeat sales by matching auction sales records using artists' names, artwork names, painting size, medium, and signature (similar to the matching procedures in Taylor and Coleman 2011 and Renneboog and Spaenjers 2013). The sample period, in which we observe a sufficient number of repeat sales to construct a price index, ranges from 1960 to 2013.

To eliminate false matches, we remove paintings from the same artist with the generic titles "untitled" and "landscape," which represent 1.9% of paintings. We extensively checked whether the remaining potential repeat sales are true repeat sales by manually searching for the painting's "provenance." The provenance is the documented history of an artwork's creation and ownership

[^3]and may be found in auction catalogs, the online databases Artnet and Artprice, and on the Web sites of auction houses. ${ }^{7}$ When we are in doubt about whether we are dealing with a true repeat sale, we delete it from our sample. Moreover, dealers sometimes change titles of works to a generic title to curtail the ability of buyers to find prior auction prices, which may cause us to miss some true repeat sales. Our final sample includes 69,103 sales of 32,928 unique paintings. Section A of the Online Appendix contains a comparison between the repeat sales sample and the full BASI data set.

Figure 1 shows the number of sales in the repeat sales sample, broken down by the number of first, second, and third sales or more for the artwork in our repeat sales sample. ${ }^{8}$

[Please insert Figure 1 here]

Table 1, panel A, shows the descriptive statistics of the paintings. The average (median) hammer price is $\$ 150,600(\$ 14,500)$, with a long right tail of extremely expensive paintings. The average (median) low price estimate is $86 \%(82 \%)$ of the hammer price, and the average (median) high estimate is 119% (114%). The size of an average painting is $630,300 \mathrm{~mm}^{2}$, or $0.63 \mathrm{~m}^{2}$. Nearly 2% of sales occur within two years after the artist has died. Around 33% of sales take place at Christie's or Sotheby's auction houses. For 27% of sales, the auction house is located in London and 29% are sold in New York. Of the major styles, Impressionist paintings are sold most often in the sample, accounting for 26% of all sales, and American paintings are sold the least, making up 10% of sales. About 15% of sold paintings are by artists with total dollar sales in the top 100 of the full BASI database over the preceding decade.

[Please insert Table 1 here]

[^4]The differences in sales frequencies across styles is in part due to styles' relative abundance in the population, but there is also time variation in the relative sale frequencies due to time variation in the relative popularity of styles. We return to this in Section 3.

Between 2007 and 2013, the paintings in our repeat sales sample went up for auction an additional 3,854 times (representing 20.6% of the total number of auctions over the period), but these auctions resulted in a buy-in. Section A of the Online Appendix contains more detailed descriptive statistics of the buy-ins.

Table 1, panel B, provides information about the sale-to-sale returns in the repeat sales sample. The arithmetic price increase between two consecutive sales of the same painting is 109.4% on average. The median return is 47.1%, and the standard deviation is 187.4%. With an average time between sales of 9.4 years, this translates to an average (median) annualized return of $12.4 \%(6.7 \%)$, with a standard deviation of 21.9%. Negative returns occur regularly, though annualized returns below -30% or above 70% are rare. Panel B also shows logarithmic returns, which are lower than the arithmetic returns. The average \log return is 45.9% (5.6% annualized), with a median of 38.6% (4.8% annualized) and a standard deviation of 72.0% (13.5% annualized).

2. A Selection Model of Prices and Sales of Artwork

2.1 Standard repeat sales regression model

We first introduce the classic repeat sales regression (RSR) model, which was originally developed by Bailey, Muth, and Nourse (1963) and Case and Shiller (1987) to estimate real estate price indices, but has subsequently been modified and used for other illiquid asset classes, such as municipal bonds (Wilkoff 2013), venture capital (e.g., Peng 2001; Woodward and Hall 2003; Korteweg and Sorensen 2010), as well as for art (e.g., Baumol 1986; Buelens and Ginsburgh 1993;

Goetzmann 1993, 1996; Mei and Moses 2002; Zanola 2007; Goetzmann, Renneboog, and Spaenjers 2011).

The standard RSR model decomposes the log return of an artwork, i, from time $t-1$ to t, into two components:

$$
\begin{equation*}
r_{i}(t)=\delta(t)+\varepsilon_{i}(t) \tag{1}
\end{equation*}
$$

The first return component, $\delta(t)$, is the log price change of the aggregate art market from time $t-1$ to t. The arithmetic price index is constructed from the time series of δ as shown in Goetzmann (1992) and Goetzmann and Peng (2002). Section B of the Online Appendix explains the derivation in more detail. The second component, $\varepsilon_{i}(t)$, is an idiosyncratic return that is particular to the individual artwork. Following the standard in the literature, ε has a normal distribution with mean zero and variance σ^{2} and is independent over time and across artworks.

If we observe the sales of artwork at both time $t-1$ and t, then the returns are observed, and estimation is straightforward. However, Table 1 shows that paintings sell infrequently, with an average time between sales of 9.4 years (median 7.3 years). With a sale at time $t-h$ and at time t, the observed h-period log return is derived from the single-period returns in Equation (1) by summation:

$$
\begin{equation*}
r_{i}^{h}(t)=\sum_{\tau=t-h+1}^{t} \delta(\tau)+\varepsilon_{i}^{h}(t) \tag{2}
\end{equation*}
$$

The error term $\varepsilon_{i}^{h}(t)$ is normally distributed with mean zero and variance $h \sigma^{2}$. By defining indicator variables for the periods between sales, the δ 's can be estimated by standard generalized least squares (GLS) regression techniques, scaling return observations by $1 / \sqrt{ } h$ to correct for heteroscedasticity.

2.2 Selection model

The δ estimates from the RSR model are consistent as long as the indicator variables in the regression are uncorrelated with the error term, that is, if the probability of a sale is unrelated to the idiosyncratic return component. However, in their survey of the literature, Ashenfelter and Graddy (2003) highlight the concern that art prices may be inflated during booms as "better" paintings may come up for sale. Similarly, Goetzmann $(1993,1996)$ argues that selection biases are important in art data because the decision by an owner to sell a work of art may be conditional on whether or not the value of the artwork has increased, for example, due to the disposition effect. ${ }^{9}$

To correct for selection bias, we augment the RSR model with a selection equation that describes the probability of a sale

$$
\begin{equation*}
w_{i}(t)=\sum_{k=1}^{K} g_{k}\left(p_{i}(t) ; Z_{i}(t)\right) \cdot \alpha_{k}+W_{i}(t)^{\prime} \alpha_{w}+\eta_{i}(t) \tag{3}
\end{equation*}
$$

A sale of artwork i at time t occurs whenever the latent variable $w_{i}(t)$ is greater than zero, and remains unsold otherwise. $Z_{i}(t)$ and $W_{i}(t)$ are sets of observed covariates, for example, style fixed effects, characteristics of the artist, the painting, the prior sale price, or the state of the economy. The error term, $\eta_{i}(t)$, is i.i.d. normal with mean zero and variance normalized to one, and independent of $\varepsilon_{i}(t) .{ }^{10}$

The summation term in Equation (3) captures selection effects that are possibly nonlinearly related to price. The main specification in the empirical implementation is

[^5]\[

$$
\begin{gather*}
\sum_{k=1}^{K} g_{k}\left(p_{i}(t) ; Z_{i}(t)\right) \cdot \alpha_{k}=I\left(r_{i}^{p}(t) \leq 0\right) \cdot\left[r_{i}^{p}(t) \alpha_{1}+r_{i}^{p}(t)^{2} \alpha_{2}\right] \\
+I\left(r_{i}^{p}(t)>0\right) \cdot\left[\alpha_{3}+r_{i}^{p}(t) \alpha_{4}+\right. \tag{4}\\
\left.r_{i}^{p}(t)^{2} \alpha_{5}\right]
\end{gather*}
$$
\]

where $r_{i}^{p}(t)$ is the (nonannualized) \log return on the painting since its prior sale, and $I(x)$ is an indicator variable that equals one when the expression x is true, and zero otherwise.

This specification has three attractive features. First, α_{3} allows for the possibility of a jump in the likelihood of a sale around $r^{p}=0$. Pure sign preference (i.e., preferring a marginal gain over a marginal loss), which is a possible cause of the disposition effect, predicts that $\alpha_{3}>0$. Taxloss selling, on the other hand, predicts $\alpha_{3}<0$, as marginal losses are more likely to be realized than marginal gains. ${ }^{11}$

Second, the linear-quadratic components in Equation (4) link the probability of a sale to the magnitude of r^{p}. For example, realization utility theory generally predicts that for $r^{p}>0$, the probability of a sale increases with the size of the gain (e.g., Barberis and Xiong 2012). On the other hand, Meng (2014) predicts that loss aversion can yield the opposite result; that is, small gains are more likely to be realized than large gains. Whether loss aversion is strong enough for this to occur continues to be debated in the behavioral finance literature (see, for example, Barberis 2013) and is thus an important empirical question. The relation between w and r^{p} may be nonlinear, and the inclusion of squared r^{p} allows for more flexibility in the relation between r^{p} and the probability of a sale.

[^6]Third, selling behavior may be asymmetric in gains versus losses (i.e., α_{1} and α_{2} need not equal α_{4} and α_{5}, respectively). Prospect theory implies an upward sloping sale probability curve for losses; i.e., small losses are more likely realized than large losses. This prediction is shared by Meng's (2014) model. In their realization utility model, Barberis and Xiong (2012) instead predict a flat relation between the size of losses and sales (i.e., $\alpha_{1}=\alpha_{2}=0$), because losses are realized only due to randomly occurring liquidity shocks. Yet another set of theories predicts that large losses may be more likely to be realized than small ones. One such theory is that liquidity shocks are positively correlated with the size of the loss (for example, if people are forced to sell their paintings because they suffered a large loss). Ingersoll and Jin (2013) generate the same prediction in a dynamic extension of the Barberis and Xiong model, where people trade off the disappointment of realizing a loss with a "reset" of the reference point when reinvesting, subject to transaction costs. ${ }^{12}$ Another potential driver is tax-loss selling behavior in the presence of transaction costs. A final story is belief updating induced by the arrival of news that causes substantial gains or losses, which in turn drives sales activity (Ben-David and Hirshleifer 2012).

The selection model, consisting of the observation Equation (1) and the selection Equation, (3), nests the classic RSR model: if all selection coefficients $\left(\alpha_{1} \ldots \alpha_{K}\right)$ equal zero, then sales occur for reasons unrelated to price, there is no selection bias, and we recover the standard RSR model. By estimating and testing the selection coefficients, we allow the data to speak to the direction and importance of selection bias.

2.3 Estimation and interpretation

[^7]From an econometric perspective, the model is a dynamic extension of Heckman's $(1979,1990)$ selection model. As in Heckman's model, our model adjusts not only for selection on observable variables, such as the size or style of a painting, but also for controls for selection on unobservable variables. However, Heckman's model assumes that observations are independent, implying that observations for which price data are missing, are only informative for estimating the selection model (3), in the first stage, but do not carry any further information for the price index in Equation (1) in the second stage. Since prices are path dependent, this independence assumption fails to hold. Each observation carries information about not only the current price of a painting but also about its past and future prices, even at times when an artwork does not sell. Unlike the standard selection model, our model does not impose the independence assumption and uses all information to make an inference about the price path of an individual artwork, and the parameters of interest, α, δ, and σ^{2}.

The downside of allowing for the dependencies between observed and missing data is that it makes estimation more difficult relative to the standard selection model. Moreover, since the logprices enter the selection equation nonlinearly, we cannot rely on standard Kalman filtering techniques to filter out the unobserved price paths. We use Markov chain Monte Carlo (MCMC), a Bayesian estimation technique, with a single-state updating Metropolis-Hastings step (Jacquier, Polson, and Rossi 1994) to filter the latent prices. ${ }^{13}$ Section C of the Online Appendix describes the estimation algorithm in detail.

To interpret the selection equation as a model of sales behavior rather than simply a reducedform model to correct for selection bias, the variables in Equation (3) should be in the art owner's information set at the time of the decision to put the painting up for auction. Although $r_{i}^{p}(t)$ is not

[^8]known to the seller until a sale is realized, under the assumption that the seller has an unbiased signal of $r_{i}^{p}(t)$ —an assumption that dates to at least Grossman and Stiglitz (1980) —we can preserve the structural interpretation, while using the filtered $r_{i}^{p}(t)$ to estimate the model. This works because under this assumption the measurement error (here, the noise in the seller's signal) is uncorrelated with the observed variable $\left(r_{i}^{p}\right)$, and it is therefore not subject to errors-in-variables bias (Berkson 1950).

2.4 Reserve prices and buy-ins

In the structural interpretation of the selection equation above, we implicitly assumed that if a seller decides to take the painting to auction, a sale is sure to occur. In the presence of reserve prices, however, this is not necessarily true. For example, if the noisy price signal received by art owners (which they use to decide whether to take the painting to auction) is too rosy, the seller may set a reserve price that is too high relative to the actual arm's-length transaction price that would have realized in the absence of a reserve, resulting in a buy-in.

We estimate a set of specifications that includes the information from buy-ins. If a buy-in occurs, we use the low price estimate from the auction as an upper bound on the value of the painting, since by auction rules reserve prices cannot be higher than this estimate. The details of the estimation algorithm are in Section C of the Online Appendix.

2.5 Relation to the literature

The problem of sample selection in price indices of illiquid assets was first raised in the real estate literature by Haurin and Hendershott (1991) and Case, Pollakowski, and Wachter (1991).

Subsequent papers ${ }^{14}$ turned to the Heckman sample selection models, but these are subject to the above-mentioned problem with the independence assumption of the Heckman model. The advantage of our approach, compared to the Heckman corrections for sample selection in repeat sales models, is that our estimates are based on an explicit time-series model of the underlying valuation and selection processes, producing a selection adjustment that is consistent with this underlying model. The model produces the unconditional price path of all paintings, which can be used to assess risk and return, among other applications.

Our model is closest to the selection-correction approach for venture-capital-backed firms in Cochrane (2005) and Korteweg and Sorensen (2010), and for real estate in Korteweg and Sorensen (2014). Our model generalizes the Korteweg and Sorensen (2010, 2014) model, which assumes that Equation (3) is linear in log-prices (i.e., $\mathrm{K}=1$ and $g_{1}(\cdot)$ is linear in $p_{i}(t)$). We find that the nonlinearities that we introduce are economically and statistically important. Further extensions that we introduce are the use of the information in buy-ins and the estimation of subindices of artwork, for example, for different styles of paintings. To estimate subindices, we replace Equation (1) with

$$
\begin{equation*}
r_{i}(t)=X_{i}^{\prime} \cdot \delta(t)+\varepsilon_{i}(t) \tag{5}
\end{equation*}
$$

where the vector X_{i} is a set of dummy variables that indicate to which category the painting belongs. The categories need not be mutually exclusive. For example, a painting can belong to both the "Old Masters" style and the "Top 100 Artists" category.

[^9]
3. Empirical Results

In this section we first present initial evidence for sample selection, then we discuss our model estimates, and we compare art indices with and without selection adjustments.

3.1 Initial evidence for selection

We first show suggestive evidence of the existence and strength of the selection problem in the raw data, without relying on the econometric machinery of the selection model. Without selection (i.e., when paintings sell for reasons unrelated to returns), there should be no systematic relation between returns and the probability of a sale. This is not true in the data: Table 2, panel A, shows that the correlation between the average (median) annualized return since prior sale for the paintings that sell in a given year and the proportion of sales that fall in the same year is 0.409 (0.252). ${ }^{15}$ This is consistent with sample selection, for which a positive shock to the value of paintings results in more sales of paintings, with higher average realized returns, and vice versa for a negative shock.

[Please insert Table 2 here]

Panel B shows that this result also holds by painting style. For all but the "Other" painting style, the average (and median) annualized returns of a given style have correlations ranging from 0.182 to 0.503 with the market share of that style. Market share is defined as the number of paintings of the style that sold over the year relative to the total number of paintings that sold across all styles in the same year. "Other" paintings is the exception, with a correlation of 0.086 for average returns and -0.063 for median returns. The correlation is also low for top-selling artists,

[^10]though still positive at $0.067(0.043)$ for average (median) returns. Finally, panel C shows that the relation between market share and sale-to-sale returns is highly statistically significant in a pooled regression analysis that controls for style fixed effects. We will return to these results below, when we consider the impact of relative market shares on selling behavior.

3.2 Selection model estimates

The selection model requires us to take a stance on what drives the sale of an artwork. We estimate three specifications of the selection equation. All models include the linear-quadratic relation between the selection variable, w, and the \log return since last sale, r^{p}, with a discontinuity at $r^{p}=0$, as specified in Equation (4). We also include the time since the last sale, both linearly and squared, in all specifications. The time since the last sale helps to identify the model, as it affects the probability of a sale, but not the idiosyncratic return $\left(\varepsilon_{i}(t)\right.$ in Equation (1)) of the artwork over the next period, based on the commonplace assumption that prices incorporate all available public information (including the date on which the painting was last sold). There are several possible channels through which the time since the last sale may affect sale probabilities, predicting different signs of the relation. For example, people may not want to resell a painting a month after they bought it, but only consider a sale once a certain amount of time has passed. Auction houses are also very reluctant to sell the same piece in the next auction event. Alternatively, it is possible that the longer a person owns a painting, the less likely they are to sell it, for example, because of a familiarity or endowment effect. For the purpose of identification, what matters is that there exists some relation between the time since sale and the probability of sale regardless of the idiosyncratic return, not which channel dominates. The third common feature across all models is style fixed effects, capturing differences in baseline probabilities of sale for different styles.

[Please insert Table 3 here]

Table 3, model A, shows the estimated coefficients of the selection model that includes the \log return and time variables. The first key result is that all coefficients on r_{i}^{p} are statistically different from zero, which shows that sample selection is statistically important.

[Please insert Figure 2 here]

To facilitate interpretation of the coefficients and their economic significance, Figure 2 plots the estimated relation between r_{i}^{p} and the probability of sale over the next year. The figure reveals the second key result: a V-shaped relation between returns and sale probabilities. Large gains are more likely to be realized than small gains, and large losses are more likely realized than small losses.

The third main result is the jump in the sale probability around zero returns, as α_{3} in model A is significantly larger than zero. In other words, the probability of a sale jumps up as marginal losses turn to marginal gains. Figure 2 shows that one year after a sale, a marginal gain sells with a probability of 5.14%, versus 3.99% for a marginal loss, a difference of 1.15%. At five- and tenyear horizons this difference is 1.06% and 0.97%, respectively. ${ }^{16}$

Most importantly, gains are typically more likely to be realized than losses. For example, Figure 2 shows that a painting that increased in value by 10% in the year since its prior sale, sells with a probability of 5.33%, whereas a painting that lost 10% has a sale probability of 4.54%. The higher sale probability of paintings that increase in value means that gains are more likely to appear in the data, and indices that do not correct for selection therefore overstate the price appreciation of the art market. One exception, however, is that in times of large market downturns, large losses

[^11]may occur that-due to the V-shaped sale probability function - are more likely to realize. As we discuss below, this causes time variation in not only the strength but also the direction of the selection bias, and causes the noncorrected index to overstate the drop in aggregate prices when overall art prices experience large drops. ${ }^{17}$

To further illustrate economic significance, Figure 2 also shows the expected return and the top and bottom quartiles of the selection-corrected return distribution. The sale probability at the expected one-year return is 5.25%, while the top and bottom quartiles are 5.56% and 4.38%, respectively. The wedge between the top and bottom quartiles grows with the return horizon, to 9.41% and 4.56% at the top and bottom quartiles of the ten-year return horizon. Note that when keeping the (nonannualized) return constant, the probability of sale in the next year decreases with the return horizon. However, expected (nonannualized) returns increase with the horizon, so that in expectation, paintings are more likely to sell in the next year as the horizon grows.

The fourth result revealed by Figure 2 is a further asymmetry between gains and losses: the sale probability function is steeper and mildly concave for losses, and flatter and convex for gains, although these effects are rather mild for most of the empirically relevant range of returns. Section D of the Online Appendix shows that the general shape of the sale probability function is the same in the early and late part of the sample.

Model B expands the set of variables in the selection equation with three more variables: the size of the painting, an indicator whether the artist died in the past two years, and the growth in worldwide GDP. Table 3 shows that larger paintings are more likely to sell than small ones,

[^12]because the larger pieces in our data tend to be more ideal sizes to display. Paintings are not significantly more likely to sell within two years of the artist's death, despite popular belief that the passing away of an artist temporarily raises visibility of his or her artwork. This may be because the deaths of most artists do not come as a surprise to the market. High worldwide GDP growth is associated with higher sales probability, as more wealth translates into money flowing into art, consistent with Goetzmann (1993), Hiraki, Spieth, and Takezawa (2009), and Goetzmann et al. (2011). Most importantly, though, Table 3 shows that the relation between r_{i}^{p} and sales is robust to the inclusion of these additional variables. The sale probabilities for model B and the other model specifications that we consider below look very similar to model A, so we do not report them separately.

In model C we consider whether there are differences between art styles. Buelens and Ginsburgh (1993) find that different styles are in favor in different periods, and Penasse, Renneboog, and Spaenjers (2014) show that the correlation between prices and sales volume of paintings may be driven by a fad component. Styles that are "hot" may be subject to more speculative buying and selling, resulting in more realizations of short-term gains as predicted by the model of Lovo and Spaenjers (2014). In addition, auction house are incentivized to maximize revenue, and they organize sales around a particular style they believe will generate high revenue. To assess whether more sales of a style increase the sale probability of any single piece of that style, we include the relative market share of a style in the full BASI data set, defined as the present year's share of total sales volume divided by its five-year historical average share (to control for a baseline level of sales). A style that is currently popular has a high relative market share. ${ }^{18}$ The average (median) relative share is 1.03 (1.01), with a standard deviation of 0.21 . We also include

[^13]interactions of the relative market share with r_{i}^{p}, as styles that peaked in past years may be more subject to the sample selection bias.

The insignificant coefficient on relative market share in Table 3 shows that a style's current popularity does not uniformly raise the probability of a sale of a painting of that style. For paintings that have dropped in value since purchase, there is also no statistical difference in sale probabilities between popular and unpopular styles, potentially because liquidity shocks, taxes, or other non-demand-related factors dominate for losses. Rather, the effects of popularity are concentrated in the paintings that have risen in value. The discontinuity at $r^{p}=0$ is larger for popular styles: at the one-year horizon, the jump in probability is 1.09 percentage points for styles that are one standard deviation above the average relative share, compared to 0.82 percentage points for styles that are one standard deviation below average. For popular styles, small gains-up to returns of 25%-are more likely to realize. This could be driven by speculative selling (c.f. Lovo and Spaenjers 2014). For gains over 25%, the relation switches and unpopular styles are more likely to sell. ${ }^{19}$ In other words, people tend to wait for higher gains before they sell unpopular styles. Note that since larger gains typically only occur when smaller gains compound, the popular style paintings are overall more likely to sell. ${ }^{20}$

This result helps explain the high correlations between styles' market shares and returns in Table 2. Styles are more prone to sample selection biases when they are popular. Not only do higher returns raise the sale probability (as they do in models A and B), the interaction with relative market share amplifies this effect when the style is in swing, as happened, for example, for Impressionist paintings in the early 1970s and late 1980s, and for Post-war and Contemporary

[^14]paintings in the late 1980s and the mid-2000s. Old Masters, and especially "Other" style paintings and top-selling artists, do not experience periods of high market shares (relative to their baselines) during the sample period. The relation between returns and sales volume is less pronounced for these categories and hence their lower correlations in Table 2.

3.3 Art indices

Figure 3, panel A, plots two estimated art price indices that ignore selection bias. The first index is constructed from the standard repeat sales regression estimated by GLS, weighing each observation by the inverse of the square root of the time between sales, to correct for potential heteroscedasticity (the "GLS index"). The second is a MCMC specification that ignores selection by forcing all $\alpha_{1}, \ldots, \alpha_{K}$ in Equation (3) to equal zero (the "MCMC index"). We normalize the index value to 100 in the year 1960. The GLS and MCMC indices practically coincide, mitigating concerns about distributional assumptions of the MCMC estimator.

[Please insert Figure 3 here]

Next, we use models A, B, and C of Table 3 to construct three selection-corrected indices, which we denote indices A, B, and C, respectively. Panel A of Figure 3 also plots the time series of the selection-corrected price indices. The selection correction is quite robust across models: the differences among the three selection-corrected indices are generally less than ten index points. Compared to the noncorrected indices, however, the differences are striking. The selectioncorrected indices are markedly lower than the noncorrected indices, consistent with the earlier finding that gains are overall more likely to realize than losses. The peak in the indices in 1990, which occurs at an index level of 1,775 in the non-selection-corrected model, occurs at around 860 in the corrected indices. Following the Japanese real estate collapse in the early 1990s, the
noncorrected indices bottom out at 1,275 in 1993, while the selection-corrected ones are around 660. The 2007 peak in the noncorrected models is near 5,000, versus around 1,625 in the selectioncorrected models. By 2013, the end of our sample period, the price indices have recovered from the dip in the global financial crisis of 2008 to 2009 , and the noncorrected index is around 5,429 , compared to around 1,895 for the selection-corrected models.

The difference between the selection-corrected and noncorrected indices grows fastest when art prices are rising, that is, in the years up to 1990, the boom from 1993 to 2000, and from 2001 up to the financial crisis in 2008. This happens because in "normal" times when the market is rising, gains are more likely to realize, and the noncorrected index overstates the price rise. Conversely, during the few periods when art values experience large drops, such as the bursting of the Japanese bubble in the early 1990s, the market crash of 2000, and the financial crisis of 2008 and 2009, the difference between the indices narrows somewhat. When there are few gains and large losses, those losses are relatively more likely to realize due to the V-shaped probability function. The selection bias thus reverses, and the noncorrected index overstates the decline, pulling the index closer to the selection-corrected one. This also suggests that the noncorrected index is excessively volatile, and we show below that its return volatility is indeed higher than the selection-corrected index.

Next, Figure 4 shows the selection-corrected indices estimated by style. Styles mostly follow a common pattern, peaking in 1990 and again in 2008, but there are some differences. Post-war and Contemporary paintings did well in the booms of the late 1980s and especially the early and mid-2000s. American and 19th Century European paintings also performed well, at a steadier, less volatile pace. Impressionist and Modern paintings show large increases in the 1980s but were hit heavily in 1990, in line with the popular interpretation of art observers that the strong yen in the

1980s and the bursting of the Japanese real estate bubble in 1990 had strong effects on the prices of Impressionist paintings (see, for example, Wood 1992). Old Masters did not increase much in value over the sample period, compared to the other styles.

[Please insert Figure 4 here]

The most striking result is the performance of the top 100 artists portfolio (as defined by sales over the prior decade), which outperformed all styles, and did well even after the financial crisis, when style indices remained mostly flat. This result relates to the "masterpiece effect," the general belief among art dealers and critics that highly priced paintings are the best buy (e.g., Adam 2008). Several prior academic studies examine masterpieces, defined as paintings in the right tail of the price distribution, and generally find that they underperform (Pesando 1993; Mei and Moses 2002, 2005), or find mixed effects (Ashenfelter and Graddy 2003; Pesando and Shum 2008). Renneboog and Spaenjers (2013) criticize this approach as identifying the most overpriced paintings rather than true masterpieces. They instead consider artists that are most frequently mentioned in five editions of Gardner's art history textbooks and find evidence that these master artists outperform. Our definition of top-selling artists most resembles theirs, and we show below that, despite the more volatile returns to this strategy, this result holds even after controlling for selection bias.

3.4 Buy-ins

Including the additional information in buy-ins yields parameter estimates that are close to the sales-only sample estimates in Table 3. For brevity, we report them in Section E of the Online Appendix. Although the sale probability function is nearly identical to the one shown in Figure 2, the inclusion of buy-in information does have an impact on the estimated indices. Panel B of Figure

3 compares the model C index estimated with and without the buy-in information. We renormalize the indices to 100 in 2007, the first year in which we have buy-in information, and focus on the 2007 to 2013 period. The buy-in index gradually diverges from the sales-only index up until 2012, at which point it has dropped 3.3 index points (or 3.1%) below the sales-only index. The two indexes converge in 2013, however, and the difference at the end of the sample period is therefore rather small. With a longer time-series of buy-ins, it is likely that the differences will be larger.

4. Optimal Portfolio Allocation

In this section, we show the importance of sample selection for performance evaluation and optimal portfolio allocation. For brevity, we focus on the results from the sales-only sample (i.e., without the buy-in information), leaving robustness checks to Section F of the Online Appendix.

[Please insert Table 4 here]

Table 4 reports means, standard deviations, and Sharpe ratios of the annual arithmetic returns on the art indices. The standard repeat sales GLS index has an average annual return of 8.7% with a standard deviation of 13.8%, and an annual Sharpe ratio of 0.268 . The non-selection-corrected MCMC index returns are nearly identical. In contrast, the selection-corrected index A has an average return of 6.3%, which is 28% lower than the noncorrected index. The standard deviation is 11.4%. The material excess volatility of the noncorrected index is due to the time variation in the strength of sample selection, as argued above. The Sharpe ratio of the selection-corrected index is 0.111 , or 59% lower than the noncorrected index. The return properties of indexes B and C are nearly identical to index $\mathrm{A} .{ }^{21}$

[^15]The selection-corrected returns are more representative of the experience of an investor who has invested in a well-diversified (nontargeted) portfolio of paintings, since the standard non-selection-corrected index implicitly assumes either that an investor can pick "winners" that rise in value and are thus more likely to sell, or that there is no selection problem and that the investor's holdings follow the same price path as the paintings that come to auction. ${ }^{22}$ The selection-corrected indices do not make such assumptions, but rather measure the rise in value of a representative portfolio of paintings, both those that sold and those that did not. ${ }^{23}$

Table 4 also shows descriptive statistics of returns of a broad portfolio of global equities (the total return on global equities from Dimson, Marsh, and Staunton 2002), ${ }^{24}$ corporate bonds (the Dow Jones corporate bond return index), commodities (the World Bank Global Economic Monitor commodities index), and real estate (the U.S. residential real estate index from Shiller 2009) over the sample period. For the risk-free asset, we use the global Treasury-bill rate at the beginning of the year from Dimson, Marsh, and Staunton (2002). Being our risk-free asset, we do not report its Sharpe ratio.

Despite the low Sharpe ratios of the selection-corrected art indices relative to stocks, corporate bonds, and commodities (of $0.36,0.42$, and 0.16 , respectively), investing in paintings may still be useful for constructing optimal portfolios if the correlations between art and the other asset classes are low. Table 4 shows that the correlation between art and the other assets are less than 0.3 for almost all art indices, and statistically no different from zero, except for the correlation with real estate.

[^16]We construct optimal portfolios using common base case assumptions from the literature. First, investors have mean-variance utility. Second, borrowing and short sales are not allowed. Third, there are no transaction costs to constructing the portfolios. Fourth, there is no illiquidity premium on paintings. Fifth, investing in the art index does not provide the investor with access to the artworks underlying the index, and thus there is no consumption utility of owning art. We use Dimson's (1979) method with one-year leads and lags of returns to correct for first-order autocorrelation due to time-aggregation of sales (Working 1960; Schwert 1990).

[Please insert Table 5 here]

Table 5, panel A, shows the portfolio weights for the tangency portfolio of stocks and art (i.e., the portfolio with the maximum Sharpe ratio in the presence of a risk-free asset). An investor who does not correct for selection bias in art returns would want to assign 31% of the portfolio's weight to art. The perceived portfolio Sharpe ratio of 0.64 is 10% higher than the Sharpe ratio of 0.59 that is achieved with stocks alone, an economically significant improvement.

In contrast, an investor who corrects for sample selection optimally assigns zero weight to paintings across all selection models A, B, and C. This stark result underscores the importance of correcting for sample selection when making optimal portfolio decisions. Had the investor followed GLS allocations, with 31% of the portfolio in art, the realized portfolio Sharpe ratio based on the selection-corrected art returns would be 0.50 . Compared to the 0.59 Sharpe ratio on a portfolio excluding art, this is a loss of 14% (this result is not tabulated).

Panels B and C of Table 5 show the portfolio allocations for a mean-variance utility investor with a risk aversion coefficient equal to two or ten, respectively. The results are consistent with the tangency portfolio results, though somewhat weaker for the case of risk aversion equal to two.

One issue with the above analysis is that it may not be feasible to invest in such an art index, since one cannot purchase a fraction of every painting, unlike stocks or bonds. At best an investor can build a portfolio that contains a broad set of paintings that mimics the makeup of the art market. Such a portfolio must have a lower Sharpe ratio than the index. Other frictions, such as transaction costs and illiquidity, will further depress attainable Sharpe ratios, strengthening the conclusion that investing in a broad portfolio of paintings is not economically profitable.

Despite the above result about investing in the broad art market, it is perhaps economically sensible to construct a portfolio that focuses on particular styles of paintings or on top-selling artists. Indeed, Table 5 shows that the American style and the Top 100 artists receive positive portfolio weights after adjusting for selection bias. The Post-war and Contemporary style is not in the optimal portfolio, despite having a higher Sharpe ratio than American paintings, because its correlations with the other asset classes are relatively high. The Sharpe ratio of the tangency portfolio improves by nearly 9% to just shy of 0.64 , relative to the 0.59 Sharpe ratio when art is excluded. Thus, there appears to be improvement in performance when considering narrower, targeted categories of paintings. Still, we should be cautious in drawing strong conclusions from this exercise, as the styles' relative performance is not consistent over time (as seen in Figure 4), ignores transaction costs, and is based on only five decades of data.

Section F of the Online Appendix shows that the portfolio results are robust to a range of alternative assumptions and measures, such as adding the buy-in information, adjusting for illiquidity using the model by Ang, Papanikolaou, and Westerfield (2014), unsmoothing the index returns instead of using the Dimson correction (e.g., Campbell 2008; Renneboog and Spaenjers 2013), and assuming power utility rather than mean-variance utility.

5. Conclusion

We estimate an empirical model that adjusts for selection bias in illiquid asset markets with endogenous sales, using a large data set of art auctions. Our model generalizes the prior literature on selection bias in important ways. Most importantly, we allow for a nonlinear relation between returns and sale probabilities, and we use information from buy-ins, where paintings came up for auction but did not sell. We find that the increased flexibility is economically important. The relation between art returns and sale probabilities is V-shaped; that is, large gains and losses are more likely to realize than small gains and losses. The relation is asymmetric, and in normal times gains are overrepresented in the data, largely due to an upward jump in sale probabilities as marginal losses become marginal gains. This results in a disposition effect as hypothesized by Goetzmann (1993, 1996). We also show that there is time and cross-sectional variation in the strength of the sample selection bias. During significant downturns in the art market, selection bias may even switch sign, as large losses become over-represented in the data. In addition, styles are more prone to selection bias when they are popular, consistent with an increase in speculative buying and selling behavior.

Sample selection bias has a first-order impact on art indices, lowering the average annual return by 28%, from 8.7% for a standard repeat sales index to 6.3% for selection-corrected indices. The standard deviation of the noncorrected index returns is 2.4 percentage points (i.e., 21%) higher than the corrected index. This excess volatility is due to the time variation in the strength of selection bias. The annual Sharpe ratio of the corrected index drops nearly 60%, from 0.27 to 0.11 . The implications are that an investor would not find it attractive to invest in a portfolio that is representative for the broad art market, unless she derives substantial nonmonetary utility from owning and enjoying art. Had she ignored selection bias, she would have allocated a nonnegligible
share of her portfolio to art. We find some suggestive evidence that a strategy targeted at certain styles or at top-selling artists may be optimally included in an investment portfolio of art, stocks, bonds, real estate, and commodities.

More broadly, this paper highlights the importance of accounting for sample selection for performance evaluation and portfolio optimization of illiquid assets with endogenous sales. Whether the selection correction is quantitatively as large in other asset classes (e.g., real estate, private equity, and corporate bonds) as in art, is an important empirical question that we leave for future work. The methodology developed in this paper should prove helpful in answering these questions, as it naturally applies to these other settings.

References

Adam, G. 2008. When Brueghel met Schnabel. Financial Times, April 21, 2008.
Ang, A., D. Papanikolaou, and M. Westerfield. 2014. Portfolio choice with illiquid assets. Management Science 60:2737-61.

Ashenfelter, O., and K. Graddy. 2003. Auctions and the price of art. Journal of Economic Literature 41:763-86.

Bailey, M. J., R. F. Muth, and H. O. Nourse. 1963. A regression method for real estate price index construction. Journal of the American Statistical Association 58:933-42.

Barberis, N. 2013. Thirty years of prospect theory in economics: A review and assessment. Journal of Economic Perspectives 27:173-96.

Barberis, N., and W. Xiong. 2012. Realization utility. Journal of Financial Economics 104:25171.

Baumol, W. 1986. Unnatural value: Or art investment as floating crap game. American Economic Review 76:10-14.

Beggs, A., and K. Graddy. 2008. Failure to meet the reserve price: The impact on returns to art. Journal of Cultural Economics 32:301-20.

Ben-David, I., and D. Hirschleifer. 2012. Are investors really reluctant to realize their losses? Trading responses to past returns and the disposition effect. Review of Financial Studies 25:248532.

Berkson, J. 1950. Are there two regressions? Journal of the American Statistical Association 45:164-80.

Buelens, N., and V. Ginsburgh. 1993. Revisiting Baumol's "Art as a floating crap game." European Economic Review 37:1351-71.

Burton, B. T., and J. P. Jacobsen. 1999. Measuring returns on investments in collectibles. Journal of Economic Perspectives 13:193-212.

Case, K. E., H. O. Pollakowski, and S. M. Wachter. 1991. On choosing among house price index methodologies. Real Estate Economics 19:286-307.

Case, K. E., and R. J. Shiller. 1987. Prices of single family homes since 1970: New indexes for four cities. New England Economic Review Sept/Oct, 46-56.

Campbell, R. A. J. 2008. Art finance. In Handbook of finance: Financial markets and instruments, pp. 605-10. Ed. F. J. Fabozzi. New York: John Wiley \& Sons.

Campbell, J., S. Giglio, and P. Pathak. 2011. Forced sales and house prices. American Economic Review 101:2108-31.

Cochrane, J. 2005. The risk and return of venture capital. Journal of Financial Economics 75:352.

Collins, A., A. E. Scorcu, and R. Zanola. 2007. Sample selection bias and time instability of hedonic art price indices. Working Paper No. 610, University of Bologna.

Dimson, E. 1979. Risk measurement and infrequent trading. Journal of Financial Economics 7:197-226.

Dimson, E., P. Marsh, and M. Staunton. 2002. Triumph of the optimists: 101 years of global investment returns, 1st ed. Princeton: Princeton University Press.

Frazzini, A. 2006. The disposition effect and under-reaction to news. Journal of Finance 61:201746.

Frey, B. S., and R. Eichenberger. 1995. On the rate of return in the art market: Survey and evaluation. European Economic Review 39:528-37.

Gatzlaff, D. H., and D. R. Haurin. 1997. Sample selection bias and repeat-sales index estimates. Journal of Real Estate Finance and Economics 14:33-50.
—_. 1998. Sample selection and biases in local house value indices. Journal of Urban Economics 43:199-222.

Genesove, D., and C. Mayer. 2001. Loss aversion and seller behavior: Evidence from the housing market. Quarterly Journal of Economics 116:1233-60.

Goetzmann, W. 1992. The accuracy of real estate indices: Repeat sales estimators. Journal of Real Estate Finance and Economics 5:5-53.
—_. 1993. Accounting for taste: Art and financial markets over three centuries. American Economic Review 83:1370-76.
-_ 1996. How costly is the fall from fashion? Survivorship bias in the painting market. In Economics of the arts: Selected essays, vol. 237. Contributions to Economic Analysis, 71-84. Eds. V. A. Ginsburgh and P. Menger. New York: Elsevier.

Goetzmann, W., and L. Peng. 2002. The bias of the RSR estimator and the accuracy of some alternatives. Real Estate Economics 30:13-39.
——. 2006. Estimating house price indexes in the presence of seller reservation prices. Review of Economics and Statistics 88:100-112.

Goetzmann, W., L. Renneboog, and C. Spaenjers. 2011. Art and money. American Economic Review 101:222-26.

Grinblatt, M., and M. Keloharju. 2001. What makes investors trade? Journal of Finance 56:589616.

Grossman, S. J., and J. E. Stiglitz. 1980. On the impossibility of informationally efficient markets. American Economic Review 70:393-408.

Hartzmark, S. M., and D. H. Solomon. 2012. Efficiency and the disposition effect in NFL prediction markets. Quarterly Journal of Finance 2:1250013.

Haurin, D. R., and P. H. Hendershott. 1991. House price indexes: Issues and results. Real Estate Economics 19:259-69.

Heath, C., S. Huddart, and M. Lang. 1999. Psychological factors and stock option exercise. Quarterly Journal of Economics 114:601-27.

Heckman, J. 1979. Sample selection bias as a specification error. Econometrica 47:153-62.
-. 1990. Varieties of selection bias. American Economic Review 80:313-18.
Hiraki, T., A. Ito, D. A. Spieth, and N. Takezawa. 2009. How did Japanese investments influence international art prices? Journal of Financial and Quantitative Analysis 44:1489-514.

Hwang, M., and J. M. Quigley. 2004. Selectivity, quality adjustment and mean reversion in the measurement of house values. Journal of Real Estate Finance and Economics 28:161-78.

Hwang, M., J. M. Quigley, and S. E. Woodward. 2006. An index for venture capital, 1987-2003. B.E. Journals in Economic Analysis \& Policy 4:1-43.

Ingersoll, J., and L. Jin. 2013. Realization utility with reference-dependent preferences. Review of Financial Studies 26:723-67.

Jacquier, E., N. G. P. Polson, and P. E. Rossi. 1994. Bayesian analysis of stochastic volatility models. Journal of Business and Economic Statistics 94:371-417.

Jud, G. D., and T. G. Seaks. 1994. Sample selection bias in estimating housing sales prices. Journal of Real Estate Research 9:289-98.

Korteweg, A., and M. Sorensen. 2010. Risk and return characteristics of venture capital-backed entrepreneurial companies. Review of Financial Studies 23:3738-72.
—_. 2014. Estimating loan-to-value distributions. Working Paper, Stanford University and Columbia University.

Lovo, S., and C. Spaenjers. 2014. Unique durable assets. Working Paper, HEC Paris.
Mandel, B.R. 2009. Art as an investment and conspicuous consumption good. American Economic Review 99:1653-63.

McAndrew, C. 2014. TEFAF art market report 2014. Arts Economics, Dublin (Ireland).
Mei, J., and M. Moses. 2002. Art as an investment and the underperformance of masterpieces. American Economic Review 92:1656-68.
-_. 2005. Vested interest and biased price estimates: Evidence from an auction market. Journal of Finance 60:2409-35.

Meng, J. 2014. Can prospect theory explain the disposition effect? A new perspective on reference points. Working Paper, Peking University.

Munneke, H. J., and B. A. Slade. 2000. An empirical study of sample-selection bias in indices of commercial real estate. Journal of Real Estate Finance and Economics 21:45-64.
—_. 2001. A metropolitan transaction-based commercial price index: A time-varying parameter approach. Real Estate Economics 29:55-84.

Odean, T. 1998. Are investors reluctant to realize their losses? Journal of Finance 53:1775-98.

Pearce, B. 2014. Adapting and evolving: Global venture capital insights and trends 2014. Ernst \& Young.

Penasse, J., L. Renneboog, and C. Spaenjers. 2014. Sentiment and art prices. Economics Letters 122:432-34.

Peng, L. 2001. Building a venture capital index. Working Paper, University of Colorado.
Pesando, J. E. 1993. Art as an investment: The market for modern prints. American Economic Review 83:1075-89.

Pesando, J., and P. Shum. 2008. The auction market for modern prints: Confirmation, contradictions, and new puzzles. Economic Inquiry 46:149-59.

Picinati di Torcello, A., and A. Petterson. 2014. Art \& finance report 2014. Deloitte Luxembourg and ArtTactic.

Renneboog, L., and C. Spaenjers. 2013. Buying beauty: On prices and returns in the art market. Management Science 59:36-53.

Schwert, G. W. 1990. Indexes of U.S. stock prices from 1802 to 1987. Journal of Business 63:399442.

Shefrin, H., and M. Statman. 1985. The disposition to sell winners too early and ride losers too long: Theory and evidence. Journal of Finance 40:777-91.

Shiller, R. J. 2009. Irrational exuberance, 2nd ed. Princeton: Princeton University Press.
Taylor, D., and L. Coleman, L. 2011. Price determinants of Aboriginal art, and its role as an alternative asset class. Journal of Banking and Finance 35:1519-29.

The Economist, 2013. Freeports: Über-warehouses for the ultra-rich. November 23, 2013.
Wilkoff, S. 2013. A municipal bond market index based on a repeat sales methodology. Working Paper, U.S. Securities and Exchange Commission.

Wood, C. 1992. The bubble economy. The Japanese economic collapse. London: Sidgwick \& Jackson.

Woodward, S. E., and R. E. Hall. 2003. Benchmarking the returns to venture. Working Paper, Sand Hill Econometrics and Stanford University.

Working, H. 1960. Note on the correlation of first differences of averages in a random chain. Econometrica 28:916-18.

Zanola, R. 2007. The dynamics of art prices: The selection corrected repeat-sales index. POLIS Working Paper No. 85, University of Eastern Piedmont.

Figure legends

Figure 1. Number of sales
This figure shows the number of auction sales of paintings in the repeat sales sample, by calendar year. We distinguish between the first, second, and third sale or more of an artwork.

Figure 2. Probability of sale

This figure shows the model-implied probability (in percent, on the vertical axis) that a painting will sell in the next year, measured one year (left plot), five years (middle plot), or ten years (right plot) after a prior sale, as a function of the return since the prior sale (nonannualized, in percent, on the horizontal axis). The sale probabilities are computed for the selection model specification A in Table 3, not using the buy-in information. $E(r)$ is the estimated mean of the return distribution for the relevant horizon, based on the estimated price paths of all paintings, and is marked with an " x " on the horizontal axis of each plot. Similarly, $p 25$ and $p 75$ are the 25 th and 75 th percentiles of the return distribution and are also marked with "x"s.

Figure 3. Art price indices

This figure shows repeat sales arithmetic art price indices, normalized to an index value of 100 in 1960. Panel A shows two indices not corrected for sample selection (GLS and MCMC) and three indices that are corrected for sample selection $(A, B$, and $C)$. The $G L S$ index is the standard repeat sales regression index as estimated by generalized least squares, with weights that are inverse proportional to the square root of the time between sales. The $M C M C$ index is the index estimated by the Markov chain Monte Carlo algorithm when the sample selection problem is forcibly ignored; that is, all α_{k} for $k=1 \ldots K$ in Equation (3) are set to zero. Models A through C correct
for sample selection and correspond to the specifications of the selection equation as shown in Table 2. Panel B shows two estimated of Model C in Table 3, normalized to 100 in 2007, where the solid line is estimated on the sample that excludes buy-ins, and the striped line uses the buy-in information.

Figure 4. Selection-corrected price indices per style
This figure shows selection-corrected price indices for each style classification, normalized to an index value of 100 in 1960. Top 100 refers to the index of paintings by top 100 artists based on the total value of sales (in U.S. dollars) of all paintings by the artist over the decade prior to the year of sale.

Figure 1. Number of sales

Figure 2. Probability of sale

Return since prior sale (in \%)

5 years since prior sale

10 years since prior sale

Figure 3. Art price indices

Panel A: Non-selection-corrected and selection-corrected price indices (sales only)

Panel B: Selection-corrected price indices (sales and buy-ins)

Figure 4. Selection-corrected price indices per style

Table 1. Summary statistics

This table reports summary statistics for the repeat sales sample of paintings in the Blouin Art Sales Index (BASI) dataset from 1960 to 2013. Panel A presents the descriptive statistics of the 32,928 paintings that sold at least twice during the sample period. The unit of observation is a sale of a painting at auction. Hammer price is the auction price in thousands of U.S. dollars. Low estimate and High estimate are the auction house's low and high price estimates, respectively, as a percentage of the hammer price. Surface is the surface of the painting in thousands of squared millimeters. Deceased $<2 y r$. is a dummy variable equal to one when the sale occurs within two years after the artist dies, and zero otherwise. Christie's and Sotheby's are dummy variables that equal one if the painting is auctioned at Christie's or Sotheby's, respectively, and London and New York are dummy variables that equal one if the painting is auctioned in London or New York, respectively. Relative share is the market share (in terms of sales) of the painting's style in the year of sale compared to the style's average market share in the five years prior to the sale. Top 100 artists is a dummy variable equal to one when the artist is in the top 100 in terms of total value of sales (in U.S. dollars) over the decade prior to the year of sale, and zero otherwise. The remaining variables in panel A represent style classifications. Panel B shows descriptive statistics of the sale-to-sale returns in the data.

Panel A: Descriptive statistics (69,103 sales)

	Mean	Median	SD
Hammer price (\$000s)	150.6	14.5	923.8
Low estimate (\% of hammer price)	85.64%	81.63%	76.50%
High estimate (\% of hammer price)	118.83%	114.29%	83.23%
Surface	630.3	352.3	$1,161.1$
Deceased < 2 yr.	1.72%		
Christie's	32.58%		
Sotheby's	32.67%		
London	26.87%		
New York	29.11%		
Post-war and Contemporary	14.32%		
Impressionist and Modern	25.80%		
Old Masters	11.23%		
American	10.23%		
19th Century European	21.20%		
Other styles	17.22%		
Top 100 artists	15.20%		

Panel B: Sale-to-sale returns (36,175 returns)

	Mean	Median	SD
Sale-to-sale return			
\quad Arithmetic return	109.37%	47.06%	187.38%
\quad Log return	45.93%	38.57%	71.99%
Years between sales	9.42	7.33	7.46
Number of sales per painting	2.10		
Annualized sale-to-sale return			
\quad Arithmetic return	12.37%	6.66%	21.85%
\quad Log return	5.59%	4.80%	13.49%

Table 2. Relation between annualized returns and market shares by style

Panel A shows the correlation between the proportion of sales that occur in a given year and the mean (left column) and median (right column) annualized log sale-to-sale return, computed over the returns for which the second sale falls in the same year. The proportion of sales is calculated as the number of sales in the year as a percentage of all sales over the 1960 to 2013 sample period. Panel B shows the correlation between the yearly market share of each style and the mean (left column) and median (right column) annualized log sale-to-sale return for the same style. The market share of a style is the total sales of that style in a given year relative to all sales in the same year, calculated from the full BASI dataset. Panel C shows the coefficients of a regression of the yearly style market shares on the annualized sale-to-sale returns by style and style fixed effects. The sample period for panels B and C is from 1972 to 2013 to allow for sufficient second sales to calculate meaningful mean and median sale-to-sale returns. Standard errors are in parentheses. ***, ${ }^{* *}$, and $*$ indicate statistical significance at the $1 \%, 5 \%$, and 10% level, respectively.

Panel A: Correlation coefficient between proportion of sales and return

	Mean annualized sale-to- sale return		Median annualized sale-to-sale return
All paintings	0.409	0.252	

Panel B: Correlation coefficients between market share and return, by style

	Mean annualized sale-to- sale return		Median annualized sale-to-sale return
Post-war and Contemporary	0.182	0.237	
Impressionist and Modern	0.429	0.477	
Old Masters	0.202	0.126	
American	0.386	0.482	
19th Century European	0.471	0.503	
Other styles	0.086	-0.063	
Top 100 artists	0.067	0.043	

Panel C: Regression analysis (Dependent variable = Yearly market share by style)

	I		II
Mean annualized sale-to-sale return	$0.163^{* * *}$		
	(0.048)		$0.185^{* * *}$
Median annualized sale-to-sale return			(0.056)
Style fixed effects			yes
Adjusted R^{2}	77.5%		77.4%
Number of observations	293		293

Table 3. Selection equation coefficients

This table presents the parameter estimates of three specifications of the selection equation (Equation (3)). Return is the natural logarithm of the return since the prior sale of a painting (nonannualized). Relative share is the market share (in terms of sales) of the painting's style in the year of sale compared to the style's average market share in the five years prior to the sale. Time is the time in years since the prior sale. Log surface is the natural logarithm of the painting's surface in thousands of mm^{2}. World GDP growth is the yearly increase in worldwide GDP, obtained from the Historical Statistics of the World Economy. The other variables are as defined in Table 1. Sigma is the standard deviation of the idiosyncratic error term in Equation (1). Standard errors are in parentheses. ${ }^{* * *},{ }^{* *}$, and $*$ indicate statistical significance at the $1 \%, 5 \%$, and 10% level, respectively.

	A		B		C	
Return > 0	$\begin{array}{r} 0.124 \\ (0.013) \end{array}$	***	$\begin{array}{r} 0.122 \\ (0.013) \end{array}$	***	$\begin{array}{r} 0.047 \\ (0.048) \end{array}$	
$\begin{aligned} & (\text { Return }>0) \\ & \quad * \text { relative share } \end{aligned}$					$\begin{array}{r} 0.075 \\ (0.046) \end{array}$	*
$($ Return<0) * return	$\begin{gathered} -0.683 \\ (0.049) \end{gathered}$	***	$\begin{gathered} -0.691 \\ (0.049) \end{gathered}$	***	$\begin{aligned} & -0.650 \\ & (0.152) \end{aligned}$	***
(Return<0) * return * relative share					$\begin{array}{r} -0.041 \\ (0.141) \end{array}$	
$($ Return<0) * return^2	$\begin{gathered} -0.383 \\ (0.038) \end{gathered}$	***	$\begin{gathered} -0.382 \\ (0.038) \end{gathered}$	***	$\begin{gathered} -0.406 \\ (0.160) \end{gathered}$	
$\begin{gathered} (\text { Return }<0) * \text { return^2 } \\ * \text { relative share } \end{gathered}$					$\begin{array}{r} 0.023 \\ (0.152) \end{array}$	
(Return>0) * return	$\begin{array}{r} 0.149 \\ (0.024) \end{array}$	***	$\begin{array}{r} 0.151 \\ (0.024) \end{array}$	***	$\begin{array}{r} 0.496 \\ (0.136) \end{array}$	
$\begin{gathered} (\text { Return }>0) * \text { return } \\ * \text { relative share } \end{gathered}$					$\begin{gathered} -0.342 \\ (0.133) \end{gathered}$	**
$($ Return>0) * return^2	$\begin{array}{r} 0.231 \\ (0.015) \end{array}$	***	$\begin{array}{r} 0.235 \\ (0.015) \end{array}$	***	$\begin{array}{r} 0.068 \\ (0.077) \end{array}$	
$\begin{gathered} (\text { Return }>0) * \text { return^2 } \\ * \text { relative share } \end{gathered}$					$\begin{array}{r} 0.163 \\ (0.075) \end{array}$	**
Relative share					$\begin{array}{r} 0.001 \\ (0.020) \end{array}$	
Time (years)	$\begin{gathered} -0.014 \\ (0.001) \end{gathered}$	***	$\begin{array}{r} -0.015 \\ (0.001) \end{array}$	***	$\begin{aligned} & -0.015 \\ & (0.001) \end{aligned}$	***
Time squared	$\begin{array}{r} 0.000 \\ (0.000) \end{array}$	***	$\begin{array}{r} 0.000 \\ (0.000) \end{array}$	***	$\begin{array}{r} 0.000 \\ (0.000) \end{array}$	
Log (surface)			$\begin{array}{r} 0.010 \\ (0.003) \end{array}$	***	$\begin{array}{r} 0.010 \\ (0.003) \end{array}$	
Deceased < 2 yr .			$\begin{array}{r} 0.041 \\ (0.027) \end{array}$		$\begin{array}{r} 0.041 \\ (0.027) \end{array}$	

World GDP growth		2.047	$* * *$	2.052
		$* * *$		
		(0.183)	(0.182)	
Style fixed effects	yes	yes	yes	
Sigma	0.199	$* * *$	0.199	$* * *$
	(0.001)	(0.001)	0.199	$* * *$
			(0.001)	

Table 4. Descriptive statistics of annual index returns

This table reports descriptive statistics of the annual arithmetic returns to indices of paintings and other assets over the period 1961 to 2013. GLS is the standard repeat sales index of paintings as estimated by generalized least squares. The MCMC index is the non-selection-corrected index from our Markov chain Monte Carlo estimator. The selection-corrected art indices A through C are as described in Table 3 (without the buy-in information). Stocks is the global equity total return from Dimson, Marsh, and Staunton (2002). Corporate bonds is the Dow Jones corporate bond return index. Commodities is the return on the World Bank GEM commodities index. Real estate is returns on the U.S. residential real estate index from Shiller (2009). Treasuries are global Treasury-bill rates from Dimson, Marsh, and Staunton (2002). Sharpe ratios are annualized. ***, **, and * indicate statistical significance of the correlation coefficients at the $1 \%, 5 \%$, and 10% level, respectively.

	Mean	SD	Sharpe	Excess return correlation with				
			ratio	Stocks	Corp. bonds	Commo- dities	Real estate	
Returns on non-selection-corrected art indices:								
GLS	8.71%	13.76%	0.268	0.192	-0.186	0.106	0.227	
MCMC	8.68%	13.92%	0.263	0.198	-0.208	0.136	$0.292^{* *}$	
Returns on selection-corrected art indices:								
A	6.29%	11.42%	0.111	0.222	-0.199	0.132	$0.286^{* *}$	
B	6.28%	11.34%	0.111	0.216	-0.198	0.131	$0.283^{* *}$	
C	6.28%	11.35%	0.111	0.220	-0.197	0.132	$0.283^{* *}$	
Returns on selection-corrected art sub-indices								
Post-war and Contemporary	7.43%	11.63%	0.208	0.136	-0.172	0.151	$0.347^{* *}$	
Impressionist and Modern	6.09%	13.30%	0.080	0.103	-0.230^{*}	0.199	0.222	
Old Masters	4.56%	13.75%	-0.033	0.222	-0.107	0.042	0.195	
American	6.83%	10.28%	0.176	0.076	$-0.298^{* *}$	0.102	0.234^{*}	
19th Century European	6.81%	11.70%	0.153	$0.304^{* *}$	-0.155	0.054	0.233^{*}	
Other Styles	6.53%	13.92%	0.109	0.235^{*}	-0.217	0.187	0.262^{*}	
Top 100 Artists	9.50%	13.86%	0.323	0.101	-0.218	0.074	$0.295^{* *}$	
Returns on other assets:								
Stocks	11.25%	17.41%	0.358		-	0.258^{*}	-0.073	0.205
Corporate bonds	8.72%	8.92%	0.415		-	-	$-0.278^{* *}-0.144$	
Commodities	8.63%	23.27%	0.155		-	-	-	0.136
Real estate	4.33%	5.88%	-0.118		-	-	-	-
Treasuries					-	-	-	-

Table 5. Optimal asset allocation

Panel A shows mean-variance tangency portfolio weights on paintings (using either the non-selection-corrected GLS index, the selection-corrected indices A, B, and C from Table 3, or separate selection-corrected indices by style or top 100 artists by sales over the preceding decade), stocks, corporate bonds, commodities, and real estate (as defined in Table 4). The Benchmark portfolio excludes art from the investment opportunity set. Panels B and C show the optimal weights for a one-period mean-variance utility investor with risk aversion (γ) equal to two and ten, respectively, where the risk-free asset is the global Treasury-bill rates from Dimson, Marsh, and Staunton (2002). Short sales and borrowing are not allowed. Returns are measured from 1961 to 2013. Sharpe ratios are annualized.

	Bench mark	GLS	Selection-corrected				
			A	B	C	Styles	Styles + Top100
Panel A: Tangency portfolio weights							
Paintings		0.305	0	0	0		
Post-war and Contemporary						0	0
Impressionist and Modern						0	0
Old Masters						0	0
American						0.256	0.217
19th Century European						0	0
Other styles						0	0
Top 100 artists							0.048
Stocks	0.288	0.111	0.288	0.288	0.288	0.122	0.118
Corporate bonds	0.522	0.490	0.522	0.522	0.522	0.487	0.486
Commodities	0.190	0.094	0.190	0.190	0.190	0.136	0.131
Real estate	0	0	0	0	0	0	0
Sharpe ratio	0.586	0.644	0.586	0.586	0.586	0.635	0.639

Panel B: Mean-variance utility, risk aversion $\gamma=2$

Paintings		0.052	0	0	0		
Post-war and Contemporary						0	0
Impressionist and Modern						0	0
Old Masters						0	0
American						0	0
19th Century European						0	0
Other Styles						0	0
Top 100 Artists							0.092
Stocks	0.607	0.437	0.607	0.607	0.607	0.607	0.559
Corporate bonds	0.234	0.351	0.234	0.234	0.234	0.234	0.215
Commodities	0.159	0.160	0.159	0.159	0.159	0.159	0.134
Real estate	0	0	0	0	0	0	0
Treasuries		0	0	0	0	0	0
Sharpe ratio	0.504	0.562	0.504	0.504	0.504	0.504	0.512
Panel C. Mean-variance utility, risk aversion $\gamma=10$							
Paintings		0.246	0	0	0		
Post-war and Contemporary						0	0
Impressionist and Modern						0	0
Old Masters						0	0
American						0.155	0.044
19th Century European						0	0
Other styles						0	0
Top 100 artists							0.149
Stocks	0.241	0.143	0.241	0.241	0.241	0.183	0.163
Corporate bonds	0.460	0.489	0.460	0.460	0.460	0.485	0.492
Commodities	0.176	0.123	0.176	0.176	0.176	0.167	0.151
Real estate	0	0	0	0	0	0	0
Treasuries	0.124	0	0.124	0.124	0.124	0	0
Sharpe ratio	0.585	0.640	0.585	0.585	0.585	0.614	0.619

[^0]: ${ }^{1}$ Following the literature, we use the terms "art" and "paintings" interchangeably throughout the paper.
 ${ }^{2}$ Global art sales experienced strong growth in the previous decade, and by 2013, sales amounted to EUR 47 billion (McAndrew 2014). In comparison, the National Association of Realtors reported 2013 existing home sales of $\$ 1.2$ trillion, and the U.S. Census reported new home sales of $\$ 139$ billion in the U.S. alone. The global venture capital industry invested around $\$ 47$ billion per year between 2006 and 2013, with little to no growth (Pearce 2014). In 2013, the U.S. VC industry had $\$ 193$ billion under management in (NVCA Yearbook 2015). Though it is difficult to obtain a good estimate of the total value of paintings, the art stored in Geneva's Freeport alone is estimated to be worth around $\$ 100$ billion (The Economist 2013).
 ${ }^{3}$ Examples of art fund managers include the Fine Art Fund Group, Anthea Art Investments, the Art Vantage Fund, and the Artemundi Global Fund. The first has $\$ 200$ million under management, and the others have $\$ 15$ to $\$ 40$ million each.

[^1]: ${ }^{4}$ A similar phenomenon may have happened in residential real estate during the collapse of the housing bubble during the late 2006 to 2008 period, when a disproportional fraction of the housing transactions were foreclosures (e.g., Campbell, Giglio, and Pathak 2011), whose drop in value were likely not representative of the aggregate housing market.

[^2]: ${ }^{5}$ If investing in the aggregate art market through a fund (a more feasible strategy for investors who cannot afford a diversified exposure to the art market through the purchase of individual, often expensive paintings), the investor experiences no consumption utility of owning art due to lack of access to the artwork held by the fund.

[^3]: ${ }^{6}$ Auction firms generally charge sellers a percentage of their reserve price in case the artwork is not sold. This encourages sellers to keep their reserve price low (Ashenfelter and Graddy 2003).

[^4]: ${ }^{7}$ For example, Christie's and Sotheby's have provided online provenance information on all auction sales since 1998.
 ${ }^{8}$ We observe 229 paintings with four sales, 18 paintings that sold five times, and one painting that sold six times.

[^5]: ${ }^{9}$ The disposition effect states that investors are more likely to sell assets that have risen in price since purchase, while holding on to those that have dropped in value; this effect has been documented in real estate (e.g., Genesove and Mayer 2001), public equities (e.g., Shefrin and Statman 1985; Odean 1998; Grinblatt and Keloharju 2001; Frazzini 2006; Ben-David and Hirshleifer 2012), executive stock options (Heath, Huddart, and Lang 1999), and online gambling (Hartzmark and Solomon 2012).
 ${ }^{10}$ The normalization is necessary, but without loss of generality, because the parameters in Equation (3) are only identified up to scale, as in a standard probit model.

[^6]: ${ }^{11}$ In the United States, net capital gains from selling collectibles (including paintings) are taxed at a maximum rate of 28% rather than the lower rate on stocks held for more than a year.

[^7]: ${ }^{12}$ In public equities, where transaction costs are low, the Ingersoll and Jin (2013) model is subject to the criticism that investors can almost continuously reset their reference point by selling and repurchasing the same stock. In illiquid markets, such as art, this theory has more bite as transaction costs are higher, and the same painting may not come up for sale again for years.

[^8]: ${ }^{13}$ On a technical note, we specify the proposal density in the Metropolis-Hastings step in such a way that if the relation between r^{p} and w is truly linear, we recover the Kalman filter exactly, and the acceptance rate is thus 100%.

[^9]: ${ }^{14}$ These papers include Jud and Seaks (1994), Gatzlaff and Haurin (1997, 1998), Munneke and Slade (2000, 2001), Hwang and Quigley (2004), and Goetzmann and Peng (2006) for real estate, Hwang, Quigley, and Woodward (2006) for venture capital, and Collins, Scorcu, and Zanola (2007) and Zanola (2007) for art.

[^10]: ${ }^{15}$ The correlations are similar if we use the probability of a sale instead of the proportion of sales (i.e., normalizing the paintings that sell in a given year by the total number of paintings instead of the total number of sales).

[^11]: ${ }^{16}$ The jump in the sale probability around zero returns is somewhat surprising if investors have a noisy signal of the price at the time when they decide to bring the painting to auction. Nonmutually exclusive explanations are that sellers set the reserve price at the prior sale price or that bidders (or the auctioneer) anchor on the prior sale price, so that it is more likely that a painting will sell at a small gain than at a small loss.

[^12]: ${ }^{17}$ If there are (unobserved) private sales in between two auctions, this may affect the estimated sales probability function. The direction of change is not quite clear, though. For example, when we observe a 30% return at a 10 -year horizon, with an (unobserved) intermediate sale this could in fact be, say, two 15% returns at 5 -year horizons. This means that sale probabilities may be more sensitive to low to moderate returns, implying that the sample selection problem may be even stronger, particularly since these are the most common return observations. At the same time, the selection effect may be attenuated for higher returns.

[^13]: ${ }^{18}$ Our results are robust to using the relative dollar value of sales (rather than the number of paintings sold) as the measure of popularity.

[^14]: ${ }^{19}$ The switching point of 25% is consistent across horizons.
 ${ }^{20}$ High sales volume may also proxy for adverse selection or liquidity, but these explanations appear inconsistent with the results. If high volume proxies for low adverse selection, then styles with low adverse selection experience higher returns. If volume proxies for liquidity, then there is an illiquidity discount rather than a premium.

[^15]: ${ }^{21}$ Section G of the Online Appendix shows that the nonlinearities in the sale probability function are economically important for art returns, compared to a linear probability function.

[^16]: ${ }^{22}$ Based on the selection model results, it takes about 30 to 40 paintings to exhaust the diversification benefits in an equally weighted portfolio, but a portfolio of as few as 15 paintings could be considered well diversified.
 ${ }^{23}$ One caveat is that our data include an unidentified number of estate, divorce, and bankruptcy sales (the "3D's": debt, death, and divorce). If such sales fetch lower prices than regular sales, then the returns from the selectioncorrected model are representative for investors only insofar that they are subject to these events at similar rates.
 ${ }^{24}$ We are grateful to Elroy Dimson, Paul Marsh, and Mike Staunton for generously sharing their data with us.

