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Does lattice vibration drive diffusion in zeolites?
Dmitry I. Kopelevich and Hsueh-Chia Chang
Department of Chemical Engineering, University of Notre Dame, Notre Dame, Indiana 46556

~Received 28 August 2000; accepted 1 December 2000!

A method of estimation of the effect of lattice vibration as a driving force for sorbate diffusion in
zeolites is proposed. A realistic lattice model is employed to cut off unrealistic long vibrational
modes and eliminate feedback due to lattice periodicity. A generalized Langevin equation for
sorbate motion is then derived with the magnitude of the lattice vibration captured by two
parameters,m andn, which can be readily computed for any system. The effect of lattice vibration
is then estimated for a variety of sorbate–zeolite pairs. Lattice vibration is found to be a negligible
driving force for some systems~e.g., methane and xenon in silicalite! and an important driving force
for other systems. In the latter case, the lattice vibration can provide either linear stochastic
Langevin-type force~e.g., for benzene in silicalite! or nonlinear deterministic force~e.g., for argon
in sodalite!. © 2001 American Institute of Physics.@DOI: 10.1063/1.1343072#
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I. INTRODUCTION

Understanding molecular transport inside zeolite pore
important for optimal designs of zeolites as sieves, sorbe
and catalysts. Diffusion in zeolites has peculiar depende
on temperature, loading, and molecular structure which d
not appear in more conventional nonequilibrium bulk g
diffusion and Knudsen diffusion due to collisions. Such d
ferences are due to the lattice medium around the sor
molecule, which is periodic over a large scale but not
locally, and the peculiar interaction between the two. In c
trast to discrete bombardment by a homogeneously dis
uted medium in gas diffusion, the sorbate molecule in a z
lite is under constant influence of its highly anisotropic loc
lattice medium. Other than the static lattice–sorbate inte
tion that defines the potential landscape the sorbate m
traverse, there must be either a deterministic or stocha
driving force to drive a single sorbate molecule over t
landscape in the dilute limit.

For very large molecules like long-chain hydrocarbo
the deterministic dynamics of the numerous fast~compared
to the diffusion time! intramolecular vibration and torsio
modes can drive the center- of-mass of the molecule.1 For
small sorbates, however, the small number of fast mo
implies that they are not significant as a deterministic driv
force. However, even inert gas atoms are observed to
dergo diffusive transport through zeolites at the infinite di
tion limit.2 It is then often assumed that such transport
small sorbates is driven by stochastic vibration of the zeo
lattice which now acts as a thermal bath.3,4 This stochastic
force is then analogous to that provided by molecule co
sion for bulk gas diffusion and by diffuse reflection by wa
for Knudsen diffusion in larger pores. For zeolite diffusio
the sorbate would hence feel the fluctuating and static c
ponents of the lattice–sorbate potential everywhere in
space. In fact, lattice vibration is always used as an expla
tion why sorbates can sometimes penetrate pores of com
rable size or even smaller. Such lattice vibration of sm
pores must also be important for large molecules. Their
3770021-9606/2001/114(8)/3776/14/$18.00
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tramolecular fast modes surely cannot drive the molec
through a rigid pore comparable or smaller than the sorba
width.

One particular example is argon in sodalite. The zeo
is impenetrable by the sorbate at low temperature and p
sure but a finite diffusivity is detected at high temperatu
and pressure.5 Since the window diameter (;2.3 Å! of this
zeolite is smaller than the sorbate diameter (;3.8 Å!, the
penetration at high temperature must be due to lar
amplitude lattice vibration that opens the pore dynamical

However, the necessity of stochastic noise from latt
vibration to drive diffusive motion in a zeolite is questione
by a sequence of molecular dynamics~MD! simulations car-
ried out for methane diffusion in a silicalite zeolite crystal.6–8

Most of these MD simulations are conducted with a fix
zeolite lattice and without internal vibration, but Demon
et al.8 simulate the lattice vibration in detail. However, all o
them observe diffusive-type behavior with a linearl
growing variance and produce roughly the same diffusivit
which are in good agreement with experimental measu
ments. This suggests that, at least in this sorbate–zeolite
tem, the sorbate is oblivious to the lattice vibration.

The goal of this study is to estimate the importance
lattice vibration in sorbate diffusion and how the sorbate c
in turn, induce the lattice vibration. We do this by develo
ing a stochastic description for the motion of the sorba
treating the lattice both as a thermal bath and as an ac
participant of deterministic dynamics with the sorbate. A l
tice thermal bath model was developed by Zwanzig3 and
Tsekov and Ruckenstein.4 These authors assumed a ha
monic lattice and linear coupling between lattice vibrati
and sorbate. This allowed them to derive a generali
Langevin equation, i.e., a stochastic equation with a n
Markovian noise source. Then under the assumption o
Debye distribution of lattice frequencies, the noise can
reduced to a Markovian one due to a specific frequency
pendence of the lattice–sorbate coupling. This Debye
sumption essentially neglects high-frequency optical vib
tion modes and stipulates that the dominant ones are
6 © 2001 American Institute of Physics
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low-frequency acoustic modes. This does not seem to h
any physical sense since the acoustic modes correspon
long sound waves in a crystal and they cannot be excited
the motion of a single sorbate molecule, nor can they m
an important contribution as a driving force for diffusio
across several unit cells whose combined length (;10 to 100
Å! is much shorter than the wavelength of macrosco
acoustic modes. Such coupling may be possible if acou
modes are sustained artificially for long durations at la
amplitudes but highly unlikely under the usual circum
stances. This is especially true when nonlinear vibration
allowed, as it should be at the large amplitudes of the De
approximation. Nonlinearity tends to focus the lattice vib
tion into localized wave packets.9 These wave packets woul
then pass by the sorbate rapidly, further minimizing the p
sibility of interaction between the two.

To exacerbate the problem, classical lattice models
often assumed to be periodic. This introduces artificial fe
back in MD simulations through the periodic boundary co
ditions. Lattice vibration triggered by the sorbate could
turn and drive the sorbate. In fact, this unrealistic feedba
when simulated on the computer, can resonantly excite
long acoustic waves and sustain them indefinitely to prod
artificial interaction with the sorbate. There would then
highly exaggerated sorbate transport rate that is not obse
in reality. Both the periodic feedback and the coupling w
the long acoustic waves must hence be cut off with a n
model.

In our model, we introduce this cut off by allowing onl
a finite subset of lattice atomsLS near the sorbate to interac
with the sorbate. The remaining lattice atomsLF outsideLS

are assumed to be in thermal equilibrium. Moreover, de
ministic dynamic energy transfer is only fromLS to LF while
the opposite transfer is in the form of thermal equilibrati
~thermostating! only. This removes feedback due to perio
icity and, in case of nonlinear vibration, allows excited l
calized lattice wave packets~held together by nonlinearity!
to radiate away from the sorbate.

The size ofLS then represents the cut off length scale
excitable acoustic modes and sorbate–lattice interact
Since it is unknown, we varyLS and examine its effect on
the sorbate transport rate. The latter quantity is observe
reach an asymptote when theLS radius exceeds;9 Å, indi-
cating that the sorbate can only interact with lattice ato
within this radius. Even if the radius ofLS is at the compu-
tational maximum (13 Å!, the effect on the sorbate is sti
significantly less than the periodic lattice model with lar
wavelength. The periodic model is hence deficient ev
when large periodicity is assumed. Physically, acou
waves propagate much faster than sorbate motion an
standing acoustic wave allowed by the periodic lattice is
possible in a large zeolite medium whose acoustic modes
allowed to propagate away from the sorbate.

A generalized Langevin equation for the sorbate is
rived with our model and used to estimate the contribution
lattice vibration to sorbate transport. Parametersm andn are
introduced to quantify its importance.

In this work we consider xenon, methane, ethane,
benzene sorbates in zeolites sodalite~SOD!, silicalite ~MFI!,
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and mordenite~MOR!.10 The crystal structures of these ze
lites are shown in Fig. 1 and are typical of most other ze
lites. Sodalite unit cell is a truncated cuboctahedral cage
diameter 6.6 Å. These cages are connected by windo
which are formed by six rings of oxygen atoms and ha
diameter 2.3 Å. Even though these windows are too nar
for most sorbates to pass, it is worthwhile to study behav
of sorbates inside a sodalite cage due to important app
tions in storage of gases.5 Mordenite crystal consists of par
allel one-dimensional twelve-ring channels with small eig
ring side pockets bordering the channels. The main chan
have an elliptical cross section with principal axes 6.5 a
7.0 Å. Silicalite contains a network of two intersecting cha
nels — straight and zigzag ones. These channels are for
by ten rings and thus have an intermediate size between
dalite and mordenite pores. The straight channels run in
y-direction and have elliptical cross section of size 5.7–
35.1– 5.2 Å and the zigzag channels run in thex-direction
and have a nearly circular cross section of diameter 5.4

It is found that although stochastic lattice vibration pr
vides a driving force for sorbate diffusion in some zeolite
sorbate pairs~e.g., for benzene in silicalite!, it is unimportant
in other systems~e.g., for methane or xenon in silicalite!.
Sorbate transport in the latter systems must then be drive
other deterministic or stochastic forces on the sorbate m
ecule in a rigid zeolite, as is consistent with earlier simu
tions for these systems.6–8 Without the stochastic forcing an
dissipation through coupling with thermal lattice vibratio
the usual fluctuation–dissipation theorem for bulk transp
driven by thermal fluctuation is also not applicable and s
bate transport in zeolite must then be due to a non-Lange
driving force.

One possibility is a deterministic force due to KAM
chaos which was suggested in our earlier article11 on diffu-

FIG. 1. Crystal structures of considered zeolites~only Si atoms are shown!:
~a! sodalite,~b! mordenite~view along the channel, one of the eight-rin
side pockets is also shown!, ~c! silicalite ~view along straight channels!, ~d!
silicalite ~view along zigzag channels!.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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sion of spherical molecules through single-pore zeolit
When the momentum of the sorbate along the transport
is transferred to the transverse degrees of freedom du
asymmetric geometry of the pore, this produces a determ
istic chaotic driving force and the resulting transport
shown to be diffusive with a diffusivity close to the observ
one. Similar diffusion mechanism was conjectured for s
face diffusion of a hydrogen adatom.12 In this case, the driv-
ing force is due to coupling between horizontal and verti
degrees of freedom of the adatom.

In terms of MD simulation efforts, our current resu
allows us to explicitly determine whether one has to simul
the lattice vibration in detail or not — extremely useful i
formation.

II. STOCHASTIC DESCRIPTION

In this section, we present our model for the sorba
zeolite system and derive the generalized Langevin equa
for the sorbate transport. We consider first the motion o
sorbate molecule withN degrees of freedom inside a zeoli
pore in the classical mechanics approximation. The confi
ration of the molecule and its position in space are co
pletely specified by N generalized coordinatesqi , i
51, . . . ,N, and the position of ansth atom of the molecule
is given byXs5Xs(q).

Kinetic energy of the sorbate is

T5
1

2 (
s

MsẊs
25

1

2
q̇A~q!q̇, ~1!

where

Ai j ~q!5(
s

Ms

]Xs

]qi
•

]Xs

]qj
, ~2!

andMs is mass of thesth atom in the molecule. Generalize
momentum of the sorbate isp5]T/]q̇5A(q)q̇ and hence
the Hamiltonian of a free sorbate is

HS5 1
2 pA21~q!p1U~q!, ~3!

whereU(q) is the intramolecular potential energy. We n
glect fast intramolecular vibration such as bond len
stretching and bond angle bending, thus retaining only s
intramolecular motions such as torsional motion.

In particular, for a point–mass approximation, the ge
eralized coordinatesq of the sorbate molecule coincide wit
the coordinatesX of the center-of-mass of the molecule, i
tramolecular potential energyU vanishes, and the momen
tum of the molecule isp5M Ẋ whereM is the mass of the
molecule. Hence, in this case Eq.~3! reduces to

HS5
p2

2M
. ~4!

Consider now motion of a free zeolite lattice. We co
sider a zeolite crystal of an infinite size. The position o
unit cell in the crystal is given by

r ~ l!5 l 1a11 l 2a21 l 3a3, l 1 ,l 2 ,l 350,61,62 . . . , ~5!

wherea1, a2, anda3 are basis vectors of the lattice. There a
n atoms in a unit cell and a position of akth atom is speci-
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fied byr (k), k51, . . . ,n. Therefore, position of any atom in
the crystal is completely determined by the position of
unit cell l and its numberk inside the unit cell,

r ~ lk!5r ~ l!1r ~k!. ~6!

Denote theath component (a51,2,3) of displacement o
the (lk)th atom from its equilibrium position byra( lk). The
energy of vibrating lattice in the harmonic approximation f
the lattice potential energyV is given by

HL5
1

2 (
l

(
k51

n

mk ṙ2~ lk!

1
1

2 (
l,l8

(
k,k851

n

(
a,b51

3

Vab~ lk,l8k8!ra~ lk!rb~ l8k8!.

~7!

Heremk is mass of thekth atom of a unit cell and

Vab~ lk,l8k8!5S ]2V

]r a~ lk!]r b~ l8k8!
D

0

, a,b51,2,3. ~8!

Here and below the zero subscript indicates that a deriva
is calculated at the equilibrium configuration of the crys
lattice. The first derivative of the potential energy of th
crystal in the equilibrium configuration vanishes, since t
force acting on any particle of the crystal is zero in the eq
librium configuration.

It is convenient to introduce normalized displaceme
of the atoms from their equilibrium positions,

ua~ lk!5mk
1/2ra~ lk!, ~9!

and thus obtain the following expression for the Hamiltoni
of the free lattice:

HL5
1

2 (
lk

(
a51

3

u̇a
2~ lk!1

1

2 (
lk

(
l8k8

(
a,b51

3

Dab~ lk,l8k8!

3ua~ lk!ub~ l8k8!, ~10!

where

Dab~ lk,l8k8!5~mkmk8!
21/2Vab~ lk,l8k8! ~11!

is the lattice dynamical matrix that defines all the vibration
modes and frequencies of the lattice.

We assume that interaction between sorbate and lattic
short-range~e.g., Lennard-Jones! and hence only those lat
tice atoms that are close enough to the sorbate ‘‘feel’’
latter. This allows us to separate the zeolite lattice into t
parts, which we callLS and LF ~see Fig. 2!. The nearby
atoms inLS directly interact with the sorbate. The atoms
LF constitute the rest of the crystal outsideLS and interact
with the sorbate only through phonon waves that come fr
and go toLS . As a result, the bonds joiningLS andLF are
never stretched by deterministic dynamics and simply fl
tuate stochastically — periodicity is not imposed.~Subindi-
ces ‘‘S’’ and ‘‘ F’’ stand for ‘‘sorbate’’ and ‘‘free’’, respec-
tively!.

Note that such a separation is possible because a
scale of sorbate motion is much slower than that of the lat
vibration: A typical diffusivity of small spherical sorbates i
zeolites such as xenon and methane is;1028 m2/s and is
even smaller for larger molecules, i.e., it takes at le
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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10210s for a sorbate to travel across one crystal unit cel
size ;10 Å, whereas frequencies of lattice vibration are
the range 1012– 1014s21. Thus, on the time scale of lattic
vibration, our classification ofLS andLF remains the same
However, such a separation of lattice into two parts wo
not be possible, for example, in studies of superconductiv
where one has to consider coupling between electron mo
and lattice vibration which occur on comparable time sca

We expand energyF of the sorbate–lattice interactio
in a power series in the normalized displacementsu of zeo-
lite atoms:

F~q,$r ~ lk!%!'F0~q!1 (
lkPLS

(
a51

3

f a~ lk;q!ua~ lk!

1
1

2 (
lkPLS

(
l8k8PLS

(
a,b51

3

Gab~ lk,l8k8;q!

3ua~ lk!ub~ l8k8!, ~12!

where

f a~ lk;q!5mk
21/2S ]F~q,$r ~ lk!%!

]r a~ lk! D
0

, ~13!

Gab~ lk,l8k8;q!

5~mkmk8!
21/2S ]2F~q,$r ~ lk!%!

]r a~ lk!]r b~ l8k8!
D

0

, a,b51, 2, 3

~14!

represent the additional dynamic force exerted by thelkth
lattice atom on the sorbate as the former deviates from
equilibrium position due to vibration.

We further assume that the sorbate–zeolite interac
potentialF is pairwise additive,

F~q,$r%!5 (
lkPLS

(
s

N

fsk~Xs2r ~ lk!!, ~15!

FIG. 2. Definition ofLS andLF .
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wherefsk is the interaction potential betweensth atom of
the sorbate at positionXs andkth atom of a zeolite unit cell
at r ( lk). From this pairwise additivity it follows that

Gab~ lk,l8k8;q!5d l,l8dk,k8Gab~ lk,lk;q!. ~16!

It is convenient to introduce the following partition o
the vectoru,

u5S u(S)

u(F)D , ~17!

whereu(S) @u(F)# is a finite ~infinite! vector containing dis-
placements of theLS (LF) atoms. Similarly, we partition the
dynamical matrixD,

D5S D(S) D(SF)

D(FS) D(F) D . ~18!

Here, byD(S) @D(F)# we denoted submatrices of the dynam
cal matrixD which represent interaction of atoms insideLS

(LF), and interaction betweenLS and LF is represented by
the submatricesD(SF) andD(FS).

From Eqs.~3!, ~10!, and ~12! it follows that the total
Hamiltonian of the system is

HT5HS~q,p!1 1
2 u̇•u̇1 1

2 u•Du1F0~q!

1f~q!•u(S)1 1
2 u(S)

•G~q!u(S). ~19!

In our formulation we neglect the last term in Eq.~19!, be-
cause coupling between atoms of the zeolite crystal~covalent
bond! is usually much stronger than the coupling betwe
the sorbate molecule and zeolite atoms~van der Waals inter-
action!, hence the lattice vibration amplitude is small. Th
assumption of linear coupling between lattice vibration a
the sorbate motion might fail in some systems when a s
bate molecule fits extremely tight in a bottleneck of a zeo
lattice, thus yielding a zeolite–lattice interaction compara
in strength to that of the zeolite–zeolite covalent bonds.
discuss this situation in Sec. VI.

From Eq. ~19!, vibration of the zeolite lattice is de
scribed by

ü(S)52D(S)u(S)2f~q!2h(S), ~20!

ü(F)52D(F)u(F)2h(F). ~21!

Interaction betweenLS andLF is described by the termsh(S)

andh(F),

h(S)5D(SF)u(F), h(F)5D(FS)u(S), ~22!

whereas the influence of the sorbate on lattice vibration
given by the termf in Eq. ~20!.

Equations~20! and ~21! contain a complete descriptio
of motion of all zeolite atoms. However, we are only inte
ested in the effect of the lattice vibration on the sorbate m
tion and hence we only need to consider motion of atoms
LS in detail. In contrast, some averaged description forLF is
adequate. This can be achieved if we considerLF as a ther-
mal bath and assume that the only effect of interaction
tween atoms ofLF and LS is to keep the atoms ofLS in
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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thermal equilibrium. Thus, we omit the termsh which ex-
plicitly describe this interaction and instead require therm
equilibrium for all u(S) and u̇(S),

Prob$u(S),u̇(S)%}e2H/kBT, ~23!

where kB is the Boltzmann constant andT is temperature.
The total HamiltonianH now contains only the sorbate an
zeolite atoms inLS and is given by

H5HS~q,p!1 1
2 u̇(S)

•u̇(S)1 1
2 u(S)

•D(S)u(S)

1F0~q!1f~q!•u(S). ~24!

We expandu(S) in terms of eigenvectors of the dynamic
matrix D(S) which is symmetric and positive definite an
hence its eigenvaluesv j

2 are positive and its eigenvecto
e( j ) can be chosen to be orthonormal in the key eigenva
problem below:

D(S)e~ j !5v j
2e~ j !, e~ i !•e~ j !5d i j . ~25!

Since the bonds betweenLF and LS are assumed to b
unstretched by deterministic coupling dynamics with the s
bate, the vibration modes inLS are allowed to propagate int
LF while the thermal vibrations ofLF only serve as stochas
tic thermostating of atoms inLS ~see Fig. 2!. There is no
reflection or feedback back intoLS . Each mode of Eq.~25!
corresponds to a lattice vibration mode involving atoms
fined by the eigenvectore( i ) with frequencyv i . We then
use the eigenvectors of the dynamical matrixD(S) as the
basis for the lattice displacement vector and the dyna
force

u(S)5(
j

Qje~ j !, Qj5u(S)
•e~ j !,

~26!

f~q!5(
j

w j~q!e~ j !, w j~q!5f~q!•e~ j !.

In these new coordinates we obtain the following express
for the Hamiltonian:

H5HS~q,p!1
1

2 (
j

@Q̇j
21v j

2Qj
2#1F0~q!1(

j
w j~q!Qj .

~27!

Thus,LS is described by the following equation for eac
lattice vibrational mode:

Q̈j52v j
2Qj2w j~q!, ~28!

and the equations of motion for the sorbate are

q̇5A21p, ~29!

ṗ52
1

2
p¹A21~q!p2¹U~q!2¹F0~q!2(

j
¹w j~q!Qj .

~30!

We solve the linear lattice vibration Eq.~28! to obtain
Downloaded 12 Jan 2003 to 129.74.40.123. Redistribution subject to A
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Qj~ t !5
1

v j
2

]H

]Qj
U

t50

cosv j t1
1

v j

]H

]Q̇j
U

t50

sinv j t

2
1

v j
2
w j~q~ t !!1

1

v j
2E0

t

¹w j~q~s!!•q̇~s!

3cos@v j~ t2s!#ds, ~31!

and note that both Eqs.~28! and~31! are inappropriate in the
limit of v j→0.

Substituting this solution into Eq.~29!, one obtains the
generalized Langevin equation for the sorbate,

ṗ52
1

2
p¹A21~q!p2¹U~q!2¹Feff~q!

2E
0

t

h~q~ t !,q~s!,t2s!q̇~s!ds1F~q~ t !,t !, ~32!

where

Feff~q!5F0~q!1DF~q!, DF~q!52
1

2 (
j

1

v j
2
w j

2~q! ~33!

is the effective sorbate–lattice interaction potential. The s
chastic forcing arises from the dynamic lattice vibrati
force such that

h~q~ t !,q~s!,t2s!

5(
j

cos@v j~ t2s!#

v j
2

¹w j~q~ t !!¹w j~q~s!! ~34!

is the memory friction kernel and

F~q~ t !,t !52(
j

¹w j~q!

3H cosv j t

v j
2

]H

]Qj
U

t50

1
sinv j t

v j

]H

]Q̇j
U

t50
J

~35!

is the stochastic random force.
Remembering that lattice vibration modes inLS are in

equilibrium, i.e.,

Prob$Qj ,Q̇j%}e2H/kBT, ~36!

we obtain

^F~ t !&50, ~37!

^F~ t !F~s!&5kBTh~q~ t !,q~s!,t2s!. ~38!

The last equation is the fluctuation–dissipation theor
which relates the intensity of the noise to the friction tens
Note that the harmonic approximation for lattice vibratio
and Boltzmann distribution, Eq.~36!, of the vibration modes
lead to the Gaussian distribution of the stochastic force
hence the statistical properties of the latter are comple
specified by its average and variance, as given by Eqs.~37!
and ~38!.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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III. CRITERIA FOR IMPORTANCE OF LATTICE
VIBRATION

The goal of this section is to estimate the positio
dependent friction termh and the correctionDF to the po-
tential energy due to lattice vibration. The memory frictio
tensorh can have a complicated dependence on the prev
states of the system. However, since here we are only in
ested in order-of-magnitude estimates, we assume an e
nential dependence for the two-time correlation of the fr
tion term to capture the decorrelation by only one parame

h~q~ t !,q~s!,t2s!5G~q~ t !!exp~2ut2su/t!, ~39!

where t is some correlation time andG(q(t))
5h(q(t),q(t),0) is the noise amplitude from Eq.~34! with
t5s. This assumption allows us to reduce the generali
Langevin Eq.~32! to a Langevin equation with Markovia
noise by introducing an auxiliary variable,13

z5q2G21E
0

t

h~ t2s!q̇~s!ds1G21F~ t !. ~40!

Then Eq.~32! is equivalent to equations

ṗ52 1
2 p¹A21~q!p2¹U~q!2¹Feff2G~q!~q2z!, ~41!

t ż5~q2z!1G21N~ t !. ~42!

The new random forceN(t) is Gaussian, has zero-mean a
zero-correlation time,

^N~ t !&50,^N~ t !N~s!&52kBTG~q~ t !!td~ t2s!, ~43!

and is related toF(t) by

N~ t !5F~ t !1tḞ~ t !. ~44!

From Eq.~41! it is clear that the effects of lattice vibra
tion are negligible for a sorbate configurationq if

m~q!5UDF~q!

F0~q!
U!1 ~45!

and iG(q)(q2z)i!i¹F0(q)i , where i•i is some vector
norm ~for definiteness we use the Euclidean norm!. The lat-
ter condition is equivalent to

n~q!5
iG~q!i

i¹¹F0~q!i !1. ~46!

Note that the conditions in Eqs.~45! and ~46! are indepen-
dent of the correlation timet.

The computation ofm(q) and n(q) is simplified if we
take into account the pairwise additivity, Eq.~15!, of the
sorbate–zeolite interaction potentialF to obtain

w j~q!52 (
lkPLS

(
s

N

(
a51

3

mk
21/2]fsk~X!

]Xa
U

X5Xs2r0( lk)

3ea~ lk; j !. ~47!

Thus defining

va~ lk;q!5(
s

N
]fsk~X!

]Xa
U

X5Xs2r0( lk)

, ~48!
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wa~ lk;q,i !5(
s

N

(
b51

3
]2fsk~X!

]Xa]Xb
U

X5Xs2r0( lk)

]Xsb

]qi
, ~49!

Sab~ lk,l8k8!5~mkmk8!
21/2(

j

ea~ lk, j !eb~ l8k8, j !

v j
2

, ~50!

we obtain

DF~q!52
1

2 (
lk

(
l8k8

(
a,b51

3

va~ lk;q!Sab~ lk,l8k8!

3vb~ l8k8;q!, ~51!

G i j ~q!5(
lk

(
l8k8

(
a,b51

3

wa~ lk;q,i !Sab~ lk,l8k8!

3wb~ l8k8;q, j !, i , j 51, . . . ,N. ~52!

Or, in more compact form,

DF~q!52 1
2 v~q!•Sv~q!, ~53!

G i j ~q!5w~q,i !•Sw~q, j !, i , j 51, . . . ,N. ~54!

The contributions of lattice vibration to the effective pote
tial and the stochastic noise are hence contained in the te
S which is a frequency-weighted dyadic product of t
eigenvectors of the dynamical matrixD(S).

IV. COMPARISON TO PERIODIC LATTICE

The separation of the lattice atoms intoLS andLF is an
important departure from the earlier work on lattic
vibration.4 As we have seen in Eq.~34!, the magnitude of
interaction between a sorbate and a vibrational mode of
quencyv j is proportional tov j

22 . Thus, the dominant con
tribution to this interaction is due to vibrational modes wi
small frequencies. If, as in Ref. 4, all the modes are kep
the formulation then the dominant contribution is due to lo
acoustic modes14 for which v(k)→0 ask→0 (k is a wave
vector!. This is not physical as a single sorbate molec
cannot excite a macroscopic sound wave in an unboun
medium.

The problem with this formulation is that the quadra
terms in Eq.~12! are neglected and these terms actually
come important whenv j→0. To see this, we rewrite Eq
~27! and keep the quadratic terms inQj ,

H5HS~q,p!1
1

2 (
j

@Q̇j
21v j

2Qj
2#1F0~q!

1(
j

w j~q!Qj .1
1

2 (
i , j

c i j ~q!QiQj , ~55!

where

c i j ~q!5e~ i !•G~q!e~ j !. ~56!

Due to orthonormality of vectorse( j ), the matrixC„q) has
the same eigenvalues asG(q), which are the frequencies o
sorbate vibrations in the well of the Lennard-Jones poten
whereas v j→0 for acoustic modes. Thus, for acoust
modes, quadratic inQ terms due to the lattice–sorbate inte
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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action@the last term in Eq.~55!# are larger than those due t
the free lattice vibration@the third term in Eq.~55!#.

To be consistent, one would need to include nonlin
interactions in the model, which will complicate the analys
as nonlinear lattice vibration would yield localized wa
packets9 that do not behave stochastically. The lattice wou
then behave not as a thermal bath but as an active dyn
participant — an unlikely scenario in a macroscopic m
dium. Moreover, nonlinear lattice vibration tends to for
localized wave packets which would pass by the sorbate
idly, further reducing their interaction. The only possibili
then is that the long acoustic modes are never at sufficie
large amplitude to require a nonlinear treatment. Simulati
that yield large acoustic vibration must be due to feedb
from the artificial periodic lattice model. The most realis
model is hence to cut off these long acoustic modes w
still retaining the linear lattice model.

The above arguments suggest that a periodic lattice
ficially excites long acoustic modes. This is further suppor
by the observation that finite-size periodic lattices have o
discrete eigenmodes, including ones with zero frequen
due to the periodicity assumption, which further exaggera
the presence of low-frequency acoustic modes and leads
resonant enhancement of standing acoustic waves. Sp
cally, the dynamics for the zero-frequency mode cannot
described by Eq.~28! as its solution, Eq.~31!, becomes sin-
gular asv j vanishes. In order to describe this situation, let
briefly review the theory of periodic lattice vibration14 and
derive the amplitude equations of the zero-frequency mo

Assume that the crystal is composed of periodica
repeated blocks ofL13L23L3 unit cells. This allows one to
define a Fourier transformû(k) of atom displacementsu,

ua~ lk!5~L1L2L3!21/2(
k

ûa~k;k!eik•r ( l), ~57!

ûa~k;k!5~L1L2L3!21/2(
l

ua~ lk!e2 ik•r ( l). ~58!

Here l i51, . . . ,Li ( i 51,2,3), a51,2,3, andk is a wave
vector of the reciprocal lattice given by

k5
h1

L1
b11

h2

L2
b21

h3

L3
b3, hi51, . . . ,Li , i 51, 2, 3, ~59!

with b1, b2, b3 being a basis of the reciprocal lattice,ai•bj
52pd ij .

The Fourier transformD̂(k) of the dynamical matrixD
is

D̂ab~kk8;k!5(
l8

Dab~ lk,l8k8!e2 ik•r ( l2 l8), ~60!

and is independent ofl sinceDab( lk,l8k8) depends onl only
through the difference (l2 l8). The total Hamiltonian be-
comes

HT5HS~q,p!1
1

2 (
k

@ u̇̂* ~k!• u̇̂~k!1û* ~k!•D̂~k!û~k!#

1F0~q!1(
k

f̂* ~k,q!•û~k!, ~61!
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where star denotes complex conjugation and

f̂ a~k;k,q!5~L1L2L3!21/2(
l

f a~ lk,q!e2 ik•r ( l) ~62!

is the Fourier transform off.
The infinite crystal is recovered in the limitL1 ,L2 ,L3

→`, in which case, the wave vectork takes continuous
values and the sums in Eq.~61! are replaced by integrals
Note that an accurate description based on the perio
boundary conditions inherently requires infinitely many Fo
rier modes since one needs high resolution of the Fou
transform in order to describe behavior of very localized d
turbances of lattice vibration due to the presence of a sorb
However, in most MD simulations a very small size of
periodic simulation box — typically, a few unit cells — i
assumed and below we describe the drawback of this
sumption.

For simplicity, we consider transport of a point–ma
sorbate in a periodic box consisting of a single unit cell.
this case, the only allowed value for the wave vectork is
zero and the Fourier transforms, Eqs.~58!, ~60!, ~62!, sim-
plify to

ûa~k!5ua~ lk!, f̂ a~k;q!5 f a~ lk,q!, ~63!

D̂ab~k,k8!5(
l8

Dab~ lk,l8k8!, ~64!

where we writeû, f̂(q) and D̂ instead ofû(0), f̂(0,q), and
D̂(0), respectively. The Hamiltonian, Eq.~61!, can now be
rewritten as

HT5HS~q,p!1F0~q!1 1
2 @ u̇̂• u̇̂1û•D̂û#1 f̂~q!•û. ~65!

Following the same path as in Sec. II, we write

û5(
j 51

3n

Q̂j ê~ j !, Q̂j5û•ê~ j !, ~66!

f̂~q!5(
j 51

3n

ŵ j~q!ê~ j !, ŵ j~q!5 f̂~q!•ê~ j !, ~67!

where ê( j ) are the eigenvectors of the 3n33n symmetric
positive-definite matrixD̂,

D̂ê~ j !5v̂ j
2ê~ j !, ê~ i !•ê~ j !5d i j . ~68!

The Hamiltonian, Eq.~65!, can be written as

HT5
1

2
MẊ21

1

2 (
j 51

3n

@Q̂
˙

j
21v̂ j

2Q̂j
2#1F0~X!

1(
j 51

3n

ŵ j~X!Q̂j , ~69!

where we take into account that the sorbate is a point–m
particle.

The matrix D̂ has three zero eigenvalues,v j50 for j
51,2,3 which is a consequence of the invariance of the
riodic lattice vibration to uniform translation of the crystal.14
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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To see this, observe that, from Eq.~7!, theath component of
the force exerted on the (lk)th atom of a freely vibrating
~i.e., noninteracting with a sorbate! lattice is

2
]HL

]r a~ lk!
52(

l8k8
(
b51

3

Vab~ lk,l8k8!rb~ l8k8!. ~70!

If we uniformly translate the crystal by an arbitrary vectorv,
r ( lk)→r ( lk)1v, this force should not change. This co
straint leads to

(
l8k8

(
b51

3

Vab~ lk,l8k8!vb50. ~71!

This equation together with Eqs.~11! and ~64! yields

(
k8

mk8
1/2(

l8
Dab~ lk,l8k8!5(

k8
mk8

1/2D̂ab~k,k8!50, ~72!

and hence the matrixD̂ has three zero eigenvalues with th
zero eigenspace spanned by vectors

êa~k, j !5da j S mk

m D 1/2

, j 51, 2, 3, ~73!

wherem5(k51
n mk is the total mass of atoms in a zeoli

unit cell.
Note that the dynamical matrixD(S) from our new model

with cut off does not have these zero eigenvalues since
definition of this matrix breaks the translational symmetry

Dab
(S)~ lk,l8k8!5Dab~ lk,l8k8!Þ(

l8
Dab~ lk,l8k8!

5D̂ab~k,k8!. ~74!

The situation is schematically illustrated in Fig. 3 whereLS

is chosen to coincide with a zeolite unit cell. As can be se
the matricesD(S) and D̂ differ in that the latter does no

FIG. 3. Comparison of definitions ofD(S) andD̂ whenLS coincides with a
zeolite unit cell. MatrixD(S) includes only the bonds insideLS ~solid lines!

whereas matrixD̂ contains these latter bonds as well as the bonds
connect atoms inside and outside of the unit cell~thick broken lines!.
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n,

include the bonds between zeolite atoms that belong to
ferent unit cells — phonon modes are absorbed at th
boundaries.

Since here we focus on interaction between the sorb
and acoustic modes, we keep only the three zero mode
the periodic Hamiltonian, Eq.~69!:

HT5
1

2
MẊ21

1

2 (
j 51

3

Q̂
˙

j
21F0~X!1(

j 51

3

ŵ j~X!Q̂j . ~75!

Then taking into account the pairwise additivity of the p
tential, Eq.~15!, we obtain

ŵ j~X!5
1

Am
(
k

S ]F~X,$r%!

]r j~k! D
0

52
1

Am

]F0~X!

]Xj
, ~76!

and thus the equations of motion become

MẌi52
]F0

]Xi
1

1

Am
(
j 51

3
]2F0

]Xi]Xj
Q̂j , ~77!

Q̂
¨

j5
1

Am

]F0

]Xj
. ~78!

The behavior of the acoustic modes governed by
~78! shows a drastic difference from the behavior of mod
with nonzero frequencies described by Eq.~28!. The solution
of Eq. ~78!,

Q̂j~ t !5Q̂j~0!1Q̂
˙

j~0!t1
1

Am
E

0

tE
0

s]F0~X~s8!!

]Xj
ds8ds,

~79!

shows that sorbate motion induces a nonoscillatory mo
of these acoustic waves both from the second and third te
in Eq. ~79!. The secular growth term arises from the dege
eracy of the zero-frequency eigenvalues. It disappears
specific initial conditions. However, the third term represe
energy accumulation due to periodicity and its effect is
stronger than the second term. It accumulates acoustic m
resonantly and indefinitely increases the amplitude of th
waves — a patently impossible blow-up scenario. If th
resonance growth is sustained indefinitely, the lattice w
break apart and the sorbate will transport at unrealistic
high rates. In contrast, the amplitude of modes with nonz
frequency given by Eq.~31! is oscillatory in time.

To observe the resonant growth of the acoustic mod
we solve the coupled Eqs.~77! and ~78! numerically for
xenon in zeolites sodalite and silicalite. The zeolite cryst
are composed of TO4 tetrahedra~T is Si or Al! and in this
work we assume that T is always an Si atom. This allows
to neglect ionic intracrystalline interactions. We model ze
lites using the structural data from the MSICERIUS2 software
package.15 For the zeolite lattice vibration, we use the fo
lowing model of the interaction potential between zeol
atoms:16

V5
1

2 ( Kr~r 2r 0!21
1

2 ( Ka~a2a0!2

1
1

2 ( Kb~b2b0!2, ~80!

t
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wherer is the T–O distance,a is O–T–Oangle, andb is
T–O–Tangle. The values of force constantsKr , Ka , Kb are
given in Table I. The equilibrium bond length (r 0) and
angles (a0 andb0) were calculated directly from the struc
tural data.

As a check of our lattice model, we compute the infrar
spectrum for zeolites sodalite and silicalite by solving t
eigenvalue problem, Eq.~68!, for the Fourier transform of
the dynamical matrix at the zero wave vectork and then
using the following formula for infrared intensityI (v̂ j ) of
jth vibration mode with frequencyv̂ j :17

I ~v̂ j !5 (
a51

3 S (
k

qkmk
21/2êa~k, j ! D 2

, ~81!

where qk is the formal ionic charge of thekth atom and
ê(k, j ) is the normalized displacement vector of thekth atom
in the jth mode, i.e., it is the eigenvector of the dynamic
matrix that corresponds to the eigenvaluev̂ j

2 . In our calcu-
lations we usedqk521.6 for T atoms andqk520.8 for
oxygen atoms.16 The computed frequency spectra are sho
in Figs. 4 and 5 and are in good agreement with experime
ones ~since we limit ourselves to harmonic vibrations, t
theoretical calculation of spectrum cannot resolve the wi
of the peaks since it is a manifestation of anharmonic
fects!.

Xenon molecules are modeled as point masses w
interact with the lattice oxygen atoms via the Lennard-Jo
potential,

fLJ~r !54eS S s

r D 12

2S s

r D 6D , ~82!

TABLE I. Force constants used in Eq.~80!.

T–O Kr52500 kJ mol21 Å 22

O–T–O Ka5578 kJ mol21 rad22

T–O–T Kb575.9 kJ mol21 rad22

FIG. 4. Infrared spectrum of sodalite:~a! calculated,~b! experimental~Ref.
17!.
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wherer is the distance between a zeolite oxygen atom a
the sorbate. Values of the parameterse and s for xenon–
oxygen interaction were taken from Ref. 18 and are given
Table II. As usual, the interaction between sorbates and
lattice T atoms is neglected, since the latter are shielded
the oxygen atoms in TO4 tetrahedra.19

We simulate Eqs.~77! and~78! using the velocity Verlet
algorithm.20 Initial position for the xenon molecule is at
potential minimum,X5(0.280, 0.280, 8.610! for xenon in
sodalite andX5(4.013, 4.975, 12.086! for xenon in silicalite
~the coordinates are given in Å and the origin is located a
unit cell corner!. Initial kinetic energy of the sorbate is cho

sen to be 11.331 kJ/mol and initialQ̂j andQ̂
˙

j are zeros. This

choice of initial conditions forQ̂j andQ̂
˙

j eliminates the lin-
ear growth ofQ̂j due to the second term in Eq.~79! and
focuses on resonant amplification due to the last term.
evolution of amplitudes of the acoustic modesQ̂j , obtained
in our simulation of Eqs.~77! and~78! in Fig. 6 shows very
rapid resonant enhancement of acoustic modes, which oc
due to the accumulation of the amplitude of acoustic mod
The same qualitative picture was obtained in simulatio

FIG. 5. Infrared spectrum of silicalite:~a! calculated,~b! experimental~Ref.
26!.

TABLE II. Lennard-Jones parameters of interaction potential between
bates and lattice oxygen.

e ~J/mol! s ~Å!

Methanea 1108.3 3.214
Neonb 529.0 2.780
Argonb 1028.0 3.029
Xenonc 1133.1 3.453
CH3 ~ethane!d 696.7 3.364
C ~benzene!e 611.5 3.007
H ~benzene!e 407.9 2.606

aReference 6.
bReference 25.
cReference 18.
dReference 22.
eReference 23.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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with other initial conditions. Essentially, there is an unphy
cal ‘‘feedback’’ of lattice vibration in the periodic unit cell
Our new approach is devoid of such kinds of problems si
any phonon wave created by a sorbate that is radiated intLF

never comes back toLS .
As a final remark, we note that some MD simulatio

which include lattice vibration and assume periodic bou
ary conditions do not report resonance blow-up. The exp
nation for this is that these MD simulations use a nonh
monic model for the lattice, even if the model is harmonic
terms of bond length stretching and bond angle bend
such as Eq.~80!, it is anharmonic in terms of atom displac
ments u ~since u is related nonlinearly to bond lengt
stretching and bond angle bending!. This anharmonicity then
prevents sustained resonant growth of the acoustic wa
However, there is still unphysical feedback of the lattice
bration in these MD simulations with periodic boundary co
ditions such that unrealistically large saturated amplitu
are produced to drive sorbate at high rates. The validity
such simulations is questionable.

V. RESULTS

Now we are in a position to answer an important qu
tion: How sensitive is the above theory to a particular de
nition of LS? To answer this question, we fix a position of
xenon sorbate in zeolites sodalite and silicalite and comp
spectra of matricesD(S) as well asm and n for different
choices ofLS .

We defineLS as a sphere of radiusRS with center coin-
ciding with the center-of-massX of the sorbate and letRS

vary from 5 to 13 Å. The spectra of the matricesD(S) for
different RS are shown in Fig. 7. Also, spectra of matric
D̂(0) for the periodic lattice are shown there for compariso
As can be seen, the spectra for both zeolites become in
sitive toRS for RS>8 Å. This indicates that the most impo
tant lattice vibration modes that drive sorbate transport
shorter than 8 Å. Also note that the spectra ofD(S) are very
similar to the spectra ofD̂(0) except the former do not hav

FIG. 6. Results of simulations of Eqs.~77!, ~78! for xenon in sodalite~a!
and silicalite~b!.
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zero eigenvalues and other acoustic modes. The lowest
quency for our model lattice converges at about 1013s21 for
RS>8 Å. All other modes have higher frequencies a
quickly approach a near continuum at largeRS . The results
of the calculations form and n are shown in Fig. 8 and
suggest that values ofm(X) andn(X) for RS>8 Å are also
insensitive to the choice ofRS , thus supporting the validity
of our model. Convergence beyondRS58 Å indicates that
the sorbate can only interact with local vibration of latti
atoms within 8 Å. Energy transfer to low-frequency, lon
acoustic modes has been removed by our new lattice mo
We hence useLS with radiusRS59 Å in our calculations of
m(q) andn(q) described below.

However, before proceeding with the calculations,
have to address another important issue, namely, a
strong dependence ofm(q) and n(q) on sorbate configura
tion q. In particular,m andn are usually relatively small for
sorbates inside zeolite cages, whereas they become large

FIG. 7. Dependence of the vibration spectrum ofD(S) on the radiusRS of
LS : ~a! sodalite,~b! silicalite. The frequencies become nearly continuous
LS larger than 8 Å in radius but the spectrum has a lower cutoff of abo

1013 s21. In contrast, the spectrum ofD̂(0) for an infinitely-large periodic
lattice ~shown on the left!, contains zero frequency acoustic modes.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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sorbates at bottlenecks of zeolite pores and they tend
infinity when sorbate approaches zeolite walls. Therefo
one has to be very careful about analyzing calculations om
andn.

It is tempting to calculate weighted averages^m& and
^n&, where

^•&5
*•W~q!dq

*W~q!dq
, ~83!

and the weightW(q) is the equilibrium Boltzmann distribu
tion,

W~q!5e2[U(q)1F0(q)]/kBT. ~84!

Such an averaging will automatically ‘‘filter out’’ those con
figurations which correspond to sorbates located unph
cally close to zeolite walls and hence having very high p
tential energyF0(q). However, the Boltzmann averagin
will also effectively eliminate narrow bottlenecks~i.e., high
potential barriers! which sorbates have to transverse. The
fore, we have chosen a different approach, namely, we c
pute m(q) and n(q) at transition states of the potential e
ergy ~and also for comparison we compute these parame
at potential minima!. The transition states as well as potent
minima were obtained using the rational function optimiz
tion ~RFO! algorithm of Banerjeeet al.21

We computem and n for methane, xenon, ethane, an
benzene in silicalite and mordenite and for neon and argo
sodalite. Parameters for sorbate–zeolite interaction toge
with original references are summarized in Table II. Metha
and inert gas molecules are modeled as point–masses w
interact with lattice oxygen atoms via the Lennard-Jones
tential, Eq.~82!.

The models for ethane and benzene molecules w
taken from Refs. 22 and 23, respectively. Ethane was m
eled as a dumbbell consisting of two methyl groups c
nected by a rigid rod of length 1.53 Å. Each methyl gro
was modeled as a unified Lennard-Jones sphere intera

FIG. 8. Dependence ofm andn on the radiusRS of LS . Xenon in sodalite
(s) at X5(0.280,0.280,8.610) and silicalite (m) at X
5(4.013,4.975,12.086)~coordinates are given in Å!.
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with the lattice via the potential, Eq.~82!. An ethane mol-
ecule has five degrees of freedom with generalized coo
natesq containing coordinates of the center-of-mass of
molecule and two Eulerian angles. We need only two Eu
rian angles since ethane molecule is invariant under the
tation around the methyl–methyl bond.

Benzene was modeled as a planar rigid molecule w
six degrees of freedom. Its generalized coordinatesq are the
center-of-mass coordinates and three Eulerian angles.
carbon–carbon and carbon–hydrogen bond lengths are
and 1.08 Å, respectively. The short-range interaction
tween benzene and zeolite lattice was modeled by the su
pairwise Lennard-Jones interaction potentials between la
oxygen and benzene carbon and hydrogen atoms. In
present work, we neglected long-range electrostatic inte
tion ~due to quadrupole moment of a benzene molecule! be-
tween benzene and zeolite atoms.

We found that, depending on a particular sorbate–zeo
pair, effects of lattice vibration can be either very small
very large. For example, effects of lattice vibration are ne
ligible for methane and xenon in silicalite and xenon
mordenite. The largest values ofm andn computed at tran-
sition states of these systems are shown in Table III
confirm that the sorbate–lattice coupling is very weak.

Quite the opposite, a rather large sorbate–lattice c
pling was found for benzene in silicalite and mordenite.
Figs. 9 and 10, we showm and n computed at potentia
barriers and minima of these system. For benzene in
calite,m andn are order one quantities for most of the tra
sition states and even for some minima. For benzene

TABLE III. Largest values ofm and n computed at transition states o
sorbate–zeolite systems with weak lattice noise.

m n

Methane in silicalite 1.431023 5.931022

Xenon in silicalite 7.231024 4.331022

Xenon in mordenite 1.831023 1.131021

FIG. 9. Values ofm andn for benzene in silicalite.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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mordenite,m is small, butn is still an order one quantity fo
a large number of transition states. Note that the sorba
lattice coupling is larger for benzene in silicalite than f
benzene in mordenite because the former zeolite has
rower pores that the latter.

Some of the considered sorbate–zeolite systems ca
corporate both small and large noise cases due do the h
inhomogeneous structure of zeolite pores. Consider, for
ample, methane in mordenite. The mordenite crystal cons
of straight pores and side pockets. In Fig. 11 we show a c
section of the mordenite channel atx59 Å together with
potential minima, transition states, and diffusion paths of
sorbate. As is evident, the methane sorbate can move e
along the main channel~in which case it has to overcome th
potential barrier at the pointS1) or the sorbate can hop from

FIG. 10. Values ofm andn for benzene in mordenite.

FIG. 11. Methane in mordenite. Cross section of the mordenite chann
x59 Å. Potential minima, transition states, and diffusion paths of the s
bate are also shown. The sorbate–lattice coupling is negligible for diffu
along the main channel~through theS1-type points! and is significant for
hoppings between the main channel and the side pockets~through the
S2-type points!.
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the main channel into a side pocket~in which case it has to
go through a narrow bottleneck at the pointS2). At the point
S1 , m51.031022 andn50.5531021 whereas at the poin
S2 , m50.16 andn50.34. Thus, the coupling between th
methane sorbate and lattice vibration is weak when the
bate moves inside the main channel and it is quite large w
the sorbate hops from the main channel to a side pocke

Other examples of such mixed systems are ethane
silicalite and mordenite. Values ofm and n computed at
transition states of these systems are shown in Fig. 12
can be seen, both of these systems have transition states
both weak and strong sorbate–lattice coupling. That is, m
tion of sorbates along some diffusion paths is driven by
lattice noise, and diffusion along others is driven by anot
mechanism.

Another interesting class of sorbate–zeolite pairs con
ered is inert gases in sodalite. It is known that, at high te
peratures and pressures, these sorbates can be forced in
sodalite cages5 and since the sodalite windows are narrow
than the dimension of the sorbates, this can occur onl
lattice vibration is permitted. More specifically, diffusion o
curs only if the sorbate can open the window through lo
interaction. We considered neon and argon in sodalite
estimated our indicesm andn at the transition state locate
in the six-ring cage window@see Fig. 1~a!#. Coordinates for
this transition state areX5(2.16 Å, 2.16 Å, 2.16 Å! for both
neon and argon. We found that for neon,m(X)54.8, n(X)
511.2, and for argon,m(X)525.4, n(X)562.3. These re-
sults indicate that the lattice–sorbate interaction is extrem
strong.

VI. DISCUSSION

We have seen that lattice noise can be an important d
ing force for some sorbate–zeolite systems while its effe
are negligible in other systems. Diffusion driven by hig
noise is a well-studied process and is described in a clas
article of Kramers.24 However, for systems with weak lattic
noise the lattice thermal bath is inefficient as a stocha

at
r-
n

FIG. 12. Values ofm and n computed for transition states of ethane
silicalite and mordenite.
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fluctuation source and an energy sink for sorbates. The
tion of these sorbates is then determined by driving for
other than lattice vibration. One possibility is that low
dimensional sorbate Hamiltonian dynamics can produc
deterministic but chaotic driving force even in a sta
lattice.11 Without dissipation, the sorbate motion necessa
exhibits high inertial effects, with considerable rattling ne
potential minima. The crossing of the thresholds~pore necks!
is then determined by how energy is transferred determi
tically to the transverse degrees of freedom and regaine
the threshold. This transfer between the degree of freedo
the diffusive direction with one in the transverse directi
can be induced by nonaxisymmetric geometry in a pore
nonspherical geometry in a cage. It can be described
KAM chaos for coupled Hamiltonian systems and has b
shown to give rise to seemingly random sorbate trans
with diffusive statistics but not thermal in origin.11

There are two other possible driving forces for zeol
transport. One is when sorbate loading is sufficiently h
such that significant clustering occurs due to sorbate–sor
interaction along the narrow pores. However, lattice vib
tion would still be unimportant and the clustering dynam
remain deterministic and conservative. The clustering
namics can conceivably be described by nonlinear sor
concentration waves as in one-dimensional Toda waves9

The other important possibility is when the rat
determining pore necks are narrower than the sorbate
that local lattice vibration is important. Our nonperiodic la
tice model can capture these local dynamics that oc
within RS58 Å of the sorbate. However, since these vib
tions triggered by the sorbate motion typically have lar
amplitude, they are intrinsically nonlinear. Hence, their re
lution requires the quadratic terms inu(S) in the zeolite–
lattice interaction force, Eq.~12!, that are omitted in the cur
rent model. The Hamiltonian, Eq.~24!, of the sorbate–
zeolite system then becomes

H5HS~q,p!1 1
2 u̇(S)

•u̇(S)1 1
2 u(S)

•D(S)u(S)

1F0~q!1f~q!•u(S)1 1
2 u(S)

•G~q!u(S), ~85!

and equation of motion for the atoms inLS is

ü„S…52C~q!u(S)2f~q!, ~86!

where

Cab~ lk,l8k8;q!5Dab
(S)~ lk,l8k8!1d l,l8dk,k8Gab~ lk,lk;q!.

~87!

Hence, the nonlinear lattice–sorbate interaction changes
frequencies of lattice atom vibration and this nonlinear int
action can only be neglected if the magnitude of the
changes is small. To estimate the magnitude of this nonlin
correction, we compare eigenvalues of the matricesD(S) and
C(q) by computing the maximal relative deviation of eige
valuesl j

C(q) of the matrixC(q) from the eigenvaluesl j
D of

the matrixD(S),

Dl~q!5max
j
Ul j

C~q!2l j
D

l j
D U . ~88!
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The quantityDl(q) is well-defined and we have shown th
its value converges with respect to the radiusRS of LS for
RS>9 Å. The maximal values ofDl at transition states are
shown in Table IV. As can be seen, the nonlinear correcti
are small for all zeolite–sorbate pairs considered except
argon in sodalite. This suggests that argon transport in
dalite is due entirely to highly nonlinear but localized inte
action between argon and the window lattice atoms. S
chronization between the sorbate motion and the lar
amplitude window dynamics is surely the domina
mechanism here.

These driving forces~intramolecular dynamics, Hamil
tonian chaos, sorbate–sorbate interaction, stochastic li
and local nonlinear sorbate–lattice interactions! must be ex-
amined in detail to understand the peculiar dependence
loading and temperature. It appears, however, that diffus
of small sorbates through zeolite is not driven by lattice
bration or any other thermal noise. The lack of stochas
forcing also implies little dissipation and thus inertia must
important for small sorbate dynamics. As a result, diffusi
of small sorbates through zeolite is a highly nonequilibriu
process for which near-equilibrium theories, like the tran
tion state theory, and the usual Arrhenius scaling are
applicable. Their MD simulation efforts require only
simple rigid lattice.
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