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Abstract 

Using data from Texas’s wholesale electricity market, we investigate if there is a relationship 

between nodal prices and investment location decisions of utility-scale generation. We find 

some evidence that new investment arises in areas with recently elevated nodal prices. 

However, we find no evidence that new generation resources receive a nodal price premium 

post-entry as projected by the expectation of higher nodal prices. Further, we employ a 

regression analysis to test the relationship between expected nodal prices and the probability 

of entry at a given node. While this analysis finds a positive relationship between expected 

nodal prices and investment for natural-gas-fueled peaking assets, this relationship is sensitive 

to model specification. Our findings suggest that factors other than nodal prices are more likely 

drivers of utility-scale generation capacity investment location decisions in Texas. 
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1. Introduction 

A fundamental component of restructured electricity markets is the establishment of 

competitive prices to determine equilibrium supply and demand.  Price formation is 

especially important in power markets because of the inability to store electricity at low-

cost, the need to instantaneously balance supply and demand, and the high outage costs 

associated with supply shortfalls. Allowing electricity to be transacted at prices reflective of 

its time and location-varying value has been a long-standing foundation of competitive 

electricity markets (Schweppe et al., 1988). A central component of achieving this objective 

is locational marginal prices (LMPs) based on marginal costs of generation that account for 

the network’s physical and operational constraints.  

LMPs are utilized in all restructured markets in the United States (FERC, 2014). Absent 

transmission congestion, LMPs converge across all nodes within a jurisdiction. When there 

is congestion, low-cost energy is unable to flow to high-cost nodes, thus elevating the LMPs 

at these nodes.  

The theoretical benefits of LMPs are well-established (Schweppe et al., 1988; Baughman et 

al., 1997). In addition, there are numerous empirical studies that evaluate the benefits of 

transitioning from postage or zonal pricing to the more granular nodal pricing. For example, 

these studies have focused on Texas (CRA, 2008; Zarnikau et al., 2014), England and Wales 

(Green, 2007), Pennsylvania-Jersey-Maryland (PJM) Interconnection (Synapse Energy 

Economics, 2006), and New York (Tierney and Kahn, 2007).1 These studies primarily focus 

on the benefits of reduced congestion, improved dispatch of resources, reduced operation 

reserve requirement, and improved competition.  

Another often cited benefit of nodal pricing is its price signals for generation investment 

location decisions (Schweppe et al., 1988; Green, 2007). While this idea has been widely 

accepted, there is limited empirical evidence that tests the hypothesis that generators tend 

to locate in electric network pockets with high nodal prices.2 We test this hypothesis using 

detailed LMP data and recent generation investment decisions in Texas’s wholesale 

electricity market. Texas is an ideal testing ground as it has an energy-only market design 

under which power plant investment incentives are mainly energy-price-based sans 

centralized capacity markets that now exist in PJM, New York, and New England (Spees et 

al., 2013) or procurement auctions that occur under California’s resource adequacy 
requirement (Woo et al., 2016).  

 
1 For a summary of the studies performed in several U.S. markets, see Neuhoff and Boyd (2011). For a broader 

summary of the trade-offs associated with nodal pricing, see Weibelzahl (2017).  
2 Synapse Energy Economics (2006) compares generation investment in PJM to lagged LMPs and finds no evidence 

that generation investment occurred in regions with higher lagged LMPs. Brown and O’Sullivan (2019) document 
the spatial and temporal variation in the value of solar power across the U.S. using nodal price data. However, 

unlike our analysis which focuses on observed investment, the authors consider simulated solar PV investment. 
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Our analysis is made possible by the 15-minute real-time market (RTM) nodal price data 

from the Electric Reliability Council of Texas (ERCOT) for the period 2011 – 2019 and data 

from the Energy Information Administration (EIA) on all constructed and planned 

generation capacity investments in ERCOT since 2011. It focuses on investment in wind, 

natural gas, and solar technologies which make up the vast majority of observed 

investments.   

We carry out three empirical tests to evaluate the relationship between LMPs and 

generation investment location decisions. First, we decompose observed generation 

investment into various pricing tiers based on lagged nodal prices to evaluate whether new 

investments arise in regions that have experienced higher LMPs prior to entry. This allows 

us to evaluate if there is empirical evidence that LMPs signal investment location decisions.  

Second, we compare LMPs at nodes with and without recent nearby entry to investigate if 

new generation resources receive an LMP-premium post-entry. If generators locate in a 

region due to the expectation of higher LMPs, we might expect to find nodes with nearby 

entry to have higher RTM prices post-entry than nodes without recent nearby entry.  

Third, we establish an illustrative two-stage investment model and regression analysis to 

empirically test if firms are more likely to locate in a region with higher expected RTM nodal 

price levels and variance. Starting in the second stage, we establish a forward-looking model 

to forecast each node’s RTM price level and variance. This serves as a proxy for a 

generator’s expectation of future LMPs that impact expected operating profits. In the first 

stage, firms decide where to locate their generation capacity investment. Among other 

factors, firms’ investment location decisions depend on the expected nodal price levels and 

variance. To evaluate if this relationship is empirically significant, we utilize a discrete 

(binary logit) model to estimate the probability of generation capacity investment at a 

particular node as a function of expected forward-looking nodal price levels and variance.  

Our three key findings are as follows. First, while RTM nodal prices have been declining, we 

observe substantial investment in wind (20,000+ MWs) and natural gas (14,000+ MWs) 

capacity over our sample period. Further, we document increased dispersion in LMPs across 

nodes starting in 2014, suggesting potential opportunities for LMP-driven investment 

location decisions.  Using descriptive statistics, we find some evidence that generation 

resources tend to locate near nodes with higher average LMPs in recent years. This is 

consistent with the theory that nodal prices send location-based investment signals. 

However, looking across nodal price quartiles, we find that the lowest two price quartiles 

have more new capacity (in MWs) compared to the highest two price quartiles.  

Second, nodes which have experienced recent nearby entry do not have a RTM nodal price 

premium post-entry compared to nodes that have not observed recent nearby entry. In 

fact, nodes with recent nearby entry often have statistically significantly lower average RTM 

nodal prices. This effect is largest for nodes that have experienced nearby entry of 
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combined cycle gas turbines (CCGTs) fueled by natural gas, consistent with the intuition of 

suppressed nodal prices as the result of entry. 

Finally, our formal statistical results find limited evidence of a relationship between average 

forecasted LMP levels and variance and location-specific investment decisions. We find 

some evidence that location decisions for combustion turbines (CTs) fueled by natural gas 

are related to higher average LMPs in the evening hours. However, these results are 

sensitive to the model specification.  

Our analysis presents limited evidence that expected LMPs drive investment location 

decisions of large-scale generation assets. Investment decisions are complex long-run 

decisions. Nodal price signals are likely overwhelmed by other factors such as site 

availability, transmission access, interconnection costs, fuel availability or renewable 

resource potential, etc. Further, nodal prices are volatile and likely to decline after the entry 

of a large power plant. Consequently, it is unlikely that a new power plant is able to 

establish long-term financing based primarily on the expectation of higher nodal prices.  

Our analysis proceeds as follows. Section 2 describes Texas’s wholesale electricity market. 

Section 3 presents the data utilized in our analysis. The empirical methodology is detailed in 

Section 4. Section 5 presents our empirical findings. Section 6 concludes and identifies 

directions for future research.  

 

2. Texas’s Wholesale Electricity Market 

 

Over our sample period, electricity needs increased by roughly 2% per year in ERCOT, 

resulting in considerable need for new generation investment (EIA, 2019c). Serving over 

85% of the electrical needs of the largest electricity-consuming state in the U.S., ERCOT is an 

ideal market to explore how LMPs affect power plant investment decisions.  This intra-state 

electricity market has had an LMP structure since December 2010 (Zarnikau et al., 2014). A 

real-time security-constrained economic dispatch (SCED) model is used to simultaneously 

manage energy, system power balance, and network congestion. This system yields 

updated nodal prices every 5 minutes, at most. ERCOT deploys operating reserves, procured 

on the prior day, to control frequency and resolve potential reliability issues. While the 

LMPs calculated every 5 minutes (or less) are used to compensate generators, time- and 

load-weighted 15-minute zonal prices are used to settle the demand side of the market.3 

Although an operating reserve demand curve (ORDC) has been introduced to raise prices 

across the market equally when operating reserves approach low levels, the ORDC adder 

had a very limited impact on LMPs during the period of our study (Zarnikau et al., 2019a).  

 

 
3 We utilize 15-minute LMPs in our analysis because of computational tractability and 5-minute prices are nearly 

identical within a 15-minute interval.  
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ERCOT is the only restructured competitive wholesale electricity market in the U.S. that 

relies substantially on an energy-only market design, allowing LMPs to rise as high as $9,000 

per MWh. Power plant investment decisions are not complicated by the capacity markets or 

resource adequacy requirements that have been introduced in other U.S. markets.   

 

The cost of interconnecting power plant additions in ERCOT is largely borne by the market.  

The generator pays for the “spur” and the “point of interconnection,” while bulk 
transmission costs are borne by the demand side of the market,4 in contrast to the Eastern 

Interconnection where generators additionally pay for some of the bulk transmission costs 

(Andrade and Baldick, 2017). Postage stamp transmission rates are paid by load-serving 

entities.  Lines losses are ignored in system dispatch decisions.5  Thus, the state’s 
transmission configuration may not be a major factor in power plant siting decisions, 

notwithstanding that transmission congestion raises LMPs. 

 

In recent years, the majority of the generation additions have been renewable energy 

projects. Texas leads the U.S. in wind generation development, with an installed capacity of 

roughly 26 GW in 2019 and an expected addition of 9 GW by 2022. While Texas’s solar 
generation lags California’s, it is expected to grow rapidly from its present level of 3 GW to 

over 11 GW by 2021 (ERCOT, 2019).  

 

Texas’s energy-only market relies on market forces to induce the generation investments 

necessary to support a reliable system. No resource adequacy requirements are placed 

upon load-serving entities, although failing to hedge may have its consequences. Market 

forces alone may yield an “economically optimal” reserve margin of 9% (Brattle Group, 
2018), below the 17.6% level under the traditional loss-of-load expectation standard of 1-

day-in-10-years (Northbridge, 2017). Hence, ERCOT’s adopted reserve margin target of 

13.75% is more the result of judgement and compromise than any strict economic or 

engineering criteria.  

 

3. Data 

 

We employ several data sets that span the years of 2011 – 2019. First, we utilize 5-minute 

real-time market (RTM) LMP data at the resource node level made available by ERCOT for 

the period January 1, 2011 to June 12, 2019. We aggregate the LMP nodal data up to the 

15-minute interval by taking the time-weighted average of the 5-minute LMPs. Our analysis 

focuses on 160 of the current 252 resource nodes that existed in January 2011.  Because our 

objective is to understand the relationship between spatial entry decisions and LMPs, we 

 
4 See PUCT Subst. R. 25.195(c): http://www.puc.texas.gov/agency/rulesnlaws/subrules/electric/25.195/25.195.pdf 
5 Potential market changes to implement the recognition of marginal losses in dispatch decisions were debated 

and ultimately rejected in PUCT Project No. 47199: Project to Assess Price-Formation Rules in ERCOT’s Energy-Only 

Market, https://interchange.puc.texas.gov/Search/Filings?ControlNumber=47199. 
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eliminate resource nodes that were created during our sample period as the result of entry, 

thereby avoiding endogenous selection into our sample.6  Figure A1 in the Appendix 

demonstrates that our analysis captures a broad spatial distribution of ERCOT’s market.  
 

Second, we utilize market-level data made available by ERCOT that include information on 

market demand, Henry Hub gas prices, and observed generation installations by 

technology. Third, we gather location information (longitude and latitude) of all nodes in 

ERCOT.  This will be utilized to map the distance from each new generation resource to the 

existing nodes.  

 

Fourth, we use data from the Energy Information Administration (EIA) to gather information 

on all generation units in ERCOT. We use the 2018 EIA Form 860 data that includes all 

existing power plants with nameplate capacities that are 1 MW or greater (EIA, 2019a). In 

addition, we use the EIA’s Planned Generation Unit Addition data from the EIA’s Electric 
Power Monthly dataset to gather information on planned capacity additions (EIA, 2019b).  

 

From these data sets, we have detailed information on generation unit characteristics, 

locations, and operating month and year. Our primary analysis will focus on generation 

units built on or after January 2011 that operate under ERCOT’s jurisdiction. This yields a 

sample of 319 generation assets where 226 (71%) were constructed and operating by June 

2019. The remaining 93 assets are planned to begin operating between July 2019 and 

December 2022.  

 

4. Empirical Methodology 

 

We take a multi-pronged approach to analyze whether LMPs drive entry location decisions. 

First, we evaluate the dispersion in observed LMPs between 2011 and 2019 to assess the 

degree to which LMP-driven investment could have arisen. We utilize several measures of 

price dispersion, including the difference between the 75th and 25th percentile LMPs within 

a 15-minute interval, variance, the coefficient of variation, and a Gini coefficient.   

Second, we decompose generation capacity investments into various price-tiers based on 

lagged LMPs. This presents illustrative evidence of whether generation investment location 

decisions are concentrated at locations that have observed systematically higher LMPs prior 

to their entry. This provides descriptive evidence of whether LMPs send signals for 

investment location decisions.  

Third, we use descriptive statistics to investigate if newly constructed power plants receive 

an LMP premium post-entry. More specifically, we compare LMPs at nodes with and 

 
6 In addition, resource nodes that were created as the result of entry during our sample do not have historical LMP 

data that we can utilize to understand how lagged LMPs relate to entry decisions near a given node.  
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without nearby entry in prior periods. If power plant investments decisions are driven by 

the expectation of higher LMPs, one might expect new entry to receive a higher average 

LMP than the average LMP observed at a non-entry node. 

Fourth, we establish a two-stage regression analysis to investigate if firms locate at a 

specific node based on the expectation of higher operating profits due to higher expected 

LMPs.  Our regression analysis is motivated by an illustrative two-period model of 

investment location decisions.  

 

a. Two-Period Investment Model 

 

This section presents a simple two-period model of an independent power producer (IPP) 

deciding to invest in technology with fuel type 𝑘. Our analysis focuses on four technologies: 

(1) natural gas combustion turbine (CT), (2) natural gas combined-cycle gas turbine (CCGT), 

(3) solar, and (4) wind. In period 1, an IPP decides whether to invest in a plant using 

technology 𝑘 at node 𝑗 =  1, … , 𝐽. In period 2, the IPP profitably sells the new plant’s output 
in the real-time market. We analyze the IPP’s decision made in each period recursively. 

 

i. Operating Decision in Period 2 

Consider a plant located at node 𝑗 that uses technology 𝑘.  For ease of exposition and 

without any loss of generality, we suppress the subscripts 𝑗 and 𝑘 when defining the plant’s 
per MWh operating profit under the assumption of the plant being available:7 

 𝜋𝑡 = max( 𝑃𝑡 − 𝐶𝑡, 0),  (1) 

   

where 𝑃𝑡 is the real-time nodal price and 𝐶𝑡 equals the per MWh variable cost of the new 

plant in time interval 𝑡 = 1, 2, … , 𝑇.  

 

Suppose the plant has a fossil-fuel heat rate 𝐻𝑅 in MMBtu/MWh (= 0 for solar and wind), 

faces fuel price 𝐹𝑡 (= 0 for solar and wind), and incurs per MWh variable operating and 

maintenance (O&M) cost 𝑀 that is typically small and hence assumed to be invariant with 𝑡. 

The plant’s per MWh cost is: 

  𝐶𝑡 = 𝐻𝑅 × 𝐹𝑡 + 𝑀. (2) 

 

Equation (1) shows that the expected per MWh operating profit 𝐸(𝜋𝑡) increases with 𝐸(𝑃𝑡) 

but decreases with 𝐸(𝐶𝑡). Further, we anticipate that 𝐸(𝜋𝑡) increases with the price 

variance 𝑣𝑎𝑟(𝑃𝑡) because rising electricity price volatility implies a higher likelihood of high 

price hours (Woo et al., 2016).  

 

 
7 Accounting for a plant’s random availability vastly complicates the subsequent discussion without the benefit of 
additional insights, see Woo et al. (2019) for the effect of a plant’s availability on a generation plant’s profitability.  
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ii. Investment Decision in Period 1 

 

Now, we consider the first period in which an IPP decides on its investment location 

decisions. Define 𝜔𝑗 to equal the present discounted value of the expected operating profit 

(𝐸(𝜋𝑗𝑡)) of a technology-specific plant to be located at node 𝑗. An IPP’s investment is 

profitable if: 

 Δ𝑗 = 𝜔𝑗 − 𝐾𝑗 > 0,  (3) 

   

where 𝐾𝑗 is the plant’s capacity cost (Zarnikau et al., 2019a).  An IPP selects node 𝑗∗ when Δ𝑗∗ = max (Δ1, Δ2, … , Δ𝐽). As the expected profitability of entry at node 𝑗 depends on the 

expected level and variance of nodal prices and fuel prices, node 𝑗 is more likely to be 

selected than node 𝑗’ if it is expected to have higher and more volatile RTM nodal prices but 

lower capacity and fuel cost.   

 

Capacity cost 𝐾𝑗 in equation (3) can be decomposed into two parts: (i) 𝐾𝑗1 reflects the 

installed physical capital cost plus the present value of fixed O&M costs and (ii) 𝐾𝑗2 

represents the present value of location-specific costs for land, water, regulatory 

compliance, transmission charge, interconnection, etc. 𝐾𝑗1 is largely location-invariant and 

will only impact the decision of whether or not to invest in a given technology rather than 

its precise location. In contrast,  𝐾𝑗2 can vary greatly by location. In the subsequent 

empirical analysis, we control for regional fixed effects to proxy for location-specific fixed 

costs. We utilize the intuition established from this simple illustrative model to empirically 

test if entry location decisions are being driven by expected nodal price levels and variance.  

 

b. Regression Model Specification  

We employ a two-step empirical strategy to test the hypotheses established by the 

illustrative model above. First, we utilize a regression approach to estimate 15-minute RTM 

nodal prices. We use the results of this estimation procedure to compute each node’s price 
forecasts and their variances that serve as a firm’s expectations of the average nodal price 

expectation and variance when an IPP decides its investment location. Second, we estimate 

a binary logit regression model to determine the probability of entry by generation 

technology 𝑘 at a specific node 𝑗 in a given year. This regression analysis helps evaluate how 

the average forecasts of nodal price level and variance impact the likelihood of entry at a 

specific node.  

i. Real-Time Market Nodal Price Regressions 

We estimate the following 15-minute RTM price regression with random error 𝜖𝑗𝑡, intercept 𝛼𝑗, and coefficient vectors 𝜷𝑗 and 𝜹𝑗 for each node 𝑗: 
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 𝑃𝑗𝑡 = 𝛼𝑗 +  𝑿𝒋𝒕𝜷𝑗 + 𝑫𝒕𝜹𝒋 + 𝜖𝑗𝑡 (4) 

 

where Dt is a vector of dummy variables for indicating t’s hour, day of week, and month, 

and 𝑿𝒋𝒕 is market-level controls including Henry Hub natural gas prices and net market 

demand which equals market demand minus observed solar, wind, and nuclear generation.8 𝜖𝑗𝑡 is estimated via Newey-West robust standard errors with 24 lags.  

 

We employ this nodal price regression to forecast future LMP levels and variances at each 

node. More specifically, we start by estimating equation (4) using data for the 2011 – 2012 

period. For each node, we utilize the fitted model to forecast LMP levels and variances out-

of-sample for the period 2013 – June 2019. This is utilized to represent a firm’s expectations 
over the future LMPs it will face upon entry if it chooses to enter in 2013.9 As discussed in 

detail below, these forecasted average LMP levels and variances enter the binary logit 

regressions to model entry decisions in the year 2013.  

 

We then estimate equation (4) using data for the 2011 – 2013 period to forecast LMP levels 

and variances out-of-sample for the 2014 – June 2019 period. The forecasted average LMP 

levels and variances help explain entry decisions for the year 2014. We continue this 

process to establish average forward-looking LMP level and variance forecasts to model 

node-specific entry decisions for the years 2013 – 2018.  

 

For the logit regressions described below, we estimate node-specific forward-looking 

average LMP levels and variances across all hours and broken down by five time-of-day 

(TOD) periods: (i) 12 AM – 6 AM and 10 PM – 12 AM; (ii) 6 AM – 10 AM; (iii) 10 AM – 2 PM; 

(iv) 2 PM – 6 PM; and (v) 6 PM – 10 PM.10 It is important to note that the forecast period 

shortens as we approach the end of our logit estimation sample. Consequently, we consider 

several robustness checks where we exclude entry decisions in the later years of our sample 

(e.g., 2017 and 2018).  

 

ii. Discrete Nodal Entry Analysis 

Define 𝑌𝑗ℎ𝑡 = 1 if node 𝑗 has attracted a new plant using technology ℎ in year t, and 0 

otherwise.  The probability that entry of technology ℎ occurred near node 𝑗 in year 𝑡 is: 

 

 
8 Our empirical results throughout the paper are robust to decomposing the net demand variable into the 

individual demand and observed generation by technology variables.  
9 Because our analysis is reduced-form in nature, we are unable to explicitly model the impact of generation 

capacity additions on expected LMPs post-entry. In the conclusion, we stress the importance of future research 

that establishes a structural model that permits such counterfactual simulations.   
10 Similar TOD measures are utilized in Woo et al. (2017).  
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 𝑃(𝑌𝑗ℎ𝑡 = 1)  = exp(𝑈𝑗ℎ𝑡)[1 + exp(𝑈𝑗ℎ𝑡)]. (5) 

 

We define 𝑈𝑗ℎ𝑡 as follows: 

 

 𝑈𝑗ℎ𝑡 = 𝜃0ℎ + 𝜃1ℎ 𝜇𝑗𝑡 + 𝜃2ℎ 𝜎𝑗𝑡2 + 𝒀𝒆𝒂𝒓𝒕 𝜸𝒉 + 𝒁𝒐𝒏𝒆𝒋 𝝎𝒉 + 𝜂𝑗ℎ𝑡 (6) 

 

where 𝜇𝑗𝑡 and 𝜎𝑗𝑡2  are the forward-looking estimated average RTM nodal price level and 

variance, 𝒀𝒆𝒂𝒓𝒕 is a vector of year controls, and 𝒁𝒐𝒏𝒆𝒋 is a zone fixed-effect representing 

ERCOT’s 8 weather zones.11 The year covariates capture changes in market trends over our 

sample period, while the zonal fixed effects capture non-price factors that may impact 

entry.12  We utilize cluster-robust standard errors on 𝜂𝑗ℎ𝑡 where the clustering is at the 

node-level. As discussed above in our illustrative model, if LMP levels and volatility impact 

an IPP’s locational investment decision, we expect 𝜃1ℎ > 0 and 𝜃2ℎ > 0. 

 

Our data includes entry of a diverse array of technologies including natural gas, solar, wind, 

biomass, storage, and coal. While we discuss the entry of each of these technologies in 

detail below, our primary focus is entry of natural gas, solar, and wind generation facilities. 

We decompose natural gas generation into two technologies: combined cycle gas turbines 

(CCGTs) and combustion turbines (CTs). CTs are smaller gas plants that typically operate as 

peaking units that can quickly reach full power but often only operate during high demand 

hours. CTs have lower capital cost than CCGTs, but also operate at higher marginal cost of 

generation. Unlike CTs, CCGTs operate in non-peak demand hours because of their lower 

marginal costs.  

 

The empirical approaches outlined above require us to spatially map the distance between 

each new generation unit and the nodes in our sample. We use QGIS to create a spatial 

matrix that computes the distance of all generation units to each node in our sample. This 

allows us to match each facility with nearby nodes that existed before the asset entered. 

We employ several definitions to spatially define when a node is “nearby” a new generation 

unit. First, we match each asset with the first, second, and third closest node by distance. 

We establish 3 entry indicators where each equals 1 at node 𝑗 if it is within the first 𝑘 =1, 2, and 3 closest nodes. Second, we draw a circle around each node ranging from 10 and 

 
11 In Section 4(a), we noted that a firm’s expected operating profits will depend on expected fuel input prices. 

However, in our annual discrete entry regressions, we are identifying off of the variation across nodes within a 

weather-zone and year. Consequently, we do not include Henry Hub gas prices as a regressor as there is limited-to-

no variation in expected natural gas prices faced by generators across nodes within a weather-zone and year.  
12 We are unable to include node fixed effects because this would limit the variation we are identifying off of to the 

node-by-year level. This often results in multi-collinearity as there is limited variation in entry of a specific 

technology within a node-year.  ERCOT’s weather zones segment Texas into 8 regions, for details see 

http://www.ercot.com/news/mediakit/maps. 
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25 miles. Entry is said to occur at node 𝑗 if a new unit falls within the specified distance. 

Both approaches allow us to establish a node-by-year data set that matches new entry to 

existing nodes with varying definitions of spatial distance.13   

 

As our baseline specification, we employ the spatial measure that matches each new 

generation unit with its nearest node by distance. This allows us to proxy for the most 

relevant LMP that the new generation unit will face upon entry. Throughout our analysis, 

we employ numerous robustness checks utilizing the alternative spatial measures.    

 

5. Results 

 

a. LMP Dispersion 

We investigate changes to LMPs over our sample period to assess the degree to which LMP-

driven investment could have arisen.  Figure 1 presents the average LMPs by quarter across 

all nodes in our sample. Besides two periods of higher prices in 2011 and 2014, average 

LMPs have decreased. This price reduction occurred over a time period which observed a 

sizable decrease in natural gas prices and growth in wind resources. Despite the overall 

decline in average LMPs, we will show the dispersion in LMPs have increased in latter part 

of our sample period.  

We use four measures to illustrate LMP dispersion across nodes within each 15-minute 

interval: (i) the difference between the 75th and 25th percentile LMPs; (ii) LMP variance; (iii) 

the coefficient of variation; and (iv) a Gini Coefficient. The coefficient of variation reflects 

the ratio of the standard deviation to the mean LMP and the Gini coefficient is defined by:  

 𝐺𝑡 = ∑ ∑ |𝐿𝑀𝑃𝑖𝑡 − 𝐿𝑀𝑃𝑗𝑡|𝑛𝑖=1𝑛𝑗=1 2𝑛2 𝐿𝑀𝑃𝑡 . (7) 

Equation (7) represents the sum of the average absolute differences in LMPs of all pairs of 𝑖, 𝑗 = 1, 2, … , 𝑛 nodes in our sample, normalized by the average LMP (𝐿𝑀𝑃𝑡) for scale (Sen, 

1973).  

 
13 We also considered broader spatial distance measures. However, we find that these broader spatial measures 

begin to allocate new resources to multiple “nearby” nodes resulting in double, triple, or quadruple counting.  
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Figure 1. Average LMPs by Quarter 

 
Figure 2. Measures of LMP Dispersion by Quarter 

Figure 2 presents the four LMP dispersion measures over our sample period. While each 

measure differs in scale and variability overtime, all four measures show a distinct pattern. 

LMP dispersion was higher at the beginning of our sample, declined until 2014-2015, and 

has increased in the latter years. This is most clearly represented by the increase in the Gini 

Coefficient in Figure 2(d) which measures the inequality of LMPs across all nodes within a 

given 15-minute interval.  
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Spatial differences in LMPs arise because of transmission congestion that prevents a least-

cost dispatch of generation units based on their merit order of marginal costs. Consistent 

with the findings in Figure 2, real-time transmission congestion cost has increased 

considerably in ERCOT since 2015 (Potomac Economics, 2017, 2019).   

 
                                                              (a) 2018 

 
                                                             (b) 2019 

                                     Figure 3. LMP Contour Map – Average Nodal LMPs14 

Figure 3 provides a contour plot of ERCOT’s average LMPs by node in 2018 and 2019 to 

illustrate the type of geographical price dispersion that arise in our data. In this figure, we 

 
14 The LMP contour plots in Figure 3 were created using code in Elhabr (2018).  
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observe suppressed LMPs in certain regions (e.g., the panhandle with high penetrations of 

wind resources) and elevated LMPs in the far western region of ERCOT. Figures 1 - 3 

illustrate that while average LMPs have decreased, LMP dispersion has increased since 2014 

– 2015 back towards the elevated levels observed in 2011-2012.  These figures provide 

evidence that there are potential opportunities for resources to locate in geographical 

regions with elevated LMPs. In the remainder of our analysis, we will investigate if there is 

evidence of LMP-driven investment based on the documented increase in LMP dispersion.  

b. Observed Entry 

In this section, we document the amount of new capacity investment by year and 

generation technology. We summarize investment based on 5 technology categories: (i) 

wind, (ii) CT, (iii) CCGT, (iv) solar, and (v) other.15 Despite the relatively low LMP levels over 

our sample period, we observe 42,552 MWs of operational or planned capacity investments 

since 2011.   

 
Figure 4. Capacity Additions (MW) by Year and Technology (Count: 319) 

Figure 4 presents capacity additions by year and technology. New generation units in 2020 – 

2022 (60 facilities) represent planned investments.  By technology, the new capacity 

additions in MWs are wind (20,181, 47%), CCGT (9,530, 22%), CT (4,548, 11%), solar (4,961, 

 
15 The other category includes batteries/flywheel storage (11), hydro (1), biomass (1), coal (2), and other natural 

gas (54). The coal units are additions to existing facilities. Other gas represents small assets (< 20 MWs) with 

technologies such as landfill gas, steam turbines, and one large facility with natural gas compressed air storage.  
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12%), and other (3,332, 8%).16 These statistics illustrate the large growth in wind capacity 

since 2011, followed by CTs and CCGTs and more recently solar capacity.   

Table 1 decomposes the number of new generation facilities by year and technology.  It 

shows wind investment arises throughout our sample. Investment in natural-gas based CT 

and CCGT investments arise periodically throughout our sample, with a large number of CTs 

and CCGTs planned to begin operating in 2020 – 2021. Since 2017, there has been a sizable 

increase in the number of solar facilities operating in ERCOT.  

Table 1. New Generation Facilities by Year and Technology (Count) 

 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 Total 

Wind 2 10 1 9 19 12 11 8 18 11 1 0 102 

CT 0 0 1 1 4 0 4 7 5 17 2 0 41 

CCGT 5 0 0 11 3 0 6 0 0 0 12 0 37 

Solar 1 5 2 2 5 4 17 14 7 11 2 0 70 

Other 7 6 5 4 3 19 3 15 3 0 2 2 69 

Total 15 21 9 27 34 35 41 44 33 39 19 2 319 

Notes. Other represents storage (11), hydro (1), biomass (1), coal (2), and other gas (54).  

Figure 5 provides a map of all new generation assets by technology. The majority of CT 

assets are located between Houston and San Antonio. CCGTs are often located throughout 

eastern and central Texas. Wind generation units are concentrated in the panhandle region, 

southern coast, and western Texas where wind potential is highest. Except for southern 

Texas, solar assets are dispersed across all regions of ERCOT. Lastly, the other technologies 

are often located near Houston, Austin, San Antonio, and Dallas. These facilities are often 

linked with industrial processes (i.e., representing cogeneration facilities).  

By comparing Figures 3 and 5, it is difficult to discern any clear location patterns between 

the entry of new generation units and regions that have experienced higher LMPs. Hence, 

we carry out several empirical strategies to investigate the degree to which LMPs are 

related to generation unit location decisions. 

 

 

 

 

 
16 See Table A1 in the Appendix for a detailed summary of capacity additions by year and technology in MWs.  
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Figure 5. New Generation Units by Location and Technology (2011 – 2022) 

 

c. New Capacity by Lagged Pricing Tiers 

We first evaluate whether generation investment location decisions are concentrated near 

nodes that have observed systematically higher LMPs prior to their entry. This allows us to 

investigate the claims that LMPs send location-specific investment signals for new potential 

investments.  

We decompose generation capacity investments that occurred during our sample period 

into various price-tiers based on lagged LMPs.  Using the distribution of the RTM nodal 

prices from the previous three years, we categorize each node into one of four pricing tiers: 

(1) 0 - 25th, (2) 25th – 50th, (3) 50th – 75th, and (4) 75th – 100th percentile.17 The higher the 

pricing tier, the higher the average annual lagged LMP at a specific node. For each year, we 

summarize the annual capacity additions (in MWs) by pricing tier where MWs are attributed 

to the geographically closest node. 

We consider new capacity investments for the period 2012 – 2021. It is important to note 

that for the years 2012 and 2013, we use all data available on a rolling basis back to January 

 
17 We also considered alternative lagged structures such as one and two years to categorize the pricing tiers and 

find that our results are robust.  
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1, 2011. For planned investments arising after our sample period ending June 12, 2019, we 

utilize the most recently available three years of LMP data to categorize the price tiers.18   

 

Figure 6. Capacity Additions (MWs) by Lagged Pricing Tiers – Nearest Node (2012 – 2021) 

Figure 6 provides capacity investments in MWs by three-year lagged pricing tier between 

the years 2012 – 2021. The largest quantity of MWs of capacity were added in the highest 

pricing tier, thus providing evidence that generators are motivated to locate in regions with 

recently elevated LMPs. This is consistent with the principle that LMPs send location-

specific investment signals for new capacity investments. That said, the capacity additions in 

MWs in the lowest two price tiers (20,553.10 MWs) were slightly higher than those added in 

the highest two pricing tiers (19,707.80 MWs).  

Figure 7 decomposes capacity additions by year and pricing tier. For certain years, capacity 

additions were dominated in the highest pricing tier (2012, 2015, 2016) over the bottom 

two pricing tiers. However, for other years, capacity additions systematically arose at nodes 

that were in the bottom two pricing tiers (2018, 2020, 2021). These descriptive statistics 

provide mixed evidence on the role of recent LMPs in motivating location decisions.  

The findings presented in Figures 6 and 7 persist when we utilize our alternative spatial 

definitions. For example, Figure A2 and Figure A3 present analogous figures for the 10-mile 

radius measure.19 These figures continue to find the largest amount of capacity additions (in 

MWs) arising in the highest pricing tier.  

 
18 Similar results arise if we focus only on investments between the period 2014 – 2019.  
19 It is important to note that the other spatial measures can result in assets being counted more than once or not 

counted at all. For example, for 25-mile distance measure, a single asset can fall in multiple nodes’ 25-mile radius. 
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Figure 7. Capacity Additions (MWs) by Pricing Tiers and Year – Nearest Node 

 

d. LMP Post-Entry Premium  

We now investigate if new generation resources receive an LMP-premium post-entry 

compared to nodes where recent nearby entry did not occur. If generation resource 

locations decisions are driven by higher expected LMPs (post-entry), then we might expect 

the post-entry nodes to have elevated LMPs compared to nodes that have not experienced 

recent nearby entry, an intuition based on the illustrative model in Section 4.   

To investigate this question, we compare the average LMPs at nodes with and without 

recent nearby entry. As noted above, we utilize our primary spatial measure that matches 

each new generation resource that began operating in period 𝑡 with its nearest node 𝑗. We 

consider three lagged structures to define recent entry. We focus on nodes where nearby 

entry has occurred in the last 1, 2, and 3 years. We decompose recent entry by fuel type CT, 

CCGT, Wind, Solar, and Other to investigate if the results vary by generation technology.  

Table 2 presents the average LMP comparisons for the 3-year lag structure. More 

specifically, this table compares average LMPs at nodes where entry occurred in the last 3 

years to nodes that have not observed entry during this time period. Table 2 illustrates that 

 
Alternatively, for the 10 mile radius, a handful of isolated assets are not linked to nodes. Consequently, the 

number of MWs of new capacity can deviate from the actual number of capacity additions (MWs).  It is for these 

reasons that our preferred specification focuses on the nearest node spatial measure.  
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nodes with recent nearby entry have systematically lower average LMPs than nodes 

without recent nearby entry. This result persists across all technologies and when we 

decompose the nodes with recent nearby entry by technology.   

We employ a difference in means test to compare the average LMPs in non-entry nodes and 

recent nearby entry nodes across all technologies and by technology. For all technologies, 

except CT and other, the differences in average LMPs are all positive and statistically 

significant. The largest difference in average LMPs arise at nodes which have observed 

recent nearby entry of CCGT units. It is important to note that CCGT (CT and other) units are 

often the largest (smallest) new capacity additions observed in our sample. Consequently, 

these results are consistent with the fact that entry of these assets is more (less) likely to 

result in a suppression of local RTM nodal prices post-entry.  

Table 2. Average LMPs at Nodes with and without Recent Entry – Nearest Node (3 Year Lag) 

 Non-Entry Entry 

  All Tech. CT CCGT Wind Solar Other 

Mean 29.13 26.77 27.22 25.72 26.44 25.96 28.24 

Std. Dev. 7.36 5.73 4.47 4.30 5.97 5.03 6.57 

        

Difference 

in Means 

     2.36*** 1.92      3.41***     2.70***   3.17***     0.90 

 (0.42) (1.14) (0.87) (0.63) (0.63) (0.87) 

Notes. Difference in means performs a t-test on the equality of means with unequal 

variances. Standard errors are in parentheses. ***𝑝 < 0.01, **𝑝 < 0.05, and *𝑝 < 0.10. 

Tables A2 and A3 in the Appendix consider a 1- and 2-year lagged structure to define recent 

entry at a given node 𝑗. In addition, we considered our alternative spatial measures to 

define recent nearby entry. The results for these alternative cases are consistent with those 

presented in Table 2.  We find no evidence that resources receive an LMP-premium post-

entry compared to nodes that have not experience recent nearby entry. In fact, across all 

spatial measures and lag structures we considered, nodes with recent nearby entry often 

have statistically significantly lower average LMPs compared to nodes that have not 

experienced recent nearby entry. This could be driven by the fact that the entry of the 

resources under consideration put downward pressure on LMPs post-entry. However, our 

two-stage model in Section 4 suggests that if investment location decisions are motivated 

by the expectation of higher LMPs post-entry, we expect new capacity additions to receive 

an LMP-premium compared to LMP levels at non-entry nodes. 

e. Regression Analysis  

In this section, we employ the two-period investment model in Section 4(a) and the 

associated empirical strategy in Section 4(b). This allows us to evaluate whether expected 

nodal price levels and variances are related to a generator’s location investment decision. 
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i. Real-Time Market Nodal Price Regressions 

We carry out the RTM nodal price regressions in equation (4). More specifically, starting 

with the period 2011 – 2012, we use pre-entry data to forecast RTM nodal price levels and 

variances on a forward-looking basis out-of-sample. This results in estimating 160 

regressions (one for each node) for 6 different time horizons.20 We focus on aggregate level 

statistics that represent the voluminous results of these RTM nodal price regressions.  

Table 3. Summary Statistics - Observed and Estimated 

   Mean Std Dev Min Median Max 

Observed   𝑁𝑒𝑡 𝐷𝑒𝑚𝑎𝑛𝑑 7,387.02 2,497.65 2,211.10 6,964.83 15,947.49 

  𝐻𝑒𝑛𝑟𝑦 𝐻𝑢𝑏 3.23 0.79 1.49 3.03 8.15 

  𝐿𝑀𝑃 28.98 82.77 -8,122.96 22.58 9,050.08 

  
 

     
Estimated   𝜎𝐿𝑀𝑃2  640.78 417.59 144.47 520.46 4,755.51 

  𝐿𝑀𝑃̅̅ ̅̅ ̅̅  27.71 3.65 21.75 26.83 56.09 

  𝐿𝑀𝑃̅̅ ̅̅ ̅̅ 𝑇𝑂𝐷1 16.86 2.75 7.93 17.16 27.75 

  𝐿𝑀𝑃̅̅ ̅̅ ̅̅ 𝑇𝑂𝐷2 27.22 2.71 22.01 26.85 47.63 

  𝐿𝑀𝑃̅̅ ̅̅ ̅̅ 𝑇𝑂𝐷3 29.29 5.45 23.21 28.00 82.32 

  𝐿𝑀𝑃̅̅ ̅̅ ̅̅ 𝑇𝑂𝐷4 49.32 10.32 32.28 46.05 125.71 

  𝐿𝑀𝑃̅̅ ̅̅ ̅̅ 𝑇𝑂𝐷5 26.72 2.68 21.01 26.67 51.63 

 

Table 3 presents summary statistics of the key regressors in our sample. Net Demand (in 

MWh) and LMPs (in $/MWh) represent 15-minute level observed data. Henry Hub prices (in 

$/MMBTU) represents daily-level henry hub natural gas prices. There is considerable 

variation in these measures over our sample period.  

Table 3 also presents summary statistics of our model estimated average nodal RTM price 

levels (𝐿𝑀𝑃̅̅ ̅̅ ̅̅ ) and variances (𝜎𝐿𝑀𝑃2 ). It is important to note that this data represents annual 

forward-looking averages at the node-level, whereas the observed data represents higher 

frequency observations (e.g., daily or 15-minute data). The model estimated nodal price 

levels are also broken down by our 5 TOD periods. The high correlation (> 0.96) across TOD 

periods in the nodal price variance measure limits our ability to include TOD-specific 

variance measures in our analysis due to multi-collinearity issues.  

Table 3 reports considerable variation in the estimated LMP levels and variances across the 

nodes in our sample. The empirically estimated average LMP falls within approximately $1 

 
20 Recall, we utilize 2011 – 2012 data to forecast forward for the period 2013 – 2019, 2011 -2013 data to forecast 

the period 2014 – 2019, and so on until we are utilizing 2011 – 2017 data to forecast RTM nodal prices for the 

period 2018 and 2019. 
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of the observed average LMP. As expected, the average forecasted LMPs vary considerably 

by TOD with the highest average nodal prices arising in the mid-day (TOD3) and afternoon 

(TOD4) periods.  

 

Figure 8. RTM Nodal Price Regression Results Box and Whisker Plot 

Figure 8 presents a box and whisker plot summary of the results of our RTM nodal price 

regressions detailed in equation (4). The “whiskers” above and below reflect the locations 
of the 10th and 90th percentiles and the center line corresponds to the median. The Henry 

Hub coefficients systematically vary between 6 and 10 and are statistically significant, which 

is a reasonable range reflecting the heat rates of CTs and CCGTs that normally operate on-

the-margin in ERCOT.21  The net demand coefficients are positive, statistically significant, 

and systematically between 0.008 and 0.08 with a median value of 0.052. Consequently, at 

the median net demand coefficient value, a one standard deviation change in Net Demand 

would result in a $129.88 increase in the RTM nodal price, holding all else constant.22 

 
21 Liu et al. (2016) and Zarnikau et al. (2019b) find similar henry hub coefficients in the range of 7 to 9. While there 

are a handful of negative henry hub coefficients, they are not statistically significant and often arise at nodes in 

industrial regions where idiosyncratic local consumption behavior is more likely to drive nodal price patterns.   
22 From Table 3, 𝜎𝑁𝑒𝑡𝐷𝑒𝑚𝑎𝑛𝑑 = 2497.65 such that a one standard deviation change in net demand equals 2497.65 × 0.052 ≈ 129.88. 
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Figure 8 demonstrates that the adjusted R-squared of our RTM nodal price regressions 

varies between 0.044 and 0.065 in the inner-quartile range, owing to the widely dispersed 

15-minute nodal prices. However, the estimated annual average LMPs closely match the 

observed values in-sample, the key statistic in our discrete entry analysis in the next 

subsection.  

ii. Discrete Nodal Entry Analysis 

Corresponding to the first period of our investment model, we estimate the logit regression 

specified in equations (5) and (6) to evaluate the relationship between the likelihood of 

entry at a specific node 𝑗 in year 𝑡 and average forecasted (forward-looking) nodal price 

levels and variances. We focus on our primary specification that considers the spatial 

measure that matches capacity additions to the nearest existing node.  

Table 4 presents the results of our nodal entry regressions across all technologies and 

decomposed by technology. These results come from two model specifications, one with 

average nodal price levels across all hours and another where average nodal price levels by 

TOD period.23  

Looking across all technologies, the LMP coefficient in column (1) is positive and statistically 

significant, suggesting entry is more likely to arise at a specific node when its forecasted 

average LMP level increases. The variance coefficient is negative but statistically 

insignificant. Column (2) provides a more flexible specification that allows the impact of 

average forecasted LMPs to vary by TOD. This specification only finds a statistically 

significant and positive average forecasted LMP level coefficient in the evening hours (i.e., 

TOD5). However, these regressions mask important heterogeneity across generation 

technologies.  

Columns (3) and (4) present the results for natural gas CT, indicating a positive and 

significant relationship between average forecasted nodal LMPs and the likelihood of 

investment. When decomposed by TOD, all coefficients are statistically insignificant except 

for the coefficient on the average forecasted LMP levels in the evening (TOD5) period. This 

coefficient is positive and significant at the 5% level. These results suggest that a CT unit’s 
location decisions are partly motivated by average forecasted LMP levels in the evening 

hours.  

 

 
23 The variability in the number of observations across technologies arises from the fact that we have weather zone 

and year fixed effects to control for important regional and time-varying factors that drive investment decisions. 

Consequently, our analysis identifies off of variation in entry decisions within a year and weather zone. If there is a 

year or weather zone with no investment in a certain generation technology, then the nodes in this zone-year are 

dropped from our sample due to multi-collinearity.  



23 

 

Table 4. Nodal Entry Logit Regression by Technology - Nearest Node 

 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 

 All All CT CT CCGT CCGT Solar Solar Wind Wind 𝐿𝑀𝑃̅̅ ̅̅ ̅̅  0.180**  0.227**  0.750  0.145  0.0595  

 (0.0743)  (0.0777)  (0.476)  (0.113)  (0.103)  𝜎𝐿𝑀𝑃2
 -0.0013 -0.0024* -0.0002 -0.0089 -0.0091** -0.0091 -0.0017 -0.0077 0.0007 -0.0025** 

 (0.0010) (0.0015) (0.0005) (0.0057) (0.0043) (0.0240) (0.0013) (0.0059) (0.0012) (0.0012) 𝐿𝑀𝑃̅̅ ̅̅ ̅̅ 𝑇𝑂𝐷1  -0.3150  -1.553  -1.244  -0.404  -0.419 

  (0.211)  (0.961)  (1.137)  (0.273)  (0.272) 𝐿𝑀𝑃̅̅ ̅̅ ̅̅ 𝑇𝑂𝐷2  0.0124  -0.336  -0.133  0.159  0.205 

  (0.176)  (0.754)  (1.348)  (0.370)  (0.174) 𝐿𝑀𝑃̅̅ ̅̅ ̅̅ 𝑇𝑂𝐷3  -0.176  -0.302  -1.285*  -0.749**  0.110 

  (0.136)  (0.413)  (0.661)  (0.254)  (0.232) 𝐿𝑀𝑃̅̅ ̅̅ ̅̅ 𝑇𝑂𝐷4  0.0839  0.525  0.296  0.478**  0.0542 

  (0.111)  (0.432)  (0.869)  (0.203)  (0.227) 𝐿𝑀𝑃̅̅ ̅̅ ̅̅ 𝑇𝑂𝐷5  0.513**  1.766**  3.764  0.754*  -0.0167 

  (0.248)  (0.634)  (2.338)  (0.404)  (0.361) 

Year F.E. Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

Zone F.E. Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 𝜒2 48.65*** 69.34*** 115.3*** 42.62*** 126.9*** 718.3*** 29.51*** 73.84*** 19.81*** 37.27*** 𝑁 888 888 270 270 264 264 888 888 558 558 

Notes. Cluster-robust standard errors are in parentheses. ***𝑝 < 0.01, **𝑝 < 0.05, and *𝑝 < 0.10. 

Results for CCGTs in columns (5) and (6) suggest no positive and significant relationship 

between average forecasted LMPs and CCGT location decisions. In fact, column (6) finds a 

negative and marginally significant coefficient on average forecasted LMPs in the mid-day 

hours (TOD3). The negative and statistically significant coefficient on the expected LMP 

variance measure in column (5) suggest that CCGT units locate near nodes with a lower 

average forecasted LMP variance. 24  This result contradicts our ex-ante expectations 

because a CCGT investment’s profitability tends to be enhanced by high price level and 

volatility (Woo et al., 2016). However, the statistical significance vanishes when we control 

for average nodal price levels by TOD in column (6).  

Columns (7) and (8) present the results for solar investment. Focusing on the statistically 

significant coefficients, these results demonstrate that solar resources are more likely to 

locate near nodes with lower average forecasted LMPs in mid-day hours (TOD3) and higher 

average forecasted LMPs in the afternoon and evening hours (TOD4 and TOD5). These 

relationships are consistent with the fact that solar units are observed to co-locate (e.g., 

due to high solar irradiance and low siting costs), suppressing mid-day prices when the sun 

 
24 The negative forecasted LMP variance and TOD5 coefficients in columns (5) and (6) could be capturing factors 

such as the fact that CCGT often locate on land that includes other existing base-load facilities (e.g., other CCGT 

units) that suppress forecasted mid-day nodal price levels and variance. Regardless, these results are inconsistent 

with the hypothesis that investment location decisions are positively related to expected nodal prices.    
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is shining and raising evening price as the sunsets.25 Consequently, the results presented in 

columns (7) and (8) are consistent with other drivers of investment location decisions (such 

as siting cost and solar irradiance potential) rather than solar resources being motivated by 

the expectation of higher average forecasted LMPs in mid-day hours when the sun is shining 

and solar output is positive.    

Columns (9) and (10) illustrate the results for wind generation. These results find no 

statistically significant relationship between average forecasted LMP levels and investment 

location decisions. In column (10), there is a negative and marginally significant coefficient 

on forecasted LMP variance suggesting that wind resources are more likely to locate near 

nodes with lower expected LMP variance. While seemingly odd, this coefficient could reflect 

the incentive for a new wind resource, which is a non-dispatchable unit, to locate near a 

node with relatively stable prices (e.g., with fewer nearby existing wind resources).26  

While our primary focus is on the sign and significance of the logit regression coefficients, 

Table 5 provides the average marginal effects (AME) in order to illustrate the magnitude of 

the effects we have identified in Table 4. 27  For brevity, we will focus on the statistically 

significant coefficients in the CT regressions whose findings described above are consistent 

with a positive and significant relationship between nodal prices and investment location 

decisions. It is useful to note that 41 CT units entered during our period of interest and 

there are 160 nodes in our sample. Consequently, to establish a scale for reference, if CT 

units were randomly allocated across nodes, there would be an approximate 25.6% 

probability that a CT unit would be constructed at any given node during our sample period.  

In column (3), the AME of a one standard deviation increase in the average forecasted LMP 

(𝐿𝑀𝑃) increases the likelihood of a CT unit being constructed at a node 𝑗 by 2.19 

percentage points.28 From column (4), the AME of a one standard deviation increase in 𝐿𝑀𝑃𝑇𝑂𝐷5 results in an 11.55 percentage point increase in the likelihood of a CT unit being 

constructed at a given node 𝑗.29 These results demonstrate that the significant LMP 

coefficients in columns (3) and (4) represent economically significant effects.  

 

 

 
25 See Bushnell and Novan (2018) for an analysis of the impact of solar PV on wholesale prices in California.  
26 We also decomposed the wind assets by coastal and non-coastal wind. While the precise quantitative results 

vary, the overall lack of statistically significance and qualitative conclusions are unaffected.  
27 The average marginal effects are calculated by taking a marginal change in the variable of interest, while holding 

all other variables at their observed values. An alternative approach would be to calculate the marginal effects at 

the mean which holds all other variables at the sample average values. While this changes the precise quantitative 

results in Table 5, the qualitative conclusions and statistical significance are unchanged.   
28 From Table 3, a one-standard deviation change in 𝐿𝑀𝑃 equals 3.65 such that 3.65 × 0.0060 = 0.0219. 
29 From Table 3, a one-standard deviation change in 𝐿𝑀𝑃𝑇𝑂𝐷5 equals 2.68 such that 2.68 × 0.0431 = 0.1155. 



25 

 

Table 5. Average Marginal Effects – Nodal Entry Logit Regression – Nearest Node 

 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 

 All All CT CT CCGT CCGT Solar Solar Wind Wind 𝐿𝑀𝑃̅̅ ̅̅ ̅̅  0.0151**  0.0060**  0.0192  0.0045  0.0029  

 (0.0062)  (0.0028)  (0.0126)  (0.0036)  (0.0050)  𝜎𝐿𝑀𝑃2
 -0.0001 -0.0002 -0.00001 -0.0002 -0.0002* -0.0002 -0.00005 -0.0002 0.00003 -0.0001* 

 (0.0001) (0.0001) (0.00001) (0.0002) (0.0001) (0.0004) (0.00004) (0.0002) (0.0001) (0.00006) 𝐿𝑀𝑃̅̅ ̅̅ ̅̅ 𝑇𝑂𝐷1  -0.0260  -0.0379  -0.0295  -0.0122  -0.0204 

  (0.0175)  (0.0254)  (3.1297)  (0.0084)  (0.0135) 𝐿𝑀𝑃̅̅ ̅̅ ̅̅ 𝑇𝑂𝐷2  0.0010  -0.0082  -0.0032  0.0048  0.0100 

  (0.0145)  (0.0186)  (0.0376)  (0.0111)  (0.0084) 𝐿𝑀𝑃̅̅ ̅̅ ̅̅ 𝑇𝑂𝐷3  -0.0145  -0.0074  -0.0305  -0.0226***  0.0053 

  (0.0111)  (0.0100)  (0.5173)  (0.0081)  (0.0114) 𝐿𝑀𝑃̅̅ ̅̅ ̅̅ 𝑇𝑂𝐷4  0.0069  0.0128  0.0070  0.0144**  0.0026 

  (0.0091)  (0.0108)  (0.3014)  (0.0065)  (0.0110) 𝐿𝑀𝑃̅̅ ̅̅ ̅̅ 𝑇𝑂𝐷5  0.0423**  0.0431**  0.0892  0.0227*  -0.0008 

  (0.0203)  (0.0182)  (0.2840)  (0.0124)  (0.0176) 

Notes. Standard errors are in parentheses. ***𝑝 < 0.01, **𝑝 < 0.05, and *𝑝 < 0.10. 

To ensure the robustness of our results, we consider various other model specifications. 

Tables A4 and A5 in the appendix present the alternative spatial measures that links entry 

that occurs within a 10-mile radius of a given node and entry to the nearest two nodes, 

respectively. Consistent our baseline analysis, when looking at column (3) of both tables, we 

continue to find a positive relationship between average expected LMP levels and the 

likelihood of entry for CT units, although this effect is only marginally significant in both 

specifications. When decomposing this effect by TOD in column (4), we only find a positive 

and significant relationship in the average expected LMPs in the evening hours for the 10- 

mile radius regression.  

Columns (5) and (6) continue to show no positive and significant relationship between CCGT 

location decisions and average expected LMP prices. The solar results discussed above 

persist, though weaker and/or insignificant. For wind generation facilities, columns (9) and 

(10) continue to find a limited positive and significant relationship between average 

expected LMP levels and the likelihood of entry of wind at a specific node. 

Table A6 presents the results for our primary model specification with the nearest node 

distance measure, excluding the years 2017 and 2018. There may be concerns that the 

forward-looking RTM nodal price regressions has insufficient data to accurately model how 

expected nodal price levels and variances impact entry decisions near the end of our sample 

period. Table A6 demonstrates that our key findings persist, with the exception that we no 

longer find a positive and significant coefficient in column (4) for the CT specification when 

average expected LMPs are broken down by TOD. 
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In summary, these results present limited evidence of a relationship between average 

forecasted LMPs and location-specific investment decisions. For CT assets, the likelihood of 

investment at a given node increases as the average expected RTM nodal price increases. 

However, this result is sensitive to model specification. Taken together, these results 

suggest that other market and location-specific factors are likely more important drivers of 

investment location decisions.  

6. Conclusion 

 

We investigate the role of ERCOT’s nodal pricing in motivating location-based generation 

capacity investment decisions. We document increased dispersion of LMPs across nodes 

and substantial investment in wind and natural gas capacity. We find limited evidence that 

nodes with recent nearby entry experience an LMP-premium post-entry compared to nodes 

where nearby entry has not occurred. In particular, we find that nodes with recent nearby 

entry have systematically lower average nodal price levels, consistent with suppressed 

LMPs as the result of entry.  

 

We find that the largest number of capacity additions (in MWs) arise in the top quartile of 

the nodal price distribution when focusing on lagged LMPs. This provides some evidence 

that recent LMPs send price signals for location-based investment. However, when looking 

across the full nodal price distribution, over 50% of new capacity additions (in MWs) arise in 

the lowest two LMP quartiles. Our statistical analysis finds limited evidence that expected 

average LMP levels and variance drive location-based investment decisions. We find some 

evidence that smaller peaker natural gas (CT) assets have a positive and significant 

relationship between the likelihood of investment near a node and that node’s expected 

average nodal price level. However, this relationship is sensitive to the regression model 

specification.  

 

Overall, our analysis presents limited evidence that LMPs drive location-based investment 

decisions in Texas during our sample period. Investments in power plants are complex long-

run decisions that entail many factors. There are important reasons why higher nodal prices 

may not be a primary driver of power plant location decisions: 

 

• Plant location decisions are also driven by other factors such as site availability, 

transmission access, interconnection costs, access to fuel or renewable resources, and 

local regulation and approvals.  

• Nodal prices are volatile, resulting in a highly uncertain stream of revenues that may 

hinder a power plant developer’s ability to obtain project financing based on higher 

expected LMPs (Stern, 1998).  

• A load pocket’s high nodal prices may collapse as the result of a plant’s lumpy capacity 

investment, thus discouraging investments in large facilities. 
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• A load pocket’s nodal price spikes tend to be concentrated in a relatively few critical 

hours of the year (e.g., extremely hot summer afternoons).  This makes demand 

response (DR) and demand-side management (DSM) likely more cost-effective 

investments due to their low capital expenditure requirements.30 As a result of growing 

distributed generation, DR, DSM, and entry of small to medium-sized battery storage, an 

IPP’s planned construction based on high nodal prices may become unprofitable.  

• A regulator may choose to build more transmission to reduce a load pocket’s high LMPs 
and reliability concerns. This threat of transmission investment can elevate the risk of 

LMP-driven generation investment.31  

 

Our analysis suggests several directions for future research. First, our analysis is reduced-

form and aims to evaluate relationships between location-based investment and LMPs. A 

caveat with this approach is that we are unable to fully unentangle the relationship entry 

location decisions and post-entry expected LMPs because we do not simulate post-entry 

LMPs under various location-based entry scenarios. A structural analysis that permits 

counterfactual simulations can provide additional important insights into the drivers of 

investment location decisions. A related analysis that employs techniques in the structural 

industrial organization literature is needed. Second, we focus on investment in utility-scale 

generation assets. However, LMPs may be more likely to motivate investment in smaller-

scale distributed generation, battery storage, and DR. An analysis of the location-based 

decisions of these technologies and how it relates to RTM nodal prices is warranted.  

 

Third, our analysis focused on investment location decisions, conditional on observed 

investment in a given technology. Future research should explicitly model the decision to 

invest in a technology prior to the investment location decision. Fourth, a similar analysis of 

other jurisdictions with nodal pricing is needed to evaluate the robustness of our findings to 

other market and regulatory environments.  

 

 

 

 

 

 

 
30 Utilities like Pacific Gas and Electric (PG&E) and Bonneville Power Administration (BPA) have been seeking non-

wire solutions based on DR and DSM (Sreedharan et al., 2002; Woo et al., 2014; E4 The Future, 2018). 
31 For example, in 2014, ERCOT approved a transmission line to alleviate local congestion in Houston, a move that 

was opposed by several generation companies (Tiernan, 2015).  
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Appendix 

 

 

Figure A1. Nodes in Sample (N=160) 
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Figure A2. Capacity Additions (MWs) by Pricing Tiers – Dist. 10 Miles (2012 – 2021) 

 

Figure A3. Capacity Additions (MWs) by Pricing Tiers and Year – Dist. 10 Miles 
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Table A1. New Generation Facilities by Year and Fuel Source (MW) 

 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 Total 

Wind 370 1,271 150 1,727 3,394 2,517 1,832 1,656 3,995 2,969 300 0 20,181 

CT 0 0 103 80 512 0 242 549 297 2,356 409 0 4,548 

CCGT 685 0 0 2,570 803 0 2,462 0 0 0 3,010 0 9,530 

Solar 30 32 51 44 139 266 645 709 903 1,657 485 0 4,961 

Other 887 465 1,011 4 18 276 32 248 45 0 29 317 3,332 

Total 1,972 1,768 1,315 4,425 4,866 3,059 5,213 3,162 5,240 6,982 4,233 317 42,552 

Notes. Other represents Storage (115), Hydro (1), Biomass (114), Coal (1,887), and Other Gas (1,216).  

 

 

Table A2. Average LMPs at Nodes with and without Recent Entry – Nearest Node (1 Year Lag) 

 Non-Entry Entry 

  All Tech. CT CCGT Wind Solar Other 

Mean 28.99 26.07 27.05 24.32 25.69 26.01 26.90 

Std. Dev. 7.28 5.05 4.99 2.21 5.29 4.79 5.66 

        

Difference 

in Means 

     2.92*** 1.94     4.67***     3.30***   2.98*** 2.09* 

 (0.48) (1.78) (0.73) (0.77) (0.76) (1.17) 

Notes. Difference in means performs a t-test on the equality of means with unequal 

variances. Standard errors are in parentheses. ***𝑝 < 0.01, **𝑝 < 0.05, and *𝑝 < 0.10. 

 

 

Table A3. Average LMPs at Nodes with and without Recent Entry – Nearest Node (2 Year Lag) 

 Non-Entry Entry 

  All Tech. CT CCGT Wind Solar Other 

Mean 29.05 26.78 26.63 24.38 26.77 26.05 28.31 

Std. Dev. 7.29 5.93 4.05 2.96 6.39 5.09 6.91 

        

Difference 

in Means 

      2.26***  2.42*     4.67***     2.27***   3.00*** 0.73 

 (0.46) (1.14) (0.71) (0.74) (0.68) (1.06) 

Notes. Difference in means performs a t-test on the equality of means with unequal 

variances. Standard errors are in parentheses. ***𝑝 < 0.01, **𝑝 < 0.05, and *𝑝 < 0.10. 
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Table A4. Nodal Entry Logit Regression by Technology – Dist. 10 Miles 

 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 

 All All CT CT CCGT CCGT Solar Solar Wind Wind 𝐿𝑀𝑃̅̅ ̅̅ ̅̅  0.0864  0.123*  0.0272  0.0897  -0.0325  

 (0.0651)  (0.064)  (0.309)  (0.0841)  (0.151)  𝜎𝐿𝑀𝑃2
 -0.0010 -0.0018 0.00026 -0.038* 0.00479 -0.00681 -0.0018 -0.010 0.00323* 0.0066 

 (0.0009) (0.0028) (0.0049) (0.0149) (0.00522) (0.0048) (0.00124) (0.0083) (0.0019) (0.0045) 𝐿𝑀𝑃̅̅ ̅̅ ̅̅ 𝑇𝑂𝐷1  -0.170  -0.692  -1.062  -0.572  0.0973 

  (0.271)  (1.444)  (1.085)  (0.494)  (0.343) 𝐿𝑀𝑃̅̅ ̅̅ ̅̅ 𝑇𝑂𝐷2  0.307  1.416**  1.917  0.617  -0.0471 

  (0.189)  (0.691)  (1.781)  (0.411)  (0.511) 𝐿𝑀𝑃̅̅ ̅̅ ̅̅ 𝑇𝑂𝐷3  -0.0097  0.498  -0.513  -1.181**  0.458* 

  (0.122)  (0.455)  (0.765)  (0.352)  (0.158) 𝐿𝑀𝑃̅̅ ̅̅ ̅̅ 𝑇𝑂𝐷4  -0.0233  0.760**  0.508  0.389  -0.359* 

  (0.100)  (0.222)  (0.781)  (0.276)  (0.197) 𝐿𝑀𝑃̅̅ ̅̅ ̅̅ 𝑇𝑂𝐷5  0.0566  -2.120  -0.970  0.609  -0.245 

  (0.223)  (1.4585)  (3.029)  (0.387)  (0.266) 

Year F.E. Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

Zone F.E. Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 𝜒2 57.77*** 74.61*** 3.12*** 15.72*** 5.534*** 11.80*** 22.82*** 43.65*** 146.5*** 274.0*** 𝑁 888 888 180 180 158 158 480 480 465 465 

Notes. Cluster-robust standard errors are in parentheses. ***𝑝 < 0.01, **𝑝 < 0.05, and *𝑝 < 0.10. 
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Table A5. Nodal Entry Logit Regression by Technology – Nearest Two Nodes 

 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 

 All All CT CT CCGT CCGT Solar Solar Wind Wind 𝐿𝑀𝑃̅̅ ̅̅ ̅̅  0.136**  0.128*  0.640  0.127  -0.0056  

 (0.0516)  (0.0692)  (0.390)  (0.0823)  (0.1000)  𝜎𝐿𝑀𝑃2
 -0.0009 -0.0030** -0.0004 -0.0013 -0.0068* -0.0011 -0.0019* -0.0065 0.00136 -0.0027* 

 (0.0006) (0.0012) (0.0005) (0.0021) (0.0041) (0.0059) (0.0011) (0.0047) (0.00112) (0.0014) 𝐿𝑀𝑃̅̅ ̅̅ ̅̅ 𝑇𝑂𝐷1  -0.410**  -0.103  0.0498  -0.359  -0.628** 

  (0.162)  (0.375)  (0.899)  (0.283)  (0.235) 𝐿𝑀𝑃̅̅ ̅̅ ̅̅ 𝑇𝑂𝐷2  0.0778  -0.334  -0.0751  0.117  0.320 

  (0.142)  (0.550)  (0.418)  (0.302)  (0.188) 𝐿𝑀𝑃̅̅ ̅̅ ̅̅ 𝑇𝑂𝐷3  -0.158  0.104  -0.499  -0.702**  0.0989 

  (0.108)  (0.364)  (0.427)  (0.197)  (0.176) 𝐿𝑀𝑃̅̅ ̅̅ ̅̅ 𝑇𝑂𝐷4  0.0912  -0.0451  0.00651  0.398**  0.0184 

  (0.0840)  (0.343)  (0.212)  (0.176)  (0.191) 𝐿𝑀𝑃̅̅ ̅̅ ̅̅ 𝑇𝑂𝐷5  0.468**  0.422  1.338  0.752**  0.0483 

  (0.212)  (0.391)  (1.204)  (0.292)  (0.268) 

Year F.E. Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

Zone F.E. Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 𝜒2 94.78*** 120.0*** 119.8*** 67.87*** 36.15*** 73.29*** 77.67*** 78.68*** 25.32*** 58.37*** 𝑁 960 960 270 270 228 228 864 864 465 465 

Notes.  Cluster-robust standard errors are in parentheses. ***𝑝 < 0.01, **𝑝 < 0.05, and *𝑝 < 0.10. 
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Table A6. Nodal Entry Logit Regression by Technology – Nearest Node, Excluding 2017 and 2018 

 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 

 All All CT CT CCGT CCGT Solar Solar Wind Wind 𝐿𝑀𝑃̅̅ ̅̅ ̅̅  0.201**  0.322**  3.057  0.0493  0.0627  

 (0.0903)  (0.147)  (2.956)  (0.143)  (0.147)  𝜎𝐿𝑀𝑃2
 -0.0010 -0.0029 -0.0007 -0.0302 -0.0248 -0.0508* 0.0002 -0.0128 0.0009 -0.0009 

 (0.0011) (0.0024) (0.0009) (0.580) (0.0287) (0.0301) (0.0014) (0.0083) (0.0014) (0.0013) 𝐿𝑀𝑃̅̅ ̅̅ ̅̅ 𝑇𝑂𝐷1  -0.528**  -20.01  -4.084**  -0.467  -0.397 

  (0.269)  (113.9)  (1.988)  (0.437)  (0.318) 𝐿𝑀𝑃̅̅ ̅̅ ̅̅ 𝑇𝑂𝐷2  0.0555  -0.794  1.189  0.486  0.207 

  (0.217)  (32.42)  (1.143)  (0.590)  (0.188) 𝐿𝑀𝑃̅̅ ̅̅ ̅̅ 𝑇𝑂𝐷3  -0.179  -3.556  -1.864*  -1.554**  0.156 

  (0.161)  (9.636)  (1.019)  (0.433)  (0.286) 𝐿𝑀𝑃̅̅ ̅̅ ̅̅ 𝑇𝑂𝐷4  0.0589  1.864  1.502  1.001**  -0.0868 

  (0.130)  (42.89)  (0.941)  (0.322)  (0.239) 𝐿𝑀𝑃̅̅ ̅̅ ̅̅ 𝑇𝑂𝐷5  0.721**  14.74  2.147  1.279*  0.126 

  (0.292)  (30.56)  (2.966)  (0.680)  (0.398) 

Year F.E. Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

Zone F.E. Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 𝜒2 28.11*** 41.38*** 29.60*** 38.36** 4.822** 48.13*** 15.12*** 53.78*** 14.58** 12.41** 𝑁 592 592 162 162 176 176 556 556 372 372 

Notes. Cluster-robust standard errors are in parentheses. ***𝑝 < 0.01, **𝑝 < 0.05, and *𝑝 < 0.10. 
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