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DOES MODEL UNCERTAINTY
JUSTIFY CAUTION? ROBUST
OPTIMAL MONETARY POLICY
IN A FORWARD-LOOKING MODEL

MARC P. GIANNONI
Federal Reserve Bank of New York

This paper proposes a general method based on a property of zero-sum two-player games
to derive robust optimal monetary policy rules—the best rules among those that yield an
acceptable performance in a specified range of models—when the true model is unknown
and model uncertainty is viewed as uncertainty about parameters of the structural model.
The method is applied to characterize robust optimal Taylor rules in a simple
forward-looking macroeconomic model that can be derived from first principles.
Although it is commonly believed that monetary policy should be less responsive when
there is parameter uncertainty, we show that robust optimal Taylor rules prescribe in
general a stronger response of the interest rate to fluctuations in inflation and the output
gap than is the case in the absence of uncertainty. Thus model uncertainty does not
necessarily justify a relatively small response of actual monetary policy.

Keywords: Monetary Policy Rules, Parameter Uncertainty, Robust Control

1. INTRODUCTION

A considerable recent literature has sought to characterize desirable monetary
policies in terms of interest-rate feedback rules, that is, guides for setting at each
period the policy instrument, such as the federal funds rate in the United States,
in response to economic conditions. Many computations of optimal policy rules
in the context of one or another econometric model—such as those collected by
Taylor (1999)—imply that an optimal rule would involve stronger responses of the
federal funds rate to fluctuations in inflation (and perhaps also in output) than are
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implied by estimated Fed reaction functions, or by Taylor’s (1993) much-discussed
characterization of recent Fed policy. However, the specific equations favored by
various authors are still significantly different. This raises the question of how a
policy rule should be selected in the face of uncertainty about the correct model
of the economy.

A common intuition first proposed by Brainard (1967) is that parameter uncer-
tainty should lead one to choose a more “cautious” policy: Policymakers should
compute the optimal change of their instrument as if they knew the functioning of
the economy with certainty, and then move their instrument by less [see Blinder
(1998)].1 Some commentators have therefore proposed that the strong responses
of the instrument required by optimal policy in the context of an econometric
model depend upon assuming that estimated model coefficients are known to be
true, whereas taking proper account of one’s actual uncertainty about the true
coefficients should justify gentler responses, perhaps closer to current policy.2

This paper seeks to formally evaluate this argument. We seek to characterize
optimal monetary policy rules that are robust to uncertainty about the proper model
of the economy when all of the models considered are similar, though not identical.
This can be modeled as uncertainty about the parameters that numerically specify
the economic model. Uncertainty of this kind necessarily exists in practice because
researchers do not know with certainty all parameters of their model. In contrast
to the standard Bayesian approach followed by, for example, Brainard (1967),
Chow (1975), Clarida et al. (1999), and Rudebusch (2001), we assume that the
policymaker has multiple priors about the probability distribution of the true model,
and that he is uncertainty averse. The result is that the best policy rule is a robust
optimal monetary policy rule of the kind advocated recently by Hansen and Sargent
(1999a,b), Sargent (1999), Stock (1999), and Onatski and Stock (2002). Such a
rule is designed to avoid an especially poor performance of monetary policy in
the event of an unfortunate parameter configuration, and guarantees to yield an
acceptable performance in the specified range of models.3

We propose a method to characterize robust optimal policy rules in a broad class
of models. Whereas most studies of optimal policy in the face of model uncertainty
focus on backward-looking models, we use our method to determine robust optimal
policy rules in a simple forward-looking macroeconomic model. As in Woodford
(1996, 1999c), the model is composed of a monetary policy rule and two structural
equations—an intertemporal IS equation and an aggregate supply equation—that
are based on explicit microeconomic foundations. Because it can be derived from
first principles, the model is not subject to the famous Lucas (1976) critique for the
evaluation of policy. An important property of this model is that the policymaker
faces a trade-off between the stabilization of inflation and the output gap on one
hand and the nominal interest rate on the other hand.

A comparison of the robust optimal rule to the optimal policy in the absence of
uncertainty allows us to determine whether Brainard’s (1967) result generalizes
to the class of models considered here. In contrast to the “conventional wisdom,”
we obtain that robust optimal monetary policy generally commands a stronger



ROBUST POLICY IN A FORWARD-LOOKING MODEL 113

response of the interest rate to fluctuations in goal variables such as inflation and
the output gap than is the case in the absence of uncertainty. In fact, model uncer-
tainty affects the trade-off facing the policymaker in a way that places more weight
on the stabilization of inflation and the output gap, and relatively less weight on the
stabilization of the nominal interest rate. This is because the robust optimal rule,
which is designed to perform well in those instances in which exogenous shocks
have particularly large effects on the goal variables, requires the interest rate to
respond by enough to guarantee that exogenous perturbations have only a limited
effect on the economy. It is therefore far from clear that model uncertainty can pro-
vide a justification for the kind of policies implied by estimates of current policy.4

Similar results have been obtained recently with a different approach and in other
frameworks by Hansen and Sargent (1999b), Söderström (1999), Sargent (1999),
Stock (1999), Kasa (2002), and Onatski and Stock (2002). Whereas Sargent (1999)
applies robust control theory to a backward-looking model, Hansen and Sargent
(1999b) apply it to an optimal monetary policy problem that is similar (except for
the nature of model uncertainty) to the one treated here. However, they specify a
broad, nonparametric set of additive model perturbations that represent deviations
of the model actually used from the true model, and bound uncertainty in terms of a
bound upon the possible size of this additive term. We instead assume uncertainty
about the values of coefficients of the linear equations of the structural model.
This type of uncertainty seems to us more intuitive, and it seems more likely
that modelers should be able to quantify their degree of confidence in that way.
We furthermore obtain an analytical characterization of the robust optimal policy,
which helps us to clarify the circumstances under which robust optimal policy
is more aggressive than the policy obtained in the absence of model uncertainty.
Stock (1999) and Onatski and Stock (2002) study a type of uncertainty that is
similar to ours. Those authors, however, determine robust optimal rules in the
backward-looking model of Rudebusch and Svensson (1999), whereas we consi-
der a forward-looking model. Kasa (2002) also seeks to characterize robust policies
in a forward-looking model, but uses a frequency-domain approach instead of a
time-domain approach.5

The rest of the paper is organized as follows. Section 2 reviews the baseline
model in the absence of model uncertainty. In Section 3, we introduce model
uncertainty and explain how this affects the objective of monetary policy. We next
propose a solution procedure to derive the robust optimal policy rule in a general
class of models. In Section 4, we apply our solution procedure to characterize
analytically robust optimal Taylor rules in the model of Section 2. We conclude in
Section 5.

2. MONETARY POLICY IN A SIMPLE OPTIMIZING MODEL
WITH KNOWN PARAMETERS

This section reviews the monetary policy design problem in a formal model that
can be derived from first principles, when the model parameters are known with
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certainty. Our baseline framework is taken from Woodford (1996, 1999b,c).6 We
first describe the model that characterizes the behavior of the private sector and
then turn to monetary policy.

2.1. A Simple Structural Model

Apart from the monetary policy rule to be discussed later, Woodford’s model
consists of two structural equations that can be derived as log-linear approximations
to equilibrium conditions of an underlying dynamic general equilibrium model
with sticky prices. The intertemporal IS equation, which relates spending decisions
to the interest rate, is given by

xt = Et xt+1 − σ−1
(
it − Etπt+1 − rn

t

)
, (1)

and the aggregate supply equation (or expectational Phillips curve) is given by

πt = κxt + βEtπt+1, (2)

where xt denotes the output gap (defined as the deviation of output from its natural
level, i.e., the equilibrium level of output under flexible prices), πt is the inflation
rate, and it is the deviation of the short-term nominal interest rate from its steady-
state value.7 The composite exogenous disturbance rn

t represents Wicksell’s “nat-
ural rate of interest,” that is, the real interest rate that equates output to its natural
level or, alternatively, the interest rate that would prevail in equilibrium under
flexible prices [see Blinder (1998, Ch. 2) and Woodford (1999b,c)]. Perturbations
to the natural rate of interest represent all nonmonetary disturbances that affect
inflation and the output gap. For instance, a temporary increase in rn

t could reflect a
temporary exogenous increase in aggregate demand or, alternatively, a temporary
decrease in the natural level of output. Moreover, because both interest rates enter
the structural equations only through the “interest-rate gap” (it − Etπt+1) − rn

t ,
nonmonetary perturbations affect inflation and the output gap only if the interest
rate controlled by the central bank is such that the real interest rate, it − Etπt+1,
departs from the natural rate of interest.

While (1) can be viewed as a log-linear approximation to the representative
household’s Euler equation for optimal timing of consumption in the presence of
complete financial markets, (2) can be interpreted as a log-linear approximation
to the first-order condition for the supplier’s optimal price-setting decision. All
variables are assumed to be bounded.8 The structural parameters σ and κ are both
positive by assumption. The parameter σ represents the inverse of the intertemporal
elasticity of substitution (−σ is the slope of the intertemporal IS curve), and κ ,
which is the slope of the short-run aggregate supply curve, can be interpreted as
a measure of the speed of price adjustment. Finally, β ∈ (0, 1) can be interpreted
as the time discount factor of the price setters, which is assumed to be the same as
the discount factor of the representative household.
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TABLE 1. Calibrated parameter values

Certainty case: baseline model Parameter uncertainty

Parameters Value Std. error Parameter Lower bound Upper bound

Structural σ 0.0915 0.2227
β 0.99 κ 0.0168 0.0308
σ 0.1571 (0.0328)
κ 0.0238 (0.0035)

Shock process
ρ 0.35
sd(rn) 3.718

Loss function
λx 0.0483
λi 0.2364

Rotemberg and Woodford (1997) have shown that an estimated model similar
to the one considered here (but slightly more complicated) provides a very good
description of the actual behavior of inflation, output, and the quarterly average
of the federal funds rate in the United States between 1979 and 1995, in that it is
able to replicate accurately the responses of the three endogenous variables to a
monetary shock.9 Their estimated structural parameters are given in Table 1. They
are used here, as in Woodford (1999c), to “calibrate” the model in the baseline case.

2.2. Optimal Monetary Policy

We now turn to the objective of monetary policy. Researchers have traditionally
assumed that policymakers should seek to minimize a weighted average of some
measure of variability of inflation and of the output gap [see, e.g., Walsh (1998,
Ch. 8), Woodford (1999b), and Clarida et al. (1999) for a recent discussion]. In the
model considered earlier, the policymaker can in fact perfectly stabilize inflation
and the output gap by setting it = rn

t in every period, so that the interest rate
perfectly tracks the exogenous fluctuations in the natural rate of interest. However,
it may be undesirable to vary the nominal interest rate as much as the natural rate
of interest.10 For instance, Friedman (1969) has argued that high nominal interest
rates involve welfare costs of transactions. Since it is plausible that the deadweight
loss is a convex function of the distortion [see Woodford (1990, 1999b)], it may be
desirable not only to reduce the level, but also the variability, of nominal interest
rates. Accordingly, we assume the following loss criterion11:

L0 = E0

{
(1 − β)

∞∑
t=0

β t
[
π2

t + λx x2
t + λi i

2
t

]}
, (3)

where λx , λi > 0 are weights that the policymaker places on the stabilization of
the output gap and the nominal interest rate, and where β ∈ (0, 1) is the discount
factor mentioned earlier.12
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An implication of this loss criterion is that an equilibrium with complete sta-
bilization of inflation and the output gap is not fully efficient. In fact, exogenous
fluctuations in the natural rate of interest require variations in the nominal interest
rate to stabilize inflation and the output gap. Hence, welfare costs associated to
fluctuations in the nominal interest rate introduce a tension between stabilization of
inflation and the output gap on one hand, and stabilization of the nominal interest
rate on the other hand.

Following recent studies of monetary policy [see, e.g., Taylor (1999)], we char-
acterize monetary policy in terms of interest-rate feedback rules. Specifically, we
assume that the policymaker commits credibly at the beginning of period 0 to a
policy rule of the form

it = Pt
(
πt , πt−1, . . . , xt , xt−1, . . . , it−1, it−2, . . . , rn

t , rn
t−1, . . .

)
(4)

for each date t ≥ 0. The policymaker’s problem is to determine the functions Pt (·),
t = 0, 1, 2, . . . to minimize the loss E[L0] subject to the structural equations (1) and
(2). Because the objective is quadratic and the constraints are linear in all variables,
we may, without loss of generality, restrict our attention to linear functions Pt (·).

We denote by ψ the vector of coefficients that completely characterizes
{Pt (·)}∞t=0, and we simply call ψ a “policy rule.” In practice, however, we always
assume that policy rules ψ are drawn from some finite-dimensional linear space
Ψ̃⊆ Rn . We denote by θ= [θ1, θ2, . . . , θm]′ the finite-dimensional vector of struc-
tural parameters of the model, and by Θ⊆ Rm the set of possible vectors θ. We
also write qt = [πt , xt , it ]′ for the vector of endogenous variables at date t , and q
for the stochastic process {qt}∞t=0, specifying qt at each date as a function of the
history of exogenous shocks until that date.

To be feasible, the stochastic process q needs to satisfy the structural equations
(1) and (2) at all dates t . These can be written compactly as

S̃(q,θ) = 0. (5)

Similarly, the restrictions imposed by the commitment to (4) at all dates t ≥ 0 can
be written as

P̃(q,ψ) = 0. (6)

We assume that both S̃(q,θ) and P̃(q,ψ) are linear in q. Similarly, the loss function
(3) can be denoted by L0(q,θ).13

A rational expectations equilibrium is then defined as a stochastic process
q(ψ,θ) satisfying both (5) and (6). In general, many different policy rules may
result in the same equilibrium. Some rules may also yield many different equilib-
ria, in which case the set of equilibria always includes some with arbitrarily large
fluctuations of the endogenous variables.14 The latter equilibria are therefore ar-
bitrarily bad under the assumed loss criterion, and the policy rules that allow them
to occur cannot be optimal in the class of rules Ψ̃.15 We therefore restrict our at-
tention to a subset Ψ⊆ Ψ̃ of policy rules that results in a unique bounded rational
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expectations equilibrium, and let q(ψ,θ) denote this equilibrium. We consider
only bounded equilibrium processes because the structural equations (1) and (2)
would not provide a reasonable approximation of the true equilibrium conditions
in the underlying model if the endogenous variables were not bounded.

The optimal monetary policy rule that is optimal relative to the subset of rules
Ψ can, in turn, be defined as follows.

DEFINITION 1. In the case of known structural parameters θ, let Ψ be a set
of policy rules such that there is a unique bounded equilibrium. Then, an optimal
monetary policy rule is a vector ψ0 that solves

min
ψ∈Ψ

E[L0(q(ψ,θ),θ)]

where the unconditional expectation is taken over all possible histories of the
disturbances {rn

t }.
Note that the stochastic process q(ψ,θ) is a specification of the endogenous

variables for all possible initial conditions rn
0 , as well as for all possible realizations

of the exogenous shocks. Since the unconditional expectation in Definition 1 is
also taken over the exogenous initial states rn

0 , monetary policy is evaluated here
without reference to any particular initial conditions.

We shall determine such optimal policy rules in Section 4. First, in the next
section, we describe how the introduction of uncertainty about the structural pa-
rameters alters the objective of monetary policy, and we propose a general method
for finding the optimal policy rule in the presence of parameter uncertainty.

3. MODEL UNCERTAINTY AND ROBUST OPTIMAL MONETARY
POLICY: GENERAL FRAMEWORK

In the preceding section, the parameters that specify the model are supposed to be
constant and known with certainty by all economic agents. The only uncertainty is
due to exogenous perturbations to the natural rate of interest. In reality, however,
central banks and researchers do not know the parameters of their models or
the exogenous disturbances with certainty. They can extract estimates of model
parameters from their data sets, but as long the sample is finite, there is no way
one can be sure about the value of most structural parameters. This parameter
uncertainty may well have an effect on the optimal monetary policy rule. It is
precisely this effect that we analyze here.

The underlying framework we have in mind is the same as the one in the model
mentioned above, except that the private sector (or representative household) can
be one of many different types. We assume that the household’s type is determined
in period 0; the household knows its type, but the central bank does not.16

We assume that the policymaker commits at the beginning of period 0 to a policy
ruleψ (or, equivalently, to functions Pt (·) for each date t ≥ 0). We assume that the
commitment to such a rule is credible, and in particular that the policymaker does
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not revise it at later dates using additional information he might have gathered
about unknown model parameters.17 Given the (publicly known) policy rule and
the structural equations describing the behavior of the representative household
(which knows the structural parameters), a rational expectations equilibrium can
be determined. Since the policymaker does not know the true parameter vector,
however, he does not know which equilibrium will be realized (for given exogenous
disturbances).

3.1. Objective of Monetary Policy with Model Uncertainty

To characterize parameter uncertainty, we assume that the vector θ of structural
parameters lies in a given (known) compact set Θ⊂ Rm , and that the distribution
of θ is unknown. Instead of assuming a particular prior distribution over Θ and
deriving the policy rule that minimizes the expected loss, as is usually done in the
standard Bayesian approach, we let the policymaker consider many probability
measures over Θ, including the possibility that any given element θ ∈Θ holds
with certainty. Moreover, we assume that the policymaker has aversion toward
uncertainty in the sense axiomatized by Gilboa and Schmeidler (1989). Their
results show that if the policymaker has multiple priors on Θ, and his preferences
satisfy uncertainty aversion in addition to the axioms of standard expected utility
theory, the policymaker’s problem is to minimize his loss in the worst-case scenario,
that is, when the prior distribution is the worst distribution in the set of possible
distributions.18 The optimal policy rule is then the robust rule defined as follows.

DEFINITION 2. Let Ψ be a set of policy rules such that there is a unique
bounded equilibrium process q(ψ,θ) for allψ∈Ψ,θ ∈Θ. In the case of parameter
uncertainty, a robust optimal monetary policy rule is a vector ψ∗ that solves

min
ψ∈Ψ

{
max
θ∈Θ

E[L0(q(ψ,θ),θ)]
}

, (7)

where the unconditional expectation is taken over all possible histories of the
disturbances {rn

t }.19

Given that the unknown vector of structural parameters is in Θ, the policymaker
can guarantee that the loss is no higher than the one obtained in the following
“minmax” equilibrium.

DEFINITION 3. A minmax equilibrium is a bounded rational expectations
equilibrium q∗ = q(ψ∗,θ∗), where ψ∗ ∈Ψ is a robust optimal monetary policy
rule and θ∗ maximizes the loss E[L0(q(ψ∗,θ),θ)] on the constraint set Θ.

3.2. Robust Optimal Policy Rule: Solution Method

The method that we propose to characterize the robust optimal policy rule can,
in principle, be applied to any model in which the feasibility constraints can be
expressed as in (5), possible policy rules may be parametrized as in (6), and the
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robust optimal monetary policy rule solves (7). Therefore, it is not limited to the
model presented in Section 2. This method is based on the relation between the
solution to problem (7) and the equilibrium of a zero-sum two-player game.

Consider the game of pure strategies � = 〈{P, N }, (Ψ,Θ), (−L(ψ,θ), L(ψ,

θ))〉, where L(ψ,θ) ≡ E[L0(q(ψ,θ),θ)]. In this game, the policymaker (P) cho-
oses the policy rule ψ∗ ∈Ψ to minimize his loss, L(ψ,θ), knowing that a malev-
olent Nature tries to hurt him as much as possible. The other player, Nature (N ),
chooses the vector of structural parameters θ∗ ∈Θ to maximize the policymaker’s
loss, knowing that the policymaker is going to minimize it. The Nash equilibrium
(NE) of this game is a profile of strategies (ψ∗,θ∗) such that

ψ∗ ∈ arg max
ψ∈Ψ

{−L(ψ,θ∗)} = arg min
ψ∈Ψ

L(ψ,θ∗), (8)

θ∗ ∈ arg max
θ∈Θ

L(ψ∗,θ). (9)

We shall look for a profile of strategies (ψ∗,θ∗) that solves both (8) and (9). If
such a profile exists, then the following property of zero-sum games guarantees
that the policy ruleψ∗ obtained in the NE is the robust optimal policy rule that we
are seeking to determine.

PROPOSITION 1. Suppose that � has an NE. The profile (ψ∗,θ∗) is an NE
of � if and only if the action of each player is a maxminimizer; that is,

ψ∗ ∈ arg max
ψ∈Ψ

{
min
θ∈Θ

[−L(ψ,θ)]
}

= arg min
ψ∈Ψ

{
max
θ∈Θ

L(ψ,θ)
}

,

θ∗ ∈ arg max
θ∈Θ

{
min
ψ∈Ψ

L(ψ,θ)
}

.

Proof. See Osborne and Rubinstein (1994), Proposition 22.2(a) and (c).

Rather than defining conditions (5) and (6) for general stochastic processes
q, it is typically convenient to restrict attention to a particular linear subspace
of processes that satisfy additional linear constraints besides (5) and (6). These
additional constraints do not exclude outcomes that might result from policies in
Ψ, but they restrict all of the equilibria resulting from policies ψ ∈ Ψ̃ so that no
optimal plan is infeasible given the class of policies Ψ̃ considered. (For example,
in Section 4, it is assumed that the interest rate is set according to a standard
Taylor rule; this implies that an optimal plan cannot be feasible if any of the
endogenous variables depends upon lagged variables.)20 It is then convenient to
parameterize this subspace of possible processes by an alternative parameter vector
f . The stochastic process corresponding to any parameters f is given by q( f ). The
restrictions (5) and (6) can then be rewritten as

S( f ,θ) = 0, (10)

P( f ,ψ) = 0, (11)

and the vector f that solves (10) and (11) is given by f (ψ,θ).
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We consider in turn the policymaker’s problem (8), for any given vector of
structural parameters θ ∈Θ, and Nature’s problem (9). Instead of solving the
policymaker’s problem directly, it is convenient to proceed in two steps, as in
Woodford (1999c): First, we determine the vector f ∗(θ) parameterizing the fea-
sible equilibrium q( f ∗(θ)) that minimizes the loss criterion for any given θ ∈Θ,
and second, we look for a policy rule ψ∗(θ) in the set Ψ that implements this
optimal equilibrium. Formally, we first determine f ∗(θ) to minimize

L̂( f ,θ) ≡ E [L0(q( f ),θ)] (12)

subject to the restrictions (10) imposed by the structural equations for any θ ∈Θ.
The policymaker’s Lagrangian can thus be written as

LP( f ,φ;θ) = L̂( f ,θ) + φ · S( f ,θ), (13)

where φ is a row vector of Lagrange multipliers. The solution f ∗(θ) and the
optimal Lagrange multipliers φ∗(θ) solve the first-order necessary conditions

∂ L̂( f ∗(θ),θ)
∂ f ′ + φ∗(θ) · ∂ S( f ∗(θ),θ)

∂ f ′ = 0, (14)

and the constraints
S( f ∗(θ),θ) = 0 (15)

for all θ ∈Θ. In (14), ∂S/∂ f ′ refers to the Jacobian matrix with i j-element
∂Si/∂ f j .21 Equations (14) and (15) allow us to determine the optimal equilib-
rium q( f ∗(θ)) for any given θ.

In the second step, we look for a policy rule ψ∗(θ) ∈Ψ that satisfies

P( f ∗(θ),ψ∗(θ)) = 0. (16)

If such a policy exists in Ψ (so that it results in a unique equilibrium), then it
implements the optimal equilibrium parameterized by f ∗(θ). As made clear in the
following lemma, such a policy is the policymaker’s best response to the vector of
structural parameters θ. In particular, given an equilibrium vector θ∗, the policy
rule ψ∗(θ∗) solves (8), and hence is part of an NE.

LEMMA 1. Suppose that f ∗(θ) minimizes (12) subject to (10) for any given
θ ∈Θ, and that there exists ψ∗(θ)∈Ψ that solves (16) for all θ ∈Θ. Then
ψ∗(θ) ∈ arg minψ∈Ψ L(ψ,θ).

Proof. See Appendix A.1.

Although policies satisfying (16) are necessarily in the class Ψ̃ of policy rules—
as f is a parameterization of the subspace of possible processes resulting from
policies in Ψ̃—they need not be in the set Ψ of policies that results in a unique
bounded equilibrium. Therefore, we shall need to verify that the obtained policy
rules are indeed in Ψ.22
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To characterize the equilibrium structural parameters, we consider θ∗ that solves
(9) or, equivalently,

max
θ∈Θ

L̂( f (ψ∗,θ),θ) (17)

for a given policy rule ψ∗ ∈Ψ. Let us form the Lagrangian for Nature,

LN
(
θ,µ1,µ2;ψ∗) = L̂( f (ψ∗,θ),θ) − µ1 · (θ − θ̄) + µ2 · (θ − θ), (18)

where µ1,µ2 are row vectors of Lagrange multipliers and θ, θ̄ are some finite
vectors satisfying [θ, θ̄] =Θ. From Kuhn–Tucker’s theorem, we know that nec-
essary conditions for θ∗ ∈ Θ to solve this problem are given by the first-order
conditions

d L̂( f (ψ∗,θ∗),θ∗)
dθ′ = µ∗

1 − µ∗
2, (19)

the complementary slackness conditions

µ∗
1 · (θ∗ − θ̄) = 0, µ∗

2 · (θ∗ − θ ) = 0, (20)

and the requirement that all elements of µ∗
1,µ

∗
2 be nonnegative. In general, it is

difficult to compute the left-hand side of (19) directly because it involves differen-
tiation of the vector f with respect to θ, and it requires knowledge of the optimal
policy rule ψ∗. Thus, it will be convenient to rewrite (19) using the following
lemma.

LEMMA 2. If ψ∗(θ) is a best response to θ, then

d L̂( f (ψ∗(θ),θ),θ)
dθ′ = ∂LP( f ∗(θ),φ∗(θ);θ)

∂θ′ , (21)

where LP( f ,φ;θ) is the policymaker’s Lagrangian (13).

Proof. See Appendix A.2.

This lemma implies that the derivative of the loss function at the NE (ψ∗,θ∗)
can be computed by partially differentiating the policymaker’s Lagrangian (13)
with respect to θ, and setting θ, f , φ at their equilibrium values θ∗, f ∗ ≡ f ∗(θ∗),
φ∗ ≡φ∗(θ∗). Note that we do not need to differentiate f with respect to θ any
more. Thus, we can write (19) as

Z(θ∗) = µ∗
1 − µ∗

2, (22)

where we define

Z(θ) ≡ ∂LP( f ∗(θ),φ∗(θ);θ)
∂θ′ . (23)

Then, the Kuhn–Tucker conditions can be written entirely in terms of θ∗,µ∗
1, and

µ∗
2, which is particularly useful because they no longer require knowledge of the

optimal policy rule ψ∗.
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Because (17) is not a concave problem, in general, the first-order conditions (22)
and the complementary slackness conditions (20) are necessary but not sufficient
to guarantee that the resulting parameter vector θ∗ maximizes the loss criterion.
These conditions are useful, however, in restricting the set of possible solution
candidates. They allow us to determine a local NE (ψ∗,θ∗), that is, a situation
in which each player’s strategy is at least locally a best response to the other
player’s strategy. The following lemma states formally that in a local NE, Nature
chooses the highest possible value of a parameter when the loss is increasing in
that parameter, whereas it chooses the lowest possible parameter value when the
loss is decreasing.

LEMMA 3. Let θ∗
i ∈ [θ i , θ̄ i ] be the ith element of θ∗, and let Z∗

i ≡ ∂LP( f ∗,
φ∗;θ∗)/∂θi be the corresponding element of Z(θ∗), for i = 1, . . . , m. If θ∗ is part
of a local NE (ψ∗,θ∗), then

θ∗
i =

{
θ i , if Z∗

i < 0

θ̄ i , if Z∗
i > 0.

If Z∗
i = 0, then θ∗

i can be any value in [θ i , θ̄ i ] that is consistent with Z∗
i = 0.

Proof. See Appendix A.3.

To verify that (ψ∗,θ∗) is not only a local but also a global NE, we need to check
that the solution candidate θ∗ is indeed Nature’s best response to the policymaker’s
optimal policy ψ∗ on the whole constraint set Θ. This can be done by verifying
numerically that there is no vector θ†∈Θ such that

L(ψ∗,θ†) > L(ψ∗,θ∗), (24)

given the policy rule ψ∗.
In summary, our solution strategy involves the four following steps.

1. Optimal equilibrium for given θ. We determine the parameterization f ∗(θ) of the
equilibrium process that solves the policymaker’s problem, minimizing the loss (12)
subject to (10) for any given θ ∈Θ.

2. Candidate minmax equilibrium. We construct the vector Z(θ) obtained by partially
differentiating the policymaker’s Lagrangian (13) with respect to θ, and use Lemma
3 to determine a candidate worst-case parameter vector θ∗. Using the results of step
1, we determine the vector f ∗(θ∗) parameterizing the candidate minmax equilibrium
q( f ∗(θ∗)).

3. Robust optimal policy rule. We look for a policy ruleψ∗ that implements the candidate
minmax equilibrium, i.e., that solves P( f ∗(θ∗),ψ∗) = 0. We verify thatψ∗ ∈Ψ, i.e.,
that the policy rule results in a unique bounded equilibrium process q(ψ∗,θ) for
all θ ∈Θ.

4. Existence of global NE. We verify that (ψ∗,θ∗) is a global NE by checking that the
candidate worst-case parameter vector θ∗ maximizes the loss L(ψ∗,θ) on the whole
constraint set Θ, i.e., that there is no vector θ† ∈Θ satisfying (24), given the policy
rule ψ∗.
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Although this final step requires calculation of the loss at all points on a grid
intended to cover the entire constraint set Θ, we note that this is simpler, in practice,
than a brute-force evaluation of the objective (7) at all points on a grid covering Ψ
would have been. First, in our applications, Θ is a low-dimensional set, whereas we
may wish to allow for complex families of possible policy rules. Second, it is not
necessary to solve a maximization problem at each grid point in order to evaluate
L(ψ∗,θ) for the candidate Nash equilibrium policyψ∗. Finally, it is not necessary
to consider an extremely fine grid in order to obtain an accurate approximation to
the robust optimal policy rule. This is because the candidate policyψ∗ has already
been computed in step 3; the grid search is merely a check that the conjectured
NE involves globally, and not just locally, optimal behavior on the part of Nature.
For this it suffices that all regions of the constraint set Θ be given at least minimal
attention. If one finds no evidence of other choices θ† that are nearly as good as θ∗

(except other choices near θ∗ itself), there is no practical need for a fine grid search.
We have argued above that, for given θ∗, steps 1 and 3 yield a policy rule ψ∗

that solves (8). We have also shown that, for given policy rule ψ∗, step 2 yields a
parameter vector θ∗ that solves (9), provided that step 4 is verified. Hence, a profile
(ψ∗,θ∗) that is consistent with steps 1 to 4 is an NE of the game �, and Proposition
1 guarantees thatψ∗ is the desired robust optimal policy rule. However, if we find
a θ† ∈Θ satisfying (24), then θ∗ cannot be an equilibrium vector of structural
parameters, and (ψ∗,θ∗) is not a global NE, so that ψ∗ may or may not be the
robust optimal policy rule. Note that there need not exist any NE, even though a
robust optimal policy rule should still exist. However, in applications, a global NE
will often exist when parameters take reasonable values, as we show below.

4. ROBUST OPTIMAL TAYLOR RULES

In this section, we use the method presented earlier to characterize robust optimal
Taylor rules in the framework of Section 2. Formally, we restrict Ψ̃ to the class of
policy rules ψ= [ψπ, ψx ]′ satisfying

it = ψππt + ψx xt (25)

at all dates t ≥ 0.23 Policies of this form have received considerable attention in
recent research [see, e.g., contributions collected by Taylor (1999)], especially
after being proposed by Taylor (1993).24 They are called noninertial policies be-
cause they involve no response to lagged variables. We seek to determine the
optimal coefficients ψπ and ψx in the model of Section 2, assuming that the two
critical structural parameters σ and κ that specify the slope of the IS and the
aggregate supply equations are known only to be in given intervals [σ , σ̄ ] and
[κ, κ̄] respectively, where 0 <σ < σ̄ < ∞, and 0 <κ < κ̄ < ∞. To keep the anal-
ysis as simple as possible, we abstract from uncertainty about the intercept of
these curves so that the steady-state level of endogenous variables is assumed to
be known, and the policy rules specify percent deviations of the interest rate from
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the known steady state. We choose not to consider uncertainty about the time dis-
count factor β because there is substantial theoretical and empirical evidence that
it corresponds to a number slightly below 1 (say, 0.99). Furthermore, for simplicity
and clarification of the mechanisms at hand, we suppose that the weights λx and
λi that characterize the policymaker’s preferences are known to the policymaker.

Apart from its popularity, this simple class of policy rules is of interest because
it allows a simple analytical characterization of robust optimal policy.25 However,
as explained by Woodford (1999c), policymakers who choose optimal actions by
disregarding their past actions and past states of the economy, do not achieve the
best equilibrium when the private sector is forward-looking. The characterization
of robust optimal rules of a more general form—in particular, rules that would
implement the best equilibrium if the parameters were known with certainty—is
taken up by Giannoni (2001).26

Following our solution strategy, we determine first the equilibrium processes
for the endogenous variables (inflation, output, and the interest rate) that achieve
the lowest value of the loss criterion (3) for a given parameter vector θ= [σ, κ]′.
Second, we characterize the minmax equilibrium process by determining the struc-
tural parameters that obtain in the NE. Finally, we look for a policy rule that
implements the minmax equilibrium.

4.1. Optimal Equilibrium Process for Given Parameters

To characterize the class of possible optimal plans corresponding to policy rules
ψ ∈ Ψ̃, we use (25) to substitute for the interest rate in the structural equations (1)
and (2), and rewrite the resulting difference equations in matrix form as follows:

Et zt+1 = Azt + arn
t , (26)

where zt ≡ [πt , xt ]′. Since both πt and xt are nonpredetermined endogenous vari-
ables at date t , and the process {rn

t } is assumed to be bounded, the dynamic system
(26) admits a unique bounded solution if and only if both eigenvalues of A lie
outside the unit circle, as explained by Blanchard and Kahn (1980). If we restrict
our attention to the usual case in which ψπ and ψx are nonnegative, then it is shown
in Appendix B that the policy rule results in a determinate equilibrium if and only
if

ψπ + 1 − β

κ
ψx > 1. (27)

When the structural parameters are unknown and κ ∈ [κ, κ̄], the parameter κ is
replaced by κ̄ in (27).27

For simplicity, we consider the case in which the exogenous shocks rn
t follow

an autoregressive process
rn

t = ρrn
t−1 + εt , (28)

where 0 ≤ ρ < 1 and {εt } is a martingale difference sequence of perturbations.
Because optimal policy rules necessarily result in a unique bounded equilibrium
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(see definitions in Section 3), (26) can be solved forward. Using (28), one realizes
that possible optimal plans corresponding to Ψ̃ are of the form

πt = fπrn
t , xt = fxrn

t , it = fi r
n
t , (29)

where f = [ fπ , fx , fi ]′ is the vector of response coefficients that parameterizes
the equilibrium process. The feasibility restrictions on the response coefficients
corresponding to (10), obtained by substituting (29) into the structural equa-
tions (1) and (2), are

(1 − ρ) fx + σ−1( fi − ρ fπ − 1) = 0, (30)

(1 − βρ) fπ − κ fx = 0. (31)

To solve the policymaker’s problem, we choose the plan of the form (29) and con-
sistent with (30)–(31) to minimize the loss criterion E[L0]. Because we consider
noninertial plans, we may as well minimize

L̂( f ,θ) = f 2
π + λx f 2

x + λi f 2
i

subject to the constraints (30)–(31). The policymaker’s Lagrangian is

LP( f ,φ;θ) = (
f 2
π + λx f 2

x + λi f 2
i

) + φ1
[
(1 − ρ) fx + σ−1( fi − ρ fπ − 1)

]
+ φ2[(1 − βρ) fπ − κ fx ].

The response coefficients parameterizing the optimal feasible equilibrium, for
given parameter vector θ, are given by

f ∗
π (θ) = λi [σ(1 − ρ)(1 − βρ) − ρκ]

κ

h
, (32)

f ∗
x (θ) = λi [σ(1 − ρ)(1 − βρ) − ρκ]

(1 − βρ)

h
, (33)

f ∗
i (θ) = λx (1 − βρ)2 + κ2

h
, (34)

where
h ≡ λi [σ(1 − ρ)(1 − βρ) − ρκ]2 + λx (1 − βρ)2 + κ2.

It is clear from (34) that 0 < f ∗
i (θ) ≤ 1 for any vector θ ∈Θ, and any positive

weights λi , λx . Thus, the optimal noninertial plan involves an adjustment of the
nominal interest rate in the same direction as the perturbation to the natural interest
rate, but in general by less than the natural rate. Equations (32) and (33) reveal that
the response coefficients f ∗

π (θ), f ∗
x (θ) are positive if and only if

σ

κ
>

ρ

(1 − ρβ)(1 − ρ)
, (35)
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that is, whenever the fluctuations in the natural rate are not too persistent (relative to
the ratio σ/κ). Thus, when (35) holds, a positive shock to the natural rate stimulates
both the output gap and inflation. In the special case in which the interest rate does
not enter the loss function (λi = 0), or when the persistence of the perturbations is
such that σ(1 − ρ)(1 − βρ) = ρκ , we obtain f ∗

π (θ) = f ∗
x (θ) = 0 and f ∗

i (θ) = 1;
the central bank optimally moves the interest rate by the same amount as the natural
rate in order to stabilize the output gap and inflation completely. In contrast, when
the disturbances to the natural rate are sufficiently persistent (ρ large enough but
still smaller than 1) for the inequality (35) to be reversed, inflation and the output
gap decrease in the face of an unexpected positive shock to the natural rate in
the optimal noninertial plan [ f ∗

π (θ), f ∗
x (θ) < 0]. Even if the nominal interest rate

increases less than the natural rate, optimal monetary policy is restrictive in this
case, because the real interest rate (it − Etπt+1) is higher than the natural rate of
interest rn

t .
Following Woodford (1999c), we calibrate the baseline model using the parame-

ter values estimated by Rotemberg and Woodford (1997). The baseline calibration
is reported in Table 1.28 For these parameter values, (35) holds, and it continues
to hold for any parameter values that are close to these, so that an increase in rn

t
raises both the output gap and inflation in the optimal noninertial plan.

4.2. Equilibrium Structural Parameters and Minmax Equilibrium

To characterize the minmax equilibrium associated with the class of noninertial
Taylor rules, we need to determine the parameter vector θ∗ = [σ ∗, κ∗]′ that maxi-
mizes the policymaker’s loss on the given constraint setΘ, that is, whenσ ∗ ∈ [σ , σ̄ ]
and κ∗ ∈ [κ, κ̄]. As in step 2 of our solution procedure, we compute

Z∗
1 ≡ ∂LP( f ∗(θ∗),φ∗(θ∗);θ∗)

∂σ
= −φ∗

1 (θ∗)
[

f ∗
i (θ∗)−ρ f ∗

π (θ∗) − 1
]
(σ ∗)−2 (36)

Z∗
2 ≡ ∂LP( f ∗(θ∗),φ∗(θ∗);θ∗)

∂κ
= −φ∗

2 (θ∗) f ∗
x (θ∗). (37)

From Lemma 2, we know that Z∗
1 and Z∗

2 correspond to the slopes of the loss func-
tion with respect to σ and κ respectively, evaluated at the candidate NE(ψ∗,θ∗).
It follows from Lemma 3 that, at a local NE,

σ ∗ =
{

σ , if Z∗
1 < 0

σ̄ , if Z∗
1 > 0

, κ∗ =
{

κ, if Z∗
2 < 0

κ̄, if Z∗
2 > 0.

When Z∗
1 = 0, σ ∗ can be any value in [σ , σ̄ ] that is consistent with Z∗

1 = 0. Sim-
ilarly, when Z∗

2 = 0, κ∗ can be any value in [κ, κ̄] that is consistent with Z∗
2 = 0.

Intuitively, this means that, at a local NE, Nature chooses a high value—in fact, the
highest possible value—for σ ∗ or κ∗ when the loss is increasing in the respective
structural parameter (i.e., Z is positive), whereas it chooses a low value for σ ∗ or
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κ∗ when it is decreasing. Recall that because Nature’s problem is nonconcave, this
characterization is not sufficient to determine the parameter vector θ∗ that max-
imizes L̂( f (ψ∗,θ),θ) globally. However, it allows us to determine all possible
solution candidates.

The candidate noninertial minmax equilibrium q∗ ≡ q∗(θ∗) is characterized in
the following proposition.

PROPOSITION 2. When Ψ̃ is restricted to the class of Taylor rules [satis-
fying (25)], and the structural parameters σ ∈ [σ , σ̄ ] and κ ∈ [κ, κ̄] are uncertain,

where σ ,κ > 0 and σ̄ , κ̄ < ∞, then the structural parameters σ ∗, κ∗ that are part
of a local NE and the candidate noninertial minmax equilibrium q∗ = {πt , xt , it }
are characterized by

σ ∗ =
{

σ , if η < σ/κ̄

σ̄ , if σ̄ /κ < η
, κ∗ =

{
κ̄, if η < σ/κ̄

κ, if σ̄ /κ < η

where
η ≡ ρ

(1 − ρ)(1 − βρ)
, (38)

and
πt = f ∗

π (θ∗)rn
t , xt = f ∗

x (θ∗)rn
t , it = f ∗

i (θ∗)rn
t , (39)

with equilibrium response coefficients

f ∗
π (θ∗) = λi [σ

∗(1 − ρ)(1 − βρ) − ρκ∗]
κ∗

h∗ , (40)

f ∗
x (θ∗) = λi [σ

∗(1 − ρ)(1 − βρ) − ρκ∗]
(1 − βρ)

h∗ , (41)

f ∗
i (θ∗) = λx (1 − βρ)2 + κ∗2

h∗ , (42)

where h∗ ≡ λi [σ ∗(1 − ρ)(1 − βρ) − ρκ∗]2 + λx (1 − βρ)2 + κ∗2.
When σ/κ̄ ≤ η ≤ σ̄ /κ, an NE is obtained for any combination of structural

parameters σ ∗, κ∗ satisfying σ ∗/κ∗ = η. In this case, the equilibrium response
coefficients are

f ∗
π (θ∗) = f ∗

x (θ∗) = 0 and f ∗
i (θ∗) = 1.

Proof. See Appendix A.4.

When ρ is small enough (such that η <σ/κ̄), the worst situation for the policy-
maker is achieved when κ is made as large as possible and σ is made as small as
possible. To understand this, recall that the output gap and inflation depend upon
the interest rate and the natural rate only through the real-interest-rate differen-
tial (it − Etπt+1) − rn

t . On one hand, a lower σ and a higher κ imply stronger
effects of the perturbations to the natural rate on the output gap and inflation. On



128 MARC P. GIANNONI

the other hand, they render monetary policy more effective because changes in it

have a stronger effect on πt and xt . When η <σ/κ̄ , the real interest rate moves
less than the natural rate in the optimal noninertial plan, so that the first effect
dominates. Thus, for a given real-interest-rate differential, a lower σ and a higher
κ are responsible for larger fluctuations of inflation and the output gap, and make
the policymaker worse off. These larger changes in inflation and output gap induce
the central bank to move its interest rate closer to the natural rate. Since the policy-
maker also dislikes variability in the interest rate, though, he does not change the
interest rate by enough to cancel the effect of a perturbation to the natural rate. In
contrast, when the perturbations are so persistent that η > σ̄/κ , the worst situation
is obtained when κ∗ =κ , σ ∗ = σ̄ . Finally, when the persistence of the perturba-
tions is such that σ/κ̄ ≤ η ≤ σ̄ /κ , the response of the interest rate in the minmax
equilibrium is given by f ∗

i (θ∗) = 1, which completely neutralizes the shocks to
the natural rate of interest. As a result, inflation and the output gap remain at their
steady-state level whether the economy is affected by shocks or not.

In the baseline parameterization, η = 0.824. As long as the upper bound for
κ is less than 0.191 (i.e., eight times the baseline value), and the lower bound
for σ is above 0.824κ̄ , the condition η <σ/κ̄ is satisfied. Thus, if the baseline
parameterization is an appropriate approximation of the true model of the economy,
and the uncertainty about the structural parameters is small enough, the worst-case
situation is obtained when κ∗= κ̄ , σ ∗=σ .

4.3. Determining Robust Optimal Taylor Rules

As in step 3 of our solution strategy, we now determine a candidate robust optimal
Taylor rule ψ∗ that implements the noninertial minmax equilibrium characterized
in Proposition 2. It is convenient, for technical reasons that will become clear later,
to rewrite (25) as

it = 1

ψ̂π

πt + ψ̂ x

ψ̂π

xt , (43)

where ψ̂π = 1/ψπ and ψ̂ x = ψx/ψπ , and to determine a robust optimal policy rule
ψ̂∗ = [ψ̂∗

π , ψ̂∗
x ]′ instead of ψ∗. In (43), we assume that ψ̂π and ψ̂ x are finite real

numbers so that ψ̂ can be used to characterize any rule ψ ∈ Ψ̃ except those in
which ψπ = 0.29 Using the solution (39) to eliminate the endogenous variables in
(43), we obtain

ψ̂π f ∗
i (θ∗)rn

t = [
f ∗
π (θ∗) + ψ̂ x f ∗

x (θ∗)
]
rn

t .

Any policy rule ψ̂∗ resulting in a unique bounded equilibrium and satisfying

ψ̂π f ∗
i (θ∗) = f ∗

π (θ∗) + ψ̂∗
x f ∗

x (θ∗) (44)

implements the candidate noninertial minmax equilibrium for all exogenous paths
of the natural rate of interest.30 Substituting f ∗

π (θ∗), f ∗
x (θ∗), f ∗

i (θ∗) using (40)–
(42) and solving for ψ̂∗

π yields
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ψ̂∗
π = κ∗ + (1 − βρ)ψ̂∗

x

(κ∗)2 + λx (1 − βρ)2
λi [σ

∗(1 − ρ)(1 − βρ) − ρκ∗], (45)

where σ ∗ and κ∗ are determined in Proposition 2.
Whenever η is sufficiently small (so that η <σ/κ̄) or large (so that η > σ̄/κ), the

result from (45) is that the coefficients of the robust optimal Taylor rule ψ∗
π = 1/ψ̂∗

π

and ψ∗
x = ψ̂∗

x/ψ̂
∗
π satisfy

ψ∗
π = (κ∗)2 + λx (1 − βρ)2

λiκ∗[σ ∗(1 − ρ)(1 − βρ) − ρκ∗]
− ψ∗

x

(1 − βρ)

κ∗ . (46)

In fact, any vectorψ∗ = [ψ∗
π , ψ∗

x ]′ satisfying (46) implements the candidate nonin-
ertial minmax equilibrium, provided that it results in a unique bounded equilibrium.
This is the case if ψ∗

π + ψ∗
x (1 − β)/κ̄ > 1, when we restrict ourself to policies with

nonnegative coefficients. Note that, by setting ψ∗
x = 0, (46) determines the policy

rule that implements the candidate noninertial minmax equilibrium without any
knowledge of the output gap.

When the uncertainty and the persistence in the perturbations to the natural rate
of interest are such that σ/κ̄ ≤ η ≤ σ̄ /κ , we have ψ̂∗

π = 0 [recall that σ ∗/κ∗ = η, and
that the equilibrium response coefficients are f ∗

π (θ∗) = f ∗
x (θ∗) = 0, and f ∗

i (θ∗) = 1
in this case]. The optimal interest rate responds as much as possible to inflation
(and output gap deviations if ψ̂∗

x �= 0), so that equilibrium inflation and output gap
remain at their steady state. We shall let ψ∗

π → +∞ in this case.31

To verify that the rule ψ̂∗ and the equilibrium parameter vector θ∗ determine
a global NE, and hence that the corresponding rule ψ∗ is a robust optimal Taylor
rule, we need to verify, as in step 4 of our solution method, that the structural
parameters σ ∗, κ∗ are Nature’s best responses to ψ̂∗ on the whole constraint set
Θ. (Recall that Lemma 3 gives necessary but not sufficient conditions for θ∗ to
maximize Nature’s objective.) In the numerical example considered here, we as-
sume parameter uncertainty corresponding to the 95% confidence intervals for
σ and κ . Because η = 0.824 <σ/κ̄ , Proposition 2 guarantees that, in the local NE,
Nature chooses σ ∗ =σ and κ∗ = κ̄ . Figure 1 is a contour plot of the loss measure
E[L0] as a function of the structural parameters σ and κ in the specified set Θ,
when the policy rule is ψ̂∗, the policymaker’s best response to θ∗ = [σ , κ̄]′, setting
ψx = 0.5.32 The figure reveals that θ∗ (i.e., the lower right corner) is part of not
only a local but also a global NE because it maximizes the loss on the whole set Θ.

We now compare the noninertial minmax equilibrium and the robust optimal
Taylor rule with their counterpart in the absence of parameter uncertainty.

4.4. Comparing Equilibria and Taylor Rules in Certainty
and Uncertainty Cases

When the structural parameters are known by the policymaker, the optimal equi-
librium response coefficient of the interest rate to the natural rate of interest,
f 0
i ≡ f ∗

i (θ0), satisfies (34) with the vector of structural parameters equal to the true
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FIGURE 1. E[L0] with robust optimal Taylor rule.

(known) value θ0. A comparison of the optimal equilibrium response coefficients
reveals that the policymaker lets the interest rate respond more strongly to exoge-
nous perturbations in the minmax equilibrium than in the certainty case, regardless
of the degree of persistence in the perturbations. The following proposition states
this result formally.

PROPOSITION 3. Let f 0
i ≡ f ∗

i (θ0) [defined in (34)] be the optimal response
coefficient of the interest rate in the optimal noninertial plan, when the parameters
σ0 ∈ (σ , σ̄ ) and κ0 ∈ (κ, κ̄) are known with certainty. Let f ∗

i ≡ f ∗
i (θ∗) (defined in

Proposition 2) be the corresponding response coefficient in the minmax equilibrium
when the parameters σ ∈ [σ , σ̄ ] and κ ∈ [κ, κ̄] are uncertain. Let σ ,κ, λx , λi > 0,

and σ̄ , κ̄ < ∞. If σ0/κ0 �= η, then

0 < f 0
i < f ∗

i ≤ 1.

In the special case in which σ0/κ0 = η, then f 0
i = f ∗

i = 1.

Proof. See Appendix A.5.

The result of Proposition 3 is illustrated in Figure 2 for the baseline model (see
Table 1). Figure 2 displays impulse responses of all three endogenous variables
(interest rate, inflation, and output gap) to an unexpected temporary increase in the
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FIGURE 2. Optimal Taylor rules.

natural rate of interest. In the upper panel, the dotted line represents the exogenous
path of the natural rate. The solid line represents the impulse response of the interest
rate in the optimal noninertial plan, in the absence of uncertainty. The dashed line
plots the corresponding impulse response in the minmax equilibrium. It appears
clearly that the interest rate reacts more strongly in the presence of uncertainty
than when parameters are known.

When the perturbations to the natural rate of interest are sufficiently transitory
(so that η<σ/κ̄) as is the case in Figure 2, the worst case arises when σ is as low
as possible and κ is as high as possible, which implies that positive shocks to the
natural rate have a larger stimulating effect on inflation and the output gap than is
the case in the absence of parameter uncertainty.33 Thus, the policymaker who
seeks to dampen fluctuations in inflation and output gap increases the interest rate
by more in the minmax equilibrium than in the certainty case, so that the interest rate
moves closer to the natural rate in the minmax equilibrium. The remaining panels
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confirm that the stronger reaction of the interest rate dampens the effect of the
shock upon inflation and the output gap in the presence of parameter uncertainty.

A comparison of optimal Taylor rules in the presence and absence of parameter
uncertainty yields a similar result summarized in the following proposition. Note
that, in the certainty case, any optimal Taylor rule ψ0 = [ψ0

π , ψ0
x ]′ satisfies an

equation of the form (46), but in which the vector of structural parameters θ∗ is
replaced with the known vector θ0 = [σ0, κ0]′.

PROPOSITION 4. Let ψ0 = [ψ0
π , ψx ]′ ∈ Ψ be a Taylor rule that implements

the optimal noninertial plan, given some coefficient ψx , when the parameters
σ0 ∈ (σ , σ̄ ) and κ0 ∈ (κ, κ̄) are known with certainty. Let ψ∗ = [ψ∗

π , ψx ]′ ∈Ψ be
the robust optimal Taylor rule, given the same ψx , when the parameters σ ∈ [σ , σ̄ ]
and κ ∈ [κ, κ̄] are uncertain. Suppose η �= σ0/κ0. If

ψ0
π , ψ∗

π , ψx ≥ 0

and

ψx > −κ0κ̄(σ0κ̄ − κ0σ) + λx (1 − βρ)2
[
η
(
κ̄2 − κ2

0

) + κ0σ0 − κ̄σ
]

λi (1 − ρ)(1 − βρ)2(σ0 − ηκ0)(σ − ηκ̄)(κ̄ − κ0)
, (47)

then
ψ∗

π > ψ0
π .

Proof. See Appendix A.6.

Proposition 4 states that, for given (and sufficiently large) response to the output
gap ψx , the policymaker should respond more strongly to inflation deviations in
the presence of parameter uncertainty than when parameters are known. Such a
stronger reaction to inflation deviations is exactly what is required to make the
interest rate move more closely to the natural rate of interest in the presence of
uncertainty, and to prevent shocks from having too large an effect on inflation and
the output gap in the worst case.34

To illustrate this result, we represent in Figure 3 policies that implement the
optimal noninertial plan for the baseline parameterization of the model. The solid
line represents the optimal Taylor rules in the baseline case, that is, the combi-
nations (ψ0

π , ψ0
x ) satisfying an equation similar to (46), in which the parameter

vector θ∗ is replaced with the baseline vector θ0. The dashed-dotted line plots
the corresponding robust optimal policies—the combinations (ψ∗

π , ψ∗
x ) satisfying

(46)—in the presence of the parameter uncertainty given in Table 1. The white
region indicates the set of policy rules that result in a determinate equilibrium for
any value of the parameters in the assumed region Θ (see Appendix B). In con-
trast, the gray region indicates combinations (ψπ, ψx ) that result in indeterminacy
of the equilibrium for at least one value of the parameters σ, κ in Θ. Thus, only
optimal policies in the white region may satisfy step 3 of the solution method.
The circled star indicates the coefficients of the rule proposed by Taylor (1993)
as a good approximation of recent U.S. monetary policy. Figure 3 clearly shows
that whenever monetary policy involves a response to the output gap that is strong
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FIGURE 3. Optimal Taylor rules.

enough, the optimal response to inflation is larger in the presence of uncertainty
than when the parameters are known, as predicted by Proposition 4. In fact, the
line representing robust optimal policies is steeper and has a higher intercept than
the corresponding line representing optimal policy rules in the absence of uncer-
tainty. Condition (47) guarantees that ψx lies above the intersection point of the
two lines.35 We have focused on the effect of uncertainty on the response of the
interest rate to inflation for a given response to the output gap. As should be clear
from Figure 3, the presence of uncertainty calls also for a larger response to the
output gap, for any given ψπ .

Another aspect of the stronger reaction of the interest rate in the presence of
model uncertainty is presented in Table 2. This table reports optimal Taylor rules
(when ψx is set equal to 0.5), the policymaker’s loss criterion, and the following
measure of variability,

V [z] ≡ E

{
E0

[
(1 − β)

∞∑
t=0

β t z2
t

]}
,

for all three endogenous variables. The latter statistic determines the contribution
of each endogenous variable to the loss measure E[L0]. Indeed, E[L0] is just
a weighted sum of V [π ], V [x] and V [i] with weights being those in the loss
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TABLE 2. Optimal Taylor rules and statistics (ψx is arbitrarily set at 0.5)

Policy Statistics

Case ψπ ψx V [π ] V [x] V [i] E[L0]

(ψ0,θ0) 2.217 0.5 0.211 9.923 6.720 2.279
(ψ0,θ∗) 2.217 0.5 0.414 11.640 9.809 3.295
(ψ∗,θ0) 8.294 0.5 0.069 3.240 9.455 2.461
(ψ∗,θ∗) 8.294 0.5 0.098 2.767 11.782 3.017

function (3).36 The lines of Table 2 corresponding to the baseline case are indicated
by (ψ0,θ0). In contrast, (ψ∗,θ0) denotes the case in which the central bank faces
uncertainty and follows the robust optimal policy ψ∗, but the actual structural
parameters are equal to their values in the baseline case, θ0. Comparing these two
lines again confirms that the central bank lets the interest rate move by more in the
presence of uncertainty. The more aggressive monetary policy is then responsible
for a decrease in the variability of inflation and the output gap, but an increase in
the volatility of i . Overall, switching from the baseline policy rule to the robust
optimal rule raises the loss E[L0] from 2.28 to 2.46 when the true parameters are
the ones of the baseline model. However, if the unknown parameters are not at the
baseline value, but reach a less favorable combination, such as the worst-case θ∗,
the advantage of following the robust policy rule is clear: The maximum loss is
reduced from 3.30 to 3.02.

5. CONCLUSION

This paper proposes a general method based on a property of zero-sum two-player
games to derive robust optimal monetary policy rules—the best rules among those
that yield an acceptable performance in a specified range of models—when the
true model is unknown. Model uncertainty is viewed as uncertainty about the true
structural parameters that numerically specify the model. The method is applied
to characterize robust optimal rules in a standard forward-looking macroeconomic
model that can be derived from first principles.

Whereas it is commonly believed among economists and central bankers that
monetary policy should be less responsive when there is uncertainty about model
parameters, we have shown that the opposite is likely to be true in the model
considered when the two key structural parameters—the slopes of the intertemporal
IS curve and the aggregate supply curve—are subject to uncertainty: The robust
optimal Taylor rule requires the interest rate to respond more strongly in general
to fluctuations in inflation or the output gap than is the case in the absence of
uncertainty.37 Yet, the policymaker is cautious in our framework. In fact, he is
even more cautious than in Brainard’s model because he cares very much about
situations in which monetary policy would perform poorly. In contrast to Brainard’s
analysis, however, caution induces the policymaker to be more responsive.
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The model has the property that the policymaker faces a trade-off between the
stabilization of inflation and the output gap on one hand and the nominal interest
rate on the other. In the presence of model uncertainty, the robust policymaker seeks
to limit the welfare losses, especially in those bad outcomes in which exogenous
perturbations (to the natural rate of interest) have a large effect on inflation and
the output gap, i.e., when the aggregate supply curve is particularly steep and the
intertemporal IS curve is particularly flat. Model uncertainty therefore affects the
trade-off facing the policymaker by increasing the weight given to inflation and
output gap stabilization relative to the weight given to interest rate stabilization. A
more aggressive policy allows the central bank to stabilize inflation and the output
gap around their target values more effectively and guarantees that welfare losses
will be contained.

NOTES

1. This result holds in Brainard’s model in particular when the exogenous disturbances and the
parameters that relate the instrument of policy to the target variable are not too strongly correlated.

2. See, for example, Sack (1998), Wieland (1998), Clarida et al. (1999), Estrella and Mishkin
(1999), Hall et al. (1999), Martin and Salmon (1999), and Rudebusch (2001).

3. A number of other recent papers have also looked for policy rules that work well across a range
of models, though they do not try to actually find the optimal robust rule [see, for example, McCallum
(1988, 1999), Taylor (1998), Christiano and Gust (1999), and Levin et al. (1999)].

4. Aoki (1998) derives the optimal time-consistent policy in a model very similar to ours when the
structural parameters are known with certainty but when inflation and output are subject to measurement
errors. He shows that measurement errors lead to less active monetary policy. Orphanides (1998) obtains
a similar conclusion in a different model.

5. Following a Bayesian approach, Söderström (1999) shows that uncertainty about the persistence
of inflation induces the policymaker to respond more aggressively to shocks, in the model due to
Svensson (1997).

6. This model is similar to other small dynamic macroeconomic models that have been used in
recent studies of monetary policy, such as those of Kerr and King (1996), Bernanke and Woodford
(1997), Goodfriend and King (1997), Kiley (1998), McCallum and Nelson (1999a,b), and Clarida
et al. (1999). It is also a simplified version of the econometric model of Rotemberg and Woodford
(1997, 1999).

7. All three variables represent percent deviations from their values in a steady state with zero
inflation and constant output growth.

8. The structural equations (1) and (2) provide an accurate approximation to the exact equilibrium
conditions in the underlying model only when we restrict our attention to small perturbations around
the steady state.

9. Moreover, an aggregate supply curve of the form (2) has found some empirical support from
Roberts (1995), Sbordone (1998), and Galı́ and Gertler (1999).

10. Rotemberg and Woodford (1997) estimate that the standard deviation of the natural rate has
been almost 10 times as large as the standard deviation of the federal funds rate, from 1979 to 1995.

11. Note that the welfare costs due to monetary frictions mentioned earlier justify the presence of
the interest rate in the loss function even if they have no effect on the structural equations, that is, even
if, for example, utility is additively separable in real balances, consumption, and goods supply [see
Woodford (1999b)].

12. A similar loss function can also be obtained by performing a second-order Taylor approximation
to the expected utility of the representative household in the model that has been used to derive (1)
and (2) [see Woodford (1999b,c]. The interest rate’s presence in the loss function results, for example,
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from the approximation of transaction frictions modeled by the presence of real balances in the utility
function. A similar term appears when one takes into account the fact that the nominal interest rate
faces a lower bound at zero. There are additional reasons, from which we abstract, that make volatile
interest rates undesirable. Williams (1999), for example, argues that policymakers may dislike reversals
in the direction of policy because they fear that such actions would be misinterpreted by the public as
mistakes on the part of the monetary authority. Finally, variable interest rates may decrease potential
output through higher costs of capital because a large variance in expected short-term rates has been
observed to raise the term premium [Tinsley (1999)].

13. The second argument in L0(q,θ) allows for the possibility that coefficients of the loss function
such as λx , λi be functions of elements of the parameter vector θ.

14. Recent contributions that emphasize determinacy of the rational expectations equilibrium in
monetary models include Bernanke and Woodford (1997), Christiano and Gust (1999), Rotemberg and
Woodford (1999), Woodford (1999a,c), and Clarida et al. (2000). Papers that focus more on the effects
of interactions between monetary and fiscal policy include Leeper (1991), Sims (1994), Woodford
(1994, 1995, 1996), and Schmitt-Grohé and Uribe (2000).

15. Our concern for choosing a policy rule that does not allow for the worst possible equilibrium
to occur is consistent with the approach to robust policy analysis proposed below.

16. In contrast, in Hansen and Sargent (1999a,b) and Sargent (1999), both the policymaker and the
private sector face similar uncertainty with respect to the correct model.

17. Note that this formulation also allows for policy rules that involve learning for at least some
time on the part of the policymaker because ψ is only restricted to be finite-dimensional. In the
application of Section 4, however, we restrict our attention to a family of simple rules that involves no
learning.

18. Since we allow for priors such as any given elementθ ∈Θ holding with certainty, the worst-case
scenario, for a given policy rule ψ∗, is the parameter vector θ∗ that maximizes the loss E[L0(q(ψ∗,
θ),θ)] on Θ. Note that the worst case described here does not need to be at all close to the absolute
worst-case situation, which involves an arbitrarily large loss for the policymaker. Indeed, by choosing
a set Θ that is sufficiently small, the worst-case scenario can be made arbitrarily close to the best-case
scenario.

19. Note that there is no loss of generality in restricting Ψ to be a set of rules such that q(ψ,θ)
is uniquely defined for all ψ ∈Ψ, and θ ∈Θ. For if the set of policy rules was a larger set �̂, and the
policymaker chose a rule ψ̂ in Ψ̂ but not in Ψ, the maximum loss would always be arbitrarily large, so
that ψ̂ could not possibly be a robust optimal rule.

20. Note, however, that these constraints do not necessarily eliminate all of the equilibria that result
from policies in Ψ̃\Ψ, that is, equilibria that are unbounded or that result from policy rules that allow
for multiple rational expectations equilibria (see discussion later).

21. If q( f ) is linear in f , then the objective function L̂( f ,θ) is convex in f as E[L0] is convex in
q, and the constraints are all linear in f . Thus, the first-order conditions are also sufficient to guarantee
that f∗(θ) achieves the desired minimum. However, if q( f ) is nonlinear in f , second-order conditions
are necessary to identify local minima, and numerical methods can be used to determine which of these
is a global minimum of L̂( f ,θ).

22. It may happen that all policies that allow for the optimal equilibrium to occur are in Ψ̃ but not
in Ψ, so that they all result in an indeterminate equilibrium. In such situations one could determine
policy rules that implement a constrained optimal equilibrium that satisfies additional restrictions upon
f such that all possible policies are in Ψ.

23. It is probably not very realistic to assume that the central bank can observe the output gap in
the current period. However, as shown below, an interest-rate rule that responds only to deviations in
observed inflation would be sufficient to implement the optimal noninertial plan in this model. As a
result, we could set ψx = 0 without any loss of generality.

24. Taylor (1993) has argued that such a rule with ψπ = 1.5 and ψx = 0.5 constitutes an appropriate
description of U.S. monetary policy under chairman Greenspan. In Taylor (1993), however, the output
gap is constructed as the percent deviation of real output from a trend, rather than our variable x .
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25. Onatski and Stock (2002) also determine robust optimal Taylor rules. However, they perform
their analysis in the backward-looking model of Rudebusch and Svensson (1999), and use numerical
methods instead of the solution strategy proposed earlier.

26. Although we could, in principle, allow for families of rules that involve learning on the part of
the policymaker, we abstract from this issue here. Note, however, that as long as the set of parameters Θ
is not affected by the learning process, and θ cannot be inferred with certainty, the rule without learning
is optimal at least in the weak sense in which other rules (that involve learning) are not better in the
worst case. The rule without learning may, however, be suboptimal according to a stronger notion of
robustness because one could possibly find a rule with learning that is equally good at θ∗, but performs
better for other values of θ. We leave this issue for further research.

27. The equilibrium may also be determinate when ψπ and ψx are negative. This is, however,
critically due to the discrete-time version of the model. In the continuous-time limit, negative values
for either coefficient of the policy rule result in indeterminacy of the equilibrium.

28. I am grateful to Thomas Laubach for providing me with the estimated standard errors for σ and
κ . These were computed for the Rotemberg and Woodford (1997) model, using the estimation method
explained by Amato and Laubach (1999).

29. The rules in which ψπ = 0 are not interesting here because the results shown later indicate that
optimal rules of the form (43) do not involve values for ψ̂π that are extremely large.

30. Note that (44) corresponds to P( f∗(θ∗), ψ̂∗) = 0 in the general terminology of Section 3.
31. We would obtain the same minmax equilibrium by letting ψ∗

π → −∞. However, as mentioned in
note 27, even if the equilibrium is determinate in this case, it would be indeterminate in the continuous-
time version of this model.

32. The statistic E[L0] as well as all statistics in Table 2 are reported in annual terms. The statistics
V [π ], V [i], and E[L0] are therefore multiplied by 16. Furthermore, the weight λx reported in Table 1
is also multiplied by 16 in order to represent the weight attributed to the output gap variability (in
annual terms) relative to the variability of annualized inflation and of the annualized interest rate. The
coefficients ψx reported here are multiplied by 4 so that the response coefficients to the output gap and
to annualized inflation are expressed in the same units.

33. Unless σ0 =σ and κ0 = κ̄ , which we have ruled out in Proposition 3.
34. By assuming ψ0

π , ψ∗
π , ψx ≥ 0 and η �= σ0/κ0 in Proposition 4, we implicitly restrict our attention

to situations in which the persistence of the perturbations is small enough for (35) to hold. If instead
the shocks to the natural rate are very persistent (so that η > σ̄/κ , corresponding to ρ > 0.76), then a
result similar to Proposition 4 holds when ψx is large enough, but in this case the optimal response
to inflation is more negative in the presence of uncertainty; that is, ψ∗

π < ψ0
π < 0. (Recall that the

optimal response coefficient f ∗
π (θ) < 0 when σ/κ < η). In this case, however, the optimal policy may

yield an indeterminate equilibrium (see note 27). This is in fact an example of a situation in which
there may be no Taylor rule that implements the optimal equilibrium: There may be noψ∗(θ) in Ψ that
solves (16).

35. Note that (47) is satisfied for all ψx ≥ 0, whenever η(κ̄2 − κ2
0 ) + κ0σ0 − κ̄σ ≥ 0 because all

other terms in the fraction in the right-hand side of (47) are positive.
36. See note 32.
37. Giannoni (2001) shows that this result generalizes to more flexible policy rules that allow for

responses of the interest rate to lagged variables, in the model of Section 2.
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APPENDIX A

A.1. PROOF OF LEMMA 1

First note that since ψ∗(θ) ∈Ψ, the latter policy rule results in a unique bounded equi-
librium. Suppose as a way of contradiction that there exists a policy rule ψ†(θ) ∈Ψ,
ψ†(θ) �=ψ∗(θ), satisfying L(ψ†(θ),θ) < L(ψ∗(θ),θ). By definition of L(·) and L̂(·) we
have L(ψ,θ) = L̂( f (ψ,θ),θ) for all ψ ∈Ψ,θ ∈Θ, so that L̂( f (ψ†(θ),θ),θ) <

L̂( f (ψ∗(θ),θ),θ) = L̂( f ∗(θ),θ). But then f ∗(θ) cannot minimize (12) subject to (10). �

A.2. PROOF OF LEMMA 2

Because f ∗(θ) satisfies (15), and ψ∗(θ) solves (16), we have f ∗(θ) = f (ψ∗(θ),θ), for all
θ ∈Θ. Using this and totally differentiating L̂( f ,θ), we obtain

dL̂( f (ψ∗(θ),θ),θ)
dθ′ = dL̂( f ∗(θ),θ)

dθ′ = ∂L̂( f ∗(θ),θ)
∂ f ′ · d f ∗(θ)

dθ′ + ∂L̂( f ∗(θ),θ)
∂θ′ . (A.1)

Note that any solution f (ψ,θ) to (10) and (11) must always satisfy S( f (ψ,θ),θ) = 0 for
all ψ ∈ Ψ̃, θ ∈Θ. Differentiating these constraints with respect to θ, and evaluating the
resulting expression at ψ∗(θ), yields

0 = dS( f (ψ∗(θ),θ),θ)
dθ′ = dS( f ∗(θ),θ)

dθ′ = ∂S( f ∗(θ),θ)
∂ f ′ · d f ∗(θ)

dθ′ + ∂S( f ∗(θ),θ)
∂θ′ .

Premultiplying this by the vector of Lagrange multipliers φ∗(θ) associated with the con-
straints (10) in the policymaker’s problem, we obtain

0 = φ∗(θ) ·
(

∂S( f ∗(θ),θ)
∂ f ′ · d f ∗(θ)

dθ′ + ∂S( f ∗(θ),θ)
∂θ′

)
.

Adding this to (A.1) on both sides and rearranging yields

dL̂( f (ψ∗(θ),θ),θ)
dθ′ =

(
∂L̂( f ∗(θ),θ)

∂ f ′ + φ∗(θ) · ∂S( f ∗(θ),θ)
∂ f ′

)
d f ∗(θ)

dθ′

+ ∂L̂( f ∗(θ),θ)
∂θ′ + φ∗(θ) · ∂S( f ∗(θ),θ)

∂θ′ .

Using (14) to eliminate the first term on the right-hand side yields (21), where we note
that, in the partial derivative ∂LP( f ∗(θ),φ∗(θ);θ)/∂θ′, we maintain f ∗(θ) and φ∗(θ)
constant. �
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A.3. PROOF OF LEMMA 3

If the local NE is such that Z∗
i > 0, then (22) implies µ∗

i1 − µ∗
i2 > 0, where µ∗

i1 and µ∗
i2 are

the i th elements of µ∗
1 and µ∗

2, respectively. Since the multipliers satisfy µi1, µi2 ≥ 0 for
all i = 1, . . . , m, we must have µ∗

i1 > 0. In this case, (20) implies θ∗
i = θ̄i . Alternatively, if

the local NE is such that Z∗
i < 0, then θ∗

i = θ i . If Z∗
i = 0, then (22) implies that µ∗

i1 = µ∗
i2.

Suppose as a way of contradiction that µ∗
i1 �= 0. Then we know from (20) that θ∗

i = θ̄i .
However, because µ∗

i1 = µ∗
i2, we also have µ∗

i2 �= 0, and thus θ∗
i = θ i . Since θ∗

i cannot equal
θ̄i and θ i in the same time, we must have µ∗

i1 = µ∗
i2 = 0. So, when Z∗

i = 0 in an NE, then θ∗
i

can be any value in [θ i , θ̄ i ] that is consistent with Z∗
i = 0. �

A.4. PROOF OF PROPOSITION 2

Given the equilibrium parameter vector θ∗ = [σ ∗, κ∗]′, the minmax equilibrium is by defi-
nition the process q∗(θ∗) ≡ q(ψ∗(θ∗),θ∗). It is thus of the form (29), where the response
coefficients f ∗

π (θ∗), f ∗
x (θ∗), f ∗

i (θ∗) are given by (32)–(34), evaluating the parameter vector
at θ∗.

To determine θ∗, we need to determine the sign of Z∗
1 and Z∗

2 . Using the first-order con-
ditions to the policymaker’s problem, we can express the equilibrium Lagrange multiplier
associated with (30) as φ∗

1 (θ
∗) = −λiσ

∗ f ∗
i (θ∗). Combining this with (36), and using (40),

(42) to solve for f ∗
π (θ∗), f ∗

i (θ∗), we obtain

Z∗
1 =

(
η − σ ∗

κ∗

)
χ1, (A.2)

where χ1 > 0 and η ≡ ρ(1 − ρ)−1(1 − βρ)−1. Similarly, using the first-order conditions to
the policymaker’s problem, we can express the equilibrium Lagrange multiplier associated
with (31) as

φ∗
2 (θ

∗) = λx

κ∗ f ∗
x (θ∗) − σ ∗λi (1 − ρ)

κ∗ f ∗
i (θ∗).

Using this to substitute for φ∗
2 (θ

∗) in (37), and using (41), (42) to solve for f ∗
x (θ∗), f ∗

i (θ∗),
we get

Z∗
2 = −

(
η − σ ∗

κ∗

)
χ2 (A.3)

where χ2 > 0.
We need to consider three cases.

Case 1. η <σ/κ̄ . In this case, η < σ ∗/κ∗ for all σ ∗, κ∗ in the allowed set Θ. Equations
(A.2), (A.3) imply that, for any given structural parameters σ ∗, κ∗, the policymaker’s best
response, ψ∗, is such that Z∗

1 < 0 and Z∗
2 > 0. By Lemma 3, Nature’s best response is then

θ∗ = [σ , κ̄]′ in a local NE.

Case 2. σ̄ /κ < η. Symmetrically, η > σ ∗/κ∗ for all σ ∗, κ∗ in Θ. Equations (A.2), (A.3)
imply that, for any σ ∗, κ∗, the policymaker’s best response, ψ∗, is such that Z∗

1 > 0 and
Z∗

2 < 0. By Lemma 3, Nature’s best response is then θ∗ = [σ̄ , κ]′ in a local NE.

Case 3. σ/κ̄ ≤ η ≤ σ̄ /κ . We need to consider three situations.

(i) Suppose first that we have a local NE in which Nature chooses some σ ∗, κ∗ such
that σ ∗/κ∗ < η. We know from (A.2), (A.3) that the policymaker’s best response is
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such that Z∗
1 > 0 and Z∗

2 < 0. However, Lemma 3 guarantees that Nature chooses
σ ∗ = σ̄ and κ∗ = κ in this case. Because η ≤ σ̄ /κ , we obtain a contradiction, and
such σ ∗, κ∗ cannot be part of an NE.

(ii) Suppose, alternatively, that we have a local NE in which Nature chooses some
σ ∗, κ∗ such that σ ∗/κ∗ > η. We know from (A.2), (A.3) that the policymaker’s best
response is such that Z∗

1 < 0 and Z∗
2 > 0. However, Lemma 3 guarantees that Nature

chooses σ ∗ =σ and κ∗ = κ̄ in this case. Because σ/κ̄ ≤ η, such σ ∗, κ∗ cannot be
part of an NE.

(iii) Suppose, finally, that we have an NE in which Nature chooses some σ ∗, κ∗ such
that σ ∗/κ∗ = η. We know from (A.2), (A.3) that the policymaker’s best response is
such that Z∗

1 = Z∗
2 = 0. Lemma 3 in turn says that Nature may choose any σ ∗, κ∗ in

Θ that is consistent with Z∗
1 = Z∗

2 = 0, that is, that satisfies σ ∗/κ∗ = η.

Thus, when σ/κ̄ ≤ η ≤ σ̄ /κ , Nature’s best response is given by any vector [σ ∗, κ∗]′ ∈Θ
satisfying σ ∗/κ∗ = η, in a local NE. In this case, (40)–(42) imply that the minmax equili-
brium is characterized by f ∗

π (θ∗) = f ∗
x (θ∗) = 0, and f ∗

i (θ∗) = 1. �

A.5. PROOF OF PROPOSITION 3

First observe that since both h and h∗ in (34) and (42) are nonnegative, we have 0 < f 0
i ≡

f ∗
i (θ0) ≤ 1, and 0 < f ∗

i ≡ f ∗
i (θ∗) ≤ 1. We now show that f 0

i ≤ f ∗
i and that f 0

i < f ∗
i when

σ0/κ0 �= η. We need to consider three cases.

Case 1. η <σ/κ̄ . In this case, Proposition 2 implies κ∗ = κ̄ > κ0, σ ∗ =σ < σ0. Note that
η <σ/κ̄ can be rewritten as

σχ − ρκ̄ > 0,

where χ ≡ (1 − ρβ)(1 − ρ) > 0. Using (34) and (42), we obtain, after some algebraic
manipulations,

f ∗
i − f 0

i = λi

[
(σ0χ − ρκ0)

2 − (σχ − ρκ̄)2
]
ξ + [

κ̄2(σ0χ − ρκ0)
2 − κ2

0 (σχ − ρκ̄)2
]

h · h∗ ,

where ξ = λx (1 − βρ)2 > 0. Since (σ0χ − ρκ0) > (σχ − ρκ̄) > 0, we have (σ0χ − ρκ0)
2 −

(σχ − ρκ̄)2 > 0, so that the numerator is positive. Since the denominator is also positive,
we have f ∗

i > f 0
i .

Case 2. σ̄ /κ < η In this case, Proposition 2 implies κ∗ =κ < κ0, σ ∗ = σ̄ > σ0. Note that
σ̄ /κ < η can be rewritten as

σ̄ χ − ρκ < 0.

This implies σ0χ − ρκ0 < 0. We now have

f ∗
i − f 0

i = λi

[
(σ0χ − ρκ0)

2 − (σ̄χ − ρκ)2
]
ξ + [

κ2(σ0χ − ρκ0)
2 − κ2

0 (σ̄χ − ρκ)2
]

h · h∗ .

Since σ0κ < σ̄κ0, we have (σ0κ − σ̄ κ0)χ =κ(σ0χ − ρκ0) − κ0(σ̄χ − ρκ) < 0, so that
κ(σ0χ − ρκ0) < κ0(σ̄χ − ρκ), and κ2(σ0χ − ρκ0)

2 > κ2
0 (σ̄χ − ρκ)2. Because this implies

also that (σ0χ − ρκ0)
2 > (σ̄χ − ρκ)2, the numerator is positive. Because the denominator

is also positive, we have f ∗
i > f 0

i .
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Case 3. σ/κ̄ ≤ η ≤ σ̄ /κ . In this case, Proposition 2 implies σ ∗/κ∗ = η so that f ∗
i = 1. In

general, when σ0/κ0 �= η, we have f 0
i < 1 = f ∗

i . In the special case in which σ0/κ0 = η, we
obtain f 0

i = f ∗
i = 1. �

A.6. PROOF OF PROPOSITION 4

In the certainty case, any optimal Taylor rule ψ0 = [ψ0
π , ψ0

x ]′ satisfies an equation of the
form (46), but where the vector of structural parameters θ∗ is replaced with the known
vector θ0 = [σ0, κ0]′; that is,

ψ0
π = κ2

0 + λx (1 − βρ)2

λiκ0[σ0(1 − ρ)(1 − βρ) − ρκ0]
− ψ0

x

(1 − βρ)

κ0
. (A.4)

Assuming ψ0
π , ψx ≥ 0, it results from (A.4) that σ0(1 − ρ)(1 − βρ) − ρκ0 ≥ 0, or, equiva-

lently, σ0/κ0 ≥ η. We need to consider two cases.

Case 1. η <σ/κ̄ . Using (46) and (A.4), and setting ψ0
x = ψ∗

x = ψx , we obtain, after some
algebraic manipulations,

ψ∗
π − ψ0

π = (1 − βρ)(κ̄ − κ0)

κ0κ̄

×
{

ψx + κ0κ̄(σ0κ̄ − κ0σ) + λx (1 − βρ)2
[
η
(
κ̄2 − κ2

0

) + κ0σ0 − κ̄σ
]

λi (1 − ρ)(1 − βρ)2(σ0 − ηκ0)(σ − ηκ̄)(κ̄ − κ0)

}
.

Since the first fraction in the right-hand side is positive, ψ∗
π > ψ0

π if and only if (47) holds.

Case 2. σ/κ̄ ≤ η ≤ σ/κ . In this case, ψ̂∗
π = 0, so that ψ∗

π = 1/ψ̂∗
x → + ∞. Since ψ0

π is fi-
nite when σ0/κ0 �= η, we have ψ∗

π > ψ0
π . �

APPENDIX B. REGION OF DETERMINACY
FOR TAYLOR RULES

As mentioned in the text, the dynamic system (26) admits a unique bounded solution if
and only if both eigenvalues of A lie outside the unit circle. The characteristic polynomial
of A is

P(γ ) = [
γ 2βσ − (σ + βσ + κ + βψx )γ + σ + ψx + κψπ

]
(βσ)−1.

Because the roots of P(γ ) can be represented by complex numbers of the form γ = eiv R,
with modulus R, the characteristic polynomial has one or more roots on the unit circle when
γ = eiv . Since the coefficients of P(γ ) are all real, we know that if γ = eiv R is a root, then
its complex conjugate γ̄ = e−iv R is also a root. Using this result, we can find conditions for
at least one eigenvalue of A to be on the unit circle by solving

P(eiv) = 0,

P(e−iv) = 0
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for v and ψπ . The solutions are

ψπ = 1 − ψx (1 − β)κ−1, v = 0 (B.1)

ψπ = −2σ(1 + β)κ−1 − 1 − ψx (1 + β)κ−1, v = π (B.2)

ψπ = −σ(1 − β)κ−1 − ψxκ
−1, v = −i ln(z) (B.3)

where z is a root of z2βσ − (σ + βσ + κ + βψx ) z + βσ . The conditions involving ψπ, ψx

determine the boundaries of the region of determinacy. They can be represented by lines
in the (ψπ , ψx ) plane (see boundaries of the gray region in Figure 3). If we restrict our
attention to the case with ψπ, ψx ≥ 0, then only the first boundary is relevant because it
is the only one that crosses the positive orthant. Since there is only one eigenvalue of A out-
side the unit circle when ψπ = ψx = 0, then the same must be true for all couples (ψπ , ψx )

in the positive orthant and below the boundary (B.1), so that the equilibrium is indetermi-
nate in this region. In contrast, all couples above the boundary (B.1) result in a determinate
equilibrium because both eigenvalues are outside the unit circle.

In the presence of parameter uncertainty, the set Ψ of policies (in the positive orthant)
that result in a determinate equilibrium for all parameter vectors θ ∈Θ is the intersection of
all sets above the boundary (B.1) when σ and κ vary in the respective intervals [σ , σ̄ ] and
[κ, κ̄]. Hence, when ψπ, ψx ≥ 0, the region of determinacy is the set of all couples above
ψπ = 1 − ψx (1 − β)/κ̄ .


