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Abstract

Multi-Task Learning (MTL) has been an at-

tractive approach to deal with limited labeled

datasets or leverage related tasks, for a vari-

ety of NLP problems. We examine the benefit

of MTL for three specific pairs of health in-

formatics tasks that deal with: (a) overlapping

symptoms for the same classification problem

(personal health mention classification for in-

fluenza and for a set of symptoms); (b) over-

lapping medical concepts for related classifi-

cation problems (vaccine usage and drug us-

age detection); and, (c) related classification

problems (vaccination intent and vaccination

relevance detection). We experiment with a

simple neural architecture: a shared layer fol-

lowed by task-specific dense layers. The nov-

elty of this work is that it compares alterna-

tives for shared layers for these pairs of tasks.

While our observations agree with the promise

of MTL as compared to single-task learning,

for health informatics, we show that the benefit

also comes with caveats in terms of the choice

of shared layers and the relatedness between

the participating tasks.

1 Introduction

Health informatics is the discipline concerned

with the systematic processing of data, infor-

mation and knowledge in medicine and health-

care (Hasman, 1998). Health informatics tasks

tend to be specific in terms of parameters such as

symptoms, regions of interest or the phenomenon

to be detected. As a result, datasets for different

health informatics tasks have been reported. How-

ever, it remains to be seen if these datasets or clas-

sification tasks help each other in terms of how

similar the participating datasets or tasks are. In

this paper, we examine the utility of Multi-Task

Learning (MTL) for several pairs of health infor-

matics tasks that are related in different ways.

MTL pertains to the class of learning algorithms

that jointly train predictors for more than one task.

In Natural Language Processing (NLP) research,

MTL using deep learning has been used either to

learn shared representations for related tasks, or

to deal with limited labeled datasets (Xue et al.,

2007; Zhang and Yeung, 2012; Søgaard and Gold-

berg, 2016; Ruder, 2017; Liu et al., 2017) for a

variety of NLP problems such as sentiment analy-

sis (Huang et al., 2013; Mishra et al., 2017). Most

of this work that uses MTL presents architectures

utilising multiple shared and task-specific layers.

In contrast, we wish to see if the benefit comes

from the simplistic notion of ‘learning these clas-

sifiers together’. Therefore, we use a basic archi-

tecture for our MTL experiments consisting of a

single shared layer and single task-specific lay-

ers, and experiment with different alternatives for

the shared layer. This simplicity allows us to un-

derstand the benefit of MTL in comparison with

Single-Task Learning (STL) for different configu-

rations of shared layers, for task pairs that are re-

lated in different ways.

We experiment with datasets of English tweets

for three pairs of boolean classification problems.

The first pair deals with two datasets which were

annotated for the same classification problem but

differed in their scope in terms of illnesses that

they cover. The second pair deals with different

classification problems with some overlap in terms

of the scope of medical concepts taken into ac-

count. The third pair deals with related classifica-

tion problems: one problem influences the proba-

bility of output of the other.

Through our experiments with simple architec-

tures for popular tasks in health informatics, we

examine the question:

‘Does multi-task learning always help?’



2 Related Work

MTL has been applied to a variety of text clas-

sification tasks (Søgaard and Goldberg, 2016; Xue

et al., 2007; Ruder, 2017; Zhang and Yeung, 2012;

Liu et al., 2017). The impact of task related-

ness on MTL has been explored in case of statis-

tical prediction models (Zhang and Yeung, 2012;

Ben-David and Schuller, 2003). In the case of

deep learning-based models, Bingel and Søgaard

(2017) show how fundamental NLP tasks (such as

MWE detection, POS tagging and so on) of dif-

ferent complexities perform when paired. (Mishra

et al., 2017) use MTL for two related tasks in opin-

ion mining: sentiment classificaton and sarcasm

classification. (Wu and Huang, 2016) use MTL for

personalisation of sentiment classification where

global and local classifiers are jointly learned. A

survey of MTL approaches using deep learning is

by (Ruder, 2017).

In the context of health informatics, MTL has

been applied in different kinds of tasks. Zou et al.

(2018) predict influenza counts based on search

counts for different geographical regions - how-

ever, they do not use a neural architecture. The

task in itself is similar to Pair 1 in our experi-

ments. Chowdhury et al. (2018) use MTL for

pharmacovigilance, where each tweet is labeled

with adverse drug reaction and indication labels.

This is similar to the drug usage detection task in

our experiments. For this, they use bi-directional

LSTM as the shared layer, in addition to other

task-specific layers before and after the shared

layer. Benton et al. (2017) use MTL for pre-

diction of mental health signals. Their architec-

ture uses multi-layer perceptrons as shared lay-

ers. Bingel and Søgaard (2017) use bi-directional

LSTM as the shared layer and compares different

pairs of NLP tasks. In contrast, we experiment

with three alternatives of shared sentence repre-

sentations. The above are classification formula-

tions for health informatics. MTL has also been

used for other tasks such as biomedical entity ex-

traction (Crichton et al., 2017), non-textual data

based on medical tests to predict disease progres-

sion (Zhou et al., 2011) and so on.

We use datasets introduced in past work for our

experiments. The sources of these datasets are de-

scribed in the appropriate sections. In addition to

the differences with past work as described above,

to the best of our knowledge, the results of a MTL

model have not been reported for the tasks and the

task pairs that we consider. Our systematic analy-

sis in terms of parameters of tasks and our experi-

mentation with different shared layers sets us apart

from past work.

3 Task Pairs Under Consideration

We consider three task pairs for our experimenta-

tion. These task pairs are related in different ways

allowing an investigation into understanding con-

figurations in terms of task relatedness in which

MTL may be useful. The three configurations can

be described as follows:

1. Overlapping symptoms for the same clas-

sification problem: The first pair corre-

sponds to the same classification problem:

personal health mention detection, i.e., to

predict if a given tweet reports an incidence

of an illness, for overlapping concepts. For

example, ‘I have been sneezing since morn-

ing’ is a true instance, while ‘Strong per-

fumes may cause sneezing’ is a false in-

stance. Although the definition of the clas-

sification tasks is the same, we consider a

pair of datasets that cover overlapping symp-

toms. The first dataset is labeled for per-

sonal health mentions of influenza, while the

second dataset is labeled for personal health

mentions of multiple symptoms, namely,

cough, cold, fever and diarrhoea. Thus,

this pair represents a configuration where the

overarching classification task is the same but

the set of multiple symptoms overlaps with

the symptoms of influenza1. We refer to this

as Pair 1.

2. Overlapping medical concepts for differ-

ent classification problems: As Pair 2, we

consider a pair of classification problems in-

volving overlapping medical concepts. The

tasks are: (1) Vaccination behaviour detec-

tion: To classify whether or not a person

has received or intends to receive a vaccine;

and, (2) Drug usage detection: To classify

whether or not a person has received or in-

tends to receive a medicinal drug. The rela-

tionship between these tasks arises because

of the relationship between the medical con-

cepts. For example, ‘I got a flu shot yester-

day’ is an instance of vaccine usage while ‘I

1https://www.cdc.gov/flu/consumer/

symptoms.htm; Last accessed on 3rd September, 2019.

https://www.cdc.gov/flu/consumer/symptoms.htm
https://www.cdc.gov/flu/consumer/symptoms.htm


took a pain-killer yesterday’ is an instance

of drug usage. Since a ‘vaccine’ is a spe-

cific type of a general medical entity ‘drug’2,

we expect that the classification tasks may be

semantically different but deal with overlap-

ping medical concepts.

3. Related classification problems: Finally,

Pair 3 corresponds to the configuration of re-

lated classification problems. The two classi-

fication problems that we consider are: (1)

Vaccine relevance detection: To classify

whether or not a tweet is relevant to vaccina-

tion; and, (2) Vaccine intent detection: To

classify whether or not a tweet expresses in-

tent to receive a vaccine. The classification

tasks in pair 3 bear a notion of implication

between them, because a tweet relevant to

vaccines can alone express intent to receive

a vaccine. For example, ‘I don’t think I will

get a flu shot this year’ is relevant to vaccines

but does not express vaccine intent.

For tasks in Pairs 1 and 2, we use datasets which

contain labels for either of the tasks. Since the

tasks in Pair 3 are related classification problems,

each instance contains labels for both the tasks.

The datasets were provided by three separate pa-

pers and may not contain purposeful overlaps.

4 MTL Architecture

We experiment with basic MTL architectures so as

to understand the contribution of MTL to a funda-

mental architecture. The basic outline of our MTL

architecture is shown in Figure 1. The input text is

converted to a vector of embeddings using an em-

bedding layer. This then goes to the shared sen-

tence representation (hereafter referred to as the

‘shared layer’ for the sake of brevity), followed by

the dropout layer. The dropout layer serves as an

input to two dense layers, one for each classifica-

tion task. The dotted rectangle in the architecture

represents the shared layer. This layer is expected

to capture the shared representation across the dif-

ferent classification tasks. In order to compare the

role of different shared layers, we experiment with

three configurations of neural layers as alternatives

for the shared layer: BiLSTM, Convolutional, and

BiLSTM followed by Convolutional. These are

2https://www.cdc.gov/vaccines/vac-gen/

imz-basics.htm; Last accessed on 3rd September, 2019.

represented as B, C and B + C in the rest of the

paper.

In the case of Pairs 1 & 2, each instance carries

values for exactly one of the two tasks because

they were derived from two sources. Therefore,

we consider it to be a case of missing labels. For

each instance, we add a mask value of minus one (-

1) for the label which is not present. We use a cus-

tomised loss function which skips instances that

bear the mask value. This means that instances

that do not carry a label for a classification task

are not incorporated when calculating the loss. For

Pair 3, both labels are available for each instance.

In this case, both labels are incorporated in com-

puting the training loss.

5 Experimental Setup

All our tasks involve boolean text classification.

We refer to the labels as ‘true’ and ‘false’ in the

rest of the paper, although the semantics of these

labels depend on the classification problem. We

use the following datasets for our experiments:

• Pair 1:

– As the ‘influenza’ dataset, We use the

dataset by Lamb et al. (2013) for in-

fluenza. The dataset contains 2,661

tweets (of which 1,304 are labeled as

true). The original paper reports an n-

gram baseline of 67%.

– As the ‘multiple symptoms’ dataset, we

use a dataset of 9,006 tweets (of which

2,306 are labeled as true) by (Robinson

et al., 2015). The tweets consist of ill-

nesses, such as cough, cold, fever, and

diarrhoea. No cross-validation results

on this dataset have been reported in the

original paper.

• Pair 2:

– For vaccination usage detection, we use

the dataset provided as a shared task as

reported in Weissenbacher et al. (2018).

The dataset consists of 5,751 tweets (of

which 1,692 are true). The winning

team by Joshi et al. (2018) reported a

F-score of 80.87% for 10-fold cross-

validation.

– For drug usage detection, we use 13,409

tweets (of which 3,167 are true) pro-

vided by Jiang et al. (2016). No cross-

https://www.cdc.gov/vaccines/vac-gen/imz-basics.htm
https://www.cdc.gov/vaccines/vac-gen/imz-basics.htm


Figure 1: Our MTL architecture.

Figure 2: STL architecture corresponding to our MTL architecture.

validation results on this dataset have

been reported in the original paper.

• Pair 3: We use a dataset of 10,688 tweets

by Dredze et al. (2016). Out of these, 9,517

are labeled true for vaccine relevance while

3,097 are labeled true for vaccine intent. No

experimental evaluation for these tasks has

been reported in the paper or its derivative pa-

pers, to the best of our knowledge.

Since these datasets have been reported in past pa-

pers, we use Tweepy3 to download the datasets

of tweets using their identifiers. To implement

the deep learning models, we use Keras (Chollet,

2015), with the Adam optimiser and binary cross-

entropy as the loss function during training, with

3http://www.tweepy.org/; Last accessed on 3rd
September, 2019.

a dropout of 0.25 and number of units for inter-

mediate layers as 25. We use word embeddings

with 200 dimensions, pre-trained on a Twitter cor-

pus using GLoVe (Pennington et al., 2014). These

embeddings have been trained on 2 billion tweets

with 27 billion tokens.

The general outline of our experimentation is

a comparison of MTL with the equivalent single-

task learning (STL) version. The corresponding

STL architecture is shown in Figure 2. This ar-

chitecture is identical to MTL, except that it sepa-

rately learns the classifiers for the two tasks. The

STL version uses one dense layer to obtain the

classification output after the embedding layer and

a layer to capture the semantic representation (the

equivalent of the shared layer in MTL). For all our

experiments, we report average accuracy and F-

score values on ten-fold cross-validation.

http://www.tweepy.org/


STL MTL

Shared Layer Acc. F-score Acc. F-score

Influenza

B 76.52 75.90 77.85 76.41

C 76.74 76.75 73.46 66.79

B+C 75.84 74.41 77.89 76.86

Multiple symptoms

B 78.49 48.48 75.34 56.50

C 74.91 54.43 79.58 44.29

B+C 78.39 45.34 79.28 51.31

Table 1: Accuracy and F-score (%) for Pair 1: Per-

sonal health mention detection for influenza and per-

sonal health mention detection for multiple symptoms.

6 Results

The effectiveness of Pair 1 for the three shared lay-

ers BiLSTM (B), Convolutional (C), and BiLSTM

plus Convolutional (B+C) is shown in Table 1.

These values are higher than the reported baseline

for the influenza detection task. For both tasks, B

and B+C result in an improvement when MTL is

used. The highest improvement is 6% in case of

influenza for B+C. However, there is a degrada-

tion when the shared layer is C. The improvement

in case of B and B+C for ‘Multiple symptoms’ is

statistically significant (p < 0.05, paired t-test).

The improvement in the case of influenza, how-

ever, is not statistically significant.

The corresponding effectiveness of Pair 2 is

shown in Table 2 for the pair: vaccine usage detec-

tion and drug usage detection. The best F-score for

vaccine usage detection is 76.82%, when a BiL-

STM layer is used as a shared representation in

the MTL architecture. The best F-score for drug

usage detection is 56.83%, when a combination of

BiLSTM and convolutional layers is used in a cor-

responding setting. We observe that, for vaccine

usage detection, there is an improvement of 2-3%

in case of either B or B+C. The improvement is

not statistically significant. Similar trends are ob-

served for Pair 3, as shown in Table 3. We observe

that the F-scores are also high (around 97-98%)

for vaccine relevance detection, purely due to the

skew in the dataset. However, we observe that, in

this case, the improvement in F-score when MTL

is used is observed only in the case of B+C. Since

vaccine intent implies vaccine relevance, our re-

sults show that MTL may not be beneficial for re-

STL MTL

Shared Layer Acc. F-score Acc. F-score

Vaccine Usage Detection

B 85.46 74.85 85.90 76.82

C 85.53 75.50 85.59 75.47

B+C 84.28 73.49 85.62 75.59

Drug Usage Detection

B 78.78 53.74 79.27 56.47

C 77.20 55.59 80.74 54.59

B+C 78.09 52.79 80.71 56.83

Table 2: Accuracy and F-score (%) for Pair 2: Vacci-

nation usage detection and drug usage detection.

STL MTL

Shared Layer Acc. F-score Acc. F-score

Vaccine Relevance Detection

B 97.71 98.80 97.40 98.64

C 97.60 98.75 97.27 98.58

B+C 97.56 98.73 97.86 98.88

Vaccine Intent Detection

B 75.72 75.29 86.55 78.93

C 86.03 76.93 83.88 75.00

B+C 85.62 75.59 85.82 77.15

Table 3: Accuracy and F-score (%) for Pair 3: Vaccine

relevance detection and vaccine intent detection.

lated classification tasks where one task implies

another.

It is possible that the benefit of MTL depends

on the size of the training set from the conjugate

task (i.e., tweets labeled for drug usage detection

in order to improve the effectiveness of vaccine us-

age detection). Therefore, the impact of the size of

training dataset on accuracy of four tasks of pairs

1 and 2, for the best performing architecture is

shown in Figure 3. In general, the performance

improves with an increase in training set size. The

improvement is higher for Pair 2 than Pair 1. The

datasets in Pair 2 were created using separate sets

of keywords (drug names versus vaccine names,

in specific), while the ones in Pair 1 were created

using overlapping sets of keywords. Thus, the ex-

tent of relatedness or similarity governs the perfor-

mance gain due to MTL. It may be noted that this

comparison is not relevant for Pair 3 since every



Figure 3: Change in accuracy values with an increase in the proportion of training set from the additional task in

the pair for pairs 1 and 2.

instance in the dataset contains both the labels.

7 Error Analysis

We analyse the errors in two parts. In the first part,

we compare errors made by the architectures that

use STL and MTL. This helps to understand sit-

uations in which MTL does better than STL. In

the second part, we evaluate errors made by MTL.

These can serve as pointers for future work.

We manually analyse 50 randomly selected er-

roneous instances each from STL and MTL for all

pairs of tasks. The benefit of MTL over STL was

observed in the following cases for Pairs 1 and 2:

• Pair 1: For personal health mention detec-

tion, false positives were observed in the

form of tweets that express the fear of flu

(for example, the tweet ‘i feel like im getting

sick!=[ UGH piggy flu stay away!’ was mis-

classified) in the case of STL but not in MTL.

Errors due to figurative language (for exam-

ple, ‘because theres times when i want to just

check my facebook feed and not feel sick to

my stomach’) occurred with STL (6 out of 50)

more often than with MTL (2 out of 50).

• Pair 2: Errors in tweets where the speaker

was reluctant to take a drug (for example, the

tweet ‘do i take my migraine medicine and

pray for no interactions or do i take a muscle

relaxant or tramadol and hope for the best’

was mis-classified) were reduced when MTL

(1 out of 50) was used instead of STL (8 out

of 50).

We observe no specific patterns of errors for Pair 3

when we compare the mis-classified instances for

STL and MTL.

In contrast, an analysis of errors obtained from

MTL showed the following patterns:

• Errors in Pair 1 include long tweets which

contain a rant along with a personal health

mention (11 out of 50). For example, ‘8 hrs

sleep still feel like shit laying in pitch black

listening to my belly make some weird arsed

noises think im gunna hurl again’.

• Errors in Pair 2 include (a) Apprehen-

sions/fears expressed before a flu shot/Intent

to receive a flu shot (16 out of 50, in case of

vaccination usage detection); (b) Mentions of

a drug for dramatic effect (14 out of 50, in

case of drug usage detection). For example,

‘i dont usually remember drunk dreams. un-

less combined w melatonin’.

These show that MTL may be unable to guard

against topic drifts observed due to rants, appre-

hensions or dramatisation.

8 Conclusions & Future Work

We evaluate multi-task learning (MTL) for three

pairs of similar health informatics tasks deal-

ing with: (1) Overlapping symptoms (detection



of influenza and multiple symptoms); (2) Gen-

eral/specific medical concepts (detection of the us-

age of drugs and vaccines); and, (3) Related classi-

fication problems (vaccine relevance detection and

vaccine intent detection). We compare STL with

MTL where the pair of tasks are jointly learned for

three kinds of shared sentence representations. In

general, for shared layers based on BiLSTM and

BiLSTM + Convolutional, MTL helps the three

pairs. However, this improvement is not observed

when the Convolutional layer is used as a shared

representation. The improvement, wherever ap-

plicable, is around 2-4% for all the pairs. While

MTL has been considered almost a ‘silver bul-

let’ in situations where related classification prob-

lems or datasets are available, our results highlight

the caveats therein. We observe that the benefit

of MTL depends on the type of shared layer and

the relationship between the tasks under consider-

ation.

Our results show that MTL can help to lever-

age different datasets annotated for related health

informatics tasks. This is potentially useful since

specialised tasks are common in health informat-

ics and large datasets may or may not be available.

It remains to be verified if the benefit can be gener-

alised for other tasks. Similarly, while we present

the relatedness between the participating tasks in

a qualitative manner, their similarity could be em-

pirically determined as a future work. A correla-

tion between the similarity of classification tasks

and the expected benefit of MTL is a possible fu-

ture work.
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