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ABSTRACT

We analyze proper motions from the Hubble Space Telescope (HST) and the second Gaia data release along with line-of-sight
velocities from the MUSE spectrograph to detect imprints of an intermediate-mass black hole (IMBH) in the center of the nearby,
core-collapsed, globular cluster NGC 6397. For this, we use the new MAMPOSSt-PM Bayesian mass-modeling code, along with
updated estimates of the surface density profile of NGC 6397. We consider different priors on velocity anisotropy and on the size of
the central mass, and we also separate the stars into components of different mean mass to allow for mass segregation. The velocity
ellipsoid is very isotropic throughout the cluster, as expected in post-core collapsed clusters subject to as strong a Galactic tidal field
as NGC 6397. There is strong evidence for a central dark component of 0.8 to 2% of the total mass of the cluster. However, we find
robust evidence disfavoring a central IMBH in NGC 6397, preferring instead a diffuse dark inner subcluster of unresolved objects with
a total mass of 1000 to 2000 M⊙, half of which is concentrated within 6 arcsec (2% of the stellar effective radius). These results require
the combination of HST and Gaia data: HST for the inner diagnostics and Gaia for the outer surface density and velocity anisotropy
profiles. The small effective radius of the diffuse dark component suggests that it is composed of compact stars (white dwarfs and
neutron stars) and stellar-mass black holes, whose inner locations are caused by dynamical friction given their high progenitor masses.
We show that stellar-mass black holes should dominate the mass of this diffuse dark component, unless more than 25% escape from
the cluster. Their mergers in the cores of core-collapsed globular clusters could be an important source of the gravitational wave events
detected by LIGO.

Key words. black hole physics – stars: kinematics and dynamics – stars: statistics – methods: data analysis – proper motions –
globular clusters: individual: NGC 6397

1. Introduction

When the Laser Interferometer Gravitational-Wave Obser-
vatory (LIGO) first detected gravitational waves coming
from a stellar-mass black hole merger (Abbott et al. 2016)
and then the Event Horizon Telescope (EHT) released the
first image of the supermassive black hole (SMBH) in M 87
(Event Horizon Telescope Collaboration 2019), astronomers
obtained the most compelling evidence about the existence
of those intriguing and particular objects. Yet, black holes
(BHs) have been treated as more than a theoretical object
for a considerable amount of time, starting in 1939, when
Oppenheimer & Snyder (1939) proposed them to be the final
step of the life of massive stars (&10 M⊙) after their final grav-
itational collapse into stellar-mass black holes, with masses in
between ∼3 M⊙ (Thompson et al. 2020) and ≈52 M⊙ (Woosley
2017), but also when Hoyle & Fowler (1963) identified the
then recently discovered quasars (Schmidt 1963) as SMBHs.
This latter class of BHs, which reside in the centers of massive
galaxies, are responsible for extremely luminous sources in the
Universe, such as quasars and active galactic nuclei (AGN),
sometimes unleashing powerful jets of relativistic matter, along
with outflows that have a profound impact on star formation and
galaxy evolution (e.g., Croton et al. 2006; Hopkins et al. 2006).
In addition, some black holes may have formed during the early
moments of the Universe (e.g., Zel’dovich & Novikov 1966;
Hawking 1971), and these primordial BHs may constitute an
import mass fraction of black holes below the SMBH mass.

Since there is no theoretical constraint to the mass of a black
hole, it would be reasonable to believe that intermediate-mass
black holes (IMBHs) could exist, filling the considerable
gap between stellar-mass black holes and SMBHs (i.e., with
masses between 100 and 105 M⊙). Furthermore, SMBHs
are understood to grow by mergers, where the first seeds
are stellar-mass BHs (Madau & Rees 2001) or metal-free
primordial gas clouds (Loeb & Rasio 1994), so IMBHs
may be a transitory stage in the growth of BHs. However,
there is currently little evidence for IMBHs (see reviews by
Volonteri 2010; Greene et al. 2020), with some important can-
didates highlighted (e.g., Kaaret et al. 2001; Chilingarian et al.
2018 in dwarf galaxies, and recently Lin et al. 2020 in a
globular cluster) and one gravitational wave confirmation
(The LIGO Scientific Collaboration & the Virgo Collaboration
2020). Furthermore, IMBHs could help to explain many enig-
mas in astrophysics, such as filling up part of the dark matter
mass budget (e.g., Haehnelt & Rees 1993; Loeb & Rasio 1994)
or providing massive seeds for high redshift quasars, whose
high masses at such early times represent a challenge to current
theories (Haiman 2013). Therefore, great efforts have been
undertaken to detect IMBHs to better understand their origin
and evolution.

Globular clusters (GCs) appear to be a unique laboratory to
test the existence of IMBHs. These quasi-spherical star clusters
are known to have old stellar populations, indicating that they
formed at early epochs. Their high stellar number densities pro-
vide an excellent environment to increase stellar interactions that
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could give birth to compact objects. More precisely, contrary
to galaxies, the rates of stellar encounters in the inner parts of
GCs containing half their stellar mass are sufficiently high to
statistically affect the orbits of their stars by two-body relaxation
(Chandrasekhar 1942). Moreover, after several relaxation times,
the interplay between the negative and positive heat capacities
of the inner core and outer envelope causes transfers of energy.
This in turn leads to the gravothermal catastrophe, where the
core collapses resulting in a steep inner density profile, while
the envelope expands. Roughly one-fifth of GCs are believed to
have suffered such core-collapse (Djorgovski & King 1986).

Several scenarios have been proposed for the existence of
IMBHs in GCs. One is the direct collapse of population III
stars (Madau & Rees 2001), but the link of population III stars
with GCs is not clear. Another is the accretion of residual
gas on stellar-mass BHs formed in the first generation of stars
(Leigh et al. 2013), but the availability of the gas is unclear as
the first massive stars will blow it out of the GC by super-
nova explosions. Stellar mergers are a popular mechanism for
IMBH formation. Portegies Zwart & McMillan (2002) proposed
a runaway path to IMBH formation in GCs, where an initially
massive star suffers multiple physical collisions with other stars
during the first few Myr of the GC, before they have time to
explode as supernovae or simply lose mass. During these colli-
sions, the most massive star will lose linear momentum, ending
up at the bottom of the gravitational potential well. At the same
time, its mass will grow during the successive stellar mergers,
to the point that it will end up as a BH, possibly reaching 0.1%
of the GC stellar mass. Miller & Hamilton (2002) proposed a
slower process for IMBH formation, where dynamical friction
(Chandrasekhar 1943) causes the most massive stellar remnant
BHs to sink to the center of the gravitational well over Gyr. Thus
a &50 M⊙ stellar remnant BH, sufficiently massive to avoid being
ejected from the GC by dynamical interactions, would grow in
mass through mergers with these other massive BHs as well as
other typically massive stars, reaching a mass of 1000 M⊙ over
the Hubble time, which they argued generates IMBHs in some
ten percent of GCs. Finally, Giersz et al. (2015) proposed that
hard binaries containing stellar-mass BHs merge with other stars
and binaries, which can be a fast or slow process.

These models present, however, drawbacks: The short relax-
ation time needed in the Portegies Zwart & McMillan (2002)
scenario usually requires primordial mass segregation in order
not to eliminate too many GCs candidates, while the assumption
by Miller & Hamilton (2002) of BH seeds above ≈50 M⊙ is not
expected as the massive progenitors are fully exploded in pair-
instability supernovae (e.g., Woosley 2017).

Unfortunately, attempts to detect IMBHs have been some-
what inconclusive: Dynamical modeling is still dependent on
the assumptions concerning the confusion between the IMBH
and a central subcluster of stellar remnants (e.g., den Brok et al.
2014; Mann et al. 2019; Zocchi et al. 2019). Furthermore, these
analyses usually rely on too few stars inside the sphere of influ-
ence of the IMBH, which can lead to false detections (Aros et al.
2020). Besides, searches for signs of accretion indicate no
strong evidence for >1000 M⊙ black holes in galactic GCs (e.g.,
Tremou et al. 2018).

In this paper, we analyze the core-collapsed Milky Way glob-
ular cluster NGC 6397, and search for kinematic imprints of
a central IMBH or subcluster of unresolved objects (hereafter,
CUO). We use very precise and deep Hubble Space Telescope
(HST) proper motions (PMs) from Bellini et al. (2014) and line-
of-sight (LOS) velocities from the Multi Unit Spectroscopic
Explorer (MUSE) instrument on the Very Large Telescope, to

which we added PMs from the Gaia Data Release 2 (hereafter,
Gaia or Gaia DR2).

NGC 6397 has been broadly investigated in previous studies.
The PMs lead to plane-of-sky (POS) velocities with equal radial
and tangential dispersions, leading to the appearance of isotropic
orbits (Heyl et al. 2012; Watkins et al. 2015a with HST for the
inner orbits, and Jindal et al. 2019 with Gaia for the outer orbits).
But this projected velocity isotropy can hide three-dimensional
(3D) variations of the anisotropy of the 3D velocity ellipsoid.
Kamann et al. (2016) used the JAM mass-orbit modeling code
(Cappellari 2008) to fit the LOS velocities obtained with the
MUSE spectrograph, and found that a 600 ± 200 M⊙ black
hole best fits their data, agreeing with the radio emission upper
limit of 610 M⊙ for the same cluster provided in Tremou et al.
(2018). On the other hand, numerical N-body modeling by
Baumgardt (2017) strongly excluded the possibility of an IMBH
in NGC 6397, not to say that much of the non-luminous mass
measured in this cluster could actually be in the form of unre-
solved white dwarfs and low-mass stars (Heggie & Hut 1996).

Many of the mass modeling studies performed with this clus-
ter assumed or constrained its surface density parameters to val-
ues estimated long ago (e.g., Trager et al. 1995), that may suffer
from problems such as radial incompleteness, which is better
addressed by missions such as HST and Gaia. This lack of accu-
racy on the surface density can strongly impact the dynamical
analysis of NGC 6397.

In the present study, we performed state-of-the-art mass-
orbit modeling to analyze the presence of an IMBH or a CUO
in the center of NGC 6397 and better measure the radial vari-
ation of its velocity anisotropy. Among the different popular
mass/orbit modeling (e.g., Mamon et al. 2013; Watkins et al.
2013; Read & Steger 2017; Vasiliev 2019a; see Chap. 5 of
Courteau et al. 2014 for a review), we used an extension of
the MAMPOSSt: Modeling Anisotropy and Mass Profiles of
Observed Spherical Systems (Mamon et al. 2013) Bayesian
code, which now takes into account both LOS velocities and
PMs (MAMPOSSt-PM, Mamon & Vitral, in prep.). MAM-
POSSt-PM was found to perform extremely well in a code chal-
lenge using mock data for dwarf spheroidal galaxies, with many
similarities to GCs (Read et al. 2020).

We profit from the versatility of MAMPOSSt-PM to fit not
only cases with a single population of stars, but also with two
mass populations, thus allowing for mass segregation. We also
provide new fits to the surface density parameters of this cluster
by jointly modeling HST and Gaia data.

2. Method

2.1. MAMPOSSt-PM

We summarize here the main aspects of MAMPOSSt-PM
(details in Mamon & Vitral, in prep.). MAMPOSSt-PM is a
Bayesian code that fits parametrized forms of the radial profiles
of mass and velocity anisotropy to the distribution of observed
tracers (here, GC stars) in two-, three- or four-dimensional pro-
jected phase space (PPS): Projected distances to the GC cen-
ter (hereafter projected radii), combined with LOS velocities
and/or PMs. The mass profile is the sum of observed tracers, as
well as a possible central BH, and additional dark components.
By working on discrete stars, MAMPOSSt-PM can probe the
inner regions better than methods where velocity or PM data
are binned in radial intervals (e.g., van der Marel & Anderson
2010), and an analysis of dark matter on mock dwarf spheroidals
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has shown that the conclusions can depend on how the data are
binned (Richardson & Fairbairn 2014).

The probability density that a tracer at projected radius R has
a velocity vector u is

p(u|R) =
g(R, u)

∫

g(R, u) du
=
g(R, u)
Σ(R)

(1)

where Σ(R) is the surface density (SD), while g(R, u) is the den-
sity in PPS, such that
∫ ∫

2πR g(R, u) dR du = ∆Np

= Np(Rmax) − Np(Rmin), (2)

with Np(R) =
∫ R

0
2πR′ Σ(R′) dR′ being the projected number of

points (e.g., stars in a star cluster) in a cylinder of radius R. The
likelihood is then calculated as

L =
∏

i

p(ui|Ri), (3)

where the i indices represent individual points (stars).
The observed stars tend to be located in in the GC. But,

inevitably, some observed stars will be interlopers (here field
stars, FS) mostly foreground in our case, but possibly some back-
ground too. MAMPOSSt-PM splits the PPS distribution into
separate GC and FS components. Equation (1) becomes

p(u|R) =
gGC(R, u) + gFS(R, u)
ΣGC(R) + ΣFS(R)

=
gGC(R, u) + ΣFS fLOS(vLOS) fPM(PM)/η2

ΣGC(R) + ΣFS
, (4)

where PM is the vector of PMs (µα,∗, µδ), fLOS(vLOS) and
fPM(PM) are the respective distribution functions of field star
LOS velocities and PM vectors1 while η = 4.7405 D is the con-
version of PM in mas yr−1 to POS velocity in km s−1 given the
distance D to the system, in kpc. The second equality of Eq. (4)
assumes that the FS surface density is independent of position.

The GC contribution to the PPS density is the mean local
GC velocity distribution function h, averaged along the LOS
(Mamon et al. 2013; Read et al. 2020):

gGC(R, u) = 2
∫ ∞

R
h(u|R, r) ν(r)

r
√

r2 − R2
dr, (5)

where r is the 3D distance to the system center, while ν(r) is the
3D tracer density (here stellar number density) profile.

MAMPOSSt-PM assumes that the local velocity ellipsoid,
in other words the local 3D velocity distribution function (VDF),
is separable along the three spherical coordinates (r, θ, φ):

h(u|R, r) = h(vr |R, r) h(vθ|R, r) h(vφ|R, r). (6)

MAMPOSSt-PM further assumes that the three one-
dimensional local VDFs are Gaussian:

h(vi|R, r) =
1

√

2πσ2
i

exp













−
v2

i

2σ2
i













· (7)

This Gaussian assumption for the local VDFs is much better than
the very popular Gaussian assumption for the LOS-integrated

1 The functional form of the field star PM distribution function,
fPM(PM), is provided in Sect. 5.2.3.

VDF, p(u|R) because velocity anisotropy affects the shape of
p(u|R), in particular that of p(vLOS|R) (Merritt 1987). By mea-
suring the shape of the PPS, hence of p(u|R), MAMPOSSt-PM
gets a good handle on velocity anisotropy (see below), and there-
fore on the mass profile because of the mass-anisotropy degen-
eracy (Binney & Mamon 1982). MAMPOSSt-PM considers the
measurement errors by adding them in quadrature to the velocity
dispersion for the GC component.

The velocity anisotropy profile β at radius r is defined as

β(r) = 1 −
σ2
θ
(r) + σ2

φ(r)

2σ2
r (r)

, (8)

where θ and φ are the tangential components of the coordinate
system and r is the radial component, while σ2

i
stands for the

velocity dispersion of the component i of the coordinate system.
When considering spherical symmetry in velocity space, the

variances of the composite Gaussian VDF h(u|(R, r) can be writ-
ten as

σ2
LOS(R, r) =

[

1 − β(r)
(

R

r

)2]

σ2
r (r), (9a)

σ2
POSR

(R, r) =

[

1 − β(r) + β(r)
(

R

r

)2]

σ2
r (r), (9b)

σ2
POSt(R, r) =

[

1 − β(r)
]

σ2
r (r), (9c)

where Eq. (9a) is from Binney & Mamon (1982), while Eqs. (9b)
and (9c) are from Strigari et al. (2007). In Eqs. (9a)–(9c), the
radial velocity variance σ2

r (r) is obtained by solving the spheri-
cal stationary Jeans equation with no streaming motions (in par-
ticular, rotation):

d
(

νσ2
r

)

dr
+ 2
β(r)

r
ν(r)σ2

r (r) = −ν(r)
G M(r)

r2
, (10)

where M(r) is the total mass profile.
The distribution of interlopers in PPS is straightforward: The

spatial density is assumed to be uniform (hence ΣFS does not
depend on R in Eq. (4)). The distribution of LOS velocities,
fLOS(vLOS) in Eq. (4), is assumed Gaussian. The two-dimensional
distribution of PMs, fPM(PM) in Eq. (4), is found to have wider
wings than a Gaussian (see Sect. 5.2.3 and Appendix B.1). The
POS velocity errors are not added in quadrature to the velocity
dispersions because the PM distribution of interlopers has wider
tails (Appendix B.2). Instead, MAMPOSSt-PM uses an approx-
imation (Mamon & Vitral, in prep.) for the convolution of PM
errors with the PM dispersions.

2.2. Dark component

MAMPOSSt-PM allows for a diffuse dark component with a
large choice of analytical density profiles. This dark component
could represent dark matter or alternatively unseen stars.

Dark matter (DM) may dominate the outskirts of GCs, and
perhaps also deeper inside. Contrary to distant GCs (Ibata et al.
2013), the presence of substantial DM in the outskirts of
NGC 6397 is unlikely because this GC appears to have an
orbit around the Milky Way that takes it from an apocen-
ter of roughly 6.6 kpc to a pericenter of 2.9 kpc in 88 Myr
(Gaia Collaboration 2018a), so it should have suffered from
dozens of previous episodes of tidal stripping, leaving little DM
(Mashchenko & Sills 2005), if there was any in the first place. In
particular, the orbital parameters of Gaia Collaboration (2018a),
Z = −0.48 ± 0.01 kpc and W = −127.9 ± 3 km s−1, indicate that
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NGC 6397 just passed through the Milky Way disk only ≈4 Myr
ago2.

One may ask whether there is substantial DM in the inner
regions of GCs like NGC 6397. Using N-body simulations of
isolated ultra-compact dwarf galaxies, which appear to be larger
analogs of GCs, but with relaxation times longer than the age
of the Universe, Baumgardt & Mieske (2008) found that the
inner DM component is heated by dynamical friction from the
stars, causing a shallower inner DM distribution than that of
the stars. Shin et al. (2013) traced the dynamical evolution of
NGC 6397 with Fokker-Planck methods, discarding those par-
ticles that reach the GC tidal radius. They found that the GC
could have contained up to one-quarter of its initial mass in the
form of DM and match the present-day surface density and LOS
velocity dispersion profiles.

On the other hand, there may be unseen matter in the
core of the GC that is not dark matter per se, but com-
posed of unseen stars, for example an inner nuclear cluster of
faint stars, possibly white dwarfs, neutron stars, or stellar-mass
black holes (Zocchi et al. 2019; Mann et al. 2019) and binary
stars (Mann et al. 2019). We thus performed MAMPOSSt-PM
runs including such a CUO instead of (or in addition to) an
IMBH.

2.3. Velocity anisotropy profile

With LOS data, MAMPOSSt is able (at least partially) to lift
the degeneracy first pointed out by Binney & Mamon (1982)
between the radial profiles of mass and velocity anisotropy
(Mamon et al. 2013). With the three components of the veloc-
ity vector, MAMPOSSt-PM is even much more able to disen-
tangle mass and anisotropy profiles (Read et al. 2020; Mamon
& Vitral in prep.). With the data used in this paper, we have
thus a unique chance of constraining the mass profile of our
sources, which is essential to restrain the estimates on the
IMBH.

While GCs are often modeled with isotropic velocities,
we performed many runs of MAMPOSSt-PM with freedom in
the anisotropy profile. Indeed, a central IMBH may modify the
orbital shapes. Furthermore, the outer orbits of isolated GCs are
often thought to be quasi radial (Takahashi 1995). Moreover, the
frequent passages of NGC 6397 across the Galactic disk (Sect. 1)
could alter the orbital shapes of GC stars.

The anisotropic runs of MAMPOSSt-PM used the general-
ization (hereafter gOM) of the Osipkov-Merritt model (Osipkov
1979; Merritt 1985) for the velocity anisotropy profile:

βgOM(r) = β0 + (β∞ − β0)
r2

r2 + r2
β

, (11)

where rβ is the anisotropy radius, which can be fixed as the scale
radius of the luminous tracer by MAMPOSSt-PM3.

2 NGC 6397 has just passed through the disk near its apocenter,
and probably previously passed through the disk at pericenter, since
most GCs highlighted in Fig. D.2 of Gaia Collaboration (2018a) have
inclined orbits relative to the Galactic disk, passing through the disk
near apocenter as well as near pericenter. Also, the important contri-
butions of the thick disk, bulge/spheroid and dark matter halo to the
gravitational potential imply that the tidal effect of the Milky Way is
strongest at pericenter.
3 Mamon et al. (2019) found no significant change in models of galaxy
clusters when using this model for β(r) compared to one with a softer
transition: β(r) = β0+(β∞−β0) r/(r+rβ), first used by Tiret et al. (2007).
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Fig. 1. Smoothed star counts map of NGC 6397 from Gaia. The image
size is 100′′ on the side (half the HST field of view). The star counts
are computed in cells of 0′′.33 and then smoothed by a Gaussian with
σ = 0′′.10 (using scipy.stats.gaussian_kde in Python, with a
bandwidth of 0.2). The color bar provides the star counts per square
degree. The green and red circles represent the GC center calculated by
Goldsbury et al. (2010) and Gaia Collaboration (2018a), respectively.

3. Global structure and distance of NGC 6397

Our mass-orbit modeling of NGC 6397 (Sect. 2 below) assumes
a distance, the knowledge of the GC center, spherical symmetry,
and the absence of rotation. We investigate these assumptions for
NGC 6397.

3.1. Spherical symmetry

NGC 6397 appears to be close to spherical symmetry. Its elon-
gation on the sky is 0.07 (Harris 2010).

3.2. Center

Our analysis assumes that the IMBH is located at the GC center,
so our choice of center is critical. We have considered two cen-
ters: (RA, Dec)= (265◦.175375, −53◦.674333) (Goldsbury et al.
2010, using HST data) and (RA, Dec)= (265◦.1697, −53◦.6773)
(Gaia Collaboration 2018a, using Gaia data), both in epoch
J2000.

We selected the center with the highest local stellar counts.
It is dangerous to use our HST star counts for this because the
positions are relative to the center, hence need to be rescaled
assuming a given center (see Sect. 4.1). We used instead the Gaia
star counts, which benefit from absolute positional calibration.
Figure 1 shows a Gaussian-smoothed map of Gaia star counts in
the inner 100′′×100′′ (half the HST field of view) of NGC 6397,
where we overplotted the centers obtained by Goldsbury et al.
(2010) and Gaia Collaboration (2018a).

Clearly, the center of Gaia Collaboration (2018a) is less well
aligned with the density map than the center of Goldsbury et al.
(2010). We therefore select the Goldsbury et al. (2010) center at
(265◦.1754, −53◦.6743) in J2000 equatorial coordinates.

3.3. Distance

The adopted distance is important because the mass profile at
a given angular radius (e.g., r in arcmin) deduced from the
Jeans equation of local dynamical equilibrium (Eq. (10)) varies
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Table 1. Distance estimates for NGC 6397.

Authors Method Observations Distance
(kpc)

Harris (2010) CMD Various 2.3
Reid & Gizis (1998) CMD HST 2.67± 0.25
Gratton et al. (2003) CMD VLT 2.53± 0.05
Hansen et al. (2007) CMD HST 2.55± 0.11
Dotter et al. (2010) CMD HST 3.0
Heyl et al. (2012) Kinematics HST 2.0± 0.2
Watkins et al. (2015b) Kinematics HST 2.39+0.13

−0.11
Brown et al. (2018) Parallax HST 2.39± 0.07
Gaia Collaboration (2018a) Parallax Gaia 2.64± 0.005
Baumgardt et al. (2019) Kinematics N-body 2.44± 0.04
Shao & Li (2019) Parallax Gaia 2.62± 0.02
Valcin et al. (2020) CMD HST 2.670.05

−0.04
This work Kinematics HST & MUSE 2.35± 0.10

Notes. The columns are: (1) authors; (2) method; (3) observations; (4)
distance in kpc. Distances based on kinematics seek dynamical mod-
els that match the observed LOS and PM dispersion profiles, where
Watkins et al. (2015b) used Jeans modeling, while Baumgardt et al.
(2019) used N-body simulations. The distance of Baumgardt et al.
(2019) is a weighted mean with the value given by Harris (1996), while
that of Valcin et al. (2020) used the value of Dotter et al. (2010) as a
prior.

roughly as M ∝ rσ2
v , thus as distance D for given LOS veloc-

ities and as D3 for given PMs. Table 1 shows a list of distance
estimates for NGC 6397. Recent estimates are bimodal around
2.39 kpc and 2.64 kpc. The CMD-based distance estimates favor
the larger distance, the kinematics favor the smaller distance,
while the parallax distances point to small (HST) or large (Gaia)
distances.

We estimated a kinematical distance by equating the LOS
velocity dispersion of stars measured with VLT/MUSE (see
Sect. 4.3, below) with the HST PM dispersions of the same
stars (see Sect. 4.1). To avoid Milky Way field stars, we used
the cleaned MUSE and HST samples, for which we had 692
matches, among which 445 with separations smaller than 0′′.14.
For these 445 stars, we measured a LOS velocity dispersion
of 4.91 ± 0.16 km s−1, and an HST PM dispersion of 0.439 ±
0.015 mas yr−1 in the RA direction and 0.442 ± 0.015 mas yr−1

along the Dec direction (where the uncertainties are taken as
the values divided by

√
2(n − 1)). This yields a kinematic dis-

tance of 4.91/[c (0.439 + 0.442)/2] = 2.35 ± 0.10 kpc, where
c = 4.7405 is the POS velocity of a star of PM = 1 mas yr−1

located at D = 1 kpc.
We adopted the lower distance of 2.39 kpc (i.e., a distance

modulus of 11.89), for three reasons: (1) We trust more the HST
parallax than the Gaia-DR2 parallax, given that the former is
based on a much longer baseline; (2) Our study of NGC 6397 is
based on kinematics, and thus the larger distance would lead to
abnormally high POS velocity dispersions compared to the LOS
velocity dispersions. (3) It is consistent with our kinematic esti-
mate of the distance. We do not adopt our estimated kinematic
distance of 2.35 ± 0.10 kpc because it is based on the perfect
equality of LOS and POS velocity dispersions, which supposes
velocity isotropy, which in turn is not certain. For our adopted
distance of 2.39 kpc, 1 arcmin subtends 0.7 pc.

4 The distribution of log separations is strongly bimodal with peaks at
0′′.06 and 1′′.

4. Data

4.1. HST data

The HST data were kindly provided by A. Bellini, who measured
PMs for over 1.3 million stars in 22 GCs, including NGC 6397
(Bellini et al. 2014). The data for NGC 6397 has a 202 arcsec
square field of view (Wide Field Camera) and reached down to
less than 1 arcsec from the Goldsbury et al. (2010) center (see the
right panel of Fig. 8). This minimum projected radius to the cen-
ter is smaller than the BH radius of influence rBH ∼ G MBH/σ

2
0 ≃

0.11 (MBH/600 M⊙) pc (using the LOS velocity dispersion of
Sect. 3.3), which corresponds to 9 (MBH/600 M⊙) arcsec, given
our adopted distance of 2.39 kpc.

This dataset was provided in a particular master frame shape
(for details, see Table 29 from Bellini et al. 2014 as well as
Anderson et al. 2008), with both GC center and PM mean shifted
to zero. The first step in our analysis was to convert the positions
and PMs to the absolute frame.

4.1.1. HST absolute positions

We applied the Rodrigues (1840) rotation formula to shift the
relative positions back to their original center to translate the
GC stars to their true positions on the sky. We used the cen-
ter of Goldsbury et al. (2010), which was the one considered by
Bellini et al. (2014). We then rotated the subset with respect to
its true center, so that the stars originally parallel to the dataset’s
increasing x axis remained parallel to the right ascension increas-
ing direction. We then verified our method by matching the stars
in sky position with Gaia (see Sect. 4.4 below).

4.1.2. HST absolute proper motions

The HST PMs were measured relative to the bulk PM of the GC.
We corrected the relative PMs of Bellini et al. (2014) with their
provided PM corrections. We just added Cols. 4 and 5 to Cols. 31
and 32 from Table 29 of Bellini et al. (2014), respectively. We
then converted the relative PMs to absolute PMs by computing
the bulk PM of NGC 6397 using the stellar PMs provided by
Gaia DR2 as explained in Sect. 4.2 below.

The small field of view of HST and the few pointed obser-
vations do not allow the observation of sufficiently numerous
background quasars to obtain an absolute calibration of HST
PMs. On the other hand, the Gaia reference frame obtained with
more than half a million quasars provides a median positional
uncertainty of 0.12 mas for G < 18 stars (Gaia Collaboration
2018b) and therefore allows us, by combining its accuracy with
HST’s precision, to know NGC 6397 PMs with unprecedented
accuracy. We will compare the PMs of stars measured both by
HST and Gaia in Sect. 4.4.

Our HST data had 13 593 stars. The PM precision varies
across the field of view because of the different time baselines
(principally 1.9 and 5.6 years) in part due to the smaller size of
the older HST cameras. Figure 2 shows that the PMs are much
more accurate in a large square portion of the field of view,
including the western part and extending to the central region,
where the baseline is 5.6 years. At magnitude F606W = 17, the
one-dimensional PM precision is 0.02 mas yr−1 in the more pre-
cise portion of field of view and 0.08 mas yr−1 outside.

4.2. Gaia data

Gaia DR2 presented an overall astrometric coverage of stellar
velocities, positions and magnitudes of more than 109 stars in the

A63, page 5 of 27



A&A 646, A63 (2021)

265.15265.20

α [deg]

−53.70

−53.68

−53.66

−53.64

δ
[d
eg
]

0.05

0.1

0.2

0.5

1.0

2.0

Fig. 2. Map of HST PM errors (semi-major axis of error ellipse, in
mas yr−1), color-coded according to the median of each hexagonal cell,
using the entire set of HST data (i.e., before any cuts). The total HST
field of view is 202′′ on the side.

Milky Way and beyond. Gaia measured PMs in over 40 000 stars
of magnitude G < 17 within a 1◦ cone around NGC 6397. These
PMs have a typical precision of 0.17 mas yr−1 at G = 17. Since
the Gaia G and HST F606W magnitudes differ by less than 0.1,
one sees that Gaia PMs are less precise than those of HST by
factors of two to eight depending on the region of the HST field
of view. The Gaia data was also used to infer the number density
profile out to large distances from the GC center.

4.3. VLT/MUSE data

We complemented the PMs using LOS velocities that
Husser et al. (2016) acquired with the MUSE spectrograph on
the VLT. A mosaic of 5× 5 MUSE pointings led to an effec-
tive square field of view of 5 arcmin on the side. The bulk LOS
velocity is 〈vLOS〉 = 17.84 ± 0.07 km s−1 (Husser et al. 2016). In
a companion article, Kamann et al. (2016) assigned membership
probabilities to the stars according to their positions in the space
of LOS velocity and metallicity, compared to the predictions
for the field stars from the Besançon model of the Milky Way
(Robin et al. 2003). The data, kindly provided by S. Kamann,
contained 7130 LOS velocities, as well as the membership
probabilities.

4.4. Consistency between datasets

4.4.1. Positional accuracy

We used Tool for OPerations on Catalogues And Tables
(topcat, Taylor 2005) to check the match positions between cat-
alogs, which we did in our own Python routines that filtered the
original datasets (Sect. 5 below). Performing symmetric matches
among each pair of datasets, with a maximum allowed separation
of 1 arcsec, we obtained median separations of 0′′.38 for the 4455
stars in common between Gaia and HST, as well as 0′′.01 for the
4440 stars in common between MUSE and HST.

4.4.2. Proper motions

Many of the 4455 stars in common between HST and Gaia
have very high Gaia PM uncertainties (we saw in Sect. 4.2

that HST PM uncertainties were much smaller, but a few have
large values). Limiting to 1179 stars in common with both
Gaia and HST PM uncertainties below 0.4 mas yr−1, we find
that the HST PMs in the (RA, Dec) frame are (0.006± 0.812,
0.029± 1.239) mas yr−1 above those from Gaia, where the
“errors” represent the standard deviation. The uncertainties on
the means are

√
1179 = 34 times lower: (0.024, 0.036) mas yr−1.

The mean shifts in PMs are (0.3, 0.8) times the uncertainties on
the mean, and thus not significant. This possible offset in PMs is
of no concern as long as we only use HST data, since we analyze
them relative to the bulk PM of the GC. Even in MAMPOSSt-
PM runs with the combined HST+Gaia dataset, this shift in PMs
is not statistically significant and appears too small to affect the
results.

5. Data cleaning

We now describe how we selected stars from each dataset for
the mass modeling runs with MAMPOSSt-PM. We also used
more liberal criteria to select stars in our estimates of the surface
density profile (see Sect. 7.1).

For each dataset, we discarded all stars with PM errors above
half of 0.394 mas yr−1, corresponding (for our adopted distance)
to the one-dimensional PM dispersion of NGC 6397 measured
by Baumgardt et al. (2019) for the innermost 2000 Gaia stars,
whose mean projected radius was 99′′.25. The PM error is com-
puted as the semi-major axis of the error ellipse (Eq. (B.2) of
Lindegren et al. 2018):

ǫµ =

√

1
2

(C33 +C44) +
1
2

√

(C44 −C33)2 + 4C2
34 (12)

C33 = ǫ
2
µα∗
, (13)

C34 = ǫµα∗ ǫµδ ρ, (14)

C44 = ǫ
2
µδ
, (15)

where ǫ denotes the error or uncertainty and where ρ is the cor-
relation coefficient between µα∗ and µδ5. Our HST data does not
provide ρ. We thus selected stars with ǫµ < 0.197 mas yr−1, or
equivalently for which the LOS velocity error satisfies ǫvLOS <
0.197 c D = 2.23 km s−1, for D = 2.39 kpc and where c = 4.7405
(see Sect. 3.3).

Figure 3 shows the PM errors versus magnitude for HST
(blue) and Gaia (red), as well as the equivalent PM error for
the LOS velocity errors of Gaia (purple) and MUSE (green).
The figure indicates that our maximum allowed PM errors are
reached at magnitudes mF606W = 19.7 for the worst HST data
(those with the shortest baseline, see Fig. 2), and for virtually all
magnitudes for the other HST stars. Gaia stars reach the max-
imum allowed PM error at typically G = 17.5. The equivalent
LOS velocity error limit is reached at magnitude mF606W = 16.8
for MUSE, but only at G = 13.4 for Gaia. The Gaia radial veloc-
ities are thus of little use for our modeling, as too few of them
have sufficiently precise values.

5.1. HST data cleaning

After selecting the stars with low PM errors, we cleaned our HST
data in three ways: we discarded stars with (1) PMs far from the
bulk PM of the GC; (2) lying off the color-magnitude diagram;
(3) associated with X-ray binaries.

5 We use the standard notation µα∗ = cos δ dα/dt, µδ = dδ/dt.
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Fig. 4. HST proper motions, corrected to the mean GC PM shown in
Table 2. The full set of HST stars is shown in blue, while the subset
obtained after applying the low PM error cut (Sect. 5.1.1) are shown in
red. The dashed green circle represents the very liberal hard cut on PMs
to remove Milky Way field stars and the green cross highlights the mean
PM presented in Table 2.

5.1.1. HST proper motion filtering

The higher surface number density of stars in the inner regions
of NGC 6397 allows us to distinguish GC stars with field stars in
PM space, as shown in Fig. 4. Moreover, some high velocity stars
could in principle be caused by very tight (separations smaller
than ∼0.1 AU) GC binaries.

We made a very liberal cut to select GC stars in PM space,
using a circle of radius 6 mas yr−1 (green circle in Fig. 4),

Table 2. Comparison of estimates on µα,∗ and µδ with previous studies.

Method µα∗ µδ
[mas yr−1] [mas yr−1]

Gaia Collaboration (2018a) 3.291 ± 0.0026 −17.591 ± 0.0025
Vasiliev (2019b) 3.285 ± 0.043 −17.621 ± 0.043
Baumgardt et al. (2019) 3.30 ± 0.01 −17.60 ± 0.01
This work (hybrid) 3.306 ± 0.013 −17.587 ± 0.024
Overall average 3.296 ± 0.019 −17.600 ± 0.024

corresponding to 15 times the PM dispersion measured by
Baumgardt et al. (2019). The PM center of the GC was set
at the mean of the values in Table 2. Our cut in PM space
also corresponds to a velocity dispersion of 75 km s−1, which is
over 13 times the highest LOS velocity dispersion measured by
Kamann et al. (2016). We chose such a liberal cut to ensure that
we would not miss any high velocity GC members because oth-
erwise our modeling would underestimate the mass. This left us
with 9149 stars among the 9624 with low PM errors.

The filtering of field stars in PM space is not fully reli-
able because the cloud of field stars in PM space (upper part of
Fig. 4) may extend into the (smaller) GC cloud (and past it). We
thus proceed to another filtering in the color-magnitude diagram
(CMD).

5.1.2. HST color-magnitude filtering

The left panel of Fig. 5 shows the locations in the CMD of the
stars that survived the PM error cut and the filtering in PM space.
While most stars follow a tight relation, a non-negligible fraction
are outliers. We took a conservative cut of the stars on the CMD
using kernel density estimation as displayed in the right panel
of Fig. 56. This graph displays the 1, 2 and 3σ contours of the
kernel density estimation, drawn as black lines. We selected stars
inside the 2σ region because the 3σ region appears too wide
to rule out binaries, while the 1σ region was too conservative,
extracting too few stars for our analysis.

The CMD filtering not only removes field stars whose PMs
coincide by chance with those of GC stars, but also removes
GC members that are unresolved binary stars and lie in the
edges of the main-sequence, as well as particular Blue Strag-
glers in the 15 < F606W < 16.5 range, which are believed to
be the result of past mergers of GC members (Leonard 1989).
Removing binaries and stars who have gone through mergers is
important because their kinematics are dominated by two-body
interactions, while our modeling assumes that stellar motions are
dominated by the global gravitational potential of the GC. As
discussed by Bianchini et al. (2016), three types of binaries need
to be considered.
1. Resolved (i.e., wide) binaries will produce their own PMs

that can be confused with the parallax. But, following
Bianchini et al. (2016), the PMs of such resolved binaries,
of order of a/T where a is the semi-major axis of the binary
and T is the time baseline, are negligible in comparison to
the GC velocity dispersion. Indeed, to be resolved at the
distance of NGC 6397, the binary star should be separated
by at least 0′′.1, which corresponds to 24 AU at the distance
of NGC 6397; the most massive binaries, with mass below
2 M⊙, will have a period of 90 years, thus a/T = 1.26 km s−1,

6 We used scipy.stats.gaussian_kde, setting the bandwidth
method to the Siverman’s rule (Silverman 1986).
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Fig. 5. HST color-magnitude diagrams. Left: CMD after the PM filtering process explained in Sect. 5.1.1. Right: Kernel density estimation of the
HST isochrone displayed in the left panel. The 1, 2 and 3σ contours are displayed (from in to out).

while less massive binaries will have longer periods, hence
lower a/T .

2. Nearly resolved binaries will not be deblended, and their dis-
torted image (in comparison to the PSF) will lead to less pre-
cise astrometry, which will be flagged.

3. The orbits of unresolved binaries, considered as single enti-
ties, will be those of test particles in the gravitational poten-
tial. But their higher mass should lead them to have lower
velocity dispersions than ordinary stars, in particular in the
dense inner regions of GCs where the two-body relaxation
time is sufficiently short for mass segregation.

Our CMD filtering left us with 7259 stars among the 9149 sur-
viving the previous filters.

5.1.3. Removal of X-ray binaries

Bahramian et al. (2020) detected 194 X-ray sources within
200 arcsec from the center of NGC 6397, some of which could
potentially be background AGN. The remaining sources are
thought to be X-ray binaries, and as such will have motions
perturbed by their invisible compact companion. We therefore
deleted the 50 HST stars whose positions coincided within
1 arcsec with the “centroid” position of an X-ray source.

Bianchini et al. (2016) found that the effect of unresolved
binaries on GC dispersion profiles is only important for high
initial binary fractions (e.g., ∼50%), which can induct a differ-
ence of 0.1−0.3 km s−1 in the velocity dispersion profile, mainly
in the GC inner regions, where the binary fraction should be
highest. For lower initial binary fractions, Bianchini et al. (2016)
found that unresolved binaries do not significantly affect the PM
dispersion profile, but only the kinematics error budget. There-
fore, the binary fractions calculated by Davis et al. (2008) and
Milone et al. (2012a) for NGC 6397 are clearly insufficient (i.e.,
.5% and .7%, respectively) to require a special treatment.

5.1.4. HST final numbers

After these cuts, we are left with 7209 stars from the HST
observations (among the original 13 593). The combination of
the CMD and PM filtering along with the removal of X-ray

binaries effectively cleans the data of most of the binaries that
would affect our modeling, only leaving binaries of different
luminosities that are at intermediate separations (≈0.15 to 5 AU,
causing peculiar motions between 1 and 15 times the GC veloc-
ity dispersion). We checked that using a less liberal cut of 7.5σ
instead of 15σ affects very little our results.

5.2. Gaia data cleaning

We followed similar steps in cleaning the Gaia data as we did
for the HST data.

5.2.1. Quality flags

We filtered the Gaia stars with ǫµ < 0.197 mas yr−1 using two
data quality flags proposed by Lindegren et al. (2018). First, we
only kept stars whose astrometric solution presented a suffi-
ciently low goodness of fit:
√

χ2

N − 5
< 1.2 Max

{

1, exp [−0.2 (G − 19.5)]
}

, (16)

where N is the number of points (epochs) in the astrometric
fit of a given star and 5 is the number of free parameters of
the astrometric fit (2 for the position, 1 for the parallax and
two for the PM). Equation (16) gives a sharper HR diagram,
removing artifacts such as double stars, calibration problems,
and astrometric effects from binaries. It is more optimized
than the (astrometric_excess_noise< 1) criterion, used in
Baumgardt et al. (2019) and Vasiliev (2019b), especially for
brighter stars (G . 15), according to Lindegren et al. (2018).

Second, we only kept stars with good photometry.

1.0 + 0.015 (GBP−GRP)2 < E < 1.3 + 0.06 (GBP−GRP)2, (17)

where E = (IBP + IRP)/IG is the flux excess factor. Equation (17)
performs an additional filter in the HR diagram, removing stars
with considerable photometric errors in the BP and RP photom-
etry, affecting mainly faint sources in crowded areas. This poor
photometry broadens the CMD, leading to more confusion with
field stars.
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Those variables correspond to the following quantities in the
Gaia DR2 archive:

– χ2: astrometric_chi2_al
– ν′: astrometric_n_good_obs_al
– E: phot_bp_rp_excess_factor
– GBP−GRP: bp_rp

5.2.2. Maximum projected radius

NGC 6397 likely suffers from tidal heating every time it passes
through the Milky Way’s disk, in particular during its last pas-
sage less than 4 Myr ago (Sect. 2.2). The tidal forces felt by
GC stars during passages through the disk will produce velocity
impulses that are effective in perturbing the least bound orbits,
which typically are those of the stars in the outer envelope of the
GC. The Gaia data can trace the effects of such tidal disturbances
on the GC kinematics.

We searched for anomalous kinematics in NGC 6397 using
Gaia DR2 out to a maximum projected radius of 1◦ with respect
to NGC 6397’s center. The top panel of Fig. 6 indicates that the
mean POS velocities in the radial and tangential directions dif-
fer beyond 8′7. We also checked the concordance of the radial
and tangential components of the radial profiles of POS velocity
dispersion (or equivalently PM dispersion). The bottom panel
of Fig. 6 shows excellent agreement between the two compo-
nents of the velocity dispersion from 2′ to 20′, suggesting that
the velocity ellipsoid is nearly isotropic in this range of projected
radii. We conservatively adopted a maximum projected radius of
8′ as set by the divergence of the mean velocity profiles beyond
that radius.

7 Drukier et al. (1998) had noticed a similar effect in the M 15 GC.

5.2.3. Gaia proper motion filtering and the bulk proper
motion of NGC 6397

As for HST, we filtered Gaia stars in PM space to later filter
them in CMD space. Since Gaia data extends to much greater
projected radii from the GC center, thus to lower GC surface
densities, the GC stands out less prominently from the field stars
(FS) in PM space. We therefore first estimated the bulk PM of
the GC and we assigned a first-order probability of membership
using a GC+FS mixture model.

We were tempted to assign two-dimensional (2D) Gaussian
distributions for both GC stars and interlopers. However, the FS
PM distribution has wider tails than a Gaussian. This means that
stars on the other side of the GC, relative to the center of the
field star component (i.e., its bulk motion) in PM space are more
likely to be field stars than assumed by the Gaussian model. We
found that the PM-modulus “surface density” profile (the veloc-
ity analog of the surface density profile) is well fit by a Pearson
type VII distribution (Pearson 1916), as explained in detail in
Appendix B.1. This distribution relies on two free parameters, a
scale radius a and an outer slope γ, and can be written as:

fµ(µ) = − γ + 2
2 π a2

[

1 +
(

µ

a

)2
]γ/2

, (18)

where µ = (µα,∗, µδ) and

µi =

√

(µα,∗i − µα,∗i)2 + (µδ,i − µδ,i)2, (19)

where the suffix i stands for the component analyzed, which in
the case of Eq. (18) is the interlopers (i.e., field stars, hereafter
FS). The reader can verify that, indeed,

∫

fµ(µ) dµ = 1, with
dµ = 2 π µ dµ.

With the respective Gaussian and Pearson VII distributions
of PMs of GC stars and FS, we performed a joint fit to the two-
dimensional distribution of PMs, which provided us with a pre-
cise bulk PM of the GC. For this, we considered the convolved
expressions of the PM distributions of both GC and interlop-
ers with the errors provided by the Gaia archive (ǫµα,∗ , ǫµδ and
ρµα,∗µδ ). When passing onto polar coordinates, the uncertainty
propagation of Eq. (19) produces

ǫ2µ,i =

(

µα,∗i − µα,∗i
µi

)2

ǫ2µα,∗i +

(

µδ,i − µδ,i
µi

)2

ǫ2µδ,i

+ 2

(

µα,∗i − µα,∗i
) (

µδ,i − µδ,i
)

µ2
i

ǫµα,∗µδ,i , (20)

where ǫµα,∗µδ = ǫµα,∗ ǫµδ ρµα,∗µδ . The convolution with Gaussian
errors was straightforward in the case of GC stars since their
PM distribution was also modeled as a Gaussian, and thus we
just added the errors to the dispersions in quadrature:

σ2
GC,new = σ

2
GC + ǫ

2
µ,GC. (21)

However, the convolution of the field star distribution with
Gaussian errors cannot be reduced to an analytic function;
numerical evaluation of the convolution integrals for each star
would dramatically increase the calculation time. We therefore
used the analytical approximation for the ratio of convolved to
raw probability distribution functions of PM moduli, (which is
also incorporated in MAMPOSSt-PM), as briefly described in
Appendix B.2 (details are given in Mamon & Vitral, in prep.).
This allowed us to perform our mixture model fit to the PM
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Fig. 7. Color magnitude diagram (CMD) of NGC 6397 Gaia DR2 data,
after different filtering steps. The blue points indicate the stars that failed
the PM error, astrometric and photometric flags, maximum projected
radius and PM filters. The green points the stars that passed these 3 fil-
ters but are offset from the CMD. The red points show the Gaia sample
of stars after the previous filters and subsequent CMD filtering, color-
coded from red to dark red, according to increasing star counts.

data, using Markov chain Monte Carlo (MCMC)8 to estimate
bulk motions of both the GC and the field stars and assign prob-
abilities of GC membership for each star.

Table 2 displays our estimates of µα,∗ and µδ, which show
a good agreement with the literature values for the GCs mean
PMs. In the same table, we display the overall average of the lit-
erature plus our estimates, with its respective uncertainty ǫ, cal-
culated as ǫ2 = 〈ǫi〉2 + σ2, where ǫi stands for the uncertainties
on the estimated values, and σ stands for their standard devia-
tion. This overall average and uncertainties were also later used
as priors for the MAMPOSSt-PM mass modeling analysis.

We only kept stars with GC membership probability higher
then 0.9 according to our mixture model. This corresponds to a
1.43 mas yr−1 cut in the distribution of PMs of the GC, thus a
3.6σ cut.

5.2.4. Gaia color-magnitude filtering

We CMD-filtered the Gaia data roughly following the same
KDE method as we used for the HST data. The only differences
were that (1) we used the equivalent filters G, B, and R, and (2)
we selected the 3σ region of the KDE, instead of 2σ, since the
latter appeared to be too conservative a cut for Gaia. Figure 7
displays the final stars after this filter, along with the previously
filtered subsets.

5.2.5. Removal of X-ray binaries

X-ray binaries are also in the Gaia sample. We therefore
removed the five X-ray binaries that were matched to Gaia stars.

5.2.6. Gaia final numbers and comparison to HST

The cleaned Gaia sample contains 1905 stars. Figure 8 shows
that the spatial coverage of Gaia DR2 is indeed poorer than
HST when taking into account only stars from the clean sam-
ples. While the cleaned HST sample contains 221 stars within
the 9′′ IMBH radius of influence (for an IMBH with a mass of

8 For all MCMC analyses except the one in MAMPOSSt-PM, we used
the Python package emcee (Foreman-Mackey et al. 2013).
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Fig. 8. Distribution of projected radii of stars from the GC center of
Goldsbury et al. (2010), with cleaned HST data in red and cleaned Gaia
DR2 data in blue. This plot indicates that HST is much better suited to
probe a possible IMBH in the center.

600 M⊙ as measured by Kamann et al. 2016, see Sect. 4.1), the
cleaned Gaia presents none, which is clearly insufficient to pro-
vide reliable results on the presence of an IMBH.

5.3. MUSE data cleaning

We filtered the MUSE sample by removing stars whose proba-
bility of being a member of the GC, according to their position
in velocity – metallicity space (Kamann et al. 2016, kindly pro-
vided by S. Kamann), was less than 0.9. This step left us with
6595 stars among the original 7130. We then removed stars with
LOS velocity errors greater than 2.232 km s−1 (half of the GC
velocity dispersion), as well as stars that did not match the HST
stars in a symmetric ≤1 arcsec match. We were left with 532
stars, of which 4 were previously identified as X-ray binaries
(see Sect. 5.1.3), yielding a final MUSE sample containing 528
stars, thus adding LOS velocities to ∼7% of the HST sample.

Our Gaussian prior on vLOS used the mean provided by
Husser et al. (2016): 〈vLOS〉 = 17.84 km s−1. For the uncertainty
on 〈vLOS〉, we allowed a much wider dispersion of 2.5 km s−1

instead of the 0.07 km s−1 of Husser et al. (2016), given the rela-
tively wide range of bulk LOS velocities reported in other stud-
ies (Milone et al. 2006; Lind et al. 2008; Carretta et al. 2009a;
Lovisi et al. 2012).

5.4. Merging of the different datasets

Although we ran MAMPOSSt-PM on HST and Gaia individu-
ally for data homogeneity, we preferred to combine the data from
HST, MUSE and Gaia to probe the mass and velocity anisotropy
parameters with more accuracy. We started with the HST filtered
subset, which accounted for most of the data we would use, and
then we merged it to the other datasets following the steps below:
1. We restricted the Gaia stars to those with G magnitudes

within the limits of F606W magnitudes from the HST sub-
set, (i.e., 16.11 and 22.14), given the quasi equivalence
between these two filters. This step ensured that mass seg-
regation effects would be the same for all data subsets.

2. We removed Gaia stars that were symmetrically matched to
HST stars to better than 1 arcsec (see Sect. 4.4.1) since HST
PMs presented smaller errors (Fig. 3).

3. We incorporated LOS velocities from MUSE, according to
the approach described in Sect. 5.3.
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After these steps, we were left with 8255 stars: 7209 of which
had PMs from HST, with 583 of those presenting LOS velocities
from MUSE, as well as 1046 additional stars with PMs from
Gaia DR2.

6. Streaming motions in NGC 6397

6.1. Rotation

The presence of rotation in quasi-spherical systems makes the
kinematical modeling more difficult. Any rotation will be inter-
preted by codes neglecting it, such as MAMPOSSt-PM, as dis-
ordered motions, and should lead to different mass profiles and
deduce velocity anisotropies that are more tangential than in
reality.

Fortunately, NGC 6397 does not appear to have significant
amount of rotation. Indeed, while Gebhardt et al. (1995) found
that the integrated light of the core of NGC 6397 showed rotation
with a projected amplitude of 2 km s−1, Kamann et al. (2016)
concluded with individual stars from VLT/MUSE observations
(see Sect. 4.3 below) that rotation contributes negligibly to the
second velocity moment in this GC. Vasiliev (2019c) reported
a typical systematic uncertainty in Gaia DR2 PMs of up to
∼0.02 mas yr−1 at any radius and considered rotation to be con-
firmed only when its peak amplitude exceeded ∼0.05 mas yr−1,
which was not the case for his NGC 6397 measurements. On
the other hand, Bianchini et al. (2018) found POS rotation in
NGC 6397 with Gaia DR2 at a 2σ level for this GC, but with
v/σ = 0.03 only, the smallest value of the 51 GCs they analyzed.
This is consistent with the quasi-null mean POSt velocity profile
seen in Fig. 6. Finally, Sollima et al. (2019) detected a rotation
of 0.48 km s−1 from a 3D analysis, which is less than 10% of its
velocity dispersion. We therefore neglect rotation in NGC 6397.

6.2. Radial motions

Similarly to rotation, any radial streaming motions will be inter-
preted by codes such as MAMPOSSt-PM as radial dispersion.
However, as seen in the top panel of Fig. 6, the Gaia DR2 PMs
do not show strong signs of radial motions.

7. Practical considerations

We now discuss the practical implementation of MAMPOSSt-
PM to our cleaned sample of the stellar motions inside
NGC 6397.

7.1. Surface density

7.1.1. Basic approach

Equation (4) requires the knowledge of the GC surface den-
sity (SD) profile, ΣGC(R). More importantly, Eq. (5) requires the
knowledge of the 3D number density ν(r) when integrating the
local VDF along the LOS. While MAMPOSSt-PM has a mode
where it jointly fits the parameters of ν(r), M(r) and β(r) to
the distribution of stars in projected phase space (see Eq. (11)
of Mamon et al. 2013, which is different from our Eq. (4)),
this requires the data to have constant completeness as a func-
tion of projected radius. If the astrometric measures of PMs are
not independent of projected radius, one first needs to estimate
(and deproject) the SD profile based on a wider dataset than
that with PM values to obtain priors on the parameters of ν(r).
Such an analysis had been performed for mass-orbit modeling of

1 10 100

R [arcsec]

100

101

102

103

104

C
u
m
u
la
ti
ve

n
u
m
b
er

of
st
ar
s HST: F606W < 17

Gaia : G < 17

Gaia : G < 17 and
ǫµ < 0.197 mas yr−1

Slope : 1.10

Slope : 1.15

Slope : 1.57

Slope : 1.10

Slope : 1.15

Slope : 1.57

Fig. 9. Cumulative distribution functions of projected radii for G < 17
Gaia stars (blue), for the subset of G < 17 Gaia stars with precise PMs
from Eq. (12) (black), and for the subset of HST stars (red). The straight
lines are power laws to guide the eye.

galaxy clusters with spectroscopic information whose complete-
ness depended on projected radius (e.g., Mamon et al. 2019).

The PM data are likely to be incomplete at small projected
radii because of the increased crowding of stars as one moves
inward, especially for Gaia, whose mirrors are smaller than that
of HST. We noticed that Gaia data with PMs traced less well
the inner cusp of the SD than the full Gaia data (requesting only
positions and G magnitude). Figure 9 shows that the Gaia PM
subsample with G < 17 is indeed incomplete in the inner regions
relative to the full G < 17 Gaia sample since the distribution of
projected radii of Gaia stars from the GC center is shallower for
stars with precise PMs than for all stars (including those without
PM measurements). A Kolmogorov-Smirnov test indicates that
there is only 10−5 probability that the distributions of projected
radii of the subsample with precise PMs and that of the full sam-
ple (including stars without PM measurements and those with
imprecise ones) arise from the same parent population. Another
difficulty is to measure the outer envelope given confusion with
field stars. This is important because MAMPOSSt-PM com-
putes outward integrals.

We therefore needed to provide MAMPOSSt-PM with a
precomputed SD profile. In MAMPOSSt-PM, this profile had
to be a simple analytical one- or two-parameter model (where
free parameters are scale and possibly shape). More precisely,
MAMPOSSt-PM assumes Gaussian priors on the precomputed
SD profile parameters.

7.1.2. Choice of model and main parameters

The choice of a good model for SD is crucial because the mass
of a possible IMBH is linked to the inner slope of the SD pro-
file (van der Marel & Anderson 2010). NGC 6397 has long been
known to have a cuspy (steep) inner SD profile (Auriere 1982;
Lauzeral et al. 1992; Lugger et al. 1995; Noyola & Gebhardt
2006; Kamann et al. 2016), which prompted Djorgovski & King
(1986) to classify it as core-collapsed. Unfortunately, no sim-
ple analytic model was ever fit to the SD profile of NGC 6397
extending to large projected radii9. Trager et al. (1995) estimated

9 Martinazzi et al. (2014) and Kamann et al. (2016) fitted the SD
profile of NGC 6397 to large projected radii with Chebyshev polyno-
mials (of logΣ vs. log R) and multiple Gaussians, respectively. The for-
mer have no analytical deprojections, and while Gaussians are easily
deprojected, the multiple Gaussians involve too many parameters for
MAMPOSSt-PM.
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an effective (projected half-light) radius Re = 2.′90 for
NGC 6397 using ground-based data and analyzing the SD pro-
file in different apertures. Using Gaia DR2 data, de Boer et al.
(2019) recently inferred Re = 3.′35 (which we infer from their
3D half-luminosity radius rh, coupled with their assumed dis-
tance and with the ratio Re/rh ≃ 0.732 kindly estimated for us by
M. Gieles). But their analysis was based on a fit to two dynami-
cal models that both assumed a cored inner density profile, which
clearly does not represent the inner SD profile of NGC 6397.

We thus had to estimate the SD profile ourselves. The cuspy
profile led us to fit a Sérsic model (Sérsic 1963; Sersic 1968)
to the distribution of projected radii since the Sérsic model
has a shape parameter (Sérsic index) that makes it flexible to
handle both cuspy and cored density profiles (e.g., Fig. A.1
of Vitral & Mamon 2020). Furthermore, there are simple ana-
lytical forms for the precise (but not exact) deprojection of
the Sérsic model. In Appendix A, we extend the analysis of
Vitral & Mamon (2020) of the precision of the different analyt-
ical approximations as a function of Re and n, to even smaller
values of R/Re representative of our data. MAMPOSSt-PM will
then use the best-fit values of log Re and n and their uncertainties
as the respective mean and standard deviation of the Gaussian
priors.

We required HST data to fit correctly the inner cusp, and
we also needed Gaia data to fit correctly the outer envelope. We
therefore fitted the GC surface density profile ΣGC(R) together
with the field star surface density ΣFS (assumed constant) from
the Gaia DR2 photometric data, supplemented by the HST data
to better probe the very inner regions. The two datasets are not
cleaned in any way, except for cuts in magnitude and maximum
(minimum) projected radius. The HST data may not be radially
complete (we did not have a parent sample with all stars includ-
ing those without PM measurements), but this is the best we can
do. Our approach does not remove the Milky Way field stars,
but instead incorporates them in our SD fit. It allows us to keep
Gaia stars with no PM information, which would be filtered out
in a PM cut, even though their contribution to the surface density
shape is relevant.

7.1.3. Stitching HST and Gaia

We stitched the HST and Gaia datasets as follows:
1. We cut the Gaia stars (GC stars plus interlopers) at G = 17,

where we expect negligible mass segregation. We explored
different magnitude limits, but moderate changes affected
little our fits. However, using very faint magnitude limits
(G = 19 or 20.5), we noticed a lack of continuity in the tran-
sition from the HST to the Gaia radial range, which appears
to be a consequence of overcrowding in the cluster’s center
(Arenou et al. 2018), where fainter magnitude stars are more
difficultly detected.

2. We counted the number NG of Gaia stars inside the annulus
2′′.7 < R < 100′′, corresponding to the region where our HST
data seems complete (see Fig. 8).

3. We removed the Gaia stars in that annulus and added theNG

HST brightest stars (a tiny fraction of which may be inter-
lopers) in that annulus, so we could correctly probe the inner
surface density profile.

7.1.4. Surface density results

We performed maximum likelihood estimation (MLE) to fit
log Re and n to the distribution of projected radii, using a model
SD profile with a Sérsic GC plus a uniform (constant SD) field

star contribution, considering the data up to a maximum pro-
jected radius, Rmax

10. This maximum radius must be chosen large
enough to capture the behavior of the SD profile in the outer enve-
lope of the GC as well as the contribution of the field stars, but
not too large to be overwhelmed by the field stars in the MLE fit.

We performed such MLE fits of the SD profile for 500 values
of log-spaced Rmax between 0◦.2 and 1◦. Figure 10 (left) shows
a plateau for Rmax in the range ∼1300′′−1800′′, where Re, n and
the field star SD are each indeed constant. At lower (resp. higher)
Rmax the field star SD fluctuates at lower (higher) values with
corresponding higher (lower) and fluctuating Re and n.

For better precision, we then performed 30 MCMC runs for
log-spaced Rmax between 1300 and 1800 arcsec and assigned the
mean of best-fitted values and their uncertainties (green crosses
and error bars of Fig. 10, respectively) as the global Sérsic radius
and index means and uncertainties. The results are displayed in
Fig. 10 (bottom). We found Re = 4.′51±0.′36 and n = 3.26±0.23.
Our effective radius is significantly higher than the estimates of
Trager et al. (1995) and de Boer et al. (2019), which both fail to
properly capture the cusp. Indeed, the Sérsic SD profile with the
same index (n = 3.26) but with the Trager et al. (1995) effective
radius (green curve in the right panel of Fig. 10) fails to repro-
duce the steep inner SD profile.

7.2. Multiple populations

Mass-orbit modeling codes such as MAMPOSSt-PM assume a
given population with a given SD profile, as well as given kine-
matics (i.e., p(u|R) for MAMPOSSt-PM). Systems with multiple
populations, each with their SD profiles and kinematics, should
be analyzed jointly. MAMPOSSt-PM can handle such multi-
ple populations. In practice, we predetermine priors for the SD
profile of each population, and then run MAMPOSSt-PM with
several tracer components.

There are two mechanisms that bring multiple populations in
GCs. First, the formation of a GC may occur in several episodes,
with different populations with their own chemistry and kine-
matics. Second, the short two-body relaxation time of GCs in
general and especially of core-collapsed GCs such as NGC 6397,
allows for energy exchanges between stars that are sufficient to
drive them toward energy equipartition. This leads to mass seg-
regation, where massive stars are confined to smaller radii and
have lower typical velocities at a given radius. We examine these
two mechanisms in turn.

7.2.1. Multiple chemical populations

Many GCs show signs of different chemical populations (e.g.,
Carretta et al. 2009a), in particular NGC 6397 (Carretta et al.
2009b; Milone et al. 2012b). Unfortunately, the separation of
stars into different chemical populations in NGC 6397 was only
performed with HST data limited to small projected radii. Such
a chemical separation of stars is impossible with the Gaia data,
for lack of sufficient wavebands to provide a large enough
dimensionality of colors to distinguish chemical populations.
Moreover, this requires cleaning the data for differential red-
dening. Therefore, the splitting of the stars of NGC 6397 into
chemical populations, while possible, is beyond the scope of the
present article.

Besides, Cordoni et al. (2020), who analyzed the spatial dis-
tributions and kinematics of seven GCs (other than NGC 6397)

10 We performed MLE using scipy.optimize.differential_
evolution in Python.
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Fig. 10. Fits to the stellar surface density profile of NGC 6397. Left: Sérsic plus constant field star surface density fits, as a function of the maximum
allowed radius, Rmax. The values of Re, n, and ΣFS obtained by MLE for 500 values of Rmax are shown in red. The black horizontal line and light
blue shaded region respectively show the mean marginal values of 30 MCMC fits and their uncertainties, performed in the range of Rmax (delimited
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show the Sérsic plus constant background prediction from MLE fits, but with the effective radius fixed to the value found by Trager et al. (1995)
(green). The vertical black line highlights the separation between HST and Gaia data used for the fits.

split by their two detected chemical populations, found that only
the two GCs with the highest two-body relaxation times showed
signs of different kinematics between their two chemical pop-
ulations. If the two populations have roughly the same mass
functions, then two-body relaxation should wash out any differ-
ences in their positions in projected phase space (Vesperini et al.
2013), except in their outer regions where two-body relax-
ation is incomplete. The very low relaxation time of NGC 6397
(600 Myr at its half-mass radius according to Baumgardt et al.
2019) thus suggests that its chemical populations should have
similar kinematics, at least within its effective radius of 4.′5 as
we found above.

7.2.2. Mass segregation

We explored the range of masses of the stars in our datasets
by comparing synthetic CMDs to our observed ones. Following
Carballo-Bello et al. (2012), we generated a CMD with a set of
isochrones from the parsec (Marigo et al. 2017; Bressan et al.
2012; Pastorelli et al. 2019 and references therein) software. We
provided ninTPC = 15 since Marigo et al. (2017) mention this suf-
fices to recover the main details of thermal pulse cycle variations
in the evolutionary tracks. We also assigned ηReimers = 0.477,
which is the median value of the Reimers coefficient (Reimers
1975) among clusters, provided by McDonald & Zijlstra (2015);
in their Fig. 4, they showed that NGC 6397 presents a value
of ηReimers corresponding to this value within ∼1σ. We adopted
an age of 12.87 Gyr and a metallicity of [Fe/H]=−1.54 from
Marín-Franch et al. (2009), while adopting our distance of
2.39 kpc (Sect. 3.3) and a Galactic extinction AV = 0.50 obtained
from E(B−V) = 0.160 (Schlafly & Finkbeiner 2011)11 and

11 We used the Galactic Dust Reddening and Extinction tool, https:
//irsa.ipac.caltech.edu/applications/DUST/ in the center of
NGC 6397.
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Fig. 11. Stellar masses. Left: comparison of the cleaned HST data and
the fitted parsec isochrone, displaying the expected stellar mass rela-
tive to each main-sequence position. Right: magnitude – mass relation
from the parsec model. The green dashed horizontal line shows the
magnitude threshold that we used to split our sample into two mass
populations.

RV = 3.1. We note that this value of extinction is 14% lower
than E(B−V) = 0.188 found in the older reddening maps of
Schlegel et al. (1998), but consistent with AV = 0.52±0.02 found
by Valcin et al. (2020) despite their larger distance of 2.67 pc
(Table 1).

The left panel of Fig. 11 shows that the parsec model fits
well the CMD of the cleaned subsample of HST stars. The mass
ratio among the heaviest and the lightest stars in our cleaned
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HST sample is 2.57, sufficiently high to worry about the possi-
bility of mass segregation in our cleaned HST sample.

In fact, mass segregation is visible in NGC 6397 (Heyl et al.
2012; Martinazzi et al. 2014). Analyzing HST stars in the range
3′ < R < 7.′5, Heyl et al. (2012) found mass segregation of
main-sequence stars: brighter stars show 4% lower median pro-
jected radius and 12% lower median PM moduli than fainter
stars. In a subsequent study by the same team, Goldsbury et al.
(2013) showed that two characteristic radii scale as a Mγ, with
γ = −1.0±0.1 for NGC 6397. Martinazzi et al. (2014) found that
the mean mass of main-sequence stars drops with physical radius
(after deprojection) from >0.7 M⊙ for r < 10′′ to ≃0.56 M⊙ for
r > 100′′ (after correcting for the completeness with magni-
tude, estimating it by adding artificial PSF-convolved stars to
the images), thus a 20% effect.

MAMPOSSt-PM is able to treat multiple stellar populations
together. We therefore also performed SD fits with two popula-
tions of stars, as we explain below.

The magnitude threshold we chose to separate the two pop-
ulation of stars was based on the analysis of Heyl et al. (2012):
Their Figs. 7 and 12 indicate that NGC 6397 main-sequence stars
present a (small) variation of radial distribution and velocity dis-
persion profiles, respectively, at a magnitude of F814W ∼ 18.75,
which corresponds to F606W = 19.76. We thus used this limit
to divide our cleaned subset of 8255 stars into two populations,
one with brighter magnitudes (6527 heavier stars) and the other
with fainter ones (1728 less massive stars).

Unfortunately, we could not perform a surface density fit
as robust as for the single population case because (1) our
data was considerably incomplete at higher magnitudes (the
fainter subset) and (2) as mentioned in Sect. 7.1.3, the HST plus
Gaia stacked subset presented discontinuous trends when allow-
ing stars with fainter magnitudes (G > 17). We therefore let
MAMPOSSt-PM fit the SD profile of each population from the
kinematics only, more precisely from the conditional probabil-
ities p(u|R). We adopted Gaussian priors for log Re, with mean
equal to that found by our previous SD fit of the single popula-
tion (Sect. 7.1) and a wide (0.2 dex) uncertainty. We also con-
sidered Gaussian priors for the Sérsic indices, but with lower
uncertainties to avoid a degeneracy in its marginal distribution.

We helped MAMPOSSt-PM by providing narrow Gaussian
mass priors for each population. We derived mass fractions for
each population using the power-law main-sequence stellar mass
function of slope α = −0.5212 together with the mass limits of
our subsets. Indeed, a power-law relation dN/dm ∝ mα implies
a total stellar mass in the range of stellar masses (m1,m2) of

Mtotal ∝
∫ m2

m1

m
dN

dm
dm =

m2+α
2 − m2+α

1

2 + α
, (22)

and thus derive

Mbright

Mfaint
=

m2+α
bright − m2+α

cut

m2+α
cut − m2+α

faint

, (23)

where Mbright and Mfaint are the masses of the brighter and fainter
populations, respectively and mbright, mfaint and mcut are the
respective highest, lowest and two-population threshold masses
of the global subset. With mbright = 0.77 M⊙, mcut = 0.51 M⊙,

12 The slope α = −0.52 of the main-sequence stellar mass function of
NGC 6397 is given in H. Baumgardt’s very useful web site on GCs,
https://people.smp.uq.edu.au/HolgerBaumgardt/globular

and mfaint = 0.25 M⊙ (right panel of Fig. 11), Eq. (23) yields
a bright mass fraction of 0.56. Since our main mass estimates
of NGC 6397’s mass with one single population were centered
around 105 M⊙, we passed logarithmic Gaussian priors to each
population, centered at log(M/M⊙) = 4.7, with standard devia-
tion of 0.05.

7.2.3. MAMPOSSt-PM assumptions and priors

To summarize, MAMPOSSt-PM assumes that NGC 6397, lying
at a distance of 2.39 kpc, with its center at the position
found by Goldsbury et al. (2010), is a spherical self-gravitating
system with no internal streaming motions (rotation, expan-
sion/collapse, etc.). It also assumes that the local velocity dis-
tribution function is an ellipsoidal 3D Gaussian aligned with the
spherical coordinates.

By relying on the Jeans equation, MAMPOSSt-PM assumes
that stars are test particles orbiting the gravitational potential,
and that they do not interact with one another. While binary stars
have their own motions and violate the test particle hypothe-
sis, these are in great part filtered out of our data. However, the
low two-body relaxation time of NGC 6397 means that star-star
interactions are not negligible, which violates the test particle
assumption.

We now summarize our adopted priors. The surface den-
sity profile of GC stars is assumed to follow the Sérsic law. We
adopted Gaussian priors for log Re and for n (see Sect. 7.1) for
both single- and two-population analyses.

Following Sect. 5.2.3, we adopted Gaussian priors on the
bulk LOS velocity and PM of the GC and Pearson VII priors
on the modulus of the bulk PM of the field stars. The field star
LOS distribution is Gaussian with a wide (1.7 dex) uncertainty.
The log ratio of field stars to GC stars is flat between −5 and −2.

Our standard runs assume isotropic velocities. We also ran
cases with anisotropic velocities, and following Mamon et al.
(2019) we used flat priors on βsym = β/(1 − β/2), which varies
from −2 for circular orbits to 0 for isotropic orbits and +2 for
radial orbits, and with βsym → β for |β| ≪ 1. Our flat priors were
limited to −1.9 < βsym < 1.9, where the two extremes corre-
spond to β = −38 and β = 0.97, respectively (see Eq. (8)).

We also adopted flat priors on the GC stellar log mass
(3 to 6) for the single-population runs and Gaussian priors with
equal means and wide dispersions for the two-population runs
(Sect. 7.2.2). The (sub-)cluster of unseen objects is modeled with
different density models with a wide Gaussian (1 dex) prior on
the scale radius uncertainty, assuming isotropic velocities.

8. Analysis

8.1. Marginal distributions and covariances

We explored parameter space to determine marginal distribu-
tions and parameter covariances using the same Markov chain
Monte Carlo (MCMC) approach as Mamon et al. (2013, 2019),
see Sect. 4.7 of Mamon et al. (2019). This makes use of the pub-
lic Fortran CosmoMC code (Lewis & Bridle 2002)13. In par-
ticular, we used 6 MCMC chains run in parallel and stopped the
exploration of parameter space after one of the chains reached
a number of steps Nsteps = 10 000 Nfree, where Nfree is the num-
ber of free parameters of the model. The only difference is that

13 https://cosmologist.info/cosmomc/
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we now discard the 3000 Nfree first steps of each MCMC chain
(burn-in phase) instead of the first 2000 Nfree as Mamon et al.
(2019) previously did.

8.2. Bayesian information

There are several ways to compare the different results of MAM-
POSSt-PM using different priors. The simplest would be to
compare the log-likelihoods. But there is then the risk of over-
fitting (under-fitting) the data when using too many (few) free
parameters. We considered two model selection criteria to dis-
tinguish our different models and priors. We first considered the
corrected Akaike Information Criterion (Sugiura 1978)

AICc = AIC + 2
Nfree (1 + Nfree)
Ndata − Nfree − 1

, (24)

where AIC is the original Akaike Information Criterion (Akaike
1973)

AIC = −2 lnLMLE + 2 Nfree, (25)

and where LMLE is highest likelihood found when exploring the
parameter space, Nfree is the number of free parameters, and Ndata

the number of data points14. We also considered the Bayes Infor-
mation Criterion (BIC, Schwarz 1978):

BIC = −2 lnLMLE + Nfree ln Ndata. (26)

Given that the relative likelihood (given the data) of one
model relative to a reference one is

exp

(

−AIC − AICref

2

)

(27)

(Akaike 1983), a model with a higher AICc (or AIC) relative
to a reference model can be ruled out with 95% confidence if
AICc > AICcref + 6. BIC follows the analogous to Eq. (27) for
the relative likelihood (Kass & Rafferty 1995):

exp

(

−BIC − BICref

2

)

, (28)

so a model with a higher BIC relative to a reference model can
be ruled out with 95% confidence if BIC > BICref + 6.

Since BIC penalizes extra parameters more (factor ln Ndata ≃
9.0) than AICc (i.e., by a factor two for our dataset), BIC
effectively prefers simpler models than does AICc. BIC is
well suited for situations where the true model is among the
tested ones, while AIC(c) is more robust in the opposite case
(Burnham & Anderson 2002). In practice, we do not expect any
of our models to be true: for example, there is no expectation
that the surface density of stars in a GC should precisely follow
a Sérsic model. To paraphrase the statistician George Box: “All
models are wrong, but some are useful” (Box 1979)15.

We therefore present both AICc and BIC in our results. How-
ever, we give preference to AICc whenever having to decide
between different models.

14 The main results of this paper use Ndata = 8255 and Nfree ∼ 10.
15 The angular fluctuation spectrum of the cosmic microwave back-
ground appears to be a counter-example.

9. Mass-orbit modeling results

9.1. MAMPOSSt-PM runs

Table 3 displays our standard runs, along with some robustness
tests on velocity isotropy, mass segregation and presence of cen-
tral components. Our runs have come with 4 variations for the
inner mass distribution: (1) no IMBH nor (sub)-cluster of unre-
solved objects (CUO, see Sect. 2.2), (2) IMBH with no CUO, (3)
CUO without an IMBH, and (4) both IMBH and CUO.

The left panel of Fig. 12 shows the marginal distributions and
covariances from the MCMC output of model 1 (IMBH without
CUO and with isotropic stars), for a selection of missing param-
eters (missing are the bulk GC motion and the log ratio of field
stars to GC members). The MCMC ran well in the sense that the
MLE values (red arrows) are close to the peaks of the marginal
distributions (blue shaded histograms). One notices that higher
IMBH masses are obtained with higher GC scale radii, indepen-
dently of the Sérsic index. The reason is that, at given total stellar
GC mass, more concentrated stars will lead to more mass in the
inner regions, meaning less IMBH mass. This is the opposite of
what van der Marel & Anderson (2010) proposed, but consistent
with what Baumgardt (2017) found for NGC 6397.

The right panel of Fig. 12 shows the same for model 10
(CUO without IMBH and with isotropic stars). Again, the MLE
values are coincident with the peaks of the marginal distribu-
tions. But surprisingly, the MCMC favors a GC scale radius at
the upper edge of the 3σ prior obtained from the SD profile fit
of Sect. 7.1.4. We will discuss this below. The mass of the CUO
increases with the GC and CUO scale radii, and decreases with
the GC Sérsic index (because low index leads to flatter SD pro-
files, which are somewhat analog to wider SD profiles). Interest-
ingly, the scale radius of the CUO population is small (7′′), as
we will discuss in Sect. 9.4.1.

9.2. Velocity anisotropy

The combination of HST data properly probing the inner regions
of NGC 6397 with the Gaia data probing the outer regions allows
us to estimate the velocity anisotropy across the cluster. We ran
MAMPOSSt-PM using different priors on the anisotropy. Our
standard prior has isotropic velocities throughout the GC. Our
other priors assume the gOM anisotropy model (we found that
the softer varying Tiret et al. 2007 model performs almost as
well, but not better).

The highest likelihoods (lowest −∆ lnLmax) between the
first five models are achieved by model 2 (everything free),
but it did not converge (R−1 = 0.07 > 0.02). In particu-
lar, model 2 leads to quasi-isotropic inner and outer veloc-
ities, with a narrow constraint for β0 and a quite wide one
for β∞. The transition radius, rβ, is very poorly constrained.
Compared to model 2, the isotropic model 1 is very strongly
preferred by BIC (according to Eq. (28) for ∆BIC = 26)
and marginally so (92% confidence according to Eq. (27) for
∆AIC = 4.87) by AICc. Model 3 with the anisotropy radius
tied to the effective radius of the SD profile (TAND) is strongly
preferred by BIC Bayesian evidence (with respect to model
2), but not with AICc. Interestingly, model 3 leads to negli-
gible anisotropy in the center with narrow uncertainty. But it
points to mildly tangential anisotropy at r = rout = 8′, which
corresponds to our maximum projected radius Rmax. Forcing
central isotropy with TAND (model 4) leads to less tangential
outer velocities. Conversely, forcing outer isotropy with TAND
(model 5) leads to strongly well constrained isotropic inner
velocities.
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Table 3. Main results and priors for MAMPOSSt-PM runs, using the merged sample from the cleaned HST, Gaia and MUSE datasets.

Model rβ β(r) Σ Nfree R−1 β0 βout rscale n MBH MCUO MGC −∆ lnLmax ∆AICc ∆BIC
[pc] [arcmin] [M⊙] [103 M⊙] [104 M⊙]

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16)

1 – iso S 8 0.003 0 0 4.38+0.41
−0.48 3.29+0.21

−0.06 658+70
−338 – 9.75+0.66

−0.70 18.82 29.62 8.90

2 1.06+52.66
−0.99 gOM S 11 0.070 0.06+0.04

−0.13 −0.05+0.66
−0.50 4.15+0.68

−0.26 3.28+0.16
−0.06 506+229

−200 – 9.50+0.98
−0.43 18.25 34.49 34.81

3 TAND gOM S 10 0.007 0.05+0.03
−0.06 −0.17+0.17

−0.08 4.24+0.51
−0.41 3.29+0.18

−0.06 453+221
−207 – 9.76+0.68

−0.72 18.45 32.89 26.20

4 TAND gOM S 9 0.005 0 −0.08+0.10
−0.12 4.21+0.58

−0.34 3.27+0.22
−0.04 530+190

−224 – 9.61+0.85
−0.56 18.50 30.98 17.28

5 TAND gOM S 9 0.003 −0.01+0.06
−0.02 0 4.24+0.56

−0.34 3.30+0.19
−0.08 576+143

−274 – 9.57+0.86
−0.52 18.85 31.68 17.98

6 – iso S 11 0.017 0 0 3.27+0.39
−0.42 3.31+0.08

−0.09 511+158
−207 – 5.45+0.74

−0.95 7.09 12.17 12.49

– iso S – – 0 0 8.35+0.94
−2.07 3.23+0.09

−0.07 – – 5.61+0.34
−0.87 – – –

7 – iso S 7 0.002 0 0 4.02+0.36
−0.34 3.79+0.11

−0.24 – – 9.18+0.58
−0.44 25.98 41.93 14.20

8 – iso S 10 0.009 0 0 2.46+0.34
−0.14 3.33+0.19

−0.06 – – 4.32+0.83
−0.41 13.68 23.35 16.66

– iso S – – 0 0 6.46+1.61
−0.77 3.28+0.07

−0.10 – – 5.39+0.51
−0.64 – – –

9 – iso S 10 0.007 0 0 5.58+0.08
−0.79 3.27+0.05

−0.09 42+92
−26

– 10.94+0.25
−0.93 10.09 16.17 9.48

– iso P – – 0 0 0.13+0.03
−0.05 – – 2.08+0.08

−0.90 – – – –

10 – iso S 9 0.002 0 0 5.31+0.36
−0.52

3.27+0.05
−0.09 – – 10.68+0.52

−0.68
9.86 13.70 0.00

– iso P – – 0 0 0.12+0.02
−0.04 – – 2.01+0.16

−0.76 – – – –

11 – iso S 9 0.004 0 0 5.28+0.38
−0.55

3.25+0.08
−0.06 – – 10.41+0.56

−0.64
11.14 16.26 2.56

– iso H – – 0 0 0.08+0.02
−0.04 – – 3.09+0.26

−1.57 – – – –

12 – iso S 10 0.012 0 0 5.30+0.36
−0.51

3.24+0.08
−0.06 – – 10.62+0.54

−0.66
9.69 15.37 8.68

– iso S – – 0 0 0.16+0.05
−0.06 0.92+1.68

−0.11 – 1.92+0.35
−0.69 – – – –

13 TAND gOM S 11 0.031 −0.02+0.06
−0.04 −0.03+0.11

−0.14 5.31+0.36
−0.52

3.27+0.05
−0.08 – – 10.69+0.53

−0.67
9.92 17.83 18.15

– gOM P – – 0 0 0.12+0.03
−0.04 – – 1.91+0.30

−0.67 – – – –

14 – iso S 12 0.014 0 0 4.42+0.16
−0.85 3.27+0.09

−0.07 – – 6.69+0.08
−1.43 0.00 0.00 7.33

– iso S – – 0 0 9.38+1.02
−2.07 3.25+0.05

−0.11 – – 4.96+1.12
−0.10 – – –

– iso P – – 0 0 0.11+0.02
−0.04 – – 1.72+0.28

−0.67 – – – –

15 TAND gOM S 16 0.009 0.03+0.06
−0.05 0.00+0.08

−0.15 3.99+0.57
−0.56

3.27+0.10
−0.07 – – 6.16+0.63

−0.89
−0.56 6.91 42.29

TAND gOM S – – −0.11+0.10
−0.08 0.13+0.15

−0.68 9.85+1.00
−2.47 3.24+0.07

−0.10 – – 5.42+0.66
−0.55 – – –

– iso P – – 0 0 0.11+0.03
−0.04 – – 1.84+0.19

−0.90 – – – –

Notes. Columns are (1): run number; (2): anisotropy radius (where TAND is tied anisotropy number density, rβ = rscale); (3): velocity anisotropy
model (“iso” for isotropic); (4): surface density model (“S” for Sérsic, “P” for Plummer, “H” for Hernquist); (5): number of free parameters; (6):
MCMC convergence criterion (R−1 ≤ 0.02 is considered as properly converged, worse convergence runs are shown in bold red); (7): anisotropy
value at r = 0; (8): anisotropy value at rout = 8′; (9): scale radius (effective – half projected number – radius Re for Sérsic, otherwise radius of
3D density slope −2, with r−2 = 1.63 Re for Plummer and r−2 = 0.28 Re for Hernquist); (10): Sérsic index; (11): black hole mass; (12): mass of
inner subcluster of unresolved objects (CUO); (13): mass of the stellar population considered; (14): difference in minus natural logarithm of the
maximum likelihood relative to model 14; (15): difference in AIC (Eq. (25)) relative to best value; (16): difference in BIC (Eq. (26)) relative to
best value. Blue bold zeros for −∆ lnLmax, ∆AICc and ∆BIC represent the reference values among all runs, for each column, respectively. Values
in bold gray were fixed parameters. The values of Cols. (9)–(13) are at maximum likelihood (black) or medians (orange and italics, when the MLE
is outside the 16−84 percentiles). The uncertainties are from the 16th and 84th percentiles of the marginal distributions. The number of stars in
each subset is 8255, the maximum allowed PM error (Eq. (12)) for those runs is 0.197 mas yr−1, the distance was considered as 2.39 kpc, and the
GC center was that of Goldsbury et al. (2010). For models considering two main-sequence populations, the parameters of the brighter (fainter)
population is displayed first (next).

We also ran a CUO case, where the stars had free inner
and outer anisotropy, but with TAND. Compared to its isotropic
analog (model 10), model 13 with a single population has a
slightly worse likelihood (but did not fully converge), and the
inner and outer anisotropies are consistent with isotropic orbits
(β0 = −0.02±0.05, βout = −0.03±0.05). An analogous run for the
two-population CUO model also yields close to isotropic orbits
for the bright population (β0 = 0.03 ± 0.05, βout = 0.00 ± 0.12).
The faint population has inner velocities consistent with isotropy
(β0 = −0.1 ± 0.1). On the other hand, its outer anisotropy is
poorly constrained (βout = 0.1+0.2

−0.7) because of the near complete
lack of faint Gaia stars with decent PM errors, hence we are
limited to the inner regions. Still, the outer velocities are again
consistent with isotropy.

In summary, there is strong evidence for isotropy with BIC,
but weaker evidence with AICc. However, even the anisotropic
runs produce anisotropy profiles that are very close to isotropic
throughout. We thus conclude that the visible stars in NGC 6397

have quasi-isotropic orbits, at least for the stars brighter than
F606W = 19.76 and up to R = 8′. We therefore adopted isotropic
orbits as our standard when investigating other quantities.

9.3. Intermediate mass black hole

We tested the scenario with an IMBH and no CUO (models 1 to
6). Among models 1 to 6, the most likely one and very strongly
favored by AICc (model 6, which is the analog of model 1, but
with 2 populations for the GC stars) yields an IMBH mass of
511+158

−207 M⊙, while model 1, which is weakly favored by BIC
over model 6, yields an IMBH mass of 658+70

−338 M⊙. Both mod-
els 1 and 6 indicate an IMBH mass above 200 M⊙ at 95% con-
fidence. Furthermore, AICc (resp. BIC) indicates very strong
(resp. quite strong) evidence for the presence of an IMBH in the
absence of a central diffuse component (i.e., comparing IMBH
models 1 and 6 to models 7 and 8, respectively).
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Fig. 12. Selected marginal distributions and covariances for models 1 (IMBH, left) and 10 (subcluster of unresolved objects, CUO, right), both
for single main-sequence population and isotropic velocities. Only the elements of the MCMC chains past the burn-in phase are considered. The
green curve shows the Gaussian prior, while its absence indicates flat priors in the provided range. The red arrows and crosses indicate maximum
likelihoods. The contours are the equivalent of 1, 2, and 3σ. The two panels only show four out of eight (left) and five out of nine (right) of the
free parameters.
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Fig. 13. Selected marginal distributions of the CUO effective radius and
mass, and their covariance, for a preliminary MAMPOSSt-PM run for
an isotropic, single-population plus Plummer CUO SD profile, similar
to model 10, but with a prior on the log CUO scale radius centered at
r−2,CUO = Re,GC = 4.′51. The notation is the same as in Fig. 12.

However, both AICc and BIC indicate strong evidence against
the IMBH hypothesis in comparison with the presence of a CUO,
with differences of 15.9 in AICc and 8.9 in BIC between isotropic,
single-population models 1 and 10. With two-population GC
stars, we have differences of 12.2 in AICc between isotropic mod-
els 6 and 14. But with BIC, the difference is only 5.2, leading to
only moderately strong evidence (92% confidence) of favoring the
CUO over the IMBH. But given our preference for AICc for the

complex physics of GC kinematics with imperfect models for the
surface density profile for example (see Sect. 8), we conclude that
the evidence is strong in favor of a dark component that is diffuse
for the two-population model. Hence, the unseen inner matter of
NGC 6397 is very likely to be diffuse. We therefore now investi-
gate the CUO model in more detail.

9.4. Inner subcluster of unresolved objects (CUO)

9.4.1. CUO density profile

If the dark component is diffuse as a CUO instead of a singu-
lar IMBH, we first need to measure its extent. MAMPOSSt-PM
can provide constraints on the shape and scale radius of the den-
sity profile of the unseen population, through the sole use of the
conditional probabilities of velocity at given projected radius,
p(u|R), without directly fitting the distribution of projected radii.

We first assumed a Plummer (1911) model for the CUO with
the same effective radius as that of the GC stars (4.′5), but with
a wide standard deviation (1 dex) for the Gaussian prior on log
scale radius. Interestingly, as seen in Fig. 13, MAMPOSSt-PM
converged to r−2 = 7′′, thus an effective (half-projected number)
radius of only 4′′.3 for the CUO16, which is 60 times lower than
the median of the prior, thus confirming our suspicion that the
CUO might indeed be significantly more concentrated than the
main-sequence stars.

We then ran MAMPOSSt-PM for three models with a much
smaller scale radius prior for the CUO (30′′), to allow for more

16 We used the Plummer model relations ν(r) ∝ (r2 + a2)−5/2, Σ(R) ∝
(R2 + a2)−2, M(r)/M∞ = r3/(r2 + a2)3/2, with Re/a = 1/2 and r−2/a =√

2/3.
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accurate fits. We used three different CUO density models: a
Sérsic model, a Plummer (1911) model, and a Hernquist (1990)
model. All three led to very small scale radii, which convert to
effective (half projected number) radii Re = 9′′.6, 17′′.4 and 4′′.4
for the Sérsic, Hernquist and Plummer models, respectively17.

The Sérsic model (12) is the most likely one, closely fol-
lowed by the Plummer model (10). AICc has a weak preference
for the Plummer model, while BIC prefers the Plummer model,
with strong evidence against the more complex Sérsic model,
but weak evidence against the Hernquist model (11). Model 12
with the Sérsic CUO density profile produced a low Sérsic index
of n = 0.92, which leads to a shallow inner slope that is not
too different from the zero slope of the inner Plummer density
profile (see Fig. A.1 from Vitral & Mamon 2020). The steeper
inner profile of the Hernquist density profile makes it less sim-
ilar to the n = 0.92 Sérsic model than is the Plummer profile,
as confirmed by the Hernquist model 11 producing the lowest
likelihood (highest − lnL) among the three models.

In summary, it is hard to distinguish which is the best density
model for the CUO scenario. There is weak evidence for a shal-
low slope. We adopted the Plummer model given that it is the
preferred of the three density models for both AICc and BIC,
albeit with weak evidence for both.

9.4.2. Presence of an IMBH in addition to the CUO

One may ask whether the center of NGC 6397 can host both an
IMBH and a diffuse dark component. Model 9 contains both, but
it is somewhat less likely than model 10, and in comparison it is
strongly disfavored by BIC, although only weakly disfavored by
AICc. We note that the Plummer model used for the CUO is the
one that best distinguishes the CUO from a possible additional
IMBH. Moreover, the recovered mass of the additional IMBH is
so small 42+92

−26 M⊙ that it can no longer be called an IMBH.

9.5. Two-mass populations

Table 3 also displays the MAMPOSSt-PM results of 4 mod-
els with two populations, split by apparent magnitude, hence by
mass (Sect. 7.2.2). Model 14, with CUO but no IMBH, has the
highest likelihood of the three models considering isotropy. It
is very strongly favored with AICc over models 6 (with IMBH
but no CUO) and 8 (no IMBH nor CUO). It is also preferred by
BIC, which strongly favors it over model 8, but only marginally
favors it over model 6 (∆BIC = 5.16, leading to 92% confidence
in preferring model 14 over model 6, according to Eq. (28)). This
preference of the CUO model over the IMBH model resembles
that found for the single population (Sect. 9.3).

But there are differences in the MAMPOSSt-PM results
between single-population and two-population models, both
in their Bayesian evidence and in their best-fit parameters.
Indeed, the two-population model 14 shows the highest like-
lihood and AICc evidence of the first fourteen models listed
in Table 3. In particular, comparing two-population models to
their single-population equivalents, there is strong AICc evi-
dence (∆AICc = 13.7) favoring two-population model 14 than 1-
population model 10. But there is strong BIC evidence (∆BIC =
7.3) the other way, with model 10 displaying the best BIC evi-
dence of all fourteen models listed in Table 3.

The reader may note that the GC stellar masses summed over
the one or two populations are 9% greater in the two-population

17 We used the Hernquist model relations ν(r) ∝ a4/[r (r + a)3],
M(r)/M∞ = r2/(r + a)2, with Re/a = 1.8153 (Hernquist 1990), with
his expression for Σ(R), and also r−2/a = 1/2.

runs for CUO without IMBH scenarios (model 14 versus model
10) and 13% higher for IMBH without CUO scenarios (model 6
versus model 1). Moreover, the IMBH mass is 22% lower in the
two-population model 6 relative to the single-population model 1.
Given that the standard deviations in the log GC mass (single or
sumofBright andFaint) are less than0.03 dex, thedifference in the
means of log MGC of 0.086 dex is highly significant for samples of
order of 105 points, as we checked with a Student t test. Similarly,
the standard deviations in log MIMBH are of order 0.2 dex; thus the
difference of 0.037 dex in their means is again highly significant,
as we also checked with the Student t test.

MAMPOSSt-PM yields interesting results on the differ-
ences between the bright and faint populations. First, the two-
population runs can be tested for the respective masses in each.
Despite our prior of equal masses for each, MAMPOSSt-PM
returns best-fit bright population mass fractions of 0.49, 0.44,
and 0.57 for models 6 (IMBH without CUO), 8 (no IMBH nor
CUO), and 14 (CUO without IMBH). Only model 14 has a bright
fraction close to the expected value of 0.56 (Sect. 7.2.2).

Secondly, in all three two-population models, the brighter
population has a much lower scale radius than its fainter coun-
terpart, by factors of 2.5, 2.6 and 2.1 for models 6, 8, and 14,
respectively. These lower scale radii for the bright population are
highly statistically significant. Indeed, the fractions of MCMC
chain elements leading to higher scale radius of the brighter pop-
ulation are less than 0.04% for models 6, 8, and 14. Therefore,
MAMPOSSt-PM is able to find very strong kinematic signa-
tures of luminosity (hence mass) segregation, by fitting p(u|R)
with the same priors on the scale radii of the two populations,
without directly fitting the distribution of projected radii.

Recall that we used the same Gaussian priors on scale radius
for both populations. As can be seen in Fig. 14, these priors
may have been too narrow, and MAMPOSSt-PM may have thus
under-estimated the differences in the scale radii of the bright
versus faint populations.

Figure 15 illustrates the quality of the 3 classes of models in
reproducing the observed velocity dispersion profiles. Model 8,
with no additional dark component, clearly underestimates the
velocity dispersions below 10′′. Model 6, with an IMBH, over-
estimates it below 4′′. Finally, model 14, with a CUO, does best
(the non-perfect match appears to be caused by sampling noise).

10. Conclusions and discussion

10.1. Main results

We ran the MAMPOSSt-PM code on a combined set of PMs from
HST and Gaia, as well as with LOS velocities from MUSE. Our
results indicate that the GC star velocities are close to isotropic
out to 2 effective radii. Our models with inner central compo-
nents (IMBH or diffuse subcluster of unresolved objects, CUO)
are strongly preferred over models without any. Models where
the central mass is in the form of an IMBH find favored masses
of 500−650 M⊙, with a 5th lower percentile of 200 M⊙. But we
found better likelihoods and Bayesian evidence for a diffuse cen-
tral unseen mass component (CUO), with effective (projected)
radius of order of 2.5 to 5′′ and mass of order 1000 to 2000 M⊙.

10.2. Robustness

We tested the robustness of our results for several variations in
our assumptions and our cuts to the data. These are: Single ver-
sus two stellar populations, the adopted SD profile, the minimum
allowed PM error, and the HST quality flags.

First, the preference for the CUO component is relatively
robust to our analysis with a single bright population or two
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Fig. 14. Same as Fig. 12, but for model 14 with a inner subcluster of unresolved objects (CUO) with two populations of stars, a brighter (heavier)
and a fainter (lighter) one, all with isotropic velocities. Only eight of twelve free parameters are shown.

populations. It is also quite robust to our assumptions on veloc-
ity anisotropy from free inner and outer values to isotropic.
The differences in AICc and BIC of IMBH relative to CUO
are +16 and +9 for single-population isotropic, +15 and +8 for
single-population, free inner and outer anisotropy but fixing the
anisotropy transition radius to the density scale radius (TAND),
and +12 and +5 for double-population isotropic. In other words,
CUO is very strongly preferred to IMBH by both AICc and BIC.
We also ran an isotropic model restricting the sample to stars
with F606W and G magnitudes brighter than 17.5, to limit the
effects of possible mass segregation of these bright stars with the
fainter, lower-mass stars. We found, again, that the CUO sce-
nario is strongly preferred over the IMBH one (∆AICc = 7.0).

The preference for CUO versus IMBH is also robust to the
choice of the density profile. Indeed, adopting a Sérsic profile,
but fixing the effective radius to 2.′9 as found by Trager et al.

(1995), produces a worse match to the kinematic data. However,
it strongly prefers the CUO model to the IMBH one, but provides
much weaker constraints on the central masses. Similarly, forc-
ing an inner cored profile to the luminous mass, with a Plummer
model, keeping the same effective radius, the kinematics indicate
much worse AICc compared to Sérsic. The AICc then strongly
prefers anisotropic models, for which it still strongly prefers the
CUO option to the IMBH one.

In addition, the preference for a diffuse central mass (CUO)
versus an IMBH is also robust to the choice of maximum
allowed PM error. We obtain the same ∆AICc = 12 for
both ǫµ < 0.276 mas yr−1 and our standard choice of ǫµ <
0.197 mas yr−1, as well as the same ∆BIC = 5. On the other
hand, to ǫµ < 0.141 mas yr−1, yields ∆AICc = 6.5 instead, pre-
sumably because of the small dataset satisfying this low maxi-
mum allowed PM error.
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Finally, we also tested the robustness of our conclusions
when also applying HST PM quality flags, such as the reduced
χ2 flag. Limiting our sample to stars satisfying (χ2

µα cos δ +

χ2
µδ

)/2 < 1.25, which is the threshold chosen by Bellini et al.
(2014) for NGC 7078, we noticed that the fitted parameters
agreed within 1σ to the ones in Table 3. Furthermore, the CUO
scenario was again favored over the IMBH one with moderately
strong AICc evidence (∆AICc = 4.91, i.e., 91% confidence)
instead of the strong AICc evidence observed for the subset
without this χ2 filter. Moreover, Bellini et al. (2014) argue that
no quality parameter filters are required for nearby GCs with
multiple observations, such as NGC 6397, when the PM disper-
sion depends little on them, as we indeed checked for both the
reduced χ2 and for their QFIT parameter. Our conclusions are
thus robust with respect to the HST data quality flags.

10.3. Effects of the dataset

It is useful to check how efficient are our different datasets in
reaching our conclusions. Such a comparison will be useful for
future mass-orbit modeling of other GCs, for example in the
absence of HST and LOS data.

Table 4 displays a summary of the masses and CUO size
from single-component isotropic runs using different datasets.
We used the same SD profile for all samples.

First, with MUSE data alone, we cannot constrain the mass
of the IMBH. In contrast, Kamann et al. (2016) found M = 600±

Table 4. Masses and CUO scale radius obtained using different datasets.

Dataset Ndata MGC MIMBH MCUO rCUO

[104 M⊙] [M⊙] [103 M⊙] [arcmin]

MUSE 528 8.81+1.66
−1.15 22+398

−2 – –

MUSE 528 8.77+1.69
−1.16 – 2.73+3.29

−2.70 0.32+98.86
−0.30

HST 7209 8.80+0.74
−0.40 472+172

−238 – –
HST 7209 10.20+0.89

−1.09 – 1.87+0.25
−0.79 0.11+0.03

−0.04
Gaia 1905 10.79+0.08

−1.32 165+912
−141 – –

Gaia 1905 10.11+0.74
−0.76 – 0.35+5.25

−0.32 15.02+76.26
−13.01

All 3 (mod. 1) 8255 9.750.66
−0.70 658+70

−338 – –
All 3 (mod. 10) 8255 10.68+0.52

−0.68 – 2.01+0.16
−0.76 0.12+0.02

−0.04

Notes. The models are all isotropic single-component. The last two refer
to our models 1 and 10, respectively.

200 M⊙ for the IMBH. The difference can be explained by the
much more liberal cut in velocity errors used by Kamann et al.
(2016), 5 km s−1, compared to our cut at 2.2 km s−1, which led
them to have 4608 stars compared to our 528 stars. Our small
MUSE sample prevents us from constraining the CUO mass and
size.

This is also true using Gaia data alone. It is not surprising,
given that we have only 152 Gaia stars within the inner 100′′

and none within the inner 10′′. This low number is caused by
our cut on PM errors. Later Gaia releases will have lower PM
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Fig. 16. Velocity anisotropy profiles of NGC 6397 for models 13 (top)
and 15 (bright in middle and faint at bottom).

errors, and will thus have larger numbers of inner stars to use for
mass-orbit modeling.

Moreover, a subset with just HST and MUSE, extending up
to 2.′5 is not able to constrain the outer isotropy indicated by
Gaia DR2. Indeed, a run similar to model 13 with this dataset
yielded β(r = 8′) = −1.0+0.5

−0.3, which is a significantly tangential
anisotropy, in contrast with β(8′) = −0.03+0.11

−0.14 when Gaia data
is also considered.

In summary, Gaia offers much improvement to
HST(+MUSE) data, by (1) allowing a better estimation of
the surface density profile, hence of the 3D density profile,
and (2) allow measuring velocity anisotropy well beyond the
effective radius. With the prior knowledge of the surface density
profile and velocity anisotropy profile, the addition of Gaia
provides somewhat better constrained masses for the inner
component (IMBH or CUO). On the other hand, Gaia data by
itself, has much too few stars with sufficiently accurate PMs at
low projected radii to probe, the IMBH or CUO mass, and even
less the CUO size. This highlights the requirement of combining
HST and Gaia for proper mass-orbit modeling of the PM of
stars in GCs.

10.4. Velocity anisotropy

Our combination of HST data probing the inner regions of
NGC 6397 and Gaia data probing the outer regions, allowed
us to obtain a wide-range view of the variation of the orbital
anisotropy with radius. Bayesian evidence favors isotropy
throughout the cluster. This confirms the projected isotropy pre-
viously determined by Heyl et al. (2012) from 3.′5 to 7′ using
HST (with 10% individual errors), as well as Watkins et al.
(2015a): σPOSt = 0.98σPOSr, up to Re/10 using HST, and by
Jindal et al. (2019) at larger radii up to 12′ ≃ 3 Re using Gaia,
with signs of radial motions at R > 8′.

But a constant projected isotropy can hide radial variations of
the 3D anisotropy β(r). Figure 16 displays the first known con-
straints on the velocity anisotropy profile of NGC 6397, which
we obtained from our MAMPOSSt-PM analyses from 1′′ to 8′.
Indeed, it is highly consistent with isotropic orbits throughout,

as seen in Fig. 16. Our parametric representation of β(r) prevents
us to see a possible sharp up- or down-turn in this radial range.
Nevertheless, MAMPOSSt-PM, like other mass-orbit model-
ing algorithms, probes physical radii beyond the maximum pro-
jected radius. This suggests that the orbits of stars at two effec-
tive radii are not much disturbed by the Milky Way, despite the
differences in the two components of the mean POS velocity
beyond R = 8′.

Only two previous studies have measured velocity
anisotropy profiles in GCs. Cluster ωCen was modeled by
van der Marel & Anderson (2010), who fit the PM dispersions
measured in bins of projected radius. They found a gOM
anisotropy profile with β0 = 0.13± 0.02 and β∞ = −0.52± 0.22,
thus slightly radial in the center and slightly tangential in
the outer regions. Messier 15 was analyzed by den Brok et al.
(2014), who used an updated version of JAM (Cappellari 2008).
They found a gOM anisotropy profile with β0 = −0.21 ± 0.30
and β∞ = 0.015 ± 0.12, hence consistent with isotropic at all
radii.

In comparison, the present study provides the first Bayesian
mass-orbit modeling of discrete GC data. Our model 13,
as well as the bright population of model 15, both yield
inner anisotropies consistent with zero with ≈±0.05 uncertainty
(Table 3). Both yield anisotropies at 8′ of |β| ≤ 0.03 with uncer-
tainties ≈0.14 (Table 3).

The velocity isotropy of NGC 6397 at fairly large radii
appears to contradict models where core-collapsed GCs have
isotropic inner motions and very radial outer motions (e.g.,
Takahashi 1995). But such models are for isolated GCs, whereas
NGC 6397 has crossed the Galactic disk many times and as
recently as 4 Myr ago (Sect. 2.2). GC stars are perturbed by tidal
forces from the Milky Way (disk, bulge and halo, which sum
up to a total gravitational potential not far from spherical, see
Fig. 2.19 of Binney & Tremaine 2008). Indeed, we noticed a dif-
ference in the mean POS velocities between the radial and tan-
gential components beyond 8′ (top panel of Fig. 6), suggesting
that the outer parts of NGC 6397 are out of equilibrium.

While the tidal field on an embedded GC inside a galaxy
should be compressive and radial (Dekel et al. 2003), it is now
understood that this does not lead to radial orbits in the outer
envelopes of GCs, where the stars are most susceptible to tidal
perturbations. Indeed, comparing stars of same binding energy,
those that are on radial orbits spend more time at larger radii
and feel stronger tidal forces, while those that are on tangen-
tial orbits are less tidally perturbed (see Giersz & Heggie 1997).
This reduces the radial outer anisotropy caused by two-body
relaxation. This is confirmed by the isotropy at the half-mass
radius of GCs with short half-mass relaxation times determined
with mass-orbit modeling by Watkins et al. (2015a), who also
found increasingly radial orbits at rh for GCs with increasingly
longer half-mass relaxation times.

This is also consistent with N-body simulations of the inter-
nal motions of a GC subject to the tidal field of a point-mass
galaxy (Tiongco et al. 2016; Zocchi et al. 2016) or of a realistic
galactic potential by itself or within an infalling dwarf galaxy
(Bianchini et al. 2017). These simulations indicate that, after
the establishment of radial outer anisotropy at core collapse,
the outer velocity anisotropy becomes less radial thanks to the
tidal field of the Milky Way, especially when the tidal field is
strong, as measured by small values of the ratio of Jacobi to half-
mass radii, rJ/rh, also called the filling factor. One can compare
these simulations in detail to NGC 6397. We estimate the filling
factor for NGC 6397 using its estimated pericentric and apoc-
entric radii of 2.9 and 6.6 kpc (Gaia Collaboration 2018a) and
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the Milky Way mass profile of Cautun et al. (2020), which pro-
duces rJ = 31 to 51 pc, hence rh/rJ = 0.08 to 0.14, assuming
Re/rh = 0.7418. The single simulation of Zocchi et al. (2016)
reaches this range of rh/rJ for snapshots 3 to 11, for which β(rh)
decreases from 0.13 to −0.02, as the tides preferentially remove
the radial orbits, leading to β(rh) = 0.00 to 0.08 for rh/rJ = 0.12,
decreasing to more tangential values for higher filling factors.
Similarly, among the MW-only simulations of Bianchini et al.
(2017), who also included a realistic initial mass function and
stellar evolution, only one of them has a filling factor at 10 Gyr
that matches the one deduced above for NGC 6397, and this sim-
ulation produced β(rh) = 0.075. So both studies would predict
that a core-collapsed cluster like NGC 6397, subject to the tidal
field of the Milky Way, should recover quasi-isotropic orbits at
rh, consistent with what we found. This needs to be checked with
more refined N-body simulations that consider elongated orbits
of a GC around its galaxy and possibly the incorporation of bina-
ries at the start of the simulation.

There are several additional possible mechanisms for pro-
ducing outer isotropic orbits. First, the passage through the dif-
ferentially rotating Galactic disk could lead to exchanges of
angular momentum leading to tangential orbits, in particular for
the outer less bound stars. But on the scale of a GC, the differ-
ences in disk rotation velocity must be minute. Second, the stars
in the outer parts of the GC must suffer violent relaxation during
passages through the Galactic disk, but the passages are so short
(a few Myr) that there may not be enough time for violent relax-
ation to effectively perturb the GC stars. Third, solenoidal modes
of turbulence on Galactic gas clouds generate angular momen-
tum within these clouds and within the stars formed therein,
which in turn can transfer this angular momentum to the pass-
ing GC. But again, the short duration of these passages limits
the amount of angular momentum that the GC stars can acquire.
Therefore, the outer isotropy appears to be produced by the tidal
field of the Milky Way preferentially removing those stars that
were on radial orbits.

10.5. Intermediate mass black hole

Our IMBH mass estimates between 500 and 600 M⊙, with uncer-
tainties of ≈200 M⊙, are consistent with those of Kamann et al.
(2016) (MIMBH = 600 ± 200 M⊙) and Tremou et al. (2018)
(MIMBH < 610 M⊙). Our 95% confidence lower limits (i.e., 5th
percentiles) are 201 M⊙ for both models 1 (single population)
and 6 (two-population).

But if IMBHs grow by BH mergers, one expects that
the gravitational radiation emitted during these mergers are
anisotropic and lead to substantial recoil of the BH remnant
of the merger (Peres 1962). Such recoils are strong enough for
70% of IMBHs of mass <1000 M⊙ to escape a GC of escape
velocity 50 km s−1 over time (Holley-Bockelmann et al. 2008).
We can estimate the escape velocity from the GC center, vesc =√
−2Φ(0), for our best IMBH model 6, given that the central

potential is Φ0 = −(2/π) bn Γ(n)/Γ(2n) G M/Re for the Sérsic
model (Ciotti 1991), where b(n) follows the relation given in
Ciotti & Bertin (1999). Model 6 then has vesc = 20.9 km s−1 and
13.1 km s−1 for the Bright and Faint components, respectively.
Summing these two terms quadratically leads to a global escape
velocity of vesc = 24.7 km s−1 for model 6. This escape velocity is
lower than the 50 km s−1 assumed by Holley-Bockelmann et al.
(2008), which should lead to an even much higher fraction of

18 We expect this Re/rh ratio from the deprojected Sérsic of index 3.3
(Simonneau & Prada 2004 approximation).
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Fig. 17. Cumulative distribution functions of projected radii for
our HST+Gaia subset in blue and for the X-ray binaries from
Bahramian et al. (2020) in red. We considered the subsets in the range of
2.7′′ < Rproj < 100′′, where the HST sample seemed complete, accord-
ing to Fig. 8.

escaping IMBHs of mass 1000 M⊙. And our 95% confidence
upper limits on the IMBH mass (without a CUO) are lower,
again implying that a yet higher fraction of IMBHs escape
their GC. A simpler model by Holley-Bockelmann et al. (2008)
indicates that 25 IMBH+BH mergers should lead to 85% of
500 M⊙ IMBHs escaping their GC of escape velocity 17 km s−1.
This weakens our confidence in the central IMBH scenario for
NGC 6397.

10.6. Cluster of unresolved objects

The scale radius of the CUO in NGC 6397 is consistent with
a feature in the SD profile of NGC 6397. Indeed, as seen in
the right panel of Fig. 10, the SD profile suggests a separation
between two populations at R = 10′′, consistent with the CUO
effective radius of a 2′′.5 to 5′′.

We now discuss the nature of the subcluster of unresolved
objects that we found in the center of NGC 6397. The much
smaller scale radius for the CUO indicates that the objects must
be more massive than the stars that we studied, thus more mas-
sive than mbright = 0.77 M⊙ (Sect. 7.2.2). Indeed, such unre-
solved massive objects would sink to the center by dynami-
cal friction Chandrasekhar (1943). The core-collapsed state of
NGC 6397 is a strong argument in favor of a population of heav-
ier stars in the cluster’s inner regions, as it suggests a short
two-body relaxation time, hence mass segregation. These heav-
ier objects constituting the CUO could be white dwarfs, neutron
stars, stellar black holes, or unresolved binaries.

We compared the radial distribution from our cleaned
merged sample and from X-ray binaries from Bahramian et al.
(2020). Figure 17 shows the cumulative distribution function
(CDF) of these two datasets in the range of 2.7−100′′, where our
HST data was complete. It is clear that these two populations do
not follow the same radial distribution (we find a KS p-value of
1.7 × 10−4). Furthermore, the bulk of the X-ray binaries seems
to be located within 6′′−50′′ arcsec (Fig. 17). This is consistent
with the CUO effective radius of 2.5 to 5′′ (Table 3).

One may ask which among white dwarfs, neutron stars, BHs
and massive binaries dominates the mass of the CUO. We can
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novae fully explode the progenitor star without leaving a black hole.
The black line shows equality as a reference.

first discard unresolved binaries of main-sequence stars. Indeed,
if they are unobserved, their total magnitude must be fainter than
F606W = 22, which is the rough magnitude limit of our HST
sample (Gaia is not relevant given the very low effective radius
of the CUO). There is no way that their total mass can exceed
that of the bulk of our sample. We could then have unresolved
binaries of a main-sequence star with a compact star (white
dwarf or neutron star) or possibly a BH. But the main-sequence
star will have a mass of mfaint = 0.25 M⊙ (Sect. 7.2.2), thus at
least three times lower than our cut at mbright = 0.77 M⊙ and
at least 20 times lower than that of a BH. Therefore, the main-
sequence mass can be neglected and we are left with the compact
star or BH.

We can compare the total mass in white dwarfs, neutron stars
and BHs, by integrating over the zero-age (stellar mass function
of the) main sequence (ZAMS):
∫ mmax

mmin

mremnant(m) n(m) dm, (29)

where n(m) is the ZAMS. We adopted the initial – final (remnant)
mass relations from Eqs. (4)–(6) of Cummings et al. (2018) for
white dwarfs and from Eqs. (C1), (C2), (C11), and (C15) of
Spera et al. (2015) for neutron stars and BHs. Figure 18 displays
these initial - final mass relations. We took a minimum remnant
mass of 0.77 M⊙, corresponding to the maximum main-sequence
mass (Sect. 7.2.2), below which mass segregation is not effec-
tive against the most massive main-sequence stars. The maxi-
mum possible neutron star mass is M ≃ 2.15 M⊙ (Rezzolla et al.
2018). We conservatively assumed a mass gap between 2.15 and
5 M⊙ from the lack of LIGO detections in this mass range. We

also considered a maximum stellar BH mass above which pair-
instability supernovae fully explode the progenitor star leaving
no remnant, adopting MBH,max = 45 M⊙ (Farmer et al. 2019) or
52 M⊙ (Woosley 2017). We ignored the formation of very mas-
sive BHs above the pair-instability gap (i.e., MBH > 133 M⊙
Woosley 2017).

Summing the masses of each component by integrating
Eq. (29) over the ZAMS mass function (i.e., the initial mass
function, which in this mass range always has the Salpeter
1955 slope of −2.3) leads to BHs accounting for ≈58% of the
CUO, with only ≈ 30% from white dwarfs and ≈ 12% from
neutron stars. These fractions vary little with the maximum
allowed BH mass: with 55% of the CUO mass in BHs with
MBH < 45 M⊙ (Farmer et al. 2019) or 60% with MBH < 52 M⊙
(Woosley 2017). These fractions are insensitive to the metallic-
ity of NGC 6397 from Z = 0.00013 to 0.0004 (i.e., from 1% to
3% solar, consistent with the metallicities derived for NGC 6397
by Marín-Franch et al. 2009 and Jain et al. 2020, respectively).

However, we must take this CUO mass dominance by BHs
with caution because BHs may merge, losing of order of 5% of
their mass to gravitational waves (e.g., Abbott et al. 2016), lead-
ing to kicks, some of which are strong enough to drive them out
of the GC (Sect. 10.5). Still, one part of the BH population may
merge and end up escaping the GC, while another part has not
merged, but would nevertheless be located at low radii thanks
to orbital decay by dynamical friction. If the CUO mass frac-
tion in BHs were at least f0 = 0.55 or 0.6 before merging and
escapes, and if a mass fraction fd of this BH component disap-
peared through mergers or escapes, then BHs would still domi-
nate the CUO if f0 (1 − fd) > 1 − f0, i.e. fd < 2 − 1/ f0 = 0.19 or
0.33 considering the maximum BH mass of 45 M⊙ (Farmer et al.
2019) or 52 M⊙ (Woosley 2017). Put another way, BHs could
contribute to half the CUO mass, if the maximum surviving BH
mass is 40 M⊙ according to our integrations of Eq. (29). The
more massive BHs would sink faster to the center by dynam-
ical friction and preferentially merge, leaving these lower mass
ones. This discussion is a simplification because orbital decay by
dynamical friction is stochastic, and one needs to test this with
N-body simulations.

Our preference for the CUO model agrees with the sugges-
tions by Zocchi et al. (2019) and Mann et al. (2019) that such
a CUO can mimic an IMBH. Both studies obtained constraints
on the mass of the stellar BH population in ωCen and 47 Tuc,
respectively. While those GCs are not core-collapsed, contrary
to NGC 6397, it is interesting to compare our results with theirs.
We determine that the CUO accounts for 1 to 2% of the GC
mass, and if BHs do not merge or escape, the bulk of the CUO
should be in BHs. Zocchi et al. (2019) tried different BH mass
fractions, and their best fits were obtained with 1 to 5% of the
GC mass in BHs. Mann et al. (2019) used as input a BH com-
ponent whose mass is 1.4% of the GC mass, but they show that
only 8.5% of this mass can be retained to avoid negative IMBH
mass. Zocchi et al. (2019) did not provide a value for the scale
radius of their stellar BHs, while Mann et al. (2019) provided a
radius as an input parameter, which amounts to 6% of their fitted
GC scale radius. In comparison, we are able to strongly constrain
the CUO scale effective to 1.7± 0.5% of the GC effective radius,
making our BH system much more concentrated.

A more robust conclusion of our integration of Eq. (29) is
that white dwarfs always dominate the neutron stars, by a fac-
tor of ≈4, regardless of the possible dominance of BHs in the
mass of the CUO component. Moreover, neutron stars can also
merge together (or with black holes), and such an event has
been detected by LIGO (Abbott et al. 2017). Presumably, the
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gravitational waves emitted will be much weaker and the lower
momentum vector of the waves should lead to smaller kicks on
the remnant (despite the lower masses of neutron stars compared
to BHs). In summary, the CUO mass should be dominated by
BHs, but must also contain white dwarfs, contributing four times
more mass to the CUO than neutron stars.

Interestingly, stellar black holes in a dense inner sub-
cluster, such as our CUO, could represent a major chan-
nel for the gravitational wave detections by LIGO/VIRGO
(Portegies Zwart & McMillan 2000). These detections involve
black holes of mass &20 M⊙ (see Abbott et al. 2019) where
electromagnetic wave detections are still lacking (e.g., Casares
2007). Black hole mergers should be even more frequent,
presently, among the core-collapsed GCs such as NGC 6397,
whose high inner densities allow for faster dynamical processes,
such as dynamical friction, dynamical creation of black hole
binaries (Heggie & Hut 2003), and subsequent hardening in
three-body encounters (Heggie 1975). Our dynamical analysis
provides a promising route to determine the locations of these
stellar mass black holes.

10.7. Final thoughts

The future of GC and IMBH science is very exciting, thanks
to Gaia now supplementing HST PMs at large projected radii.
Our discovery of a diffuse central mass, composed in large part
of stellar mass black holes, enrichens the physics of the inner
regions of GCs, and renders the search of IMBHs in Milky
Way GCs even more delicate. Continued pointings of GCs with
HST and soon James Webb Space Telescope will lead to longer
baselines and more accurate PMs. The third data release of the
Gaia mission will double the PM precision, thus enabling more
accurate mass-orbit modeling, not only of nearby GCs such as
NGC 6397, but also of more distant ones, in conjunction with
HST data. Future gravitational wave missions such as the Laser
Interferometer Space Antenna (LISA) will probe IMBHs as well
as stellar BHs, including in our Milky Way (Sesana et al. 2020).
The physics of the inner parts of GCs with possible IMBHs as
well as subclusters of stellar-mass black holes is truly enticing.
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Appendix A: Deprojection of the Sérsic surface

density profile

The Sérsic surface density model used in this work is depro-
jected in the same way as Vitral & Mamon (2020, hereafter
VM20), but we extend the deprojection to lower radii: 10−4 Re
instead of 10−3 Re. We consider again the approximations of
Lima Neto et al. (1999, hereafter LGM99), Simonneau & Prada
(2004, hereafter SP04), as well as the formula of VM20, to find
which is better suited for each region of the [n × r/Re] domain.

A.1. New coefficients for VM20 approximation extending to
very low radii

The coefficients of the VM20 approximation were originally cal-
culated for a logarithmic grid of [n×r/Re] with −3 ≤ log(r/Re) ≤
3 (100 steps) and 0.5 ≤ n ≤ 10 (50 steps). However, our HST
data could extend to even lower radii than 0.001 Re, if Re > 7′

(the lowest projected radius is 0′′.42). Indeed, such large effective
radii were found for the faint stars of the two-population models
14 and 15. We therefore recomputed the VM20 approximation,
using a different region of the [n × r/Re] domain, and an even
finer grid.

We used the same approach as we did in VM20, but this
time we performed the numerical deprojection of the Sérsic pro-
file with Mathematica 12, instead of Python. Given Fig. 4 of

VM20 and the lower limit of r/Re we needed to attain, we cal-
culated the best VM20 parameters for a new logarithmic spaced
region [n × r/Re] limited to −4 ≤ log(r/Re) ≤ 3 (150 steps)
and 0.5 ≤ n ≤ 3.5 (100 steps). The resulting coefficients ai, j,
presented in the same way as VM20 (see their Eq. (28)), can be
found online19 and we hereafter refer to them as VM20bis.

A.2. Choice of deprojection approximation

The two left panels of Fig. A.1 display the best fitting approxi-
mations in 100 × 150 grid in [log n × log (r/Re)]. We included
in MAMPOSSt-PM a simplified choice of best approximations
to the deprojected Sérsic mass and density profiles. For the mass
profile we used

– n × r/Re ∈ [0.5; 1.5] × [1; 103]: LGM99
– n × r/Re ∈ [0.5; 3.4] × [10−4; 1): VM20bis
– n × r/Re ∈ (3.4; 10] × [10−4; 1) ∪ (1.5; 10] × [1; 103]: SP04

For the density profile, the division was even simpler:
– n × r/Re ∈ (3.4; 10] × [10−4; 103]: SP04
– n × r/Re ∈ [0.5; 3.4] × [10−4; 103]: VM20bis

The outcome of this approximation is highly accurate, as seen in
the right panels of Fig. A.1 (which are the equivalent of Fig. 3
in VM20), with the grid lines indicating the divisions adopted
for the 3 approximations. The reader can verify that the relative
precision of this hybrid model is on the order of ∼0.1%.
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Fig. A.1. Characteristics of approximations to the mass and density profiles of the deprojected Sérsic model. Left two panels: most precise approx-
imation. SP stands for Simonneau & Prada (2004), LGM stands for Lima Neto et al. (1999) and VM stands for the new VM20bis coefficients
applied to the Vitral & Mamon (2020) method. The white curves indicate a thin region preferred by the LGM approximation. Right two panels:
accuracy of deprojected mass (left) and density (right) of the hybrid model using VM20bis coefficients, LGM99 and SP04, with respect to the
numerical integration done with Mathematica. This is the analog of Fig. 3 of VM20: the color scale is linear for log ratios between −0.001 and
0.001 and logarithmic beyond. Both sets of figures employ a [100 × 150] grid of [log n × log(r/Re)], which is shown in all four panels. The gray
region in the upper left of each of the density panels is for regions where the numerical integration of Mathematica reached the underflow limit
because of the very rapid decline of density at large radii for low n.

19 https://gitlab.com/eduardo-vitral/vitral_mamon_2020b
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Appendix B: Handling of field stars

B.1. Proper motion distribution function

In this appendix, we justify the need for using wider tails than a
Gaussian for the distribution of PMs in the field stars, as men-
tioned in Sect. 5.2.3.

We downloaded Gaia DR2 PM data in four regions around
NGC 6397 (and also for two other GCs, M 4 and NGC 6752,
in order to check for generality). These four regions were cho-
sen by doing a cone search, with a 30′ aperture, for posi-
tions 5◦ distant from the GC centers (αGC, δGC), north, south,
east, and west. We applied the same quality flags that we had
applied to the NGC 6397 data (Sect. 5.2.1): the inequalities of
Eqs. (12), (16) and (17).

We then fitted the distribution of PM moduli using both a
Gaussian and the form of Eq. (18). We estimated the mean µα,∗
and mean µδ for both distribution functions, a dispersion σ for
the Gaussian assumption and for Eq. (18), we estimated the scale
radius and outer slope. Finally, we took into account the convo-
lution of both distributions with Gaussian errors.

Figure B.1 shows the distribution of PM moduli, for the four
regions NGC 6397. One can easily verify that the new expres-
sion fits extremely better than a Gaussian in Fig. B.1. Moreover,
the calculated kurtosis excess of both µα,∗ and µδ always gave
huge values (from 16 to over 400, compared to 0 expected for a
Gaussian), which clearly implies a non-Gaussian behavior.

To check for robustness of our fits, we also verified that
whenever limiting the fitting range to exclude the wider wings
of the FS distribution (which cannot be done when considering
a GC relatively separated from the FS in PM space), a Gaussian
distribution is well fitted. Thus, we decided to employ Eq. (18)
throughout our study in order to account for the entire PM range.

B.2. Convolution of field stars distribution

For the GC component, the local Gaussian-like velocity distri-
bution function (VDF) must be convolved by the Gaussian LOS
and POS velocity errors, as in Eq. (7). Similarly, since the field
star LOS VDF is a Gaussian, the LOS velocity errors are added
in quadrature to the LOS velocity dispersion.

On the other hand, since the interloper PM distribution func-
tion (Eq. (18)) is not Gaussian-like shaped, we need to perform
the integral of its convolution. Calling R and Ro the respective
true and observed PMs and ǫ the PM error, it is straightforward
to follow the recipe of Binney & Mamon (1982, Appendix C)
for the convolution of two-dimensional data with circular sym-
metry:

pconv(Ro) =
Ro

ǫ2

∫ ∞

0
dR p(R) exp

(

−
R2 + R2

o

2ǫ2

)

I0

(

R Ro

ǫ2

)

· (B.1)

Mamon & Vitral (in prep.) provide an approximation for this
integral.
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Fig. B.1. Surface density of proper motion moduli (defined in Eq. (19)) for the four 5◦ distant regions around NGC 6397 (for simplicity, we call
them SOUTH, EAST, WEST and NORTH), represented by red crosses. Solid green curves display the best MLE fit for a Gaussian distribution,
while dashed green curves display the best Gaussian MLE fit when only considering the regions with proper motions inside the limit of the dashed
blue vertical line. The best MLE fit using Eq. (18) is displayed as the black curves.
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