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Abstract

Whether or not parallel repetition lowers the error has been a fundamental question in the theory
of protocols, with applications in many different areas. It is well known that parallel repetition
reduces the error at an exponential rate in interactive proofs and Arthur-Merlin games. It seems to
have been taken for granted that the same is true in arguments, or other proofs where the soundness
only holds with respect to computationally bounded parties.

We show that this is not the case. Surprisingly, parallel repetition can actually fail in this
setting. We present four-round protocols whose error does not decrease under parallel repetition.
This holds for any (polynomial) number of repetitions. These protocols exploit non-malleable
encryption and can be based on any trapdoor permutation. On the other hand we show that for
three-round protocols the error does go down exponentially fast.

The question of parallel error reduction is particularly important when the protocol is used in
cryptographic settings like identification, and the error represent the probability that an intruder
succeeds.
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1 Introduction

Various notions of interactive protocols [23, 3, 6, 8] have found wide applicability over the last decade.
They have turned out to be essential for cryptography but somewhat more surprisingly, they have
also been key to complexity theory, in particular to the theory of hardness of approximation problems
(see [1] for a survey). For many of these applications, the purpose of the protocol is for a “verifier”
to distinguish between a “good” prover making a legitimate claim and a “bad” prover attempting to
trick the verifier into accepting incorrectly. An “error bound” or “error probability” for the protocol
is a value for which we have a guarantee that any bad prover will be caught except perhaps with
probability this value. Many natural constructions of protocols have relatively large error bounds
(constant or worse), and most applications require error bounds that are small (less than 1/poly for
any polynomial poly.)

To bridge this gap, there are two generic methods of repeating protocols intended to reduce the
error: sequential repetition and parallel repetition. Sequential repetition, repeating the protocol several
times, beginning the next run after the previous one terminates, reduces error in all important models.
It also preserves desirable properties of the original protocol, such as zero-knowledge (see [21, 30]).
However, this is an expensive solution, in that it increases the number of communication rounds of
the protocol, which is undesirable for both practical and theoretical applications.

Parallel repetition was shown to reduce the error probability of Arthur-Merlin games at an expo-
nential rate [3]. (That is, k parallel repetitions of a protocol with error ϵ results in a protocol with
error ϵk for k ≤ poly(n).) It can be shown that the same is true for interactive proofs, although a
formal proof does not seem to have appeared. Beyond that, parallel repetition is more problematic.
In single prover proofs, Goldreich and Krawczyk [19] showed that parallel repetition does not preserve
zero-knowledge. In multi-prover proof systems, whether or not parallel repetition reduces the error
has been the subject of much research (see [13] for a survey). There are examples of protocols for
which two parallel repetitions fail to reduce the error at all [12], so a result as strong as for the single
prover model does not hold. However, the error can be reduced at an exponential rate depending on
the communication complexity of the given protocol [29], and this is the best possible [16].

Soon after the appearance of interactive proofs, the notion of arguments (also called computa-
tionally convincing protocols) was put forth by [8, 9]. The difference between a “proof” and an
“argument” is that the verifier in a proof is protected against false provers of unlimited computational
ability, whereas for an argument, the guarantee of protection is that it is computationally infeasible
for a bad prover to convince the verifier with high probability. (More precisely, the soundness con-
dition is “computational,” holding only for polynomial time provers.) When designing cryptographic
protocols it is natural to assume all parties are polynomial time, so this is a realistic model. Typically
these computationally convincing protocols are designed based on complexity assumptions, so that the
difficulty of convincing the verifier to accept a false claim is related to the difficulty of solving some
hard underlying computational problem, like inverting a one-way function.

Many computationally convincing protocols have been designed, often involving parallel repetition
or some variant that preserves zero-knowledge. It seems to have been assumed that, in analogy to
the interactive proof case, parallel repetition does reduce the error in computationally convincing
protocols. To our knowledge, we are the first to rigorously explore the question of whether this is the
case in general.

What we find is somewhat surprising: the number of rounds determines whether or not there is a
general parallel reduction. While in three rounds the error does go down as expected, there are four
round protocols with no error reduction at all.
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1.1 Our results

The main result of our paper is that parallel repetition does not always decrease error probabilities.
Assuming the existence of trapdoor permutations we first show a protocol for which the error for two
parallel repetitions is basically the same as the error of the original protocol. Next we show a protocol
for which the error for k = poly(n) parallel repetitions is essentially the same as the error of the
original protocol.

In the last mentioned construction, the communication complexity of the original protocol depends
linearly on k. Thus, these examples still hold out the possibility of a Raz-like [29] result in which the
error does decrease but at a rate proportional to the communication complexity. However, we then
present evidence that even this is unlikely to hold in the computational setting. We present a protocol
for which there is no “black-box” error-reduction theorem, meaning that standard techniques will be
unable to show any reduction in error for even an arbitrarily large polynomial number of repetitions.

These results exploit the notion and construction of non-malleable encryption schemes of [11].
We stress that this is independent of any zero-knowledge (ZK) concerns. As we indicated above, it

is well known that zero-knowledge is not preserved under parallel repetition [19]. What we are saying
is that even the error does not in general go down.

These results are somewhat surprising. Computationally convincing proofs have been around for
a long time, and there are a large number of protocols in the literature that use parallel repetition or
some variant that preserves zero knowledge. Our results say that a claim that these protocols have low
error, if true, cannot rely on a general theorem but must be justified by proofs specific to the protocol
at hand. For some constant round protocols, rigorous proofs of this sort have been provided [15, 5].
(Note the constructions there are not exactly parallel repetition.) More often, however, either no
argument, or sketchy arguments which seem implicitly to assume parallel repetition works in general,
are provided.

The example protocols that establish our negative results have four rounds of interaction. This
means that for protocols of four or more rounds we cannot expect a general result saying parallel
repetition reduces the error. The best we could hope for is that it does for protocols of three or less
rounds. To round off our negative results, we prove this matching positive result, showing that for
computationally convincing protocols of three or less rounds, parallel repetition reduces the error at
about the best rate we could expect: exponentially until it becomes negligible. (We cannot expect
the error probability of a computationally sound proof to ever go below negligible, as this typically
is as low as we assume the probability of breaking the underlying hard computational problem like
factoring.) The proof exploits techniques from [25].

These results indicate that there is a fundamental difference about computational soundness and
the kind of “statistical” soundness that is the property of interactive proofs (whether single or multiple
prover ones) as far as composition is concerned. They also indicate one must be careful in making
claims about the error of specific computationally sound protocols.

1.2 The bigger picture

Although the main motivation came from the area of zero-knowledge arguments, the question of
reducing error in computationally sound protocols makes sense whenever one polynomial time party is
going to accept or reject the other, or, even more generally, whenever a party will produce a boolean
output. One natural task where this occurs is identification [14]. Suppose that one can show a protocol
where an unauthorized player has probability α of making the verifier accept (whereas an authorized
player may know a strategy that is perfect). Here α is typically non-negligible and if this is to be
used for identification, then the probability of success by an unauthorized player should be very small.
It is tempting to run several copies of the protocol in parallel and hope that the probability that an
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unauthorized player succeeds in all of them goes down to the desired level.1

Other examples might include a coin-flipping protocol. If one party can bias the coin in one
repetition by only a certain amount, what can we say about the probability that a fixed k-bit string
is chosen if the protocol is executed k times in parallel? This is basically the same question: just view
an outcome that corresponds to the target string as an “accept” and the reverse as a “reject”.

1.3 A closer look

Let us try to give some idea of why error reduction by parallel repetition in computationally sound
protocols might be problematic and what are the issues involved.

The basic question of whether repetition can reduce error is a form of the direct product question. A
direct product conjecture asks whether, for some model, and a suitably hard computational problem
for that model, several independent instances of the problem are harder than a single instance. A
classical example of such a result is Yao’s XOR lemma [31, 26, 20, 24, 25] which states that, if any
feasible computation in a non-uniform model has a constant chance of failure at predicting a Boolean
function, then the probability that a feasible computation could compute the ⊕ of several strings
becomes negligible. To view this problem as a direct product result becomes clearer in the two rounds
case. View the verifier’s first message as a challenge or instance of a computational problem. The
prover then needs to compute a string (the response) which bears a certain relationship to the challenge
(the verifier accepts). Since the verifier’s messages are independent, this is a direct product question
for relations. One complication is that the prover cannot necessarily compute this relation, since
whether the verifier accepts depends not just on the challenge, but on a random tape used to pick
the challenge. (For example, the challenge could be a one-way function of the random tape.) This
correspondence is the basic idea of the positive results for three round protocols, which uses a modified
version of the proof in [25] of a direct product for Boolean functions. Intuitively, the reason this proof
could be adapted for three round protocols is that, although we cannot tell whether the actual verifier
accepts, we are interested in converting a strategy for the prover in k parallel runs to one for a single
run . In using the parallel strategy, we can simulate all but one of the parallel verifiers, picking their
random tapes. We can thus use whether the simulated verifiers accept as an indicator for whether
the real verifier is likely to accept. If the simulated verifiers are likely to reject, then we back up and
re-simulate them using fresh random tapes until most of them accept.

Unfortunately, this breaks down for the four round case. Here, there are two rounds of challenges
and two rounds of responses. After the first round of challenges, the single run prover can pick a
response that has a non-negligible chance of causing most of the simulated verifiers to accept. However,
at this point, the prover must commit herself to the first response, and hence to the simulated verifier’s
first challenges. Their second challenges could be fixed as functions of their first challenges, so in
general, if the simulated prover’s response is rejected by many of the simulated verifiers there is no
way to back up and try again. We formalize this by having the first challenge be an encryption of the
second. It is important that this encryption be non-malleable ([11])2. The resulting protocol looks
much like protocols obtained by a general technique to make trusted verifier zero-knowledge protocols
truly zero-knowledge.

1 The basic protocol is usually cryptographic, but this idea also makes sense in non-traditional situations. For instance,
in [28] there is a proposal to use “an automated Turing test” to make sure that a human is requesting to use a resource
like an on-line database and for combating junk-mail. The idea is that the user receives as a challenge a question (or task)
that is easy for human but where computers have not made much progress (e.g. simple visual or linguistic problems).
Since the probability that a computer will succeed in the task is non-negligible, a natural question is whether by repeating
several task in parallel one reduces significantly the probability of success of a machine.

2It is interesting to note that while the (single-fold) protocol works due to the non-malleability of the cryptosystem
the repeated protocol fails due to the malleability of the protocol itself.
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2 Definitions and setup

If f1, f2 : Λ → R are functions defined over some common domain Λ ⊆ {0, 1}∗, we say that f1 is
eventually less than f2, written f1 ≤ ev f2, if there is an integer k such that f1(λ) ≤ f2(λ) for all λ ∈ Λ
with |λ| ≥ k. We say that f : Λ → R is negligible if f ≤ ev | · |−c for every positive integer c, where
| · |−c stands for the function λ 7→ |λ|−c. For any integer m we let [m] = {1, . . . ,m}.

2.1 Computationally sound protocols

Two-party protocols. We consider a very general two party protocol setting. Think of the players
as having some common initial context, represented by a binary string λ, member of an underlying
set Λ ⊆ {0, 1}∗ called the domain. (This λ might be, for example, messages from some previous
protocol, thus possibly involving other parties, or public keys of these or other players.) The length of
λ, denoted n, functions as the security parameter. The actual input for the protocol between the two
players is a string x, drawn according to some input distribution I, namely x

R← I(λ). The first party,
called the prover, is trying to convince the second party, called the verifier, of some claim related to
x. They exchange messages, and, at the end of the interaction, the verifier either accepts (outputs 1)
or rejects (outputs 0). We are mostly interested in the case where the parties run in time polynomial
in n. The verifier is fixed in our setting, so that the protocol is fully specified given the strategy of the
verifier.

We view a party B (whether prover or verifier) as an interactive algorithm. It takes inputs x,
the conversation M1 . . .Mi so far, and its random tape R to output the next message, denoted
B(x,M1 . . .Mi;R). (For simplicity we omit λ from the notation. It is assumed all parties always
have access to this context.) In the case of the verifier, the last message is identified with the bit that
indicates its decision. We let Bx(·; ·) = B(x, ·; ·) denote B with input fixed to x.

Computational soundness. Let A be any interactive algorithm playing the role of the prover. We
let Acc(A, V, x) denote the probability that V accepts in its interaction with A on common input x, the
probability being over the coin tosses of both parties, with x fixed. We let Acc(A, V, I, λ) denote the
probability that V accepts in its interaction with A on common input x where the probability is over
x drawn randomly from I(λ) and the coin tosses of both parties. We are interested in computational
soundness, namely the probability that V can be made to accept, by a polynomial time prover,
measured as a function of n. The error probability is given by a function ϵ: Λ→ R.

Definition 2.1 Let V be a verifier strategy over a domain Λ and input distribution I. We say that
V has (computational) error probability ϵ(·) if for every polynomial time prover P it is the case that
Acc(P, V, I, ·) ≤ ev ϵ(·).

That is, the probability that a prover can convince V to accept is at most ϵ(λ) for long enough λ, with
how long depending on the prover.

Remarks. As indicated above, this is a very general setup in that we allow a context and input
distribution. The “arguments” model of [9, 8] is typically presented in terms of language recognition.
That’s a special case of our setup. To discuss a proof system or argument for a language L let Λ = L
and let I(λ) simply assign probability one to λ and zero to every other string, for each λ ∈ Λ. Then
the soundness condition of Definition 2.1 collapses to the standard one. In particular, this means all
our positive results apply to the standard argument model.

In any usage, the protocol must also satisfy a completeness condition. This says that there is
a particular, polynomial time prover strategy P that, if provided with some “secret” information
associated to the input x, succeeds in making V accept with high probability (for example, with
probability 1). This P is called the honest prover. We do not formally make such a condition because
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the soundness, which is the main object of our study, is an independent property. But it should be
understood that meaningful protocols will satisfy some form of completeness. (For example the ones
in our negative results do.)

We are not discussing zero-knowledge. This may or may not be a property of our protocols. We
are concerned only with soundness error.

2.2 Parallel repetition

Parallel repetition means the original protocol (specified by some verifier V ) is repeated independently
k times in parallel, where k ≤ poly(n). We let V k denote the corresponding verifier, whose strategy
consists of running k independent copies of V , and accepting iff V would accept in all sub-protocols.
More formally, the random tape R of V k has the form R1 . . . Rk where each Ri is a random tape
for V . The i-th message in the protocol, denoted Mi, is parsed as Mi = Mi,1 . . .Mi,k. The reply
Mi+1 = V k(x,M1 . . .Mi;R) of V k to some message Mi is defined via Mi+1,j = V (x,M1,j . . .Mi,j ;Rj)
for j = 1, . . . , k. Note that the verifier V k looks for a unanimous vote amongst the sub-protocols,
accepting iff all of them are accepting for V .

Note that the prover need not respect the sub-protocols in his replies. That is, if the prover must
compute a reply Mi+1 to Mi, it can choose Mi+1,j to depend on all previous information, including
values Mt,l where l ̸= j (and t ≤ i). This is what makes parallel repetition difficult to analyze.

Fix some domain Λ and input distribution I. Say V has error probability ϵ(·) over Λ and I, as per
Definition 2.1. The parallel repetition problem is: what is the error probability ϵk of V k?

It is important for the meaningfulness of the parallel repetition problem that we deny the verifier
any secret information about either the common input x or the context λ. See Appendix C.

2.3 Black-box amplification

“Black-box” error-reduction (or amplification), as we now discuss it, is a way of proving error-reduction
that is interesting for two reasons. First, it yields a strong result, and thus is desirable. Second,
whenever we can prove error-reduction at all, it appears we can prove black-box error-reduction. Thus
it makes sense to focus on this method.

One proves amplification by reduction. Namely, given a prover A, for the protocol defined by
V k, such that Acc(A, V k, x) > ϵ, we construct a prover B, for the protocol defined by V , such that
Acc(A, V k, x) > δ. (This means that if the error probability of the protocol defined by V is at most
δ then that of the protocol defined by V k is at most ϵ.) The natural way (it is hard to imagine an
alternative) to accomplish this transformation is “black-box.” We specify an oracle machine S such
that B = SA. Namely, to define B, we need just one strategy which can call A as a subroutine.

Definition 2.2 Let V be a verifier strategy over a domain Λ and input distribution I. Suppose
ϵ, δ : Λ → [0, 1]. A (k, δ, ϵ) black-box prover transform for V is a probabilistic, polynomial time oracle
algorithm S such that for any prover A the following is true for all λ ∈ Λ: if Acc(A, V k, I, λ) > ϵ(λ)
then Acc(SA, V, I, λ) > δ(λ). We say that V has a (k, δ, ϵ)-black-box error-reduction procedure if there
exists a black-box prover transform for V .

We explain what we mean by providing A to S as an oracle. The manner in which S can call the
probabilistic, interactive function A is constrained. When the common input is x (a point in the
support of I(λ)), algorithm S has oracle access to Ax. (It cannot invoke A on common inputs other
than x.) Furthermore it does not directly supply, or even have access to, the random tape to Ax.
Think of a random tape R for Ax as automatically chosen at random and fixed. S can then supply
conversation prefixes c and get back Ax(c;R). (Note this means S can “back-up” A on the same
random tape.) Also, S has a special “reset” button: when it hits this, a new random tape R is chosen
at random and fixed for Ax.
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It is important that S is polynomial time, but note that A is not restricted to be polynomial
time. Of course in the computational soundness setting we are only interested in the case where A
is polynomial time, but it is hard to imagine a natural black-box procedure that differentiates these
cases. From the point of view of S, prover A is just an oracle to be invoked (at unit cost per oracle
call): the efficiency of A doesn’t matter. Of course, S can only call A a polynomial number of times.

Note that our error-reduction theorem for three round protocols (namely Theorem 4.1) indeed
presents a black-box prover transform. In fact it is stronger.

3 Parallel repetition fails in general

In this section we provide our negative results. Proofs of all claims here can be found in Appendix A.

3.1 Non-malleable encryption

Our constructions exploit non-malleable encryption schemes as defined and constructed in [11]. Let
(G, E ,D) specify a public key encryption scheme. The key generator algorithm G takes input 1n and
produces a pair (pk, sk) of matching public and secret keys. Given the public key pk, a message bit b,
and coins r, the encryption algorithm E produces a ciphertext written C = Epk(b; r). (When we write

C
R← Epk(b) it means the underlying choice of r is made at random.) Decryption algorithm D takes

the secret key and ciphertext to recover the message, b = Dsk(C). Note G and E are probabilistic
while D is deterministic, and all algorithms are polynomial time. We assume unique decryptability:
for any bit b and string r it is the case that Dsk(Epk(b; r)) = b. This means there does not exist a
triple C, r0, r1 such that C = E(0; r0) = E(1; r1). This will be important for us.

Suppose the adversary is given C
R← Epk(b) for some random bit b. According to the standard

notion of semantic security [22] she cannot figure out b. We want a stronger property, namely that
she cannot modify C to some different ciphertext C ′ whose corresponding plaintext is related to the
plaintext of C. This is not guaranteed by semantic security (and in fact for many semantically secure
cryptosystems it is easy given an encryption of a bit, to create an encryption of the complement bit).
But it is guaranteed by non-malleability. We do not provide a formal definition here (see [11]).

Our first protocol requires only “complement security,” meaning it is hard, given an encryption C
of a bit b, to come up with an encryption C ′ of 1 − b. Our second protocol requires “copy security,”
meaning it is hard, given an encryption C of a bit b, to come up with an encryption C ′ of b such that
C ′ ̸= C. (Note in either case if C ′ is not a valid encryption of any bit, then it “counts” as a failure.)
Any non-malleable scheme has these two properties. Our third protocol actually uses non-malleability
in its strongest form as per [11].

It is shown in [11] that non-malleable (and hence complement and copy secure) encryption schemes
with unique decryptability exist given the existence of trapdoor permutations. Accordingly we assume
such a scheme (G, E ,D) is given and let ν : { 1n : n ∈ N } → R be a negligible function that eventually
upper bounds the success of any (polynomial time) adversary. We call this function the security of
the encryption scheme. See Appendix A for a more formal development.

3.2 Two fold parallel repetition fails

We specify a four round protocol that has error about 1/2, but when repeated twice in parallel the
error is still about 1/2, rather than 1/4.

The input to the parties is a public key pk of the above encryption scheme. The prover is claiming
that he “knows” the decryption key sk, or, more exactly, that he knows how to decrypt. The verifier
V wants to test this. Roughly, the idea is that V sends a ciphertext B

R← Epk(b) for a random bit b,
and the prover must succeed in returning an encryption of the bit b complemented. The ability to do
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this is viewed as corresponding to the ability to decrypt B. The full specification of the protocol is
below.

In specifying the protocol we give the instructions for V and also indicate what kinds of messages
the prover is providing. But we specify no particular strategy for the prover: this is irrelevant to the
analysis since we are interested only in soundness. The name of the protocol is DD2, standing for
“Don’t Do twice.”

Protocol DD2

Common input: pk

(1) V picks a random bit b ∈ {0, 1} and coins r. It sets B = Epk(b; r) and sends B to the prover

(2) The prover sends a ciphertext C to V

(3) V sends b, r to the prover

(4) The prover sends a bit c and a string s to V

(5) V accepts iff Epk(c; s) = C and b ̸= c.

To complete the protocol specification we still have to ask questions like: where does the key pk come
from? Formally, we fit the protocol into the framework of Section 2.1 by considering the context to
be the security parameter, λ = 1n, so that the domain is Λ = { 1n : n ≥ 1 }. The input distribution
algorithm I takes 1n, runs G(1n) to get back (pk, sk), and outputs pk. (Intuitively, this operation
is performed by the honest prover who keeps sk. The dishonest prover, who is our concern for the
soundness, does not know sk.) Now, for any polynomial time prover P , we can consider the acceptance
probability Acc(P, V, I, 1n).

It is easy to see that there is a (polynomial time) strategy for the prover to make V accept with
probability 1/2. In Step (2) it just picks a bit c at random, picks coins s at random, sets C = Epk(c; s),
and sends C to V . In Step (4) it sends c, s. It wins if b = c which happens half the time. It turns out
it is not possible to do much better.

Claim 3.1 If the encryption scheme (G, E ,D) is non-malleable, then the error probability of protocol
DD2 is 1/2 + ν(·).

Intuitively this is true since in order to win the prover must create C to be an encryption of the comple-
ment of b, given B

R← Epk(b), and this is hard if the encryption scheme is complement secure. Indeed,
given a prover with probability of success α, we can turn it into an adversary A that complements
and has advantage at least α− 1/2.

Now consider DD2
2, the two-fold parallel repetition of DD2. We claim its error probability is not

less than 1/2 (let alone being about 1/4 as one may have wanted).

Claim 3.2 In the protocol consisting of two parallel repetitions of DD2, there is a polynomial time
strategy for the prover to make the verifier accept with probability at least 1/2.

3.3 Many-fold parallel repetition fails

We now generalize the protocol of the previous section to k repetitions. We show that for any k there
exists a protocol DDk which is a four round protocol that has error probability or about 1/2, but
when repeated k times in parallel the error probability does not reduce. As in DD2, the input to the
parties is a public key pk of the above encryption scheme. The prover is claiming that he “knows”
the decryption key sk, or, more exactly, that he knows how to decrypt.

Protocol DDk

Common input: pk
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(1) V picks a random bit b ∈ {0, 1} and coins r. It sets C = Epk(b; r) and sends C to the prover

(2) The prover sends k − 1 (single-bit) ciphertexts C1, C2, . . . Ck−1

(3) V sends b, r to the prover

(4) The prover sends k − 1 pairs of (bit, random-string) (c1, s1), (c2, s2) . . . (ck−1, sk−1) to V

(5) V accepts iff

• For all 1 ≤ i ≤ k − 1 : Epk(ci; si) = Ci

• B ̸∈ {C1, C2, . . . Ck−1}
• ⊕k−1

i=1 ci ̸= b.

Using similar argument to the proof of Claim 3.1 we can show

Claim 3.3 If the encryption scheme (G, E ,D) is non-malleable, then the error probability of protocol
DDk is 1/2 + ν(·).

However, we can also claim that if protocol DDk is repeated k times in parallel the error probability
does not reduce significantly:

Claim 3.4 In the protocol consisting of k parallel repetitions of DDk, there is a polynomial time
strategy for the prover to make the verifier accept with probability at least 1/2.

3.4 Failure of parallel error reduction with low communication

In light of the results of Raz [29] and Feige and Verbitsky [16] a reasonable conjecture at this point
is that the failure of error-reduction in protocol DDk is due to the fact that the communication
complexity is proportional to k (the number times we are going to execute the protocol in parallel).
In other words, the above results still leave open the possibility that for any protocol there is a value
α > 0 such that if the protocol is repeated k times in parallel, then the probability of failure in all k
execution is α−k, for sufficiently large k (the value of α is determined by the amount of communication
in the protocol). This is the case with two-prover proof systems.

However, we now give strong indication that for computationally sound protocols even this is not
the case. We show (assuming non-malleable cryptosystems exist) that there is no general black-box
error-reduction procedure, where black-box means that one does not look inside computation of the
players, but can just execute them and watch their behavior, as defined in Definition 2.2. We do this
by presenting a particular protocol LC ( “low communication”) for which we can prove (assuming
non-malleable cryptosystems exist) that there is no black-box error-reduction procedure.

The common input in protocol LC consists of a pair (pk1,pk2) of public keys drawn independently
at random according to G. Thus, formally, the domain is again Λ = { 1n : n ∈ N } and the

input distribution I is the function which on input 1n outputs (pk1,pk2) where pk1
R← G(1n) and

pk2
R← G(1n).

Protocol LC
Common input: pk1,pk2

(1) V picks a random trit b ∈ {0, 1, 2} and coins r. It sets B = Epk1
(b; r) and sends B to the prover

(2) The prover sends a ciphertext C to V

(3) V sends b, r to the prover

(4) The prover sends a trit c ∈ {0, 1, 2} and a string s to V

(5) V accepts iff Epk2
(c; s) = C and b+ c = 0 mod 3.
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The following theorem says there is no black-box prover transform to show that the error of LC even
reduces a little under lots of repetitions. (It is understood we mean over input distribution I defined
above.)

Theorem 3.5 Assume (G, E ,D) is a non-malleable encryption scheme with security a negligible func-
tion. Let k = k(n) be any polynomial. Let δ > 1/3 be a constant and let ϵ: Λ → [0, 1] be arbitrary.
Then there in no (k, ϵ, δ)-black-box error-reduction procedure for LC.

(Actually it is enough that δ(·) ≥ 1/3 + τ(·) where τ is a non-negligible function.) Note the commu-
nication complexity of LC does not depend on k, unlike DDk.

Theorem 3.5 clearly follows from Claim 3.6 below, which says that there is a prover strategy F for
LCk which succeeds in convincing V k with probability about 1/3, no matter how large is k. However,
given this strategy as an oracle, there is no way to convince the original verifier with probability
significantly more than 1/3.

Claim 3.6 Assume (G, E ,D) is a non-malleable encryption scheme with security a negligible function.
Let k = k(n) be any polynomial. There is a prover F for protocol LCk and a negligible function ν(·)
such that:

(1) Acc(F, V k, I, 1n) ≥ 1/3− ν(1n) for all n ∈ N

(2) Acc(SF , V, I, ·) ≤ ev 1/3 + ν(·) for any polynomial-time oracle algorithm S.

The prover F will not be polynomial time. But that’s permitted by Definition 2.2 and we explained
there the rationale for this decision.

In fact we show something stronger. We will now define a certain “oracle” Opk1,pk2
(·) and make

some claims about the protocol when parties have access to this oracle. From this we will deduce
Claim 3.6. The oracle is, intuitively, like a prover for LCm. (For our purposes it suffices to set
m = k − 1.) It has two “stages,” and maintains state between invocations of the two stages. In the
first stage it takes as input m ciphertexts C1, . . . , Cm under key pk1.

Oracle Opk1,pk2
((C1, . . . , Cm))

(1) If any of C1, . . . , Cm is invalid (meaning not the encryption of any bit under pk1) then reject.
(The ciphertexts in the cryptosystem of [11] are self-validating, so this step does not reveal any
extra information to the caller of the oracle.) If not, we know there are bits x1, . . . , xm and strings
t1, . . . , tm such that Ci = Epk1

(xi; ti) for i = 1, . . . ,m.

(2) If there is some i ̸= j such that Ci = Cj then again reject.

(3) Else, decrypt the ciphertexts to get the plaintexts x1, . . . , xm. Set x = x1 + . . .+ xm mod 3.

(4) Pick s at random and return C = Epk2
(x; s).

(5) Store a “context” for this invocation, including the information x, s.

Having been invoked on C1, . . . , Cm and having returned C as above, the oracle can be invoked for a
continuation of the interaction. Here, it is fed (b1, r1), . . . , (bm, rm).

Oracle Opk1,pk2
((C1, . . . , Cm), ((b1, r1), . . . , (bm, rm))).

(1) Check that Epk1
(bi; ri) = Ci for all i ∈ [m] and if this is not true then reject.

(2) Return (x, s) where these quantities are as computed, and stored, in the code for the first stage
above.

Note that O is not computable in polynomial time, since (in its first stage) it decrypts, without having
access to the decryption key.

Also O it is not an “oracle” in the traditional sense since it maintains state between invocations.
Since O is just a tool in proving Claim 3.6 this doesn’t matter much, but in any case we note that
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this state can be eliminated by specifying s as FK((C1, . . . , Cm)) where F is a pseudorandom function
family [18] and the key K is chosen at random and made a part of the description of O.

We first claim that given access to this oracle, it is possible to make the verifier V k of LCk accept
1/3 of the time.

Claim 3.7 There is a polynomial time oracle algorithm M and a negligible function ν(·) such that
Acc(MOpk1,pk2 , V k, (pk1,pk2)) ≥ 1/3− ν(1n) for any input (pk1,pk2) to LCk.

On the other hand, the non-malleability of the underlying cryptosystem is strong enough to ensure
that access to this oracle does not help a polynomial time prover to convince the verifier of the original
protocol with probability significantly above 1/3. This is (clearly) a consequence of the following:

Claim 3.8 Assume that the encryption scheme (G, E ,D) is non-malleable and A is a probabilistic

polynomial time oracle algorithm that is given B
R← Epk1

(b) where b
R← {0, 1, 2}, and access to an oracle

as described above. The probability that A succeeds in coming up with C such that C = Epk2
(−b, s)

(for some s) is bounded by 1/3 + ν(·) for a negligible function ν.

Proof of Claim 3.6: Just set F to the prover MOpk1,pk2 where M is as in Claim 3.7. The latter
claim implies part (1) of Claim 3.6. Now we argue part (2) of Claim 3.6. We said above that (as a
consequence of Claim 3.8), oracle access to Opk1,pk2

won’t help a polynomial time prover convince the
verifier of LC with probability significantly above 1/3. Then oracle access to F certainly won’t help
do it, since F can be implemented in polynomial time with access to Opk1,pk2

.

As already indicated, Theorem 3.5 follows. It remains to show the last two claims. Their proofs are
in Appendix A.

3.5 Extensions

We could use non-malleable bit commitment instead of non-malleable encryption in some of these
protocols to get the same result. This might lead to reducing the complexity assumptions under which
the result is obtained. However, the current protocol is more natural. Also using the currently best
known schemes for bit commitment would have increased the number of rounds of the protocols.

We can get similar results for protocols for proving membership in an NP language, like this. Let
L be any such language. Let the input be x, y where y is an input for one of the above protocols.
(That is, a public key for a non-malleable encryption scheme in the first two protocols, and two such
keys for the second.) The domain is Λ = L × { 1n : n ≥ 1 } and the input distribution puts on y
the probability as needed by our protocols above. Run some standard argument protocol on input
x and then (after this protocol has completed) run one of our protocols on input y. Accept iff both
sub-protocols accept. This protocol is a proof of membership in L but the error does not reduce under
parallel repetition.

4 Parallel repetition reduces the error of three round protocols

In this section, we show that parallel repetition does indeed decrease error probabilities for any three
pass protocol where the verifier has no secret input. The technique used is based on the XOR Casino
game of [25].

Let V be a verifier defining a three message protocol. Thus V ’s output is either 1 (accept) or
0 (reject). Say V ’s random tape is of length r. Let k be a positive integer, The following theorem
states a very general error-decreasing property for three-round protocols. We let Comm(A,B, x) be
the communication complexity of the interaction between parties A,B on an input x.
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Theorem 4.1 Suppose 0 < ϵ, δ < 1 and k ≥ 2 is an integer. Suppose ϵ > (16/δ) · e−δ2k/128. Then
there is an oracle algorithm S such that for any prover P ∗, verifier V and input string x, the following
is true: If Acc(P ∗, V k, x) ≥ 2ϵ then Acc(SP ∗,V , V, x) ≥ 1 − δ. Furthermore, SP ∗

x ,Vx runs in time
poly(k, |x|, 1/ϵ,Comm(P ∗, V k, x)).

Here S requires only oracle access to P ∗. But in fact S does not depend on V either, in the sense that
oracle access to V will suffice too. A consequence of this is:

Corollary 4.2 Let V be a three round verifier strategy over a domain Λ and input distribution I,
and let k = k(n) be O(log n). Then V has a (k, ϵ, 1− δ)-black-box error-reduction procedure for any
ϵ, δ : Λ→ (0, 1) satisfying ϵ > (32/δ) · e−δ2k/128.

In terms of error probabilities, this implies the error decreases at an exponential rate:

Corollary 4.3 Let V be a three round verifier strategy over a domain Λ and input distribution I
with error probability 1 − δ, and let k = k(n) be O(log n). Then V k has error probability ϵ where
ϵ(·) = (32/δ(·)) · e−δ(·)2k/128.

Note the error goes down at an exponential rate but only to 1/ poly(n). Since the running time of S
in Theorem 4.1 is a polynomial in 1/ϵ, and this running time must stay polynomial, we can only allow
k to go as low as O(log n), which means ϵ is 1/poly(n).

5 Open problems and on-going work

Can one show a positive result (ie. that parallel repetition reduces the error) for Arthur-Merlin games
of more than three rounds? As a first step one might consider any constant number of rounds, and
then more.

Our results are about soundness. What about proofs of knowledge [4]? Bellare, Halevi and Naor
are investigating this question. By using the protocols here they have similar negative results for
proofs of knowledge.
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A Proofs for Section 3

Let’s formalize complement and copy security, beginning with the former. Let A be an adversary that
takes pk, C, where C = Epk(b), and outputs C ′. We say A is successful if Dsk(C

′) = 1− b, and let

CompSuccA(1
n) = Pr

[
Dsk(C

′) = 1− b : (pk, sk)
R← G(1n) ; b R← {0, 1} ;

C
R← Epk(b) ; C ′ R← A(pk, C)

]
Of course, A can be successful half the time by guessing b and encrypting its complement. A’s advan-
tage is the excess of its success probability over one-half. Set CompAdvA(1

n) = CompSuccA(1
n)−1/2.

As for copy security, we should first rule out the case of exact copying, which is of course impossible
to prevent. Formally, let A be an adversary that takes pk, C and tries to output C ′. We say A is
successful if Dsk(C

′) = b and C ′ ̸= C. We let

CopySuccA(1
n) = Pr

[
Dsk(C

′) = b and C ̸= C ′ : (pk, sk)
R← G(1n) ; b R← {0, 1} ;

C
R← Epk(b) ; C ′ R← A(pk, C)

]
and CopyAdvA(1

n) = CopySuccA(1
n)− 1/2.

Definition A.1 Encryption scheme (G, E ,D) is complement secure with failure probability ν(·) if for
every polynomial time adversary A it is the case that CompAdvA(·) ≤ ev ν(·). Encryption scheme
(G, E ,D) is copy secure with failure probability ν(·) if for every polynomial time adversary A it is the
case that CopyAdvA(·) ≤ ev ν(·).

¿From [11] we have

Claim A.2 If an encryption scheme (G, E ,D) is non-malleable, then it is complement secure and copy
secure with negligible failure probability ν(·).

Proof of Claim 3.1: We have to show that Definition 2.1 is met with ϵ(·) = 1/2 + ν(·). Assume
not. So there is some polynomial time prover P such that Acc(P, V, I, 1n) > 1/2+ν(1n) for all n ∈ N ,
where N is some infinite set of integers. We claim this contradicts the complement-security of the
underlying encryption scheme (G, E ,D). To show this we define the following adversary A. It receives
input pk, B. It thinks of B as the first message from V , and computes C = P (pk, C;R), the response
that P would give, where R is a random string used as the coins A choses for P . Now it outputs C.

We claim that CompSuccA(1
n) ≥ Acc(P, V, I, 1n) for all n. Note there is something interesting in this

claim made at this point, since A has not fully simulated the interaction between P and V to the
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point of seeing whether the latter accepts. Indeed, A cannot expect to do that, since in the next step
V provides the decryption of B, and A does not know this. Nonetheless, we want to claim that if the
interaction had continued, V would indeed have accepted.

If P were able to make V accept, it would have been by providing a bit c and coins s such that
Epk(c; s) = C. Now let d = Dsk(C). This is not something A can compute, but we can think
about it in the proof. The unique decryptability property that we have assumed on the encryption
scheme means that if V accepts, it must be that d = c, and hence that c = 1 − b. But A is
successful exactly when c = 1 − b. So A is successful whenever V would have accepted, meaning
CompSuccA(1

n) ≥ Acc(P, V, I, 1n).

Hence CompAdvA(1
n) = CompSuccA(1

n) − 1/2 > ν(1n) for all n ∈ N . But this contradicts the
assumption that the encryption scheme is complement secure with failure probability ν(·).

Proof of Claim 3.2: We are running DD2 twice in parallel. The notation we use is to superscript
the quantities in DD2 with the index (1 or 2) of the run. We now describe the strategy of the clever
prover.

The prover receives B1, B2 from the verifier. It computes its return ciphertexts by “crossing” these.
Namely set C1 = B2 and C2 = B1, and return C1, C2. Next it receives (b1, r1), (b2, r2) from the
verifier. Again it crosses, setting (c1, s1) = (b2, r2) and (c2, s2) = (b1, r1), and sends (c1, s1), (c2, s2) to
the verifier.

The verifier accepts if c1 ̸= b1 and c2 ̸= b2. (Also it must check that the coin tosses provided by the
prover are consistent with the bits, but it is clear this works out, so we skip it.) With the responses
defined as above, this amounts to accepting if b2 ̸= b1 which happens with probability exactly 1/2,
since b1 and b2 were chosen independently at random by the verifier.

Proof of Claim 3.4: We are running DDk k times in parallel. The notation we use is to superscript
the variables in DDk with the index 1, . . . , k of the run. We now describe the strategy of the clever
prover. We assume that none of B1, B2, . . . Bk−1 are equal3. When the verifier sends B1, B2, . . . Bk−1,
the prover sends for the ith game

(Ci
1, C

i
2, . . . C

i
k−1) = (B1, . . . Bi−1, Bi+1, . . . Bk) .

After the verifier sends in Step (3) the pairs (b1, r1), (b2, r2) . . . (bk, rk), the Prover can open up correctly
all the ciphertexts in Step (4).

It remains to see when the verifier accepts. The verifier accepts in all the k games iff ⊕k−1
i=1 b

i = 1. The
probability that this happens is 1/2 therefore this is the probability of the strategy’s success.

Proof of Claim 3.7: The prover strategy MOpk1,pk2 is as follows.

(1) Receives ciphertexts B1, . . . , Bk from V k where Bi = Epk1
(bi; ri) for i = 1, . . . , k.

(2) For each i ∈ [k] set Ci ← Opk1,pk2
((B1, . . . , Bi−1, Bi+1, . . . Bk)). Send C1, . . . , Ck to V k.

(3) Get back (b1, r1), . . . , (bk, rk) from V k.

(4) For each i ∈ [k] set (ci, si) to

Opk1,pk2
((B1, . . . , Bi−1, Bi+1, . . . Bk), ((b1, r1), . . . , (bi−1, ri−1), (bi+1, ri+1), . . . , (bk, rk))) .

Send (c1, s1), . . . , (ck, sk) to V k.

We claim that the probability this strategy convinces V k to accept is at least 1/3 − ν(·) for some
negligible function ν(·). To see this, assume b1 + . . . + bk ≡ 0 mod 3. This happens with probability

3 The probability of this event is low, being bounded by k2ν(·). However, even this negligible failure probability can
be eliminated; we defer the discussion.
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1/3. The chance that two ciphertexts are equal is negligible, so the oracle returns answers. Now note
that for any i ∈ [k] it is the case that

bi + ci mod 3 = bi + (b1 + . . .+ bi−1 + bi+1 + . . .+ bk) mod 3 = 0 mod 3,

using the definition of the oracle. Thus V k accepts by definition of LCk.

Proof of Claim 3.8: We use here the fact that non-malleable encryption is immune against very
powerful attacks: the adversary is given a challenge ciphertext and a sequence of additional ciphertexts
and should come up with a ciphertext whose corresponding plaintext satisfies some relation R with
the challenge plaintext and the plaintexts of the ciphertext sequence. Also the adversary is be given
access to the decryption box after it receives the challenge and can query it on any ciphertext of its
choice except the challenge ciphertext and sequence. Still, it must fail4.

For our context, consider specifically an algorithm A′ that receives, in addition to B
R← Epk1

(b), where

b
R← {0, 1, 2}, also 3t ciphertexts

B1
0 , B

2
0 , . . . , B

t
0, B

1
1 , B

2
1 , . . . , B

t
1, B

1
2 , B

2
2 , . . . , B

t
2 ,

such that Bi
j

R← Epk2
(b+ j mod 3) for j = 0, 1, 2 and i ∈ [t], where t is an upper bound on the number

of oracle queries made by our given adversary A. (Note the additional ciphertexts are under pk2, not
pk1.) It wins if it comes up with a valid encryption, under pk2, of −b mod 3. Also A′ has access to
Dsk1(·) but is not allowed to invoke it on ciphertext B. The notions and constructions of non-malleable
cryptosystems from [11] imply that such an adversary A′ has only a 1/3+ν(·) chance of winning where
ν(·) is a negligible function.

Let B = { Bj
i : i ∈ [k] and j = 0, 1, 2 }. Now, we show that if A exists we can construct an A′ as

above that has a chance of winning larger than possible, thus contradicting the assumed security of
the non-malleable cryptosystem. A′ will run A and itself provide answers to A’s oracle queries. A′

gives B as input to A. A′ maintains counters f0, f1, f2, all initially zero.

When A asks its oracle a query (C1, . . . , Cm), our algorithm A′ uses its decryption box to get ci ←
Dsk1(Ci) for any i ∈ [m] such that Ci ̸= B. Let j be the sum modulo 3 of the ci’s, taken over all i
for which Ci ̸= B. We now consider two cases, that B is one of C1, . . . , Cm and that it is not. In
case none of C1, . . . , Cm was equal to B, algorithm A′ picks s at random and returns Epk2

(j; s) as the
answer to the oracle query. In case there was an i such that Ci = B (note we can assume i is unique
because otherwise the oracle rejects anyway and thus is easy to simulate), A′ increments fj by one

and returns B
fj
j . One can check that the distribution of these answers to oracle queries provided by

A′ is identical to that provided by the real oracle.

Next we must consider a second stage oracle query of the form (C1, . . . , Cm), ((b1, r1), . . . , (bm, rm)).
A′ checks that indeed Epk1

(bi; ri) = Ci for each i ∈ [m] and returns a reject otherwise, just as
Opk1,pk2

would do. Now, assuming the check passes, there are two cases just as above, namely is
B ∈ {C1, . . . , Cm} or not. If not, A′ can easily return (j, s) where these were the quantities it chose
in its first stage. On the other hand if B = Ci for some i ∈ [m] then A′ has found b, because b = bi
and bi was provided by A. Thus A′ wins directly, because it can just encrypt −b mod 3 under pk2 and
output the result. On the other hand if A′ doesn’t directly win it is simulating the oracle correctly.

Finally A returns, by assumption, a valid encryption, under pk2, of −b mod 3, and A′ can just output
this.

4Note that the security with respect to several ciphertexts follows from that security with resepct to a single one.
This is discussed in the full version of [11].
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B Proof of Theorem 4.1

In the given protocol (namely that defined by V ) we can assume that the prover makes the first move;
otherwise, V makes the last move, but this does not influence whether V accepts or rejects, so we
could just suppress it. Let R denote V ’s random tape. Denote the prover’s first move by M . We call
V ’s response V (M ;R) the “challenge” and denote it by C. We call the prover’s response the “answer”
and denote it by A. Then whether V accepts is a function V (M .C .A;R) ∈ {0, 1} of M,A,R.

We can also assume that P ∗
x is deterministic , by viewing its random tape as fixed to one with at

least half the average probability of acceptance by V k, namely 2ϵ/2 = ϵ. (By randomly sampling an
expected Θ(1/ϵ) random tapes for P ∗

x and testing them via simulating V k and P ∗
x , S can find a tape

with at least an ϵ conditional probability of acceptance by V k.)
Now consider the interaction between V k and a prover P ∗ for the k-fold game, on common input

x. Let M⃗ = (M1, ..Mk) be P ∗
x ’s first move. The following algorithm THS (Trust Halving Strategy)

will be used as a sub-routine by S. It takes input an index I ∈ {1, . . . , k} indicating a sub-game, a
particular challenge C of the original verifier, and M⃗ , and will either produce an answer or a special
symbol ⊥ indicating failure.

Algorithm THS(I, C, (M1, . . . ,Mk))
CI ← C
For j = 1, . . . , k such that j ̸= I do

Rj ← {0, 1}r ; Cj ← V (Mj ;Rj)
(A1, . . . , Ak)← P ∗

x (M1 . . .Mk . C1 . . . Ck)
For j = 1, . . . , k such that j ̸= I do

dj ← V (Mj . Cj . Aj ;Rj) (a bit indicating accept or reject for the j-th sub-game)
t← |{ j ∈ [k]− {I} : dj = 0 }|
With probability 2−t output AI , else output ⊥

The idea of the trust halving strategy is that S wants to use P ∗
x ’s answer in the I-th game as the

response to challenge CI if P ∗
x is actually producing good answers. However, most of the time (namely

a 1 − ϵ fraction of the time), P ∗
x may produce an arbitrary mixture of answers that are and are not

accepted. We use the answers on the other sub-games to decide whether or not to trust P ∗
x ’s answer

on CI . The trust halving strategy was introduced in the context of direct product theorems in [25].
Since THS usually produces no output, S will actually need to run it several times. Also, the

prover for a single run will need to send its first message MI before receiving a challenge, and so one
good value of I needs to be found.

We usually choose RI according to some distribution and then run THS(I, C, M⃗) where C =
V (MI ;RI). The THS algorithm now picks at random R1, . . . , RI−1, RI+1, . . . , Rk. We refer to R⃗ =
(R1, . . . , Rk) as the execution base of this run of the algorithm.

Fix I ∈ [k], a random tape R ∈ {0, 1}r for V , and a sequence M⃗ of messages from P ∗
x . For

d ∈ {0, 1} (that is, accept or reject) let

Td(I,R, M⃗) = Pr
[
C ← V (MI ;R) ; A← THS(I, C, M⃗) : A ̸=⊥ and V (MI . C .A;R) = d

]
.

In other words, T1(I,R, M⃗) (resp. T0(I,R, M⃗)) is the probability that THS produces an output A ̸=⊥,
and this answer makes the original verifier accept (resp. reject). The probability here is over the random
choices of R1, . . . , RI−1, RI+1, . . . , Rk, and the randomness underlying the final 2−t probability, made
by THS. Say that (I,R, M⃗) is good if

T1(I,R, M⃗) ≥ 2

δ
· T0(I,R) +

ϵ

16
.
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If (I,R, M⃗) is not good, say it is bad. For I ∈ {1, . . . , k} let

B(I, M⃗) = {R ∈ {0, 1}r : (I,R, M⃗) is bad }
b(I, M⃗) = |B(I, M⃗)| .

Notice that by sampling we can estimate b(I, M⃗) given I. (More precisely, given I, oracles for P ∗
x , Vx,

and any parameters ϵ′, δ′ > 0, we can produce, in time poly(1/ϵ′, log(1/δ′),Comm((, P,) ∗, V k, x)), an
estimate b̃(I, M⃗) such that |b̃(I, M⃗)− b(I, M⃗)| ≤ ϵ′ with probability at least 1− δ′.) For simplicity we
assume henceforth that it is possible to actually compute b(I, M⃗). We are now ready to specify how
our prover provides the answer.

Algorithm SP ∗
x ,Vx(x, ·; ·)

(1) (M1, . . . ,Mk)← P ∗
x ()

(2) By estimating b(i, M⃗) for all i ∈ [k], find a value of I ∈ [k] such that b(I, M⃗) ≤ (δ/4) · 2r. (Such
a value exists by Lemma B.3.)

(3) Send MI to the verifier, and receive in response a challenge C

(4) Run THS(I, C, M⃗) until either an output A is produced or a total of 16 ln(4/δ)/ϵ runs are com-
pleted. In the former case, provide A as the answer to the verifier. In the latter case, fail.

The following lemma considers the interaction between prover SP ∗
x ,V and verifier V on input x, and

says the probability of acceptance is quite high.

Lemma B.1 Acc(SP ∗
x ,Vx , V, x) ≥ 1− δ.

Proof: From lemma B.3, S will succeed in finding an I ∈ [k] so that b(I, M⃗) ≤ (δ/4) · 2r. If (I,R, M⃗)
is good then the probability that S produces an A such that V (MICA;R) = 1 is at least 1 − 3δ/4
by Lemma B.2. Thus the overall probability that V accepts in its interaction with S is at least
(1− δ/4)(1− 3δ/4) > 1− δ.

Lemma B.2 Suppose S chooses I as the index in Step 2 and (I,R, M⃗) is good. Let C = V (MI ;R).
Then the probability that S produces an answer A such that V (MICA;R) = 1 is at least 1 − 3δ/4.
(The probability is over the random choices of S in the steps following Step 2.)

Proof: Since (I,R, M⃗) is good, we have T1(I,R, M⃗) > (2/δ) ·T0(I,R, M⃗)+ ϵ/16. Then S makes inde-
pendent simulations of THS until the latter produces some output, or until 16(ln(4/δ))/ϵ such simula-
tions have been completed. The probability that THS produces some output is at least T1(I,R, M⃗) >
ϵ/16. So the probability of S “timing out” without producing output, is at most (1−ϵ/16)16(ln(4/δ))/ϵ ≤
δ/4. On the other hand, since S makes independent tries of THS until output is produced, given that
S produces an output, the probability that V accepts is

T1(I,R, M⃗)

T1(I,R, M⃗) + T0(I,R, M⃗)
≥ T1(I,R, M⃗)

T1(I,R, M⃗) + (δ/2)[T1(I,R, M⃗)− ϵ/16]

≥ T1(I,R, M⃗)

T1(I,R, M⃗) + (δ/2)T1(I,R, M⃗)

=
1

1 + δ/2

≥ 1− δ/2 .

Thus, the probability that S produces an output A and V (MICA;R) = 1 is at least 1− δ/2− δ/4 =
1− 3δ/4.
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Lemma B.3 There is an I ∈ [k] such that b(I, M⃗) ≤ (δ/4) · 2r.

Proof: Assume not, meaning b(i, M⃗) > (δ/4) · 2r for all i = 1, . . . , k. Now for each i = 1, . . . , k fix a
set B(i, M⃗) ⊆ B(i, M⃗) such that |B(i, M⃗)| is exactly (δ/4) · 2r. We claim that

E
[
i← [k] ; R← B(i, M⃗) : T1(i, R, M⃗)− (2/δ) · T0(i, R, M⃗)

]
>

ϵ

16
. (1)

This implies that there exists an index i ∈ [k] and a string R ∈ B(i, M⃗) such that T1(i, R, M⃗)− (2/δ) ·
T0(i, R, M⃗) > ϵ/16, contradicting the fact that (i, R, M⃗) is bad for any R ∈ B(i, M⃗), and thus proves
the lemma. It remains to prove Equation (1).

We first introduce some notation. For R⃗ = (R1, ...Rk) a fixed sequence of random tapes, let

L(R⃗, M⃗) = { i ∈ [k] : Ri ∈ B(i, M⃗) }
l(R⃗, M⃗) = |L(R⃗, M⃗)| .

With R⃗ still fixed let C⃗ = (C1, . . . , Ck) where Cj = V (Mj ;Rj) for j = 1, . . . , k, and let (A1, . . . , Ak)←
P ∗
x (M⃗C⃗). Now let T (R⃗, M⃗) be the set of all i ∈ [k] such that V (MiCiAi;Ri) = 0. Let t(R⃗, M⃗) =
|T (R⃗, M⃗)|.
We now define a distribution µM⃗ : {0, 1}rk → [0, 1] which assigns a probability µM⃗ (R⃗) to any random

tape R⃗ = (R1, . . . , Rk) of V
k, computed as follows:

µM⃗ (R⃗) = (2)

Pr
[
i← [k] ; R′

i ← B(i, M⃗) ; R′
j ← {0, 1}r for j ∈ [k]− {i} : (R′

1, . . . , R
′
k) = (R1, . . . , Rk)

]
.

This is the probability that R⃗ is the execution base for THS in the experiment where we first pick
I ← [k] and RI ← B(I, M⃗), set C = V (MI ;RI), and then run THS(I, C, M⃗).

Claim 1. µM⃗ (R⃗) =
4 · l(R⃗, M⃗)

δk
· 2−rk.

Proof. Refer to Equation (2) and consider the chance that the experiment in question indeed yields the
particular outcome R⃗. For this to happen it must be that the randomly chosen i lands in L(R⃗, M⃗), and
this happens with probability l(R⃗, M⃗)/k. Next, R′

i must equal Ri, and this happens with probability
1/|B(i, M⃗)| = 2−r/(δ/4). Finally it must be that R′

j = Rj for j ̸= i and this happens with probability

2−(k−1)r. So

µM⃗ (R⃗) =
l(R⃗, M⃗)

k
· 2

−r

δ/4
· 2−(k−1)r ,

which simplifies to the claimed quantity. 2

Claim 2. Given R⃗ drawn according to distribution µM⃗ , the distribution on the index i (in the experi-

ment of Equation (2)) is uniform over L(R⃗, M⃗).

Proof. Clear. 2

Now we need a few more definitions. For a fixed R⃗ = (R1, . . . , Rk) let THSR⃗(I, M⃗) be the output

of THS(I, V (MI ;RI), M⃗) when the execution base is R⃗. (This is a random variable depending on
the random choices underlying the 2−t probability in the description of THS, the last being the only
randomness left when the execution base is fixed.) For any R⃗ such that µM⃗ (R⃗) > 0, and each d ∈ {0, 1},
let

Td(R⃗, M⃗) = E
[
i← L(R⃗, M⃗) ; A← THSR⃗(i, M⃗) : A ̸=⊥ and V (MiCA;Ri) = d

]
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be the chance that THS produces an output with outcome d when its execution base is fixed to R⃗ and
i is chosen at random from L(R⃗, M⃗). Let

X(R⃗, M⃗) = T1(R⃗, M⃗)− 2

δ
· T0(R⃗, M⃗) . (3)

Notice that

E
[
R⃗← µM⃗ : X(R⃗, M⃗)

]
= E

[
i← [k] ; R← B(i, M⃗) : T1(i, R, M⃗)− (2/δ) · T0(i, R, M⃗)

]
.

Thus to show Equation (1) we wish to show that

E
[
R⃗← µM⃗ : X(R⃗, M⃗)

]
def
=

∑
R⃗∈{0,1}rk X(R⃗, M⃗) · µM⃗ (R⃗) >

ϵ

16
. (4)

Claim 3. Fix R⃗ such that µM⃗ (R⃗) > 0 and let C⃗ = V k
x (M⃗ ; R⃗).

(1) Let A⃗ = P ∗
x (M⃗C⃗). If V k

x (M⃗C⃗A⃗; R⃗) = 1 (equivalently, t(R⃗, M⃗) = 0) then X(R⃗, M⃗) = 1.

(2) X(R⃗, M⃗) ≥ 2−t(R⃗,M⃗)

l(R⃗, M⃗)
·
[
l(R⃗, M⃗)−

(
1 +

4

δ

)
· t(R⃗, M⃗)

]
.

(3) X(R⃗, M⃗) ≥ −4

δ
· 2−t(R⃗,M⃗).

Proof. For (1), note that V k
x (M⃗C⃗A⃗; R⃗) = 1 implies T1(R⃗, M⃗) = 1 and T0(R⃗, M⃗) = 0.

Now we claim

T1(R⃗, M⃗) ≥ l(R⃗, M⃗)− t(R⃗, M⃗)

l(R⃗, M⃗)
· 2−t(R⃗,M⃗) (5)

T0(R⃗, M⃗) ≤ t(R⃗, M⃗)

l(R⃗, M⃗)
· 2−[t(R⃗,M⃗)−1] . (6)

By Equation (3), this implies both part (2) and part (3) of Claim 3, so it suffices to show these two
bounds.

To see Equation (5), consider when does THSR⃗(i, M⃗) produce an answer that is accepted by V , in

the experiment defining T1(R⃗, M⃗). This happens only when i lands in the set L(R⃗, M⃗) − T (R⃗, M⃗).
Furthermore, since there is an acceptance in the i-th sub-game, the number t of rejections t that THS

counts will equal t(R⃗, M⃗), and thus, given that i lands in the set in question, there is a 2−t(R⃗,M⃗) chance
that an accepted output is produced.

To see Equation (6), consider when does THSR⃗(i, M⃗) produce an answer that is rejected by V , in the

experiment defining T0(R⃗, M⃗). This happens only when i lands in the set L(R⃗, M⃗)∩ T (R⃗, M⃗), whose
size is upper bounded by t(R⃗, M⃗). Furthermore, since there is a rejection in the i-th sub-game, the
number t of rejections that THS counts will equal t(R⃗, M⃗)− 1, and thus, given that i lands in the set

in question, there is a 2−[t(R⃗,M⃗)−1] chance that a rejected output is produced. 2

Let l0 = (δk)/8 and t0 = l0/(1 + 4/δ). Partition {0, 1}kr into four sets as follows:

(1) Accepted = { R⃗ ∈ {0, 1}kr : t(R⃗, M⃗) = 0 } (In other words, those random tapes on which V k

accepts P ∗
x . These give THS a non-negligible advantage.)

(2) Easy = { R⃗ /∈ Accepted : b(R⃗, M⃗) < l0 } (In other words, those random tapes without many
“hard to please” components. These are rare.)

(3) Advantage = { R⃗ ∈ {0, 1}kr : b(R⃗, M⃗) ≥ l0 and 0 < t(R⃗, M⃗) ≤ t0 } (Those random tapes where
P ∗
x convinces the verifier on sufficiently many protocols that it is to our advantage to use one of

them as our move.)
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(4) Mistakes = { R⃗ ∈ {0, 1}kr : b(R⃗, M⃗) ≥ l0 and t(R⃗, M⃗) > t0 } (Those random tapes where P ∗
x

fails to convince the verifier on many runs of the protocol. These will almost always produce no
output for THS.)

For any set A ⊆ {0, 1}kr let

S(A) =
∑

R⃗∈AX(R⃗, M⃗) · µM⃗ (R⃗) .

We analyze S({0, 1}kr) by breaking it up over the four sets defined above.

Suppose we flip k coins, independently, where each has probability p = δ/4 of being heads. Let Q be
the probability that we get fewer than l0 = (δk)/8 heads. By Chernoff bounds,

Q < e−(δk/8)2/(2k) = e−δ2k/128 . (7)

Claim 4.

(1) S(Accepted) ≥ (ϵ−Q)/2

(2) S(Easy) ≥ −Q/δ

(3) S(Advantage) ≥ 0

(4) S(Mistakes) ≥ −(4/δ)2−t0

Proof. From the first part of Claim 3 we know that X(R⃗, M⃗) = 1 for every R⃗ ∈ Accepted, so

S(Accepted) = Pr
[
R⃗← µM⃗ : R⃗ ∈ Accepted

]
is just the probability, under distribution µM⃗ , of

the set Accepted. By assumption Acc(P ∗, V k, x) ≥ ϵ so |Accepted| ≥ ϵ2rk. Let HardAccepts =
{ R⃗ ∈ Accepted : l(R⃗, M⃗) ≥ l0 }. Then |HardAccepts| ≥ (ϵ − Q)2rk, since Q is the fraction of
sequences with l(R⃗, M⃗) < l0. For every R⃗ ∈ HardAccepts, we have (using Claim 1)

µM⃗ (R⃗) =
4l(R⃗, M⃗)

δk
· 2−rk =

l(R⃗, M⃗)

2l0
· 2−rk ≥ (1/2)2−rk .

Thus,

S(Accepted) = Pr
[
R⃗← µM⃗ : R⃗ ∈ Accepted

]
≥

∑
R⃗∈HardAccepts

µM⃗ (R⃗)

≥ |HardAccepts| · (1/2)2−rk

≥ (ϵ−Q)/2 .

This proves the first part.

Similarly to the first part, |Easy| ≤ Q2rk, and for every R⃗ ∈ Easy, µM⃗ (R⃗) ≤ (1/2)2−rk. Since

X(R⃗, M⃗) ≥ −2/δ for any R⃗, we have

S(Easy) ≥ (−2/δ)
∑

R⃗∈Easy µM⃗ (R⃗) ≥ (−2/δ)|Easy|(1/2)2−rk ≥ −Q/δ .

This proves the second part.

For any R⃗ ∈ Advantage we have

X(R⃗, M⃗) ≥ 2−t(R⃗,M⃗)

l(R⃗, M⃗)
·
[
l(R⃗, M⃗)−

(
1 +

4

δ

)
· t(R⃗, M⃗)

]
(by Claim 3)

≥ 2−t(R⃗,M⃗)

l(R⃗, M⃗)
·
[
l0 −

(
1 +

4

δ

)
· t0

]
(because t(R⃗, M⃗) ≤ t0 and l(R⃗, M⃗) ≥ l0)

= 0 (because t0 = l0/(1 + 4/δ)) .
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This proves the third part.

¿From part three of Claim 3, for any R⃗ ∈ Mistakes we have X(R⃗, M⃗) ≥ −(4/δ)2−t(R⃗,M⃗) ≥
−(4/δ)2−t0 . This proves the fourth part.

This concludes the proof of Claim 4. 2

Now we can apply Claim 4 to get

S({0, 1}rk) = S(Accepted) + S(Easy) + S(Advantage) + S(Mistakes)

≥ (ϵ−Q)/2−Q/δ − 0− (4/δ)2−t0

≥ ϵ/2−Q/2−Q/δ − (4/δ)e
− δk/8

1+4/δ

= ϵ/2−Q/2−Q/δ − (4/δ)e
− δ2k

8(4+δ)

≥ ϵ/2−Q/2−Q/δ − (4/δ)e−
δ2k
40 (because δ < 1)

> ϵ/2−Q/2−Q/δ − (4/δ)e−
δ2k
128 .

The assumption in the statement of Theorem 4.1 is that ϵ > (16/δ)e−δ2k/128. Combining this with
Equation (7) yields Q < e−δ2k/128 < δϵ/16 < ϵ/16. Using these estimates in the above we get

S({0, 1}rk) ≥ ϵ/2− ϵ/32− ϵ/16− (4/δ)(δϵ/16)

> ϵ/2− 6ϵ/16

> ϵ/8 .

This yields Equation (4), which we had already said yields Equation (1), and thus concludes the proof
of Lemma B.3.

C Parallel repetition when the verifier has secret information

In our model the verifier is not given any secret information pertaining to the input x or to the context
λ: its strategy must be a computable in (probabilistic) polynomial time given x, λ. This is important
to make the parallel repetition question meaningful as we now explain.

If we were to allow the verifier access to private information about x or λ then it is trivial to see
that parallel repetition fails to lower the error. In fact one can easily specify a two round protocol
which has error 1/2 but, when repeated k times in parallel, the error actually increases with k, tending
to 1. For example, say x (or λ) is a random integer product of two primes p, q such that V knows
p, q. Let the protocol be that V flips a coin and sends in its first message p, q if the coin was 0 and
nothing if the coin was 1. It accepts if the prover’s reply is p, q. The error probability of this protocol
is 1/2+ ν(·) where ν(·) is negligible. However, if we repeat the protocol k times there is a strategy for
the prover to win with probability 1− 2−k, because except with probability 2−k the factorization p, q
is released by the verifier in some run, and then the prover can echo it in all runs.

Is it reasonable that we deny the verifier secret information? Certainly it seems reasonable that
the verifier has no secret information about x, because in cryptographic settings x is chosen by the
(honest) prover and given to V , and the prover is trying to prove something about x to V , so the
latter would not have any information about x other than what he could compute in polynomial time
given x, which is what we assume. It is possible that V does have secret information related to λ.
(For example the latter could contain his public key, of which he holds the corresponding secret key.)
Still, it makes sense that the protocol, whose goal is to prove a claim about x, does not use this
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secret information, so that as far as the protocol is concerned, we can assume the verifier strategy
does not depend on that secret information. Certainly all “useful” protocols fall in our model; we are
eliminating only artificial ones.
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