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Abstract

Background: One aspect of premating isolation between diverging, locally-adapted population pairs is female
mate choice for resident over alien male phenotypes. Mating preferences often show considerable individual
variation, and whether or not certain individuals are more likely to contribute to population interbreeding remains
to be studied. In the Poecilia mexicana-species complex different ecotypes have adapted to hydrogen sulfide (H2S)
-toxic springs, and females from adjacent non-sulfidic habitats prefer resident over sulfide-adapted males. We asked
if consistent individual differences in behavioral tendencies (animal personality) predict the strength and direction
of the mate choice component of premating isolation in this system.

Results: We characterized focal females for their personality and found behavioral measures of ‘novel object
exploration’ , ‘boldness’ and ‘activity in an unknown area’ to be highly repeatable. Furthermore, the interaction term
between our measures of exploration and boldness affected focal females’ strength of preference (SOP) for the
resident male phenotype in dichotomous association preference tests. High exploration tendencies were coupled
with stronger SOPs for resident over alien mating partners in bold, but not shy, females. Shy and/or little explorative
females had an increased likelihood of preferring the non-resident phenotype and thus, are more likely to contribute
to rare population hybridization. When we offered large vs. small conspecific stimulus males instead, less explorative
females showed stronger preferences for large male body size. However, this effect disappeared when the size
difference between the stimulus males was small.

Conclusions: Our results suggest that personality affects female mate choice in a very nuanced fashion. Hence,
population differences in the distribution of personality types could be facilitating or impeding reproductive isolation
between diverging populations depending on the study system and the male trait(s) upon which females base their
mating decisions, respectively.

Keywords: Premating isolation, Animal personality, Ecological speciation, Mate choice, Local adaptation,
Assortative mating

Background
Animal personality (AP)—also referred to as ‘temperament’

[1]—describes individual differences in behavioral tenden-

cies that are consistent across time and contexts [1, 2]. As

a major component of intraspecific phenotypic variation

that integrates genomic and environmentally-induced vari-

ation [3–5], AP was hypothesized to play a role in various

evolutionary and ecological processes [1, 6–9]. For ex-

ample, previous studies described links between AP and

life-history parameters [10, 11], individual space use

[12, 13] and dispersal tendencies [14–20]. Moreover,

the composition of behavioral types in social groups

plays a vital role for the evolution of sociality and coopera-

tive behavior [21–24], and variation in host personalities

alters parasite-host interactions, with implications for

coevolutionary dynamics [25, 26].

Despite an upsurge of theoretical studies describing

potential links between AP and evolutionary processes

[7], a recent article highlighted that “…researchers have

almost entirely overlooked potential links between
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personality traits and speciation” [27]. For example, no

empirical study to date has addressed the potential role

of AP in determining the strength and direction of pre-

mating isolation during ecological speciation (i.e., speci-

ation during which reproductive isolation is the result of

ecologically-based divergent selection; [28]). Our present

study examined parapatrically evolving (i.e. diversifying),

locally-adapted populations in the species complex of

the neotropical freshwater fish Poecilia mexicana [29, 30].

We asked whether variation in female preferences for resi-

dent over alien mating partners is just due to random

noise or if individuals differ predictably in their strength

of preference (SOP). We argue that individuals with low

SOP-values (e.g., weak discrimination in favor of their

own ecotype) and especially those showing a preference

for alien male phenotypes are more likely to contribute to

mismatched mating and potential hybridization. Links be-

tween animal personality and aspects of sexual selection

are clearly under-studied [31]. Most studies dealing with

this topic focused on female preferences for male behav-

ioral traits (i.e. personality traits of stimulus males) or as-

sortative/disassortative mating based on personality traits

[31], while studies on the potential impact of the choosing

individuals’ personality on their preferences for mating

partners from their own versus an alien ecotype have not

yet been conducted.

In this context, AP could play an important role in

predicting variation in SOP, and we propose the follow-

ing mechanistic link: mate evaluation and mating deci-

sions are based on both private sampling and social

information use [32–35]. Interestingly, in some species

AP predicts the propensity to use private information

(obtained from personal sampling) versus social infor-

mation (obtained from the observation of other individ-

uals; [33, 36, 37]). Individuals with a higher exploration

tendency towards a novel object (which can be inter-

preted as exploration, boldness, or a mix of both, de-

pending on the novel object, the context, and the test

species) relied more on private information than less

explorative/shy ones [38, 39]. Individuals that rely more

on private information should be more experienced in

acquiring and using private information and, thus,

should cope better with situations in which social in-

formation is not available. Less explorative and/or shy

individuals, on the other hand, could contribute more

to mismatched mating when social information is not

available. In our present study, single focal females

could chose between a resident male from their own

locally-adapted population and an alien male from a

different population. As social information use was

impossible, we predicted explorative and/or bold fe-

males to exhibit stronger SOP for resident over alien

male phenotypes than less explorative and/or shyer

ones (prediction 1).

Our second hypothesis addresses the question of a

potential consistency in choosiness. AP might predict

individual choosiness—a trait that is known to vary sub-

stantially within and among populations [40–42]—across

different mate choice situations. We tested this idea by

giving each individual focal female a choice not only be-

tween males from their own vs. an alien population (see

above), but also between large and small males from

their own population. Females of our study species dis-

play a strong preference for large male body size along

with pronounced variation in females’ SOP [43–45]. We

predicted a correlation between individual SOP-values

from both mate choice tests (prediction 2).

We examined these hypotheses in a system of locally-

adapted populations in the P. mexicana-species complex

that have repeatedly colonized springs containing toxic

hydrogen sulfide (H2S) in at least four parallel river

drainages in Southern Mexico [46]. Local adaptation to

sulfidic conditions involves the evolution of a less H2S-

susceptible cytochrome-c oxidase (COX) variant in some

populations [47], increased constitutive expression of the

sulfide:quinone oxidoreductase (SQR; [48]), and parallel

morphological changes [29, 49]. For example, larger

head sizes of sulfide adapted fish allow for a more efficient

oxygen acquisition under sulfidic, hypoxic conditions [49].

Local adaptation in this system is accompanied by varying

degrees of reproductive isolation, as revealed by reduced

gene flow along the sulfide/non-sulfide interface [50, 51].

Both natural selection against migrants and sexual selec-

tion—especially discrimination against alien male pheno-

types in females from non-sulfidic habitats—maintain

reproductive isolation (reviewed in [46]).

We studied both hypotheses related to the occurrence

of individual variation in female mating preferences in

P. mexicana inhabiting the Río Pichucalco drainage

(Additional file 1: Figure S1), in which sulfide-adapted

populations have been described as a distinct species,

Poecilia sulphuraria ([29, 52]; see Fig. 1 for morpho-

logical differences between males from sulfidic and

non-sulfidic sites). We characterized individual wild-

caught P. mexicana females for the personality traits

‘novel object exploration’, ‘boldness’ (measured via

‘freezing time’ after a simulated aerial attack) and ‘activ-

ity in an unknown area’. We then tested whether SOP

for conspecific males is dependent on focal females’

personality traits, and whether females’ SOP varies

consistently across the two different mate choice situ-

ations (own vs. alien male phenotypes and large vs.

small males).

Methods

Test subjects and their maintenance

Test fish were caught with seines (3 mm mesh size) in

the Río Pichulcalco drainage between 2nd and 10th of
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April 2015. We collected P. sulphuraria males (n = 42)

in a sulfidic creek at the Baños del Azufre, while P.

mexicana stemmed from a nearby freshwater site (n = 25

females, n = 48 males; Additional file 1: Figure S1). We

transferred the fish in aerated coolers within 15 min to

the nearby research station (Centro de Investigación e

Innovación para la Enseñanza y el Aprendizaje) in the

city of Teapa, where all behavioral tests were conducted.

We maintained all test fish separated by species and sex

in small groups of 5 – 6 individuals in plastic containers

(52 × 24 × 30 cm; 17 l), equipped with an air pump and

filled with water from the respective sampling sites, at

ambient temperature. Containers were covered on the

outer sides with black plastic foil to minimize disturb-

ance. Fish were fed once a day with commercially avail-

able flake food (TetraMin®). To maintain water quality,

we exchanged half of the water every two days, for

which we used non-sulfidic stream water, such that the

P. sulphuraria males could gradually adapt to non-

sulfidic water conditions, to which they were exposed

during the subsequent mate choice tests (see [51]).

Using this approach, we prevented abnormal behavior of

the P. sulphuraria stimulus males (i.e. reduced swim-

ming performance) that might have resulted from an

abrupt transition to non-sulfidic conditions.

After an initial acclimatization period of 24 h, all focal

females (P. mexicana) were marked to allow individual

identification. To this end, we briefly anesthetized the fe-

males by transferring them into a bucket filled with water

from the maintenance tanks and adding a small amount

of clove oil (1:10 mixed with EtOH) to the water. Follow-

ing the protocol described by Croft et al. [53], we injected

small spots of visible implant elastomer (VIE, Northwest

Marine Technology, Inc.) under the dorsal epidermis

(see also [54]). Thus, each individual was given a unique

identification tag, enabling us to recognize individuals

throughout the behavioral assessments. No mortality was

associated with the tagging procedure, and all fish behaved

calmly and showed no signs of distress after recovery from

anesthesia. After tagging, females were given four days to

recover from the mild handling stress. Focal females

passed through a series of different behavioral tests; after

each test they were given 24 h for recovery in their main-

tenance tanks (for timeline see Fig. 2).

Mate choice experiments

Dichotomous mate choice tests (tests 1 and 2) were con-

ducted in parallel, by two experimenters, in two identical

transparent Plexiglas tanks (42.6 × 16.5 × 30 cm). The

tanks were visually divided into three zones: a neutral

zone in the middle of the tank and two lateral preference

zones (Additional file 1: Figure S2). Stimulus males were

presented in two smaller auxiliary tanks (19.5 × 14.5 ×

30 cm) placed adjacent to the two shorter sides of the

test tank. Hence, the focal female could choose to asso-

ciate with the two different male phenotypes on the

basis of visual cues, including morphological and behav-

ioral differences. Previous studies demonstrated the

importance of visual cues during mate choice of P. mexi-

cana [43], while chemical cues play a minor role during

mate choice in P. latipinna [55]. Association time in this

experimental situation has been demonstrated to be a

good indicator of female mating preferences in closely

related species [56–58].

Fig. 1 Representative pictures of (a) a male sulphur molly, Poecilia sulphuraria, and (b) a male Atlantic molly, Poecilia mexicana, demonstrating the
differences in body shape and body pigmentation; this particular male P. sulphuraria also possesses lower lip appendages, which are common for
the species [46]. Please note, pictures are not on the same scale. Photos by R. Riesch
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A webcam (Microsoft LifeCam VX-2000™) was in-

stalled centrally above the test tank at approximately

1.5 m height, allowing us to remotely observe the focal

female’s movement. Before each trial, we introduced one

stimulus male into each of the two auxiliary tanks. Once

the males were swimming calmly, we introduced the

focal female into a transparent Plexiglas cylinder (10 cm

diameter) in the center of the neutral zone and left it

undisturbed for three minutes (habituation phase). Dur-

ing this time, focal females could inspect both stimulus

males, as the relatively small dimensions of the test tank

allowed the female to see both auxiliary tanks from in-

side the acclimatization cylinder. After the 3-min habitu-

ation phase, we gently lifted the cylinder and once the

focal female started to swim freely in the water column,

we started recording its behavior. We measured times

spent in both preference zones during a 5-min observa-

tion period as an estimate of the female’s preference for

both male phenotypes [51, 56–58]. To detect side biases,

we interchanged both stimulus males immediately after

the first trial and repeated measurement of association

preferences. We gave the focal female two more minutes

for acclimatization before the second part of a prefer-

ence test was initiated. Side bias was assumed if females

spent >80 % of the complete 10 min in the same associ-

ation zone; however, no side bias was detected. Once a

trial was completed, we determined the stimulus males’

standard lengths (SL). We made an attempt to use dif-

ferent males as stimulus males for each trial but had to

reuse some P. mexicana males (two males in test 1 and

half of the males in test 2) to create a sufficient number

of appropriate stimulus pairs; no male was reused more

than once though, and all reused males were used in

different dyadic combinations.

We tested each focal female in two different mate

choice tests: in test situation 1, females could choose

between a conspecific (mean ± SE SL: 36.5 ± 1.2 mm)

and a size-matched heterospecific male (P. sulphuraria;

35.1 ± 1.0 mm; Mann–Whitney U test: Z = 1.10, p = 0.27,

n = 25; stimulus males were paired such that the size dif-

ference never exceeded 3 mm). In test situation 2, focal

females could choose between two different-sized con-

specific males (large: 55.6 ± 2.0 mm; small: 43.3 ±

2.0 mm; Mann–Whitney U test: Z = 3.68, p < 0.001, n =

25; minimum size difference 9 mm). We summed asso-

ciation times near both stimulus males from the two

parts of a trial (before and after switching of side assign-

ments) and calculated the strength of preference (SOP)

for both test situations as:

Test situation 1: (time spent with P. mexicana male –

time spent with P. sulphuraria male)/time spent with

both males;

Test situation 2: (time spent with large P. mexicana

male – time spent with small P. mexicana male)/time

spent with both males.

Thus, SOP-values could range from +1 (maximum pref-

erence for the conspecific or large male) to -1 (preference

for the heterospecific or small male).

Personality assessment

In test situation 3, we characterized each focal female

along three personality axes: exploration as the behav-

ioral response to a novel object, boldness as the response

to a simulated aerial predator attack and activity in an

open field test; all tests were performed consecutively in

the same tank to minimize handling stress. Our experi-

mental design followed previous studies on poeciliid

fishes (activity: [34, 59]; boldness: [34, 60]). The test

arena consisted of a transparent plastic container (52 ×

24 × 30 cm) that was placed on grey cardboard and filled

with aerated stream water to a height of 15 cm. All

outer sides were covered with black plastic foil to

minimize disturbance. A grid (5 cm squares) was drawn

on the bottom, and three additional marks divided the

tank into three equal-sized zones along its long side

(Additional file 1: Figure S3). A webcam (Microsoft

LifeCam VX-2000™) was installed centrally above the

arena (see mate choice tests).

To initiate a trial, we placed the focal female into a

Plexiglas cylinder in the center of the test arena. After

Fig. 2 Experimental timeline for the mate choice tests and

personality assessments
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three minutes for habituation, we gently lifted the cylin-

der. As P. mexicana often freeze for several seconds on

the bottom when introduced into a new test arena, mea-

surements started only after the fish resumed swimming

(all fish started swimming within 2 min). During a

five-min observation period, we counted numbers of

crossed squares. We assumed more active fish to cross a

larger number of squares, which has been shown to repre-

sent a valid personality trait assessment in poeciliids

(P. reticulata: [59]; P. latipinna: [61]; P. mexicana: [34]).

After the activity assessment, we retransferred the

focal fish back into the Plexiglas cylinder, which we

placed close to the wall of one of the small sides of the

test arena. We introduced a novel object at the opposite

side of the test tank, close to the tank wall. After a brief

habituation phase of 1 min, we gently lifted the cylinder

and waited until the female resumed swimming. During

a five-min observation period we measured the time

spent by the female in each of three zones of the tank

(Additional file 1: Figure S3). We assigned a rank of 3 to

the zone containing the novel object, 2 to the central

area, and 1 to the area afar from the novel object and

calculated a score expressing individuals’ tendency to ex-

plore the novel object as the sum of time [× s-1] spent in

the three zones, multiplied by the respective rank value.

This resulted in high values (max. 900) for explorative

and low values (min. 300) for non-explorative individ-

uals. The tendency to explore a novel object can either

be interpreted as ‘exploration’ [1], or as ‘boldness’ [62].

We followed the definition by Réale et al. [1] who deter-

mined boldness as an individual’s response to risky but

not to new situations, the latter being defined as explor-

ation. Still, experiments using the novel object approach

could also include a measure of boldness if the novel ob-

ject or the context in which the novel object is presented

elicits frightening responses. We tried to give a clean

measure of exploration by using a novel object that was

neither completely artificial nor bright in color (the

lower half of a transparent bluish plastic bottle filled

with pebbles) and thus did not have an intimidating ef-

fect on test fish. In a pilot study with laboratory-raised

descendants of wild-caught fish of the same species we

could not detect any signs of the typical frightening re-

sponses towards the novel object (see below).

After the novel object was removed, the female was

given three more minutes to recover before a pulley sys-

tem was used to release a white Ping-Pong ball onto the

water surface, simulating an aerial attack (see also [63]).

P. mexicana females uniformly responded by, first, dash-

ing to a corner and, then, staying on the bottom of the

tank, stopping any obvious movements in order to re-

main inconspicuous (= freezing), before resuming to

swim. We terminated a trial when the female was swim-

ming again or after a maximum ceiling value of 300 s.

We intended to avoid carry-over effects of the boldness

measurement (fish might be intimidated after a simu-

lated predator attack) and ensured that the test arena

truly represented an unknown area during the open-field

activity test. At the same time, we intended to avoid

stress resulting from an additional transfer to another

test tank. Therefore, we decided not to randomize the

order of the different personality assessments.

After the completion of a trial, females were retrans-

ferred into their respective holding tanks and left undis-

turbed for 24 h before testing was repeated. For the

second personality assessment, the novel object was

slightly modified (pebbles were replaced by bigger stones

and shells) so as to avoid habituation effects. The repeated

testing design allowed us to calculate behavioral repeat-

ability [64], a measure of how consistently individuals

differed in their behavioral responses. After the last per-

sonality assessment, we measured SLs of all focal females

upon which all test fish were released at the respective

collection sites. All statistical analyses were conducted

with the unmodified freezing time values. For display pur-

pose and to ease the discussion, we calculated a ‘boldness

score’ as: (300 – freezing time [× s-1]), whereby bolder in-

dividuals were predicted to resume swimming faster [34].

Statistical analyses

Consistency of personality traits and mating preferences

Our first question was whether focal females would show

consistent individual differences in personality traits across

both behavioral assessments. Consistency can be inferred

from repeatability (R)-values of a repeatedly measured

trait, defined as:

Variance among individuals/(variance among individ-

uals + variance within individuals) [65].

Following Nakagawa and Schielzeth [64], R was cal-

culated from variance estimates obtained from linear

mixed models (LMMs) for each personality trait separ-

ately. We included no fixed effects (but see Additional

file 1: Table S1 for R-values obtained from a model in

which focal female SL was included as a covariate), as

our aim was to provide a conservative measure of

within- and among-individual variation [66]. Significant

deviations of R from zero were tested with likelihood ratio

tests (LRT).

Our second hypothesis predicts SOP-values to be con-

sistent across both mate choice situations, and so we

asked whether females would show repeatable individual

differences in their SOP-values obtained from the two

consecutive mate choice experiments. Therefore, we

conducted another LMM (similar to those for personal-

ity traits) to calculate R-values from both mate choice

tests, using SOP-values as the dependent variable. We

also tested if there is a correlation between SOP-values

using Spearman’s ρ.
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We used SPSS version 23.0 for all statistical analyses.

Assumptions of normal error distribution and homosce-

dasticity were met in case of all dependent variables.

Correlations between personality traits

We used arithmetic means from the first and second

personality assessment and tested for correlations be-

tween our measures of ‘exploration’, ‘freezing time’ and

‘activity’ using Spearman’s ρ. We also tested for correla-

tions between the personality traits and ‘focal females’

standard length’. We corrected α-levels for multiple testing

as α’ = 0.05/3 = 0.017.

Influence of personality on mate choice decisions

To test whether focal females prefer con- over hetero-

specific and large over small stimulus males as mating

partners, we conducted paired t-tests on association

times near both types of stimuli in both test situations.

The main question of our study was whether and how

personality differences among individuals affect females’

mate choice decisions. Since the repeatability (R) of

SOP-values across both mate choice tests was low and

non-significant and we could not find a correlation

between SOP-values, we treated SOPs separately in the

following analyses. We ran two general linear models

(GLMs; one for each mate choice test) using SOP-values

as the dependent variable (assumptions of normal error

distribution and homoscedasticity were met in case of

both dependent variables). We included ‘exploration’,

‘freezing time’, ‘activity’ (in all cases means from both

tests), ‘focal females’ standard length’ and ‘size difference

between the two stimulus males’ (conspecific – hetero-

specific and large – small stimulus males, respectively)

as covariates in the models. We initially included all

two-way interaction terms but step-wise excluded non-

significant interactions. Since over-fitting could be a

problem in our analyses due to the relatively small sam-

ple size (n = 25), we reduced the number of factors in

the final models by also excluding non-significant main

effects. Significant effects did not change qualitatively

through this procedure.

As a second step, we ran post-hoc non-parametric

Spearman rank correlations to estimate the strength of

significant main effects and interaction terms (from the

final model). Only effects that were significant in the

parametric models and for which a strong correlation

was uncovered in the post-hoc analyses (|rS| > 0.5) are

being discussed in the following (but see Table 1 for the

complete models).

Results

Consistency of personality traits and mating preferences

We found all three personality traits to be highly re-

peatable: ‘novel object exploration’ (R = 0.50, p = 0.005,

n = 25), ‘freezing time’ after a simulated predator attack

(our measure of boldness; R = 0.64, p < 0.001), and ‘activity

in an unknown area’ (R = 0.52, p = 0.003; see Additional

file 1: Table S2 for corresponding variance parameters and

confidence intervals). As predicted, focal females spent

significantly more time near conspecific (mean ± SE:

388.48 ± 25.33 s) than heterospecific stimulus males

(156.6 ± 20.88 s) in the first mate choice test (t24 =

5.09, p < 0.001). SOP-values for conspecific stimulus

males ranged from -0.24 to 1.00 (mean ± SE: 0.41 ±

0.08; Fig. 3a). Focal fish also spent more time associ-

ating with the larger (356.72 ± 21.15 s) than the

smaller P. mexicana male (192.60 ± 17.63 s) in the

second mate choice test (t24 = 4.39, p < 0.001). SOP-

values ranged from -0.22 to 0.97 (mean ± SE: 0.29 ±

0.07; Fig. 3b). Only a small portion of the variance

seen in SOP-values between the two mate choice situ-

ations could be explained by consistent differences

among individuals across both mate choice situations,

resulting in a low, non-significant R-value (R = 0.20, p

= 0.24, n = 25). Also, no correlation between SOP-

values of both mate-choice situations could be found

(rS = 0.21, p = 0.32, n = 25).

Correlations between personality traits

We found no correlations between ‘exploration’ and

‘freezing time’ (Spearman rank correlation: rS = -0.41,

p = 0.040, n = 25, α’ = 0.017), ‘activity’ and ‘exploration’

(rS = -0.11, p = 0.60), or ‘freezing’ time and ‘activity’

(rS = -0.02, p = 0.94). A strong negative correlation

between ‘activity’ and ‘focal females’ standard length’ was

uncovered (rS = -0.58, p = 0.003), meaning that smaller

females swam more than larger ones. No correlation was

found between ‘exploration’ and ‘focal females’ standard

length’ (rS = -0.10, p = 0.64) or ‘freezing time’ and ‘focal

females’ standard length’ (rS = -0.02, p = 0.91).

Table 1 Results of univariate GLMs using SOP-values as the
dependent variable. Effects that were retrieved as significant
by the GLM and showed |rS| > 0.5 in post-hoc Spearman rank
correlations, are highlighted in bold

F p

(a) Con- versus heterospecific male

Exploration 5.42 0.030

Freezing time 4.74 0.040

Exploration × freezing time 4.53 0.045

(b) Large versus small conspecific male

Exploration 7.92 0.010

Size difference of focal males 8.80 0.008

Size female 19.33 <0.001

Exploration × size difference of focal males 11.89 0.003
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Influence of personality traits on mate choice decisions

Female choice for conspecific males

We tested whether personality traits influence females’

SOP for conspecific over heterospecific males. We de-

tected a significant interaction term between ‘explor-

ation’ and ‘freezing time’ (Table 1a). To visualize the

interaction effect, we divided focal females into shy

(freezing times higher than the empirical mean value

of 134.78 s, n = 12) and bold (freezing times lower

than the empirical mean, n = 13). Nonparametric

Spearman rank correlations found the SOP to strongly

increase with increasing exploration in bold individ-

uals (rS = 0.64, p = 0.018, n = 13) while no such effect

was seen in the shyer half of individuals (rS = -0.08, p

= 0.81, n = 12; Fig. 4). The two main effects ‘explor-

ation’ and ‘freezing time’ were significant in the final

GLM (Table 1a), but had low correlation coefficients

in post-hoc Spearman rank correlations (exploration:

rS = 0.24, p = 0.25, n = 25; freezing time: rS = -0.03, p =

0.90, n = 25).

Neither of the independent variables ‘activity’, ‘female

standard length’, nor ‘size difference between the stimu-

lus males’ had statistically significant effects in our initial

model (F1,18 < 3.40, p > 0.08) and were thus excluded

from the final model.

Female choice for large male body size

Focal females’ SOP for large male body size was influenced

by the interaction effect between ‘exploration’ and ‘size dif-

ference between the stimulus males’ (Table 1b). To illus-

trate the interaction term, we divided the data into two

cohorts, for which the size difference between both stimu-

lus males was either smaller (n = 13) or larger (n = 12) than

the empirical mean value of 11.5 mm, respectively. When

the size difference was > 11.5 mm, less explorative focal fe-

males showed a stronger SOP than more explorative ones

(rS = -0.71, p = 0.01, n = 12), while no such effect was seen

when the size difference was < 11.5 mm (rS = 0.39, p = 0.19,

n = 13; Fig. 5a).

Moreover, the main effect ‘focal females’ body size’ (SL)

influenced their SOP for large male body size (Table 1b),

and females’ SOP decreased with increasing SL (rS = -0.55,

p = 0.005, n = 25; Fig. 5b). Again, the two main effects ‘ex-

ploration’ and ‘size difference between the stimulus males’

were retrieved as significant by the GLM (Table 1b) but

had low correlation coefficients in post-hoc Spearman

rank correlations (‘exploration’: rS = -0.17, p = 0.42, n = 25;

‘size difference between stimulus males’: rS = -0.22, p =

0.30, n = 25).

Fig. 3 Distribution of individual strength of preference (SOP)-values derived from dichotomous female association preference tests offering (a) conspecific
versus heterospecific males and (b) large versus small males. Solid lines represent the mean SOP across individuals

Fig. 4 Visualization of the significant interaction term between

‘exploration’ and ‘boldness’ from the univariate GLM using SOP-
values for con-over heterospecific males as the dependent variable.

SOP-values > 0 indicate preference for con- over heterospecific males
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Neither ‘activity’ nor ‘freezing time’ had statistically

significant effects and were excluded from the final

model (F1,18 < 0.14, p > 0.51).

Discussion

Ecological speciation describes the process during which

reproductive isolation (RI) arises as a consequence of

adaptation to ecologically-based divergent selection

[28, 67, 68]. Especially in early stages of population

divergence, premating isolation plays an important

role in determining the strength of RI [28, 69]. In our

study system, populations of the Poecilia mexicana-

species complex have repeatedly adapted to high and

sustained concentrations of naturally occurring H2S.

The independent colonization of sulfidic spring com-

plexes in at least four river drainages not only led to

adaptive trait divergence in several character suits as-

sociated with oxygen uptake and sulfide detoxification

[47–49] as well as offspring survival under toxic con-

ditions [70, 71], but population pairs in each drainage

also show emerging RI [51].

Previous studies have investigated mechanisms of pre-

mating isolation in our study system: natural selection

was found to hamper the migration of individuals into

habitat types to which they are not locally adapted, and

high mortality was observed especially during the transi-

tion from non-sulfidic into sulfidic habitats [50, 51, 72].

In addition, female mate choice plays a role (while males

chose their mates rather indiscriminately with respect to

different ecotypes): females from non-sulfidic waters

showed a strong overall preference against males of the

sulfide-adapted ecotype [50, 51, 72], which they may

encounter in mixing zones between sulfidic and non-

sulfidic stream portions (Additional file 2: Video S1 and

Additional file 3: Video S2).

We used this study system to address the question of

whether among-individual variance in female preference

for males of their own ecotype represents mere statistical

noise or whether some females predictably are more likely

to contribute to rare population interbreeding. Specific-

ally, we asked if personality traits predict female SOP for

resident male phenotypes. In line with this prediction, we

found less explorative females to show weaker SOP, even

though this effect was markedly stronger in bold than in

shy females. We also asked whether females’ SOPs are

consistent across mate choice situations. However, we

found no correlation between female SOP in two different

mate choice situations, namely, discrimination between

size-matched own and alien males and discrimination be-

tween large and small conspecific males. Moreover, when

the size difference between the large and the small stimu-

lus male was pronounced in the latter mate choice situ-

ation, less explorative females showed stronger (not

weaker) SOP, demonstrating that personality differentially

affects female mate choice for resident male phenotypes

and mate choice for a sexually selected trait (body size),

respectively.

Effects of personality traits on female preferences for

own versus alien males

Less explorative/shy individuals tend to rely more on

social information during decision making [38, 39]. So-

cial information, however, is not continuously available,

as females cannot always observe other females during

their mate choice. Our experimental design did not

allow for social information use and so we predicted

mate choice of less explorative and/or shy females to be

less accurate, resulting in lower (but overall, positive)

SOP for resident males. Both hypotheses outlined in the

introduction, (1) differences in information use between

bold and shy individuals and (2) the potential consistency

in choosiness, predict a correlation between SOP values

across both mate choice contexts, which we did not find.

In the following, we argue that the first hypothesis most

likely explains personality-dependent differences in SOP

in the first mate choice situation, while direct costs/

Fig. 5 Visualization of significant effects from the univariate GLM using SOP-values for large over small conspecific males as dependent variable.
a Interaction effect between ‘exploration’ and ‘size difference between the two stimulus males’. b Main effect of ‘focal females’ size’. SOP-values > 0

indicate preference for large over small conspecific males
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benefits of associating with certain male phenotypes prob-

ably overrode the effect of differential information use in

the second experiment (see below).

The interaction between exploration and boldness in-

fluenced focal females’ SOP for conspecific males in a

way that bolder females showed stronger SOP with in-

creasing exploration tendency. Thus, individuals with a

combination of high exploration and boldness showed

highest SOPs, while we found a substantial number

(20 %) of females with other personality type combina-

tions (shyer than average, less explorative than average,

or both) to actually spend more time with the heterospe-

cific stimulus male (Fig. 4). We propose an additional

(not mutually exclusive explanation) for this pattern: lit-

tle explorative and/or shy females could prefer males

with a similar personality type. Evidence for fitness bene-

fits arising from assortative mating based on personality

traits mostly comes from monogamous species [73–76],

but assortative mating also occurs in species in which

males only provide sperm [77]. When females of the re-

lated guppy (P. reticulata) were paired with males that

exhibited a similar degree of boldness, they had higher

reproductive success than females that were mated with

males that differed in boldness scores [78]. Logistic con-

straints prevented us from assessing personality traits of

stimulus males in our present study, but a previous

study described that P. sulphuraria males are considerably

shyer than P. mexicana males [79].

Under natural conditions, fishes of both ecotypes indeed

co-occur in freshwater and transition zones between sulfi-

dic and non-sulfidic waters where they compete for food

(Additional file 2: Video S1) and show some degree of sex-

ual interactions with either species (e.g., precopulatory

nipping behavior; Additional file 3: Video S2).

However, hybridization seems to be a rare event in the

population-pair studied here, as genetic introgression is

low [51]. There are several possible explanations for this

finding: most importantly, under natural condition, strong

natural selection against migrants (especially in sulfidic wa-

ters) in conjunction with sexual selection through female

choice effectively restricts gene flow between different, lo-

cally adapted populations [50, 72]. Also mate discrimin-

ation in extreme environments could be under selection, as

hybrids may face a selective disadvantage (reinforcement:

[80]). Furthermore, the overall strong preference for con-

specific male phenotypes might even be stronger under

natural conditions due to the larger average body size of P.

mexicana males compared with P. sulphuraria males (R.

Riesch, unpublished data, Additional file 2: Video S1),

given that females prefer large-bodied males ([43, 45, 81];

this study).

Our results call for additional experimentation in this

and other population pairs. For example, it remains to

be studied how variation in population densities and the

distribution of personality types within and among pop-

ulations affect premating isolation. Under low popula-

tion densities, less explorative and/or shy individuals can

barely use social information and so a higher proportion

of mismatched mating (and thus, introgression) can be

predicted. Nonetheless, we hypothesize that less explora-

tive and/or shy individuals are also less likely to venture

into the mixing zones between sulfidic and non-sulfidic

stream portions. It will be exciting to elaborate on those

aspects in future research projects comparing more

population pairs.

Effects of personality traits on female preferences for

large versus small conspecific males

Poecilia mexicana females prefer large males as mating

partners [43, 45, 81]. In social dominance hierarchies

among P. mexicana males, the largest male in a group

invariably becomes dominant and monopolizes most fe-

males [54] and females benefit from mating with dominant

males through direct and indirect fitness gains [82, 83].

Smaller males try to compensate for their inferiority in

mate competition by showing strongly increased sexual ac-

tivity [84]. Females try to avoid this sexual harassment, as

they suffer considerable fitness costs imposed by sexually

harassing males, for example, in the form of reduced feed-

ing opportunities [85, 86]. Staying in the vicinity of larger

males protects females from sexual harassment of smaller

males ([87]; for P. latipinna see [88]).

Still, females show variation in their SOP for large over

small males, and we addressed the question of whether

some female personality types predictably show weaker

SOP for large over small males. We found an interaction

between focal females’ exploration tendency and the

size difference between both stimulus males. When

the size difference was pronounced, less explorative

females showed a stronger SOP for large males than

explorative females while this effect disappeared when

the size difference was less obvious. It remains unclear

why less explorative females showed a stronger SOP

for larger males than explorative females in this situ-

ation. We tentatively argue that more exploratory (po-

tentially more risk-taking) females could be more

inclined to accept the costs imposed by sexually haras-

sing (small-bodied) males.

Moreover, we found focal females’ SL to significantly

affect SOP, with smaller females showing a stronger SOP

for large over small males. This contrasts with other stud-

ies reporting on increasing SOP for large over small male

body size in larger, more experienced females (Xiphophorus

multilineatus: [89]; X. nigrensis: [90]). While we are lacking

an intriguing explanation for this effect, we tentatively

argue that a similar explanation as described before can

also explain this result: if large-bodied females are more

able to escape from male sexual pursuit, then small females
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should indeed show stronger avoidance of highly harassing,

small-bodied males [84]. Differences between the results

from our study and the above-mentioned studies on

swordtails (Xiphophorus spp.) could be due to differences

in the degree of male sexual harassment, as numbers of

mating behaviors per unit time are much higher in Poecilia

than in Xiphophorus species [91].

Conclusions

We found evidence that animal personality influences the

female mate choice component of premating isolation

between locally-adapted populations of the P. mexicana

species complex. However, the strength and direction in

which personality traits affect the SOP for a certain male

phenotype depends on the mate choice context and may

either impede or facilitate RI. Our present study is

amongst the first to address the question of how emer-

ging RI depends on the distribution of personality types

in a given population. As such, it leaves open a number

of important questions that call for additional experi-

mentation in the future. For example, predation is a

major driver of population divergence in other systems

(e.g. [92–98]). Increased predation, however, has also

been reported to translate into an increased boldness

([79, 99–104], but see [105]). Might differences in

predation regimes between repeatedly diverging (con-

vergently evolving) population pairs indirectly affect RI

between ecotypes? All else being equal, RI should be

higher under elevated predation risk as individuals

should, on average, be bolder and more explorative

(either through plasticity or selection against shy phe-

notypes [79, 98, 99]).

Another interesting aspect for future studies in this

context is the role of cognitive abilities during mate choice

in potential hybridization zones. Personality traits, espe-

cially exploration and boldness, were found to correlate

with certain cognitive abilities (i.e., the ability to learn a

certain task) in a number of species [106–111]. However,

the investigation of the relationship between consistent

personality traits and cognitive abilities is still at its in-

fancy and poses many methodological challenges [112].

Still, it provides a field of major interest and empirical

studies on that topic are desirable. Our study was not

designed to test for fishes’ cognitive abilities, however our

results do not support a scenario in which personality-

correlated consistent individual variation in cognitive abil-

ities alone could explain variation in SOP: first, individuals

did not consistently differ in SOP across different mate

choice situations; second, personality traits had very

different (opposing) effects during the two mate choice

situations.

In conclusion, we think that our study provides an

interesting new aspect to our understanding of the

complexities involved in the early stages of population

divergence and speciation. In our system, personality

affects female mate choice in a very nuanced fashion,

but this need not be the case in other systems. As such,

investigations into animal personality traits and their

effects on population divergence during incipient speci-

ation are likely to provide new insights into the mecha-

nisms that help promote or constrain further population

divergence and ultimately speciation.

Additional files

Additional file 1: Table S1. Repeatability (R) and significance values for
the three behavioral traits used to assess personality differences. R-values
are based on variance estimates of separate LMMs including focal females’
body size (SL) as a covariate. p-values were assessed using LR-tests.
Table S2. Variance parameters obtained from LMMs to calculate repeat-
abilities for ‘activity’, ‘exploration’ and ‘freezing time’. (a) estimates of within-
individual variance and (b) among-individual variance with corresponding 95
% confidence intervals (CI). Figure S1. Overview of the study area in Mexico.
The magnified section shows the Río Pichucalco with arrows indicating our
two sampling sites (1: non-sulfidic site; 2: sulfidic site ‘Baños del Azufre’). Modi-
fied from [53]. Figure S2. Schematic view of the experimental set-up used in
the mate choice trials. The central tank was visually divided into a neutral (NZ,
center) and two lateral preference zones (PZ). Two auxiliary tanks holding the
stimulus males [in this case: P. sulphuraria male (left) and P. mexicana male
(right)] could be inspected by the focal female. Figure S3. Schematic view of
the test tank used for the personality assessments (top view). Depicted is the
start of the assessment of novel object exploration: the focal female (left) and
the novel object (grey circle, right) are placed at opposite sides of the tank.
Grid lines served for the assessment of activity, during which numbers of
squares crossed within 5 min were counted. During the subsequent as-
sessment of exploration tendencies only the two black lines that divide
the tank into 3 zones were considered. Zone 1: weak exploration, zone
2: medium exploration, zone 3: strong exploration. (DOCX 3.58 mb)

Additional file 2: Video S1. Food competition between Atlantic mollies
(P. mexicana) and sulphur mollies (P. sulphuraria). The site is a mixing zone
between sulfidic and non-sulfidic microhabitats with apparently low sulfide
content. Silvery fish with a white abdomen and dark bars on the flanks and
caudal peduncle are P. sulphuraria while beige individuals are P. mexicana.
Also note the presence of some Astyanax aeneus searching for food
between the mollies. Fish were recorded on the 24th of April 2016
with a Canon XF200 at full HD resolution with 50 fps and a polarizing filter
attached. (MP4 13.6 mb)

Additional file 3: Video S2. Sexual interactions (precopulatory nipping
at the female gonopore) between P. mexicana and P. sulphuraria at the
same site seen in Additional file 2: Video S1. Besides females, also silvery
males with a white abdomen and dark bar patterns (P. sulphuraria) and
rather ‘dull’ (beige) males (P. mexicana) can be observed. Males have
yellowish dorsal and caudal fin margins. Within the first 15 s, a P. sulphuraria
female is approached twice by two P. mexicana males and one P.

sulphuraria male. Also visible are cichlids (Cichlasoma salvini and Vieja

bifasciata) and Astyanax aeneus. Fish were recorded on the 24th of
April 2016 with a Canon XF200 at full HD resolution with 50 fps and
a polarizing filter attached. (MP4 16 mb)
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