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Abstract. The FLUXNET dataset contains eddy covariance

measurements from across the globe and represents an in-

valuable estimate of the fluxes of energy, water, and carbon

between the land surface and the atmosphere. While there is

an expectation that the broad range of site characteristics in

FLUXNET result in a diversity of flux behaviour, there has

been little exploration of how predictable site behaviour is

across the network. Here, 155 datasets with 30 min temporal

resolution from the Tier 1 of FLUXNET 2015 were anal-

ysed in a first attempt to assess individual site predictability.

We defined site uniqueness as the disparity in performance

between multiple empirical models trained globally and lo-

cally for each site and used this along with the mean per-

formance as measures of predictability. We then tested how

strongly uniqueness was determined by various site char-

acteristics, including climatology, vegetation type, and data

quality. The strongest determinant of predictability appeared

to be that drier sites tended to be more unique. We found

very few other clear predictors of uniqueness across differ-

ent sites, in particular little evidence that flux behaviour was

well discretised by vegetation type. Data length and quality

also appeared to have little impact on uniqueness. While this

result might relate to our definition of uniqueness, we argue

that our approach provides a useful basis for site selection in

LSM evaluation, and we invite critique and development of

the methodology.

1 Introduction

The land surface is a key component of the climate system,

as it provides feedbacks to atmospheric conditions via the ex-

change of heat, moisture, and carbon fluxes. These surface–

atmosphere exchanges are contingent on the characteristics

of the soil and vegetation. However, these interactions be-

tween the atmosphere and land are not uniform; for example,

in hot, mesic environments net primary productivity (vegeta-

tion productivity) becomes less sensitive to the effect of cli-

mate (Bonan, 2015; e.g. increasing precipitation Chapin III et

al., 2011; Del Grosso et al., 2008; Gillman et al., 2015; Hus-

ton and Wolverton, 2009; Schuur, 2003). Across the globe,

variability in the productivity–climate relationship suggests

that the behaviour of some ecosystems must be more pre-

dictable than others. Intuitively, the behaviour of ecosys-

tems that experience marked stochasticity in precipitation

(e.g. ecosystems that rely on monsoonal rains for growth)

would likely be harder to predict than ecosystems that ex-

perience relatively consistent year-to-year conditions (e.g.

the boreal zone, the wet tropics, or desert regions). Further-

more, whilst vegetation patterns are broadly understood at

global scales (e.g. the Köppen climate classification, Kottek

et al., 2006; and Whittaker’s biome classification, Whittaker,

1962), at local and regional scales, plants exhibit local-scale

adaptations to their environment (e.g. soils and topography).

Taken together, these relationships between climate and lo-

cal factors point to a spectrum of site predictability. Perhaps

surprisingly, the predictability of a site is rarely considered

explicitly when choosing sites to evaluate models and never

quantified.

Modern land surface models (LSMs) attempt to describe

the exchange of energy, water, and more recently carbon by

explicitly representing the soil–vegetation continuum (Pit-

man, 2003). Common to virtually all LSMs is an assumption

that flux behaviour variations between biomes, given simi-

lar driving conditions, can be explained by a small sample

of structural and physiological parameters grouped as plant

functional types (PFTs). As a result, land modellers have

sought observations from locations characteristic of these

broad PFTs to develop and evaluate models. However, the

actual practical representativeness of the PFTs of the under-
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lying vegetation properties has only recently begun to be in-

vestigated (e.g. Alton, 2011), and no explicit empirical as-

sessment of PFTs as a driver of predictability has been un-

dertaken.

Land surface modellers often use FLUXNET data to eval-

uate their models and to tease out weaknesses with the goal

of model improvement. In the 1990s and 2000s when only

a handful of flux tower site measurements were available,

the LSM community gravitated to these datasets, and hence

observations taken at Cabauw (the Netherlands), Harvard

Forest (USA), and near Manaus (Brazil) were widely used.

Over the last 2 decades, direct measurement of land surface

fluxes and meteorological variables has rapidly expanded, as

new flux towers are installed and existing towers continue

to gather data. FLUXNET 2015 (Fluxdata.org, 2018), as a

synthesis of these measurements, represents a rich source of

information about the exchange of carbon, water, and en-

ergy. The freely available release (Tier 1) encompasses over

150 sites and includes over 500 site-years of high tempo-

ral, quality-controlled data. These data provide an unparal-

leled opportunity to improve our observationally based un-

derstanding of land–atmosphere exchanges of carbon, wa-

ter, and energy. They are also particularly useful for LSM

evaluation since both the necessary driving variables (mete-

orological variables) and prediction variables (energy, water,

and carbon fluxes) are reported at a spatio-temporal scale rel-

evant to LSMs. As a consequence, land surface modellers

have developed tools to enable the FLUXNET 2015 data to

be used routinely (e.g. Ukkola et al., 2017). However, with

hundreds of site datasets now freely available, site choice

for model evaluation varies widely among the land surface

community, with no common strategies for site selection.

FLUXNET sites differ in many ways: in data record length

(from less than 1 to greater than 20 years); in climate regime;

and in soil and vegetation characteristics. Their similarity to

each other also varies – FLUXNET is not evenly distributed

over the globe and has higher density in more densely pop-

ulated and wealthy regions, such as Western Europe and the

north-east of the United States, with particularly heavy rep-

resentation of temperate forests.

Despite obvious distinctions between sites in FLUXNET

defined by precipitation regime, temperature, seasonal snow

cover, and indeed PFT type, it is not immediately clear which

of the more than 150 freely available sites are most useful for

model evaluation. One might assume that given the diversity

of sites, some are easier to simulate than others, and it seems

sensible to assume that the choice of sites could have an im-

pact on insight gained from model evaluation at these sites.

However, assumptions about the predictability of different

sites have not been explicitly tested. The lack of quantifica-

tion of predictability means that site selection for evaluation

is potentially susceptible to confirmation bias. That is, a mod-

eller might unconsciously choose sites that are easier for their

model to simulate, rather than selecting sites based on their

instructiveness for identifying flaws in a model. For exam-

ple, consider the implications of evaluating a model against

ten FLUXNET sites that happen to be the least predictable

in comparison to evaluation against the 10 most predictable

sites. In the former case, a modeller might become disillu-

sioned with the apparent lack of skill of a potentially good

model, while in the latter case a modeller might become over-

confident concerning the skill of a poor model.

This issue of site predictability has been ignored in his-

torical flux–model comparisons, in which modelling groups

have generally not tried to explicitly justify their choice of

sites or have based their reasoning around issues such as

data availability or length of record. Chen et al. (1997) chose

the Cabauw site for a multi-model intercomparison because

it was considered relatively easy to simulate. Several au-

thors chose longer (multi-year) sites (Balsamo et al., 2009;

Lawrence et al., 2011; Wang et al., 2011). Some evaluation

papers explicitly sought to sample a range of PFTs (Bonan et

al., 2014; De Kauwe et al., 2015). Many highlighted choices

based on the availability of gap-filled data (Krinner et al.,

2005; Slevin et al., 2015; Wang et al., 2011). A few papers

highlighted the high natural variability of a site (Balsamo et

al., 2009) or a high degree of climate differences between

sites (Wang et al., 2011). Others highlighted the quality of

specific sites and some provided evidence for this decision

based on energy closure (Napoly et al., 2017). In contrast to

the often detailed explanation for why a specific model or pa-

rameterisation is chosen, the defence of specific evaluation

datasets often lacks a coherent rationale. Most commonly,

“high quality” or “longer” datasets are selected. A longer

dataset may sample more years, but a single month of data

from another site might provide more information regard-

ing a specific phenomenon (e.g. the response to a drought

or a heat wave). Sampling more PFTs might be valuable, but

might also bias results if the selected sites fall within a simi-

lar behavioural regime not well discretised by PFT. In short,

it would be useful to be able to make clear, evidence-based

statements about the relative predictability of different sites

based on meteorological patterns or local site characteristics.

This would allow modellers to make informed site selection

choices for model development and evaluation that maximise

coverage of diverse site behaviours and ultimately help to re-

duce uncertainty in model projections. Whether or not any of

the studies mentioned above are biased by a lack of consider-

ation for predictability is unknown because this was not part

of the selection process for the sites chosen.

Predictability can broadly be defined as the ability to re-

produce a property of a system given only knowledge of

the variables that are causally related to that property. Pre-

dictability of a system should therefore also encompass the

capacity to predict changes in the property of interest given

changes in the drivers of the system, for example differing

flux responses in wet and dry periods. Differences in pre-

dictability between sites might be due to many factors, in-

cluding, but not limited to the following:
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– variability of meteorology (e.g. strong seasonality in

precipitation compared with low variability, large sea-

sonal cycles in incoming radiation compared to small

seasonal cycles, and stochastic events);

– complexity or consistency of the site itself (e.g. oro-

graphic effects, managed land use including different ir-

rigation and cropping patterns, vegetation and soil struc-

tures);

– broader-scale impacts (e.g. climate type, regional arid-

ity, teleconnections to major oceanic drivers, landscape

heterogeneity, geological basins); and

– technically sourced variance (quality of instrumenta-

tion, assumptions and application of eddy covariance

methodology, post-processing).

In this context we might envisage predictability to be the

degree to which a “perfect” model could accurately esti-

mate measured fluxes at a site given appropriate meteorolog-

ical variables and relevant site characteristic information. Of

course, we lack a perfect model, and the accuracy of our ob-

servational data is always limited by measurement error and

noise in the system being measured. As such, any practical

measure of predictability will be limited in accuracy, but this

does not mean that it cannot still be useful.

Some predictability metrics do exist: Colwell (1974) de-

fines a predictability metric based on constancy in time

and contingency on season but this metric only captures

one aspect of performance – temporal correlation. Abbas

and Arif (2006) also proposed a number of time series

predictability metrics, but these are only useful in univari-

ate time series prediction for which the forecast is made

only given knowledge about the predicted variable itself,

rather than knowledge of other predictor variables, as is

the case with flux prediction from meteorological variables.

Kaboudan (2000) provides another univariate predictability

metric.

Since existing predictability metrics are not suitable to our

problem, below we detail a new metric of site predictability

and analyse the FLUXNET 2015 sites according to their pre-

dictability. To do this, we applied a suite of empirical models

to predict fluxes at the 155 flux tower sites with half-hourly

data included in the Tier 1 FLUXNET 2015 release. We also

investigate several hypotheses that might explain the varia-

tion in site predictability in different locations. Finally we

attempt to provide a sound theoretical basis for site selection

for LSM development and model intercomparison projects.

This will allow expectations of model performance to be

better defined by providing a priori estimates of local pre-

dictability based on site characteristics. We hope this can pro-

vide some mitigation of the potential for ad hoc site selection

to shape judgement of how well LSMs perform.

2 Methods

This study focuses on the predictability of three key fluxes:

net ecosystem exchange (NEE), sensible heat (Qh), and la-

tent heat (Qle). We focus on predictability as a consequence

of meteorological drivers only and ask whether predictabil-

ity at a specific site can be understood in terms of the differ-

ences in flux behaviour given particular site and meteorolog-

ical conditions relative to the flux behaviour that would be

expected at other sites given the same conditions. We do this

by training a suite of empirical models to predict fluxes based

on meteorology twice for each FLUXNET site. First we train

the empirical models using all of the available data from all

of the available sites at once (“global training”) to charac-

terise the general expected flux behaviour given a specific

set of meteorological conditions. Then we retrain the models

using only data from the individual site in question (“local

training”). The globally and locally trained versions of the

models are then used to make predictions at each FLUXNET

site, and their performances are compared using a range of

performance metrics. Any improvement in performance by

the locally trained model over the globally trained model is

an indication of driver–flux relationships that are unique to

the site in question (note that this may include systematic

errors in measurement). Since such a site exhibits relation-

ships between drivers and fluxes that are not broadly shown

at other sites, we argue this site has lower predictability than

a site that acts more similarly to the global behaviour.

To quantify this, we plot the local and global metric values

as Cartesian coordinates, then convert them to polar coor-

dinates (see Fig. 1). The origin represents the best possible

performance metric value, so distance to the origin repre-

sents the mean site performance across the global and lo-

cal simulations. The degree to which each point drops below

the 1 : 1 line will be our definition of uniqueness. To illus-

trate, imagine a model that perfectly represented all relevant

processes and fully utilised all of the available information

in the input data to make the best possible prediction. This

model could be used to assess site predictability based on the

residual sum of squares against observations, and this met-

ric value could be compared across different sites. No such

model exists of course, and we therefore use empirical mod-

els to assess the predictability of the data while minimising

assumptions about the functional form of any relationships

between variables. For further discussion of why empirical

models are suitable for estimating the information available

in FLUXNET data, see Best et al. (2015) and Haughton et

al. (2016).

This procedure is model-agnostic, and we have used mod-

els in the framework developed in Best et al. (2015) and

Haughton et al. (2018) because they are conceptually sim-

ple, but able to fit complex functional relationships. These

models (listed in Table 1) include some simple linear regres-

sions, as well as cluster-plus-regression models. The cluster-

plus-regression models consist of a K-means clustering over
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meteorological driving data and then an independent linear

regression between drivers and fluxes at each cluster. These

cluster-plus-regression models can fit arbitrary functional

forms between predictor and response variables when using

a high enough cluster count (k) and given enough data. The

models are not perfectly deterministic, since K-means con-

vergence is dependent on cluster initialisations, but the vari-

ance in the results is small (see the Supplement of Haughton

et al., 2018) and unlikely to substantially affect our results.

Our use of an ensemble of models at each site further mit-

igates this problem. The ensemble also allows us to over-

come the problems of the simpler models failing to capture

behavioural nuances and of the more complex models fail-

ing to train at some sites due to insufficient data (described

below).

Models used various combinations of meteorological driv-

ing variables: downwelling shortwave radiation (S), surface

air temperature (T ), relative humidity (H ), wind speed (W ),

and precipitation (P ). Models also used a number of derived

variables, including difference in air temperature and specific

humidity since dawn (dT and dQ, respectively), as well as

lagged averages of each meteorological forcing (e.g. lH10d

indicates a 10-day lagged average of H ), for which the lags

were chosen pseudo-optimally, and lagged differences from

the current time step (e.g. lT 6hM indicates a 6 h lagged aver-

age of air temperature minus instantaneous air temperature).

Haughton et al. (2018) showed that each of these driving

variables we use here added predictive power to the mod-

els and had relatively low correlation, avoiding problems of

collinearity. The models referenced below follow a standard

naming scheme that indicates the structure of the model; for

example, S_lin indicates a linear regression using only short-

wave down, while STHdT_lS30d_km243 would indicate a

cluster-plus-regression model with 243 clusters, with short-

wave down, air temperature, relative humidity, temperature

difference since dawn, and a 30-day lagged average of short-

wave down as inputs. None of the models are provided with

site characteristic data (e.g. geographic, soil, or vegetation

information) as we want to use the models to test the effects

of these characteristics on predictability. A complete list of

the empirical models is shown in Table 1.

To run the models, we converted the raw FLUXNET 2015

Tier 1 data (only sites with half-hourly data, 155 in total) us-

ing the FluxnetLSM tool developed by Ukkola et al. (2017).

In all cases, the empirical models are trained only on high-

quality non-gap-filled data according to quality control (QC)

flags from FLUXNET 2015 and FluxnetLSM. The models

are then run on all available data (including gap-filled data to

maximise the time coverage of empirical models with time-

lagged drivers) and evaluated only on time steps with non-

gap-filled data. We then plotted each metric value for each

site in a scatter plot, with the global value on the x axis and

the local value on the y axis. We decomposed that informa-

tion into the following.

1. Mean performance is the arithmetic mean of the local

and global metric at each site defined by distance from

the origin. Higher is worse in most metrics, including

root mean square error (RMSE), but lower is worse in

the case of Pearson’s correlation coefficient (Corr) and

Perkins’ distribution overlap metric (Overlap; Perkins et

al., 2007).

2. Uniqueness is the angle below the 1 : 1 line. Uniqueness

is calculated as 4
π

arctan(
x−y
x+y

) such that if, for exam-

ple, RMSE is 0 locally and some positive value globally,

uniqueness will be 1.

Note that because the best possible result for some metrics

is 1 (e.g. Corr and Overlap), in those cases we subtract the

value from 1 such that the best result is 0 before calculat-

ing the uniqueness so that it can be interpreted the same way

across metrics: positive numbers indicate better local perfor-

mance. We avoid transforming metrics for mean performance

so that metrics are in their standard units.

In general, this definition of uniqueness ranges from −2

to 2 and is strictly between −1 and 1 for metrics that only

have values on one side of “best” (e.g. RMSE is positive def-

inite, Corr is always less than or equal to 1), but in most cases

should lie between 0 and 1. A model’s uniqueness is 0 if the

local and global simulations perform equally well, between

0 and 1 if the local model performs better than the global

model, and negative if the local model performs worse than

the global. Negative values are unusual and indicate that the

local meteorological forcing provides insufficient useful in-

formation to increase performance and that the local model

has failed in a spurious way (discussed in more detail below).

The number of negative uniqueness values for each metric

and each model is shown in the last three columns of Table 1

out of a maximum of 10 × 155 = 1550 cases. We note that

ST_lin Corr has a relatively large number of negative unique-

nesses, which can be accounted for by better estimates of

the S and T variable coefficients in the global model. There

are also negative Overlap uniquenesses in the linear models,

which is likely due to the global model training resulting in a

stronger trend and thus a higher variance, counteracting the

fact that empirical models are generally smoothers.

The uniqueness and mean performance metrics are shown

for RMSE in Fig. 1 for the S_lin and short_term243 models

to illustrate how to interpret later figures: uniqueness is the

angle measured clockwise from the origin (the optimal met-

ric value) and the 1 : 1 line (equal local and global perfor-

mance), and mean performance is the average performance

of the local and global simulations given by the distance of

each point from the origin. Each point is a different site. Fig-

ure 1 also illustrates the differences between the results when

the local training data are identical to the testing data and

when they differ due to mismatch between the meteorolog-

ical and flux QC flags between training and testing. In each

panel, the blue points indicate the local and global RMSE

values used for the simulation in the remainder of the study.
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Table 1. Number of sites at which models ran successfully for global training (columns 1), the number of successful local simulations for

each variable (columns 2–4), and the number of cases of negative uniqueness (indicating that the local model performed worse than the

global model) for each of the three metrics (columns 5–7). Three sites (CA-Man, DE-RuR, and DE-RuS) did not include relative humidity,

so all models including that variable failed, including the global model. The uniqueness calculations are sometimes, particularly in the case

of correlation, prone to numerical error, so the threshold we use here is −1 × 10−8 instead of zero.

Successful simulations Negative uniqueness

Model name Global NEE Qh Qle RMSE Corr Overlap

S_lin 155 155 155 155 2 0 120

ST_lin 155 155 155 155 1 20 117

STH_km27 152 152 152 152 3 4 49

STH_km81 152 146 150 149 3 4 39

STH_km243 152 108 133 131 3 3 25

STHW_km81 152 142 148 147 2 3 23

STHW_km243 152 88 126 123 2 2 11

short_term243 (STHWdTdQ_lT6hM_km243)

152 65 98 97 1 1 9

long_term243 (STHWdTdQ_lS30d_lR30d_lH10d_lT6hM_km243)

152 3 12 12 0 0 1

The tail from each point indicates where these values would

have been if the same QC data that were used for training

were used for evaluation (meteorological + flux QC instead

of just flux QC. The tail points are strictly at or below the 1 : 1

line (as the empirical fit is optimised for RMSE locally, but

not globally). The flux-only QC-evaluated blue points can

shift, and some lie very slightly above the 1 : 1 line. Tails

pointing towards the origin indicate that these simulations’

mean RMSE is worse than it would be using the training QC.

Tails pointing clockwise indicate the these simulations ap-

pear to be less unique under RMSE than they would be using

the training QC. Perhaps surprisingly, the differences for the

simpler model appear much more variable, but we also note

that most of the larger discrepancies result in similar changes

using the global and local evaluation, meaning the bias is

mostly in the mean performance and less so in the unique-

ness metric. We considered the option of using the training

QC flags for the evaluation period; however, this would result

in different models having very different evaluation periods.

Best et al. (2015) used the concept of ranking over multi-

ple performance metrics and then aggregating over rankings

to arrive at a single value that represented a broad concept of

performance for each model. This methodology is extremely

useful for model evaluation using FLUXNET site datasets.

However, due to the very different distributions of results for

the different metrics (discussed below), we avoided aggre-

gating over metrics and instead examined a set of key metrics

separately for their ability to capture independent aspects of

performance. The metrics we chose were RMSE, as it pro-

vides an overview of model accuracy in relevant units, Pear-

son correlation (Corr) as a measure of temporal correlation,

and Perkins’ distribution overlap metric (Overlap), as it gives

a measure of the match between the observed and modelled

distributions.

2.1 Caveats

In an idealised experiment, even if we exclude the possibility

of overfitting, the locally trained model should always per-

form better than the globally trained model to some degree.

This is because the local model is predicting the same data

that it is trained on and should capture any behaviour that is

site specific (that is, it is being tested in-sample). However,

there are a number of factors that might prevent this from

happening.

First, a model may require a substantial amount of data

to avoid overfitting, and some sites may not provide enough

data to train the model locally. For example, very few sites

had enough data to adequately train the long_term243 model

from Haughton et al. (2018), which has 10 input variables

(S, T , H , W , dT , dQ, lS30d, lP 30d , lH10d, lT 6hM) and

243 clusters. This model potentially requires hundreds of

non-gap-filled data samples at each cluster to obtain a re-

liable linear regression estimate (so ∼ 104 samples in total).

The more complex models often fail to run locally or run suc-

cessfully but produce erroneous results (e.g. due to too few

samples to obtain reliable regression results for a K-means

cluster; this problem is described in detail in the Supplement

in Haughton et al., 2018). To mitigate this problem, we mod-

ified the models from Haughton et al. (2018) to ensure that

each cluster always contained a number of samples at least 5

times greater than the number of input variables. When clus-

tering failed, it was reattempted a further nine times, and if

that was not successful, the model was excluded. See Table 1

www.biogeosciences.net/15/4495/2018/ Biogeosciences, 15, 4495–4513, 2018



4500 N. Haughton et al.: Does flux predictability vary across FLUXNET?

0

2

4

6

8

10

12

Lo
ca

l 
R

M
SE

(
m

ol 
m

 
s  

)
-2

155 sites

S_
lin

NEE

0

50

100

150

200

Lo
ca

l 
 (

W
 m

 -2
)

155 sites

Qh

0

25

50

75

100

125

150

175

Lo
ca

l
 

 (
W

 m
 -2
)

155 sites

Qle

0 2 4 6 8 10 12
Global   ( m ol m-2 s  )

0

2

4

6

8

10

12

Lo
ca

l
 

 (
m

ol
 m

-2
 s

  
)

152 sites

sh
or
t_
te
rm

24
3

0 50 100 150 200
Global   (W m  -2)

0

50

100

150

200

Lo
ca

l
 

 (
W

 m
 -2
)

152 sites

M
ore unique

Bett
er 

mea
n

0 25 50 75 100 125 150 175
Global   (W m  -2)

0

25

50

75

100

125

150

175

Lo
ca

l
 

 (
W

 m
 -2
)

152 sites

(a)

(b)

-1

-1
-1

R
M

SE

R
M

SE
R

M
SE

R
M

SE
R

M
SE

RMSERMSERMSE

Figure 1. RMSE values for the global (x axis) and local (y axis) model simulations. Columns show the three fluxes, panel (a) shows data

for S_lin, and panel (b) for short_term243. The tails of each point show where the local and global RMSE values would be if the same QC

flags were used for training and evaluating (the intersection of meteorological and flux QC flags). Tails pointing toward the zero in each

axis indicate the model would have performed better using these QC flags. In other words, a tail pointing towards the origin means that our

evaluation method has a bias toward worse mean RMSE, and a tail pointing clockwise from the origin indicates that our method has a bias

towards lower uniqueness.

for details on how many models ran successfully for each

variable.

Second, as noted above, the training and testing data for

the local model are in practice nearly always different be-

cause the QC flags for the flux variables being evaluated

against do not correspond perfectly with the meteorologi-

cal forcing variable QC flags. Models are trained only on

data that have good meteorological and flux QC flags for all

relevant variables. However, simulations are evaluated on a

larger subset of all data: those time steps marked as good QC

for the flux variable alone. The motivation for doing this is

to ensure that all of the different empirical models are evalu-

ated on the same number of time steps. So, for instance, with

the S_lin model predicting Qle at a particular site, the num-

ber of time steps with good S and good Qle QC flags might

be only 80 % of the time steps with good Qle QC flags only.

Consequently, the model will be trained only on the 80 % of

the period that it is tested on. This problem is exacerbated for

models with more inputs and for models with lagged average

inputs, which will usually be trained on substantially smaller

subsets of data than they are evaluated on.

Lastly, “performance” is dependent on metric, so perfor-

mance will only be strictly better locally for metrics that are

optimised by the regression-based structure used in the em-

pirical models. For instance, ordinary least squares linear re-

gression optimises RMSE in the training dataset, so assum-

ing the training and evaluation datasets are identical, then the

RMSE of the local model will be strictly not worse than the

RMSE of the global model. However, metrics which assess

model performance in terms of distribution, such as the dis-

tribution overlap metric or temporal correlation, may occa-

sionally show that the local model performs worse than the

global model, even when the local model is clearly better un-

der RMSE. This is particularly pertinent in the context of a

generally useful predictability metric.

These caveats are worth keeping in mind, but in the major-

ity of the results below, they do not play a particularly large

role. We are confident that our predictability metrics are sat-

isfactory for a first attempt to estimate site predictability.

2.2 Hypothesis testing

Once we have a predictability metric, we can generate a num-

ber of hypotheses about what might determine predictability

at different sites. Below we list several hypotheses, many of

which intersect, so in some of these cases we also mapped

some predictability metrics against two hypothetical pre-

dictability sources.

2.2.1 Mean annual temperature and precipitation

Sites with higher mean temperature tend to be those closer

to the Equator and tend to have a smaller annual temperature
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cycle range. All other things being equal, we might therefore

expect warmer sites to be more consistent over time, have a

more constant response to meteorological forcing, and there-

fore be more predictable. Sites with higher average precipi-

tation would be expected to have fewer drier periods, more

consistently available soil moisture, and higher humidity, re-

sulting in a damped daily temperature cycle, and are there-

fore likely to be more predictable.

For these hypotheses, the FLUXNET site data are not al-

ways adequate, as the mean may not be perfectly represen-

tative of the true climatology of the site. For example, if the

site only has a short dataset measured over a particularly wet

or dry period, or if a site has a strong seasonal pattern in the

quality of the temperature data, the mean would be less repre-

sentative of the general site characteristics than a longer-term

dataset. For this reason, we calculated mean annual tempera-

ture and precipitation from the half-degree CRU TS4.01 data

(Harris and Jones, 2017) from 1961–2016 and using the near-

est neighbouring grid cell.

2.2.2 Budyko curve deviations

The Budyko curve (Gerrits et al., 2009) plots an evapora-

tive index against a dryness index, with the expectation that

sites should, in the long term, fall along a function of dryness

that is both energy and water limited. Sites that fall further

from the Budyko curve may indicate data errors, hydrologi-

cal uniqueness (for example, rapid drainage or external water

sources), or that the data in question are not long enough to

adequately capture and account for long-term internal vari-

ability. Whatever the cause of divergence from the Budyko

expectation, we would expect that more divergent sites would

be more difficult to predict.

2.2.3 Vegetation type

The FLUXNET 2015 sites are categorised by International

Geosphere–Biosphere Programme (IGBP) vegetation types.

There is a widely held assumption that different vegetation

types behave differently in response to similar meteorolog-

ical forcings (although this assumption was questioned by

Alton, 2011), and this presumably also applies to the overall

predictability of a site. We grouped IGBP vegetation types

into five major groups.

– Evergreen forest: evergreen broadleaf forests, evergreen

needleleaf forests (49 sites).

– Deciduous forest: deciduous broadleaf forests, decidu-

ous needleleaf forests (16 sites).

– Mixed forest: mixed forests (7 sites).

– Crop: cropland–natural vegetation mosaics, croplands

(15 sites).

– Grass: grasslands (29 sites).

– Shrubland: barren or sparsely vegetated, closed shrub-

lands, open shrublands (11 sites).

– Savannah: savannahs and woody savannahs (13 sites).

– Wetland: permanent wetlands (15 sites).

Other IGBP vegetation types not represented in

FLUXNET 2015 Tier 1 included snow and ice, unclas-

sified, urban and built-up lands, and water bodies. We then

compared the performance metrics across these groups.

2.2.4 Energy balance closure

Wilson et al. (2002) showed that FLUXNET sites often have

a problem closing their energy balance. Net incoming radi-

ation (Rnet) does not match the total energy accounted for

by the heat fluxes (Qh, Qle, and Qg) and changes in heat

storage, on average having an imbalance of around −20%

at each site, but ranging from −60% to +20%. Since this

imbalance pertains to boundary conditions that are all mea-

sured (sometimes with the exception of Qg, although that

can be assumed to be too small to account for the differ-

ence on a long enough timescale), the imbalance indicates

some problem with either the measurement system or the

eddy covariance methodology. We would assume that sites

with worse energy imbalances are likely to be more difficult

to predict. We calculated the energy closure gap as the en-

ergy_gap = mean (Rnet − Qh − Qle − Qg) (we used Qg = 0

for sites missing Qg) and also compared sites by normalised

energy gap using abs(1− energy_gap / Rnet). Note that this is

not the exact formulation used by Wilson et al. (2002), but it

serves the same purpose – to identify energy closure imbal-

ances.

2.2.5 Record length

Since many of the longer-term or rarer behaviours men-

tioned above are more likely to be captured adequately in

site datasets that span longer periods, we should expect that

longer sites would be more predictable. On top of this, site

principal investigators are likely to become more familiar

with problems with their sites, equipment, or methods and

more likely to be able to find solutions to those problems

over time, so we expect that data quality should improve in

longer site datasets. We examined the number of years in the

dataset as a predictor for uniqueness.

2.2.6 Gap-filling ratio

Some bad data are likely to make it through quality assur-

ance procedures, and such bad data would make prediction

more difficult. It is not clear how one would identify such

data in most cases, unless patterns are obvious. We visually

inspected the time series plots produced by FluxnetLSM for

each relevant variable for each site and saw no obvious prob-

lems within the data periods marked as good QC. However,
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some proxy for data quality may be possible, and particular

sites with more high-quality data may indicate better instru-

mentation or procedures and less likelihood of having bad

data marked as high quality. We compared sites by the pro-

portion of data marked as good QC to total data, averaged

over all variables, separately for meteorological and flux vari-

ables.

We also looked at various other hypotheses, including the

impact of aridity index, daily, seasonal, and interannual vari-

ability in temperature and precipitation, and geographic re-

moteness. The majority of these had few interesting trends

or other patterns, so we have excluded them from the paper.

They are included in the Supplement.

We note that some determinants of predictability could not

be calculated for some sites. For example, a number of sites

have no non-gap-filled data for precipitation, so mean annual

precipitation cannot be calculated, and neither can dependent

determinants, such as aridity index. In such cases, the sites

are omitted from individual analyses.

3 Results

3.1 Viability of the “predictability” metrics

First, we show how the uniqueness and mean performance

metrics vary across all models and sites for RMSE, Corr, and

Overlap. Figure 2 shows each of the three metric pairs (rows)

for each of the three fluxes (columns) and how those met-

rics vary with mean annual temperature in the CRU TS4.01

dataset. Here the uniqueness and mean performance values

are similar to those explained in Fig. 1, but use more com-

plex models in addition to S_lin (listed in Table 1). Note

that uniqueness values less than zero indicate that the lo-

cal model is not performing better than the global model, as

noted above.

– Row 1 shows the RMSE uniqueness of each site, with

more unique sites having higher values.

– Row 2 shows the mean of the RMSE of the global

and local simulations for each site. For this metric, one

might expect that sites that are more difficult to predict

would have higher values, but note that sites with more

available energy will generally tend to have larger fluxes

and so higher RMSE values, regardless of uniqueness.

– Row 3 shows correlation uniqueness. Like RMSE

uniqueness, higher values indicate lower site pre-

dictability. Note that there are a large number of zero

values for this metric because for instantaneous linear

regression models, correlation is always identical (or in-

verted) between global and local models since they are

using the same input data, so uniqueness is always 0.

– Row 4 shows the mean correlation with observed values

for local and global simulations – sites with a low cor-

relation are more difficult to predict (at least by these

models). Note that there are a few simulations with

zero mean correlation – these are cases in which linear

regressions had global and local gradients with oppo-

site sign, resulting in an exactly opposite correlation. In

those cases, the zero does not indicate that the global

and local simulations had low correlation.

– Row 5 shows the Overlap uniqueness. Higher values

indicate sites for which the local Overlap was better

than the global Overlap, and negative values indicate the

global model performed better in terms of Overlap.

– Row 6 shows the mean model–observation Overlap val-

ues of global and local models, and lower values indi-

cate a site that is harder to model in terms of Overlap

(Overlap = 1 indicates that the model’s flux distribution

is identical to the observed distribution).

All plots have a fitted generalised additive model (GAM)

line, added to help indicate trends in the site means. It is

estimated using the pyGAM package (Servén, 2018) using

eight splines and plotted with a 95% confidence interval. We

have also fitted two other GAM models using subsets of the

model ensemble: in each such plot, the red line represents

a GAM fit using only the linear regression models (S_lin,

ST_lin), and the purple line represents only the models with

lagged input variables (“longer models” – short_term243,

and long_term243). These serve to show any differences in

the predictability metrics that are contingent on model com-

plexity, non-linearity, or input variables.

In Fig. 2, we see that there is some consistent behaviour

in the predictability metrics, which might indicate that mean

annual temperature is a driver of predictability, but in general

any consistency in the behavioural patterns is not strong. For

instance, for RMSE uniqueness (first row), we see a slight

increase in uniqueness in sites that are cooler (<− 5 ◦C) and

sites that have a mean annual temperature around 20 ◦C for

both NEE and Qle. That pattern is less distinct in Qh. There

is a stronger trend in RMSE mean (second row) for Qle, but

this is likely largely due to the fact that warmer sites natu-

rally tend to have larger heat fluxes. It seems surprising that

Qh does not exhibit the same behaviour, since it is more di-

rectly related to temperature. Correlation uniqueness (third

row) and mean (fourth row) show a similar pattern to RMSE

uniqueness for NEE and Qle, in which cooler sites and sites

around 20 ◦C tend to be harder to predict well. Patterns in

Overlap uniqueness (fifth row) and mean (sixth row) are less

clear, but there may be a slight indication of higher unique-

ness around 20 ◦C for NEE and possibly a lower distribution

uniqueness at higher average temperatures. Note that the neg-

ative Overlap uniqueness values are largely due to the fact

that regression models do not perform particularly well on

extreme values (as indicated in Best et al., 2015). We note

that the two subset GAM plots for linear and longer-term

models describe similar behaviour in each metric in most
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Figure 2. Predictability metrics for mean annual temperature for all models. The three columns represent the three fluxes: NEE, Qh, and

Qle. The six rows show RMSE uniqueness, RMSE mean, correlation uniqueness, correlation mean, Overlap uniqueness, and Overlap mean.

Grey points are individual simulation values, and blue points are site means across all empirical models. The black line represents a GAM fit

of the site means across models, and the ribbon represents a 95% confidence interval. The red line is a GAM fit using only the linear models

(S_lin, ST_lin), and the purple line is a GAM fit using only the models with lagged variables (short_term243, long_term243). Note that the

mean RMSE for NEE is an order of magnitude smaller than for Qh and Qle, so we have used a different scale for NEE in the second row

(Qh and Qle scale indicated on the right).

panels, here and in later plots. The main differences seem

to be largely to do with the more complex models’ ability to

capture more of the variance: the mean performance of these

models under each metric is better (and the linear models’

worse) than the mean, and the uniqueness is higher for the

Corr and Overlap metrics, but quite similar for RMSE.
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3.2 Determinants of predictability

Since there are a large number of hypotheses to test, only

a selection of the most interesting results is shown here.

We have also opted to show only the RMSE uniqueness in

many plots, since its interpretation is the most straightfor-

ward given the regression-based nature of the empirical mod-

els and since in many cases it correlates with some of the

other metrics. Methods and plots for other hypotheses tested

are included in the Supplement, along with further details of

some of the results presented below (including plots of the

other four predictability metrics). As some determinants are

not available for some sites, the number of site and model

combinations in each analysis is noted in each figure title.

The figures below use the same methodology as Fig. 2.

3.2.1 Predictability as a function of energy and water

The three fluxes we investigate are clearly dependent on the

availability of both water and energy. The availability of wa-

ter is largely defined by precipitation, and temperature pro-

vides a proxy for the amount of energy available. We show

the RMSE uniqueness for mean precipitation in Fig. 3. There

appears to be some trend associated with precipitation, in-

dicating that the driest sites are more unique for all fluxes,

particularly for NEE and Qle.

In Fig. 4, the RMSE uniqueness and RMSE mean are plot-

ted as a scatter plot of mean annual temperature and mean

annual precipitation. There appears to be some interaction

between the two variables, with drier sites with a mean tem-

perature around 20 ◦C showing the highest uniqueness. As in

Fig. 2, there is also some indication of higher RMSE mean

for warmer sites in all fluxes.

Figure 5 shows how the sites sit in the Budyko frame-

work. The first row shows the sites on a standard Budyko

diagram, with actual evaporation divided by mean annual

precipitation on the y axis and potential evaporation divided

mean annual precipitation on the x axis. Theoretically, a site

should fall just below the solid blue line, but location can

be affected by available water (e.g. inflow or precipitation

in the period before the measurement period) or the method

of estimating potential evaporation. There do not appear to

be strong patterns in the potential evapotranspiration unique-

ness (see the Supplement) and actual evapotranspiration ap-

pears to have some weak patterns (greater NEE uniqueness

at sites with lower evaporation and the opposite for Qh and

Qle; see the Supplement), although these are not particularly

clear in the Budyko diagrams in the first row. We also cal-

culate a “Budyko deviance”, which is simply the difference

between the actual and predicted values on the Budyko plot

normalised by the predicted values such that sites falling fur-

ther above the Budyko curve have a positive deviance. There

does not appear to be any pattern in uniqueness for NEE or

Qle as a function of deviance from the Budyko curve (see

second row in Fig. 5); however, there does seem to be some

trend toward higher uniqueness for Qh for sites further above

the Budyko curve. Note that one site (AU-Lox) is excluded

from this plot, as its values are too large (AET / MAR of

11.77 and a PET / MAR of 10.72). Its RMSE uniqueness val-

ues are 0.352 for NEE, 0.476 for Qh, and 0.438 for Qle. This

site and the other sites with AET / MAR values over 2 are

all wetland sites and as such are likely to have surface water

available from upstream run-off in quantities far exceeding

that due to precipitation alone.

3.2.2 Predictability as a function of vegetation

characteristics

Vegetation type is a defining characteristic of different sites,

and we would expect different vegetation types to behave

differently, reflecting both their adaptations to their environ-

ment and their response to the meteorological forcing. In par-

ticular, we would expect the behaviour of some vegetation

types to be more predictable than others. Figure 6 shows the

RMSE uniqueness relative to grouped vegetation type (see

Methods). While there are some differences in uniqueness

by vegetation type, few are significant. The main significant

differences in RMSE uniqueness (Tukey’s honest significant

difference test of means across models per site, p<0.05) are

the following.

– For NEE, shrubland sites tend to be more unique than

all other vegetation types.

– For Qh, wetlands are more unique than all forest types,

shrubland, and savannah; grass also tends to be more

unique than evergreen and deciduous forests and savan-

nah.

– For Qle, wetlands and grasses tend to be more unique

than evergreen forests.

However, there is still substantial overlap between even

these groups, and the differences between the vegetation type

groups are even less distinct when compared to the other five

predictability metrics (see the Supplement).

3.2.3 Predictability as a function of geography

Globally, FLUXNET sites are not evenly distributed in space

or in climate regime. Figure 7 shows RMSE uniqueness for

NEE as mapped globally and averaged across models for

each site. Given that the models are trained on all sites glob-

ally and those sites are not evenly distributed around the

globe (Fig. 7), we might expect that sites less well repre-

sented (more remote) would be more unique. In Fig. 7, there

is a hint that more remote sites might be more unique for

NEE. Such a pattern is not obvious in the maps for Qh or Qle

(see the Supplement). To confirm this, we plotted uniqueness

by remoteness defined as the average distance from a site to

all other sites (shown in Fig. 15 in the Supplement). There

is indeed a weak trend towards uniqueness at more remote
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Figure 3. RMSE uniqueness for mean annual precipitation.

Figure 4. Predictability metrics for mean annual temperature vs. mean annual precipitation (mean across models). Panel (a) is RMSE

uniqueness (darker colours indicate a more unique, less predictable site), and panel (b) is RMSE mean performance (darker colours indicate

higher overall RMSE). The grey underlying hexbin plot indicates the global distribution of mean precipitation and precipitation from the

CRU dataset for all grid cells over land to give an indication of the representativity of these sites.

sites for NEE, but not for Qh and Qle. There are no strong

patterns evident in remoteness for any variable for any of the

other predictability metrics (see the Supplement).

3.2.4 Predictability as a function of data quality

There are a number of ways that data quality might affect

uniqueness. We investigated the energy closure problem in

FLUXNET by comparing predictability as a function of the

actual energy closure imbalance, as well as the energy clo-

sure imbalance normalised by Rnet. While the energy closure

problem in FLUXNET is perhaps one of the most obvious

candidates for a determinant of a site’s predictability, there

does not appear to be a strong pattern in the data for RMSE

uniqueness in either plot (nor for any of the other predictabil-

ity metrics; see the Supplement).

The number of years in the dataset is another obvious can-

didate determinant of predictability. There does seem to be a

weak trend towards shorter sites being more unique, particu-

larly for NEE and Qle (Fig. 8). This may be due to longer

sites biasing the global training data such that the global

model is more like their local models (and hence they ap-

pear less unique). This weak trend is somewhat visible in the

other predictability metrics (see the Supplement, for exam-
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Figure 5. RMSE uniqueness for the Budyko analysis. AET and PET come from the FLUXNET 2015 data, and mean precipitation comes

from CRU TS 4.01. In (a) colour indicates RMSE uniqueness averaged across models, in which darker colours are more unique. The solid

line represents the theoretical energy and water limitations, and the dotted line represents the Budyko curve (Gerrits et al., 2009). Panel (b)

shows sites’ deviance from the Budyko curve normalised by the Budyko expectation for the site (sites > 0 lie above the curve in a).

Figure 6. RMSE uniqueness for vegetation type (grouped; see Methods).

ple, in mean Corr and mean Overlap), but in each case is not

strong enough to be significant.

Although the number of years gives a broad-scale view of

the amount of data in a dataset, it does not tell the whole

story. For example, one 2-year site might contain almost a

whole 2 years worth of good QC data, while another might

contain less than a single year. As such, we also examined the

ratio of good QC data to bad QC data at each site. Figure 9

shows the good QC ratio for the flux data combined. Like

many of the other potential determinants of predictability, we

did not find any clear patterns.

3.3 Predictability summary

While we have shown that predictability is affected to some

degree by various factors (dryness and some vegetation types

in particular), it is useful to be able to have an overview

of the entire dataset. Figure 10 shows the mean RMSE

uniqueness for each of the three fluxes sorted alphabetically

by FLUXNET site code. Here we see that uniqueness is

somewhat consistent across variables at each site. The Pear-

son correlation coefficients between variables are NEE −Qh:

0.113, NEE −Qle: 0.536, and Qh −Qle: 0.456. There are in-

teresting differences within clusters of FLUXNET sites, for
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Figure 7. Map of NEE predictability: RMSE uniqueness averaged across models; darker colours are more unique for NEE. In this map, sites

are moved to avoid overlap, and a black line joins the site to its original location. This way the map gives a better idea of the density of

FLUXNET in different regions.

Figure 8. RMSE uniqueness for number of years in a dataset.

example the US Metolius sites (US-Me1, US-Me2, US-Me6)

are similarly unique for Qh and Qle, but US-Me1 is substan-

tially more unique for NEE, and this site was measured for

2 years after a fire that killed all trees at the site (Law, 2016).

This gives some indication that our uniqueness metric does

indeed have biophysical meaning. A similar though less dis-

tinct pattern can be seen in the CA-SF sites in Saskatchewan;

the CA-SF3 site was burnt much more recently than the other

two. There is also notable gradation in Qle RMSE uniqueness

in the UCI burn sites (CA-NS) that correlates with time since

the last burn. There are likely other comparisons that can be

drawn with sites not included in Tier 1, and an extended year-

by-year analysis might also pick up land use changes related

to cropping, for example.

4 Discussion

In this paper we applied a suite of empirical models to the

155 flux tower sites with half-hourly data included in the

Tier 1 release of FLUXNET. Our aim was to explore how

predictability varied across sites contingent on meteorologi-

cal forcings and then to use this insight into predictability to
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Figure 9. RMSE uniqueness for good QC ratio in flux forcings.
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Figure 10. RMSE uniqueness mean across models for each flux at each site in alphabetical order. Darker colours indicate more unique sites

for each flux.

develop a more systematic approach to guide site selection in

model evaluation exercises.

In our exploration of meteorological predictability, which

we characterised as both uniqueness and mean performance

for each metric, we have mostly focused on uniqueness of the

behaviour of sites. This metric is the most novel component

of this study and is, we think, the most interesting aspect of

relative site predictability. However, it is also less intuitive

than mean performance. It is worth reiterating that unique-

ness is not the direct inverse of predictability, and under cer-

tain conditions it can actually be correlated with overall pre-

dictability. In an effort to clarify how uniqueness works in

an intuitive way, we have laid out the relationships between

meteorological drivers and site-specific drivers in Fig. 11.

Figure 11 provides a schematic for understanding how

mean performance and uniqueness interact as components of

predictability. In all cases, we assume that the observations

include some noise or unpredictable component of variabil-

ity. In the left column, we have the case in which there is

a strong universal relationship between meteorological forc-

ings and flux observations (in this case, for example, a linear

trend); in the right column, this relationship is weak or non-
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Figure 11. Schematic of sources of variability and how they affect predictability, mean performance, and uniqueness. The black line and

grey ribbon represent the flux observations and the unpredictable internal variability or noise in the system. “Meteorological drivers” indicate

universal physical relationships between meteorological forcings and fluxes; here we have indicated this using a simple linear trend as an

example. “Site modulators” are characteristics of the site (soil or vegetation properties, storage pools, geography, or data problems) that

modulate the meteorological–flux relationship such that it is different to the relationships observed globally; here we have used a simple bias

as an example.

existent. In the top row, we have the case in which there is

some local site condition that modulates the behaviour of the

fluxes (in this case, for example, a simple bias, but it could

also be a complex non-linear relationship), and in the bottom

row there is no such site-related modulation. In the right col-

umn, where there is no meteorological driver relationship,

we can see that uniqueness is correlated with performance:

in the absence of site modulators (bottom right) there is no

predictability (as all variability is due to noise) and both mod-

ules perform poorly. In the presence of site modulators (top

right), predictability is higher and uniqueness is also higher

(because the local model performs better). When there is a

strong meteorological driver (left column), predictability is

higher in the case in which site modulators are weak (bot-

tom left) because the global model is able to perform well. In

this case sites with strong site modulators are less predictable

because the global performance is worse, and uniqueness

would clearly be correlated with “predictability”. It seems

clear that there are strong relationships between meteorolog-

ical drivers and fluxes (see Best et al., 2015; Haughton et

al., 2018), so the inferences made in this study mostly fall

in the left column. This suggests that in real-world situations

uniqueness is mostly anti-correlated with predictability, but

not perfectly, so we emphasise that uniqueness alone is not

an adequate proxy for predictability.

4.1 Site predictability

Our multi-site analysis points to marked variability in pre-

dictability. For example, it appears that sites in warmer, drier

climates tend to be more unique for all fluxes (Figs. 3 and

4), and sites with a large diurnal temperature range tend to

be more unique, particularly for NEE, and to a lesser extent

for Qle (see Fig. 6 in the Supplement). On the other hand,

potential determinants that we expected to have quite strong

effects on predictability did not appear to do so, for instance

mean temperature (Fig. 2), dataset length (Fig. 8), and major

vegetation types (Fig. 6). There are several reasons why this

might have been the case.

First, the assumption that vegetation type is a major driver

of flux behaviour may be wrong. It is perhaps more likely

that the widely used approach of analysing FLUXNET sites

grouped by a small number of discrete plant functional types

is too simplistic, as opposed to exploring differences at a

species level or relating differences to a spectrum of plant

traits, plant life spans, and metabolism (Kattge et al., 2011;
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Reich et al., 1997; Wright et al., 2004). Despite widely ac-

knowledged issues with this PFT approach (Alton, 2011;

Pavlick et al., 2013; Van Bodegom et al., 2012), this analysis

framework is still used, partly because this is the relevant in-

terpretation metric that LSMs use, but also because the nec-

essary information to dig deeper into site differences along

these lines is still lacking. Whilst datasets do exist – for ex-

ample, TRY (Kattge et al., 2011), GLOPNET (Wright et al.,

2004), LEDA (Kleyer et al., 2008), and ECOFLORA (Fitter

and Peat, 1994) – often these are not freely available and the

existing ancillary information relating to vegetation available

via FLUXNET is minimal, which impedes analyses in this

direction. This point was eloquently demonstrated by Kon-

ings and Gentine (2016), who used data from the AMSR-E

satellite to characterise global variations in isohydricity (the

degree to which plants regulate their stomata as leaf water

potential declines). When they categorised their analysis on

a PFT level, differences between sites and species were no

longer distinct. This remains an avenue ripe for future analy-

sis.

Second, our predictability metrics (RMSE, Corr, Overlap

uniqueness, and mean) may not be appropriate. There may be

systematic biases that inhibit our estimate of predictability

due to over-representation of particular biomes or because

measurement periods were not representative. Our results did

indicate a weak trend toward higher uniqueness in sites with

shorter measurement periods (see Fig. 8); however, a single

year of flux data represents a substantial amount of useful

data. Short datasets may also be particularly useful if they

happen to include rare events that are not well represented

in other datasets, such as regional droughts or heat waves.

We nevertheless openly invite constructive arguments against

our predictability metric proposal, identification of flaws in

the process, or alternative definitions of site predictability or

uniqueness.

Should we expect stronger patterns of predictability? In

our view, there are strong arguments to support the utility of

the FLUXNET data for analyses of predictability. We know

that meteorological data measured at flux tower sites do con-

tain a great deal of information about the measured fluxes

(Best et al., 2015; Haughton et al., 2018). Indeed the infor-

mation contained in the meteorological data about fluxes was

very consistent across sites and this was key to the success

of those experiments. So we know that the empirical mod-

els used here, which follow a very similar methodology, are

capturing the relationships between the meteorological forc-

ing and the predicted fluxes relatively well.

One way we might improve upon our analysis is by focus-

ing on the differences in performance or uniqueness between

models with similar structure, but with extra forcing vari-

ables. This would tell us something about the predictability

contingent on that variable. For instance, if a model such as

STH_km243 (a 243-centre cluster and regression on short-

wave down, air temperature, and relative humidity; see Ta-

ble 1) performs substantially better at a class of sites than an

ST_km243 model (the same, but missing relative humidity),

then we can infer that predictability at those sites may be

contingent on information in the humidity data. This analy-

sis is substantially more complex, so we have left it for future

work. The code used to run these models is freely available

at https://github.com/naught101/empirical_lsm (last access:

1 April 2018); version 1.1 was used for this paper.

4.2 Model evaluation

Our second major aim was to develop a more systematic ap-

proach for LSM evaluation underpinned by differences in site

predictability. Recent work has already illustrated the bene-

fits of defining benchmark levels of performance for a given

metric at a given site (Best et al., 2015; Haughton et al.,

2016). The empirical analysis of site predictability we pre-

sented goes one step further, effectively quantifying the ad-

ditional benefit to model performance that site-specific infor-

mation can provide in the form of locally trained empirical

models.

Land surface modellers will usually rationalise why a par-

ticular module was selected to represent a physical process

or why a specific atmospheric model was used. Given the

new information presented in this paper, we suggest that a

thorough rationale for why specific FLUXNET sites were

used should be explicit in future publications. Importantly,

we note that we could not provide evidence that would sup-

port site choices based on PFT (Fig. 6), data length (Fig. 8),

or quality control (Fig. 9), so these really do not seem le-

gitimate ways to rationalise choice of sites. We intentionally

avoid recommending a particular set of most or least pre-

dictable sites, as the suitability of a given set of sites for a

particular study will be dependent on many factors. Instead,

we recommend that the predictability of the site is one el-

ement for choosing sites, but the process of selecting sites

should be more rigorous and reported whether or not this rec-

ommendation is followed.

How might this site-specific information be used? Perhaps

most obvious would be the clustering of sites based on their

predictability for use in model evaluation and benchmark-

ing exercises. In Fig. 10, we provide some initial guidance to

the LSM evaluation community. Here, sites shown in darker

colours are sites that exhibit unusual meteorological–flux re-

lationships for a given flux. These are the sites that are likely

to present more of a challenge for process-based LSMs to

simulate. On the flip side, lighter coloured sites follow com-

monly observed patterns of behaviour, so good LSM perfor-

mance at these should be less surprising and is perhaps less of

an achievement. What is important is that modellers should

know if the sites they are evaluating their models against are

relatively predictable or unpredictable. Our results, Fig. 10

in particular, give modellers a tool that can form the ba-

sis of a strategy to choose sites, a defence if they choose

unpredictable sites and do poorly, and a challenge if they

choose more predictable sites and do well. We suspect that
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the best strategy for model evaluation would be to pick a set

of sites that includes both very predictable sites and very un-

predictable sites, with a distribution informed by the deter-

minants of predictability presented above.

Of particular note in Fig. 10, but of interest beyond LSM

evaluation, is that predictability can be markedly different for

different surface fluxes at the same site. For example, we

see a number of sites with high NEE and Qle uniqueness

and low Qh uniqueness (e.g. AU-TTE, AU-Ync, ES-Ln2,

US-Whs, US-Wkg) but other sites with high Qh uniqueness

(e.g. CH-Cha, IT-MBo, IT-Tor, US-Myb). We also see some

neighbouring sites with extremely different predictability re-

sponses for different fluxes (e.g. DK-ZaF, a wetland site, has

very high NEE uniqueness, while the neighbouring DK-ZaH,

a heath (grasslands) site, has high Qh and Qle uniqueness).

This is evident in other figures in which uniqueness patterns

are not shared between fluxes (for example, the differences

between Qh and the other fluxes in Fig. 5). This provides new

justification for different site selection strategies depending

on the processes being evaluated.

Our analysis may understandably lead to modelling groups

gravitating toward evaluating their models only against a spe-

cific subset of FLUXNET sites. We do not think that this

is a desirable outcome and thus have not provided a sug-

gestion of specific sites to use. Indeed care must be taken

when evaluating models on small groups of FLUXNET sites

due to the greater need to consider the various intricacies of

site-specific behaviour. When models are evaluated against

a large number of sites, an argument can be advanced that

unique site behaviour may average out in the noise. If anal-

ysis approaches like ours were to lead to small groups of

sites being used to evaluate models, greater care would be

needed to capture an adequate diversity of site characteris-

tics. For example, it may be that sites we determine to be

unique are simply those that have undergone a disturbance

event (e.g. clear felling, fire, wind storms, etc.) or are subject

to management (e.g. cropping, irrigation). With improved in-

formation about site characteristics (e.g. time since last dis-

turbance), these issues could be avoided. A major advance

that would be useful to the LSM community would be the

systematic publishing of metadata characterising each site in

the FLUXNET data.

Finally, the logical next extension of our work is to eval-

uate a suite of LSMs at the sites deemed to be most and

least predictable in order to understand the extent to which

site predictability translates into model skill. Such an anal-

ysis will of course need careful consideration of the kinds

of site eccentricities noted above, noting that information

about these eccentricities is not as commonly available as

flux and meteorological data. Nevertheless, work of this kind

will ultimately help refine how this predictability metric is

best utilised in model evaluation strategies.

5 Conclusions

In this study, we applied a novel methodology to charac-

terise the predictability of surface fluxes at sites within the

FLUXNET 2015 dataset. We had two key aims: first, we

sought to explain why predictability varied across the 155

FLUXNET sites, with the expectation that we would find

patterns in predictability along gradients such as mean pre-

cipitation, vegetation type, or in relation to various biocli-

matic metrics both annually and seasonally. Whilst we did

show that the 155 FLUXNET sites vary strongly in their pre-

dictability, we did not find strong patterns in predictability,

with the possible exception of drier sites, which appear to be

substantially more unique. We acknowledge that we might

have missed some relevant determinants of predictability or

some transformation of or interaction between the determi-

nants that we did have available. If we could incorporate

these, a clear pattern of predictability might emerge.

Our second aim was to propose a more systematic ap-

proach to site selection for model evaluation underpinned by

differences in site predictability. While we found fewer pat-

terns in predictability than we expected, we nevertheless now

have a basis on which to define a priori expectations of model

performance. We suggest that careful choice of FLUXNET

sites based on predictability may avoid modellers incorrectly

judging their models negatively (via choice of very unpre-

dictable sites) or positively (via choice of very predictable

sites). While further work based on this predictability met-

ric is required before a complete rationale for site selection

is obvious, we now have a basis on which to develop such

a strategy. As a first step, we strongly encourage modelling

groups to explain why they choose specific sites for evalua-

tion because, thanks to the FLUXNET community, a lack of

available data is no longer a reason for site selection.
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