
Does Privacy Require True Randomness?

Carl Bosley and Yevgeniy Dodis⋆

New York University. {bosley,dodis}@cs.nyu.edu

Abstract. Most cryptographic primitives require randomness (for ex-
ample, to generate their secret keys). Usually, one assumes that perfect
randomness is available, but, conceivably, such primitives might be built
under weaker, more realistic assumptions. This is known to be true for
many authentication applications, when entropy alone is typically suf-
ficient. In contrast, all known techniques for achieving privacy seem to
fundamentally require (nearly) perfect randomness. We ask the question
whether this is just a coincidence, or, perhaps, privacy inherently requires
true randomness?

We completely resolve this question for the case of (information-
theoretic) private-key encryption, where parties wish to encrypt a b-bit
value using a shared secret key sampled from some imperfect source
of randomness S . Our main result shows that if such n-bit source S

allows for a secure encryption of b bits, where b > log n, then one can
deterministically extract nearly b almost perfect random bits from S .
Further, the restriction that b > log n is nearly tight: there exist sources
S allowing one to perfectly encrypt (log n − loglog n) bits, but not to
deterministically extract even a single slightly unbiased bit.

Hence, to a large extent, true randomness is inherent for encryption:
either the key length must be exponential in the message length b, or one
can deterministically extract nearly b almost unbiased random bits from
the key. In particular, the one-time pad scheme is essentially “universal”.

Our technique also extends to related computational primitives which
are perfectly-binding, such as perfectly-binding commitment and compu-
tationally secure private- or public-key encryption, showing the necessity
to efficiently extract almost b pseudorandom bits.

1 Introduction

Randomness is important in many areas of computer science. It is especially
indispensable in cryptography: secret keys must be random, and many cryp-
tographic tasks, such as public-key encryption, secret sharing or commitment,
require randomness for every use. Typically, one assumes that all parties have
access to a perfect random source, but this assumption is at least debatable, and
the question of what kind of imperfect random sources can be used for various
applications has attracted a lot of attention.

Extraction. The easiest such class of sources consists of extractable sources for
which one can deterministically extract nearly perfect randomness, and then use

⋆ Supported by NSF Grants #0515121, #0133806, #0311095.

it in any application. Although various examples of such non-trivial sources are
known (see [TV00,KRVZ06] and the references therein), most natural sources,
such as the so called entropy sources1 [SV86,CG88,Zuc96], are easily seen to
be non-extractable. One can then ask the natural question of whether perfect
randomness is indeed inherent for the considered application, or perhaps one can
do with weaker, more realistic assumptions. Clearly, the answer depends on the
application.

Positive Results. For one such application domain, a series of celebrated
results [VV85,SV86,CG88,Zuc96,ACRT99] showed that entropy sources are suf-
ficient for simulating probabilistic polynomial-time algorithms — namely, prob-
lems which do not inherently need randomness, but which could potentially be
sped up using randomization. Thus, extremely weak imperfect sources can still
be tolerated for this application domain. This result was later extended to in-
teractive protocols by Dodis et al. [DOPS04].

Moving to cryptographic applications, entropy sources are typically sufficient
for authentication applications, since entropy is enough to ensure unpredictabil-
ity. For example, in the non-interactive (i.e., one-message) setting Maurer and
Wolf [MW97] show that, for a sufficiently high entropy rate (specifically, more
than 1/2), entropy sources are indeed sufficient for unconditional one-time au-
thentication (while Dodis and Spencer [DS02] showed that smaller rate entropy
sources are not sufficient to authenticate even a single bit). Moreover, in the in-
teractive setting, Renner and Wolf [RW03] show information-theoretic authenti-
cation protocols capable of tolerating any constant-fraction entropy rate. Finally,
Dodis et al. [DOPS04] consider the existence of computationally secure digital
signature (and thus also message authentication) schemes, and, under (necessar-
ily) strong, but plausible computational assumptions, once again showed that
entropy sources are enough to build such signature schemes. From a different
angle, [DS02] also show that for all entropy levels (in particular, below 1/2)
there exist “severely non-extractable” imperfect sources which are nevertheless
sufficient for non-trivial non-interactive authentication. Thus, good sources for
authentication certainly do not require perfect randomness.

Randomness for Privacy? The situation is much less clear for privacy ap-
plications, whose security definitions include some kind of indistinguishability.
Of those, the most basic and fundamental is the question of (private-key) en-
cryption, whose definition requires that the encryptions of any two messages are
indistinguishable. (Indeed, this will be the subject of this work.)

With one exception (discussed shortly), all known results indicate that true
randomness might be inherent for privacy applications, such as encryption. First,
starting with Shannon’s one-time scheme [Sha49], all existing methods for build-
ing secure encryptions schemes, as well as other privacy primitives, crucially de-

1 Informally, entropy sources guarantee that every distribution in the family has a
non-trivial amount of entropy (and possibly more restrictions), but do not assume
independence between different symbols of the source. Thus, they are the most gen-
eral sources one would wish to tolerate, since cryptography clearly requires entropy.

pend on perfect randomness somewhere in their design. And this is true even
in the computational setting. For example, the Goldreich-Levin [GL89] reduc-
tion from unpredictability to indistinguishability, as well the the entire theory of
pseudorandomness, crucially use a random seed to obtain the desired construc-
tions. Second, attempts to build secure encryption schemes (and other privacy
primitives) based on known “non-extractable” sources, such as various entropy
sources, provably failed, indicating that such sources are indeed insufficient for
privacy. For example, McInnes and Pinkas [MP90] showed that unconditionally
secure symmetric encryption cannot be based on entropy sources, even if one is
restricted to encrypting a single bit. This result was subsequently strengthened
by Dodis et al. [DOPS04], who showed that entropy sources are not sufficient
even for computationally secure encryption (as well as essentially any other task
involving “privacy”, such as commitment, zero-knowledge and others).

The only reassuring result in the other direction is the work of Dodis and
Spencer [DS02], who considered the setting of symmetric encryption, where the
shared secret key comes from an imperfect random source, instead of being truly
random. In this setting, they constructed a particular non-extractable imperfect
source, nevertheless allowing one to perfectly encrypt a single bit. By itself, this
result is not surprising. For example, a uniform distribution on {0, 1, 2} allows
one to encrypt a bit (by addition modulo 3), but not to extract a bit, which
is obvious. Indeed, the actual contribution of [DS02] was not to show that the
separation between one bit encryption and extraction exists — as we just saw,
this is trivial — but to show that a very strong separation still holds even if one
additionally requires all the distributions in the imperfect source to have high
entropy (in fact, very close to n). In practice, however, we typically care about
encrypting considerably more than a single bit. In such cases, it is certainly
unreasonable to expect that, say, encryption of b bits will necessarily imply
extraction of exactly b bits (which was indeed disproved by [DS02] for b = 1). One
would actually expect that an implication, if true, would lose at least a few bits
(perhaps depending on the statistical distance ε from the uniform distribution
that we want our extraction to achieve).

In particular, the results of [DS02] leave open the following extreme possibil-
ities: (a) perhaps any source encrypting already two bits must be extractable;
or (b) perhaps there exists an n-bit source allowing one to perfectly encrypt
almost n bits, and yet not to extract even a single bit. Clearly, possibility (a)
would strongly indicate that true randomness is inherent for encryption, while
possibility (b) that it is not. As we will see shortly, both (a) and (b) happen to
be false, but our point is that the results of [DS02] regarding one-bit encryption
and extraction do not answer what we feel is the more appropriate question:

Assume an imperfect source allows for a secure private-key encryption of b bits.
Does this necessarily imply one can deterministically extract at least one

(and, hopefully, close to b) nearly perfect bits from this source?

Our Result. We resolve the above question. Our main result shows that if
an n-bit source S allows for a secure (and even slightly biased) encryption of

b bits, where b > log n, then one can deterministically extract almost b nearly
perfect random bits from S ; see Theorem 1(a) for the precise bound. Moreover,
the restriction that b > log n is essentially tight: there exist imperfect sources
allowing one to perfectly encrypt b ≈ log n−loglog n bits, from which one cannot
deterministically extract even a single slightly unbiased (let alone random!) bit;
see Theorem 1(b).2 Hence, to a large extent, true randomness is inherent for
(information-theoretic) private-key encryption:

Either the key length n must be exponential in the message length b, or
One can deterministically extract almost b nearly random bits from the key.

In particular, in the case when b is large enough, so that it is infeasible to
sample more than 2b (imperfect) bits for one’s secret key, our result implies the
following. In order to build a secure b-bit encryption scheme, one must come up
with a source of randomness from which one can already deterministically extract
almost b nearly random bits! Notice, since such extracted bits can then be used
as a one-time pad, we get that any b-bit encryption scheme can in principle be
converted to a “one-time-pad-like” scheme capable of encrypting nearly b bits!
In this sense, our results show that, for the purpose of information-theoretically
encrypting a “non-trivial” number of bits, the one-time pad scheme is essentially
“universal”.

Extensions. Our result can be extended in several ways.
First, the basic extractor we construct is inefficient, even if the encryption

scheme is efficient (i.e., runs in time polynomial in n). However, using the tech-
nique of Trevisan and Vadhan [TV00] (see also [DSS01,Dod00]), we can obtain
the following marginally weaker result which maintains efficiency: if a source S

enables an efficient encryption of b > log n bits, then there exists an efficient
deterministic extractor allowing one to extract roughly (b− log n) nearly perfect
bits from S . Despite the small loss of log n bits, we still get the same pes-
simistic conclusion: unless the key is exponential in the message length, efficient
encryption implies efficient extraction of nearly the same number of bits.

Second, our technique extends to computationally secure privacy primitives
which are perfectly (or statistically) binding, which includes perfectly-binding
commitment (which, therefore, must be computationally hiding) and compu-
tationally secure private- or public-key encryption. Specifically, let λ be the
security parameter, n = poly(λ) be the number of random bits coming from
the imperfect source S , and assume that S is good enough to efficiently (i.e.,
in time polynomial in λ) implement the required computationally secure (but
perfectly-binding) primitive on b = ω(log λ) bits. Then we show that there ex-
ists an efficient extractor capable of extracting b(1 − o(1)) pseudorandom bits
from S . Of course, at this point one can also apply a pseudorandom genera-
tor, whose existence is typically implied by the existence of the corresponding

2 This result is a non-trivial extension of the separation of [DS02] from 1-bit to
(roughly) (log n)-bit encryption. Indeed, without the entropy constraints, our proof
is considerably more involved than that of [DS02]. See also Section 4.5.

computational primitive, to stretch the extracted (pseudo)randomness further
by any polynomial amount. Also, since every individual pseudorandom bit must
actually be statistically random (otherwise, the distinguisher succeeds by simply
outputting this bit), we still get that any of the above computationally secure
primitives on b = ω(log λ) bits requires at least some nearly perfect randomness.

To summarize, non-trivial computationally secure primitives which are per-
fectly binding require some efficiently extractable true randomness.

Organization. We define the needed notation in Section 2, which also allows
us to formally state our main result (Theorem 1). In Section 3 we prove that
encryption of b > log n bits using an n-bit key implies extraction of roughly
b random bits, and mention the “computational” extensions of this result. In
Section 4, which is the main technical section, we show that encryption of up to
(log n− loglog n) bits does not necessarily imply extraction of even a single bit.
Finally, in Section 5 we conclude and state some open problems.

2 Notation and Definitions

We use calligraphic letters, like X , to denote finite sets. The corresponding large
letter X is then used to denote a random variable over X , while the lowercase
letter x denotes a particular element from X . UX denotes the uniform distri-
bution over X . A source S over X is a set of distributions over X . We write
X ∈ S to state that S contains a distribution X.
The statistical distance SD(X1,X2) between two random variables X1,X2 is

SD(X1,X2) =
1

2

∑

x∈X

∣

∣ Pr[X1 = x]− Pr[X2 = x]
∣

∣ (1)

= max
T ⊆X

(Pr[X1 ∈ T]− Pr[X2 ∈ T]) (2)

If SD(X1,X2) ≤ ε, this means that no (even computationally unbounded) dis-
tinguisher D can tell apart a sample from X1 from a sample from X2 with an
advantage greater than ε.

Definition 1. A random variable R over R is ε-fair if SD(R,UR) ≤ ε. Given
a source S over some set K, a function Ext : K → R is an (S , ε)-extractor if
for all K ∈ S , Ext(K) is ε-fair:

SD(Ext(K), UR) ≤ ε (3)

If such Ext exists for S , we say that S is (R, ε)-extractable. ♦

Definition 2. An encryption scheme E over message spaceM, key space K and
ciphertext space C is a pair of algorithms Enc : K×M→ C and Dec : K×C →M,
which for all keys k ∈ K and messages m ∈M satisfies Dec(k,Enc(k,m)) = m.

Given a source S over K, we say that the encryption scheme E is (S , δ)-
secure if for all messages m1,m2 ∈M and all distributions K ∈ S we have

SD(Enc(K,m1),Enc(K,m2)) ≤ δ (4)

If S admits some (S , δ)-secure encryption E overM, we say that S is (M, δ)-
encryptable. When δ = 0, we say that E is perfect on S , and S is perfectly
encryptable (on M). ♦

Throughout we will use the following capital letters to denote the cardinalities
of various sets: key set cardinality |K| = N , message set cardinality |M| =
B, ciphertext set cardinality |C| = S, and extraction space cardinality |R| =
L. Although our results are general, for historical reasons it is customary to
translate the results into “bit-notation”. To accommodate these conventions, we
let b = log B, ℓ = log L, n = log N (here and elsewhere, all the logarithms
are base 2), and will use the terms “b-bit encryption”, “ℓ-bit extraction” or “n-
bit key” with the obvious meanings attached. Moreover, we will slightly abuse
the terminology and say that a source S is (1) n-bit if it is over a set K and
|K| = N ; (2) (ℓ, ε)-extractable if it is (R, ε)-extractable and |R| = L, and (2)
(b, δ)-encryptable if it is (M, δ)-encryptable and |M| = B. Clearly, when b, ℓ or
n are integers, this terminology is consistent with our intuitive understanding.

With this in mind, our main result can be restated as follows:

Theorem 1. Secure encryption of b bits with an n-bit key requires nearly perfect
randomness (in fact, almost b random bits!) if and only if b is greater than log n.
More precisely,

(a) ∀ε > 0, if S is (b, δ)-encryptable, and b > log n + 2 log
(

1
ε

)

, then S is

(b−2 log
(

1
ε

)

, ε+δ)-extractable. Further, if the encryption scheme is efficient
(i.e., polynomial in n), then there exists an efficient extractor outputting
(b− log n−2 log

(

1
ε

)

−2) bits within statistical distance (ε+δ) from uniform.
Thus, encryption of b > log n bits implies extraction of almost b nearly perfect
bits.

(b) For any b ≤ log n − loglog n − 2,3 there exists a source S which is (b, 0)-

encryptable, but not (1, ε)-extractable, where ε = 1
2 − 2(2b− n

2b) ≥ 1
2 −

1
16n2 .

Thus, even perfect encryption of nearly log n bits does not imply extraction
of even a single slightly unbiased bit.

3 Encryption ⇒ Extraction if b > log n

In this section we prove the implication given in Theorem 1(a), which shows that
encryption of b bits implies extraction of nearly b bits. Assume E = (Enc,Dec)
is (S , δ)-secure over message spaceM, ciphertext space C and key space K. For
convenience, let us identify the message spaceM with {1, . . . , B}. Also, let ℓ (to
be specified later) denote the number of bits we wish to extract, L = 2ℓ, and R
be an arbitrary set of cardinality L.

We start constructing the needed extractor Ext : K → R by showing that it
is sufficient to construct a good extractor Ext′ : C → R for an auxiliary source
S ′, defined by

S
′ = {Enc(k, UM) | k ∈ K}

3 The formula also holds for b = log n − loglog n − 1, but yields a slightly smaller
ε = 1

2
− 1

4 log n
.

Lemma 1. If S ′ is (ℓ, ε)-extractable and E is (S , δ)-secure, then S is (ℓ, ε+δ)-
extractable. In fact, if Ext′ is the assumed extractor for S ′, then the following
extractor Ext is the claimed extractor for S :

Ext(k) = Ext′(Enc(k, 1)) (5)

Proof. Take any distribution K ∈ S , and let pk = Pr[K = k]. Also, let Ext′

be the assumed (S ′, ε)-extractor. Thus, SD(Ext′(Enc(k, UM)), UR) ≤ ε for all
k ∈ K. Then, using definition of Ext in Equation (5), we have

SD(Ext(K), UR) = SD(Ext′(Enc(K, 1)), UR)

≤ SD(Enc(K, 1), Enc(K,UM)) + SD(Ext′(Enc(K,UM)), UR)

≤ δ +
∑

k

pk · SD(Ext′(Enc(k, UM)), UR)

≤ δ +
∑

k

pk · ε = δ + ε

The first inequality follows from the triangle inequality on statistical distance.
The second — from the δ-security of the encryption (stating that encryption of
1 is δ-close to the encryption of a random message UM) and the convexity of
statistical distance (when expanding K as the convex combination of “point”
distributions). Finally, the last inequality follows from the fact that Ext′ is an
ε-fair extractor for S ′.

The point of this reduction (which is the only place in our argument using
the δ-security of E) is to reduce the task of constructing an extractor for our
(potentially infinite) source S to an extractor for a source S ′ containing “only”

N distributions. Moreover, every distribution Dk
def
= Enc(k, UM) in S ′ contains

b bits of entropy. Indeed, for any k ∈ K and m1 6= m2, we have Enc(k,m1) 6=
Enc(k,m2), since otherwise one would not be able to recover the message from
the ciphertext.4 Thus, each Dk is a uniform distribution on some B-element
subset of the ciphertext space C: we call such distributions b-flat. It turns out
that this is the only thing we need to know to ensure the existence of a good
extractor for S ′!

Lemma 2. Assume S ′ = {Dk | k ∈ K} is any collection of b-flat distributions
of cardinality N over some space C, where b > loglog N + 2 log

(

1
ε

)

. Then S ′ is

(b− 2 log
(

1
ε

)

, ε)-extractable.

Proof. Let ℓ = b−2 log
(

1
ε

)

, so that L = ε2B. We show that a completely random
function f : C → R gives a required deterministic extractor Ext′ with non-zero
(in fact, overwhelming!) probability, implying that the claimed Ext′ exists. Take

4 This is the only place where we use the existence of the decryption algorithm. This is
why our result will later extend to any perfectly (or statistically) binding primitive.

any fixed k ∈ K and any fixed subset T ⊆ R. Let p
def
= |T |/|R| be the density of

T . For any fixed f , define the quantity

∆f (k, T)
def
= Pr[f(Dk) ∈ T]− Pr[UR ∈ T] (6)

and let us estimate Prf [∆f (k, T) > ε] as follows. First, it is clear that Pr[UR ∈
T] = p. Second, assume Dk is a uniform distribution over some set {c1, . . . , cB} ⊆
C, and let Xm denote an indicator random variable which is 1 if and only if
f(cm) ∈ T . Clearly, if f is random, we have Prf [Xm = 1] = p. Also, letting

X̂ = 1
B ·

∑

m Xm be the average of B independent indicator variables Xm, for

any fixed f we get Pr[f(Dk) ∈ T] = 1
B ·

∑

m Xm = X̂. Thus, recalling the

definition of ∆f (k, T) from Equation (6), using E[X̂] = p = Pr[UR ∈ T], and

applying the standard additive Chernoff bound to X̂, we get

Pr
f

[∆f (k, T) > ε] = Pr
f

[X̂ − p > ε] ≤ e−2ε2B

We now take a union bound over all T ⊆ R and all k ∈ K. Recalling definition
of ∆f (k, T) (Equation (6)), using b > loglog N + 2 log

(

1
ε

)

(so N < 2ε2B) and

ℓ = b− 2 log
(

1
ε

)

(so 2L = 2ε2B), we conclude that

Pr
f

[∃ k, T s.t. Pr[f(Dk) ∈ T]−Pr[UR ∈ T] > ε] ≤ N ·2L·e−2ε2B = 2−Ω(ε2B) ≪ 1

Thus, there exists a specific f such that Pr[f(Dk) ∈ T]−Pr[UR ∈ T] ≤ ε, for all
subsets T and keys k. Using the definition of statistical distance (Equation (2)),
this means that SD(f(Dk), UR) ≤ ε for all k ∈ K, completing the proof.

The first assertion of Theorem 1(a) follows immediately by combining Lemma 1
and Lemma 2. In the following subsections we mention the extensions to efficient
extraction and other computational primitives which are perfectly-binding.

3.1 Efficient Encryption Implies Efficient Extraction

Using Lemma 1 (and, in particular, Equation (5)), we see that when the encryp-
tion algorithm Enc is efficient (i.e., runs in time polynomial in n), to construct
an efficient extractor Ext for S it suffices to construct an efficient extractor
Ext′ for the source S ′ consisting of N efficiently samplable b-flat distributions
Dk = Enc(k, UM), where k ∈ K. Unfortunately, the extractor Ext′ that we built
for S ′ via Lemma 2 was generally inefficient. Luckily, we can build an efficient
extractor for S ′ using the technique of Trevisan and Vadhan [TV00], which was
later explored in more detail by [Dod00].

The idea is to sample the function f (which will define Ext′) at random from
any family Ft of t-wise independent functions from C to R. Recall, such families
have the property that for any distinct c1 . . . ct ∈ C, the values f(c1) . . . f(ct)
are random and independent from each other, if f is chosen at random from Ft.
Also, one can construct t-wise independent function families where each f can

be evaluated in time polynomial in t and s, where s is the length of an element
of C. Since the encryption scheme is efficient, s is polynomial in n. Thus, as long
as t is polynomial in n, every member f ∈ Ft will be efficiently computable. As
was shown by [TV00,Dod00], setting t = O(n) is already enough: the following
Lemma (essentially from [Dod00]) is proven for self-containment and because it
uses a slightly different parameter setting.

Lemma 3 ([Dod00]). Assume ℓ ≤ b − log n − 2 log
(

1
ε

)

− 2, and f is chosen
at random from a family of 2n-wise independent functions from C to R, where
|R| = L = 2ℓ. Then for any collection S ′ = {Dk | k ∈ K} of b-flat distributions
of cardinality 2n over C, Prf [f is not an (S ′, ε)-extractor] < 2−n.

Proof. The first attempt to prove this result would be to use the same proof
template as in Lemma 2. Namely, to prove that for any subset T ⊆ R and any
b-flat distribution Dk ∈ S ′, Prf [f(Dk) ∈ T] is unlikely to be different from
its expectation Pr[UR ∈ T] by more then ε. Unfortunately, with “only” a t-
wise independent function f , the tail bound we would get for this undesirable
event is not strong enough to take the union bound over all subsets T (unless
t is exponential in b, which was the case when a truly random f was chosen in
Lemma 2). Instead, we will only consider “singleton” sets T = {r}, for r ∈ R,

but will prove a stronger bound on ∆f (k, {r})
def
= (Prf [f(Dk) = r] − 1

L) when
ℓ ≤ b−2 log

(

1
ε

)

−log n−2. This stronger bound will enable us to use Equation (1)
(rather than Equation (2)) when bounding the statistical distance, and then take
a union bound over “only” L singleton sets {r} instead of 2L subsets T . Details
follow.

We fix any k ∈ K, r ∈ R, and estimate Prf [|∆f (k, {r})| > 2ε
L]. We do

it similarly to Lemma 2. Assume Dk is a uniform distribution over some set
{c1, . . . , cB} ⊆ C, and let Xm denote an indicator random variable which is 1 if
and only if f(cm) = r. Since f is 2n-wise independent, so are the variables {Xm}:
any 2n of them are random and independent from each other. Let X =

∑

m Xm.
Then Prf [Xm = 1] = Prf [f(cm) = r)] = 1

L , and E[X] = B
L . Also,

∆f (k, {r}) =
1

B
·
∑

m

Pr[f(cm) = r]−
1

L
=

1

B
· (X − E[X]) (7)

Next, we use the tail bound for the sum X of t-wise independent random vari-
ables from [Dod00] (Theorem 5, page 48). It says that if t ≥ 8 is an even integer

and ε < 1
2 , then Pr(|X −E[X]| ≥ 2ε ·E[X]) ≤

(

t
4ε2E[X]

)t/2

. In our case, t = 2n,

E[X] = B
L , and we get by Equation (7)

Pr
f

[

|∆f (k, {r})| >
2ε

L

]

= Pr
f

[|X − E[X]| > 2ε · E[X]] ≤

(

2nL

4ε2B

)n

≤ 2−3n

where the last inequality used ℓ ≤ b−2 log
(

1
ε

)

− log n−2. Taking now the union
bound over all k ∈ K and r ∈ R, we get that with probability at least (1− 2−n)
over the choice of f , we have |∆f (k, {r})| ≤ 2ε

L for all k ∈ K and r ∈ R. In other

words, for any k ∈ K, f(Dk) hits every element r ∈ R with probability between
(1±2ε)/L. Using the definition of statistical distance in Equation (1), this implies
that with probability at least (1− 2−n) over the choice of f , SD(f(Dk), UR) ≤ ε
for all k ∈ K, which completes the proof.

The above lemma immediately gives a constructive probabilistic method for
showing the existence of an efficient deterministic extractor claimed by the sec-
ond part of Theorem 1(a). Namely, combining Lemma 1 and Lemma 3 we get
a concrete family of efficient functions most of which are guaranteed to be good
deterministic extractors for S . However, to actually fix a concrete extractor, one
must either directly look at the source S in question, or choose the extractor
obliviously by sampling it (using good randomness) from our family once and
for all, or rely on non-uniformity. Alternatively, in case the length s of the ci-
phertext c is only slightly larger than the length b of the plaintext m, we can
use an explicit deterministic extractor of Trevisan and Vadhan [TV00] for the
efficiently samplable source S ′. Assuming some strong complexity assumptions
(see [TV00]), this would give us an explicit way to deterministically extract Ω(b)
bits, provided s < (1 + γ)b for a small enough constant γ.

3.2 Other Perfectly-Binding Computational Primitives

We now extend our results above to handle computationally secure privacy prim-
itives which are perfectly binding, which includes perfectly-binding commitment
(which, therefore, must be computationally hiding) and computationally secure
private- or public-key encryption.

Let λ be the security parameter, n = poly(λ) be the number of random bits
coming from the imperfect source S , and assume that S is good enough to
efficiently (i.e., in time polynomial in λ) implement the required computation-
ally secure (but perfectly-binding) primitive P on b = ω(log λ) bits. Trying to
unify all the above examples into one template, this means that there exists a
polynomial-time algorithm Enc, which takes input m ∈ M and “randomness”
k ∈ K, and outputs a perfectly-binding “commitment” c to m. Here k denotes all
the randomness needed to evaluate Enc once. For example, for secret- or public-
key encryption, k includes the randomness used to sample the secret and/or
public key, and, if required, the local randomness used to encrypt the message.
On the other hand, for commitment, k includes the randomness used to set-up
the global commitment parameters, as well as the randomness used to commit
to the messages.

We assume that c is perfectly-binding in the following sense: for any ran-
domness k and any m1 6= m2, we have Enc(k,m1) 6= Enc(k,m2). Notice, we
do not require any efficient “decryption” algorithm recovering m from c and k
(which we have in the case of encryption, but not commitment). Clearly, this
includes the perfectly-binding encryption and commitment applications above.
In fact, it even includes some primitives which are traditionally not consid-
ered perfectly-binding. For example, Pedersen’s commitment [Ped91] computes
Enc((r, g, h, p),m) = grhm mod p, where k = (r, g, h, p) includes a prime p, two

generators g and h of some large-enough subgroup G of Z
∗
p of prime order q,

and local randomness r ∈ Zq used to mask the message m ∈ Zq. Traditionally,
this commitment scheme is considered perfectly-hiding (in the setting of ideal
randomness), since for any m, the value Enc((r, . . .),m) is uniformly distributed
for a random r. However, it is perfectly-binding according to our definition, since
for any fixed value of r, the value of m is (inefficiently but) uniquely determined
given c (and g, h, p). Thus, our notion of perfect binding is a weaker restriction
than what might originally appear.

Also, in terms of computational security of P w.r.t. a source of random-
ness S , we require that for any distribution K ∈ S and any m ∈ M, no effi-
cient attacker A can distinguish Enc(K,m) from Enc(K,UM) with non-negligible
probability (in λ). Finally, we say that an efficient algorithm Ext extracts ℓ pseu-
dorandom bits from some source S , if for any K ∈ S and any efficient attacker
A, A has at most a negligible in λ chance of telling apart a sample of Ext(K)
from a sample of Uℓ. Needless to say, any ε-fair “statistical” extractor satisfies
this definition as long as ε is negligible in λ.

With these clarifications in mind, we can generalize Lemma 1 and Lemma 3
as follows. Lemma 1 trivially extends to show that if some efficient Ext′ extracts

b′ pseudorandom bits from the source S ′ def
= {Enc(k, UM)}, then Ext(k)

def
=

Ext′(Enc(k, 1)) also extracts b′ pseudorandom bits from S . This is the only place
using the computational security of P , the rest of the proofs stays information-
theoretic. As for Lemma 3, it stays the same, but we use it with any value ε
which is negligible in λ, but still such that log

(

1
ε

)

= o(b). This is possible since
we assumed that b = ω(log λ). Then Lemma 3 implies the existence of an efficient
extractor Ext′ for S ′ (since n = poly(λ), so that one can efficiently evaluate a
2n-wise independent function) which extracts b − 2 log

(

1
ε

)

− log n − O(1) =
b− o(b)−O(log λ) = b(1− o(1)) bits of negligible statistical distance ε from the
uniform distribution, implying that these b(1−o(1)) bits are also pseudorandom.

To summarize, for any perfectly-binding primitive P on b = ω(log λ) bits, we
get the possibility of efficiently extracting b(1− o(1)) pseudorandom bits.

4 Encryption 6⇒ Extraction if b < log n − loglog n

In this section we prove the non-implication given in Theorem 1(b), which shows
that even perfect encryption of up to (log n− loglog n) bits does not necessarily
imply extraction of even a single bit. For that we need to define a specific b-bit
encryption scheme E = (Enc,Dec) and a source S , such that S is perfect on E ,
but “non-extractable”. The proof will proceed in several stages.

4.1 Defining Good Encryption E

As the first observation, we claim that we only need to define the encryption
scheme E , and then let the source S = S (E) be the set of all key distributions
K making E perfect:

S (E) = {K | ∀ m1,m2 ∈M, c ∈ C ⇒ Pr[Enc(K,m1) = c] = Pr[Enc(K,m2) = c]}

Indeed, S (E) is the largest source which is (b, 0)-encryptable by means of E , so
it is the hardest one to extract even a single bit from. We call distributions in
S (E) perfect (for E).

Although we are not required to do so, let us intuitively motivate our choice
of E before actually defining it. For that it is very helpful to view our key space
K in terms of the encryption scheme E as follows. Given any E = (Enc,Dec),
we identify each key k ∈ K with an ordered B-tuple of ciphertexts (c1, . . . , cB),
where Enc(k,m) = cm. Notice, some B-tuples might not correspond to valid
keys. For example, this is the case when ci = cj for some i 6= j, since then
encryptions of i and j are the same under this key. Intuitively, however, the
larger is the set of valid B-tuples of ciphertexts, the more variety we have in
the set of perfect distributions S (E), and the harder it would be to extract
from S (E). This suggests that every B-tuple (c1, . . . , cB) of ciphertexts should
correspond to a potential key, except for the necessary constraint that all the
cm’s must be distinct to enable unique decryption.

A bit more formally, we assume that N can be written as N = S(S−1) . . . (S−
B + 1) for some integer S.5 Then we define the set C = {1, . . . S} to be the set
of ciphertexts,M = {1, . . . , B} be the set of plaintexts, and view the key set K
as the set of distinct B-tuples over C:

K = {k = (c1, . . . cB) | ∀ i 6= j ⇒ ci 6= cj}

We then define Enc((c1 . . . cB),m) = cm, while Dec((c1, . . . , cB), c) to be the
(necessarily unique) m such that cm = c, and arbitrarily if no such m exists.
Notice, N < SB , so that S > N1/B , which is strictly greater than B when
b < log n− loglog n. Thus, S contains enough ciphertexts to allow for B distinct
encryptions.

4.2 Excluding 0-monochromatic Distributions

Let us now take an arbitrary bit extractor Ext : K → {0, 1} and argue that
it is not very good on the set of perfect distributions S (E). We say that a
distribution K is 0-monochromatic if Pr[Ext(K) = 0] = 1. Clearly, if the set
of perfect distributions S (E) contains a 0-monochromatic distribution K, then
SD(Ext(K), U1) = 1

2 (here and below, U1 is the uniform distribution of {0, 1}),
and we would be done. Thus, for the remainder of the proof we assume that
S (E) does not contain a 0-monochromatic distribution. The heart of the proof
then will consist of designing a perfect encryption distribution K such that

Pr[Ext(K) = 0] ≤
B2

S
(8)

Once this is done, recalling that S > N1/B = 2n/2b

we immediately get

SD(Ext(K), U1) =

∣

∣

∣

∣

1

2
− Pr[Ext(K) = 0]

∣

∣

∣

∣

≥
1

2
− 2(2b− n

2b)

5 If not, take largest S such that N ≥ S(S−1) . . . (S−B +1), and work on the subset
of N

′ = S(S − 1) . . . (S − B + 1) keys, but this will not change our bounds.

as claimed by Theorem 1(b). Thus, we concentrate on building a perfect distri-
bution K satisfying Equation (8). For that, in the following subsections we will
(1) characterize perfect distributions using linear algebra; (2) use this charac-
terization to understand the implication of the lack of 0-monochromatic perfect
distributions; and, finally, (3) use this implication to construct the required per-
fect distribution K.

4.3 Characterizing Perfect Distributions

Let K be any distribution on K. Given a key k = (c1 . . . cB), let pk = p(c1...cB) =
Pr[K = (c1 . . . cB)] and p be the N -dimensional column vector whose k-th com-
ponent is equal to pk. Notice, being a probability vector, we know that

∑

pk = 1
and p ≥ 0 (which is a shorthand for pk ≥ 0 for all k). Conversely, any such p
defines a unique distribution K.

Assume now that K is a perfect encryption distribution for E . This adds
several more constraints on p. Specifically, a necessary and sufficient condition
for a perfect encryption distribution is to require that for all c ∈ C and all m > 1,
we have

Pr[c1 = c | (c1 . . . cB)← K] = Pr[cm = c | (c1 . . . cB)← K] (9)

We can translate this into a linear equation by noticing that the left probability is
equal to

∑

{(c1...cB):c1=c} p(c1...cB), while the second — to
∑

{(c1...cB):cm=c} p(c1...cB).

Thus, Equation (9) can be rewritten as

∑

{(c1...cB):c1=c}

p(c1...cB) −
∑

{(c1...cB):cm=c}

p(c1...cB) = 0 (10)

We can then rewrite all these constraints on p into a more compact notation by
defining a constraint matrix V = {vi,j}, which has (1 + (B − 1)S) rows (corre-
sponding to the constraints) and N columns (corresponding to keys). The first
row of V will consist of all 1’s: v1,k = 1 for all k ∈ K. This will later correspond
to the fact that

∑

pk = 1. To define the rest of V , which would correspond to
(B − 1)S constraints from Equation (10), we first make our notation more sug-
gestive. We index the N columns of V by tuples (c1, . . . cB), and the remaining
(B − 1)S rows of V by tuples (m, c), where m ∈ {2, . . . B} and c ∈ {1 . . . S}.
Then, we define

v(m,c),(c1,...,cB) =

1, c = c1,
−1, c = cm,
0, otherwise.

(11)

Now, Equation (10) simply becomes
∑

k v(m,c),k · pk = 0. Finally, we define
a (1 + (B − 1)S)-column vector e by e1 = 1 and ei = 0 for i > 1. Combining all
this notation, we finally get

Lemma 4. An N -dimensional real vector p defines a perfect distribution K for
E if and only if V p = e and p ≥ 0.

4.4 Using the Lack of 0-Monochromatic Distributions

Next, we use Lemma 4 to understand our assumption that no perfect distribution
K is 0-monochromatic with respect to Ext. Before that, we remind the reader of
a well known Farkas Lemma (e.g., see [Str80]):

Farkas Lemma. For any matrix A and column vector e, the linear system
Ax = e has no solution x ≥ 0 if and only if there exists a row vector y s.t.
yA ≥ 0 and ye < 0.

Now, let Z = {k | Ext(k) = 0} be the set of “0-keys” under Ext, and let A
denote (1 + (B − 1)S)× |Z|-matrix equal to the constraint matrix V restricted
its |Z| columns in Z. Take any real vector p such that pk = 0 for all k 6∈ Z. By
Lemma 4, p corresponds to a (necessarily 0-monochromatic) perfect distribution
K if and only if V p = e and p ≥ 0. But since pk = 0 for all k 6∈ Z, the above
conditions are equivalent to saying that the |Z|-dimensional restriction x = p|

Z

of p to its coordinates in Z satisfies Ax = e and x ≥ 0. Conversely, any x
satisfying the above constraints defines a 0-monochromatic perfect distribution
p by letting p|

Z
= x and pk = 0 for k 6∈ Z.

Thus, Ext defines no 0-monochromatic perfect distributions if and only if
the constraints Ax = e and x ≥ 0 are unsatisfiable. But this is exactly the
precondition to the Farkas’ Lemma above! Using the Farkas Lemma on our A
and e, we get the existence of the (1 + (B − 1)S)-dimensional row vector y such
that yA ≥ 0 and ye < 0. Just like we did for the rows of V , we denote the first
element of y by y1, and use the notation y(m,c) to denote the remaining elements
of y. We now translate the constraints yA ≥ 0 and ye < 0 using our specific
choices of A and e.

Notice, since e1 = 1 and ei = 0 for i > 1, it means that ye = y1, so the
constraint that ye < 0 is equivalent to y1 < 0. Next, recalling that A is just
the restriction of V to its columns in Z, and that the first row of V is the all-1
vector, we get that yA ≥ 0 is equivalent to saying that for all (c1, . . . , cB) ∈ Z
we have

y1 +
∑

m>1

∑

c

y(m,c) · v(m,c),(c1,...,cB) ≥ 0 (12)

Notice, since y1 < 0, this equation implies that the double sum above is strictly
greater than 0. Thus, recalling the definition of v(m,c),(c1,...,cB) given in Equa-
tion (11), we conclude that for all k = (c1, . . . , cB), such that Ext(k) = 0, we
have

∑

m>1

(

y(m,c1) − y(m,cm)

)

> 0 (13)

The last equation finally allows us to derive the implication we need:

Theorem 2. Assume Ext defines no 0-monochromatic perfect distributions. Then
there exist real numbers

{

y(m,c) | m ∈ {2 . . . B} , c ∈ {1 . . . S}
}

such that the fol-
lowing holds. If a key k = (c1, . . . , cB) is such that

y(m,c1) − y(m,cm) ≤ 0 for all m > 1, (14)

then Ext(k) = 1.

Proof. Summing Equation (14) for all m > 1 we get a contradiction to Equa-
tion (13), which means that Ext(k) 6= 0; i.e., Ext(k) = 1.

4.5 Developing Intuition: Special Case b = 1

To get some intuition, we take a momentary detour and consider the special
case b = 1, therefore reproving the result of [DS02]. Theorem 2 tells us that if
Ext cannot be fixed to 0, there exists real numbers y1 . . . yS such that yi ≤ yj

implies that the key k = (i, j) gets mapped to 1 by Ext. Thus, by rearrang-
ing the y’s in the non-decreasing order y1 ≤ y2 ≤ . . . ≤ yS , we get that
Ext((i, j)) = 1 for any i < j. In particular, the uniform distribution on S keys
{(1, 2), (2, 3), . . . , (S − 1, S), (S, 1)} is easily seen to define a perfect encryption
distribution K (as both Enc(K, 1) and Enc(K, 2) sample a uniformly random
ciphertext) at most one of whose components — the key (S, 1) — could con-
ceivably get mapped to 0 by Ext. Thus, Pr[Ext(K) = 0] ≤ 1/S, showing (even
stronger) Equation (8) and thus completing this special case.

Interestingly, Dodis and Spencer [DS02] used a simpler “graph-theoretic”
method to show the existence of exactly the same perfect distribution K as
above. They viewed ciphertexts as vertices of the complete directed graph G on
S vertices, and keys k = (c1, c2) (where c1 6= c2) — as directed edges connecting
c1 = Enc(k, 1) to c2 = Enc(k, 2). With this notation, it is easy to see that
a uniform distribution on any cycle in this graph defines a perfect encryption
distribution. Now, considering first 2-cycles {(c1, c2), (c2, c1)}, the fact that none
of them is 0-monochromatic implies that at least one of Ext((c1, c2)) = 1 or
Ext((c2, c1)) = 1 is true, for any c1 6= c2. Taking one such edge from every 2-
cycle yields what is called a tournament graph, every one of whose edges extracts
to 1. Now, a well known (and simple to prove) result in graph theory states that
every tournament graph has a Hamiltonian path. In other words, there exists
an ordering of ciphertexts c1 . . . cS such that every edge (ci, cj) belongs to the
1-monochromatic tournament subgraph whenever i < j; i.e., Ext((ci, cj)) = 1
if i < j. Completing this Hamiltonian path to a Hamiltonian cycle (by adding
the edge (cS , c1)) yields the same kind of perfect distribution K we built earlier
using Theorem 2.

Unfortunately, it seems hard to extend this graph-theoretic argument to “hy-
pergraphs” corresponding to b > 1. Instead, we chose to rely on linear algebra
(i.e., Theorem 2) to get a better handle on the problem. Still, our proof below
for general b > 1 is quite more involved than the proof above for b = 1.

4.6 Building Non-Extractable yet Perfect K

Returning to the general case, we build a special perfect distribution K which
contains many keys satisfying Equation (14), meaning that Ext(K) is very biased
towards 1. We will construct such K having a very special form below.

Definition 3. Assume π1, . . . , πd : C → C are d permutations over the ciphertext
space C = {1 . . . S}. We say that π1, . . . , πd are d-valid if for every c ∈ C, and
distinct i, j ∈ {1 . . . d}, we have πi(c) 6= πj(c). ♦

The reason for this terminology is the following. Given any B-valid π1, . . . , πB ,
where recall that B = |M|, we can define S valid keys k1, . . . , kS ∈ K by
kc = (π1(c), . . . , πB(c)), where the B-validity constraint precisely ensures that
all the B ciphertexts inside kc are distinct, so that kc is a legal key in K. Now,
we denote by K(π1,...,πB) the uniform distribution over these S keys k1, . . . , kS .

Lemma 5. If π1, . . . , πB are B-valid permutations, then K(π1,...,πB) is a perfect
encryption distribution.

Proof. For any message m, Enc(K(π1,...,πB),m) is equivalent to outputting πm(UC),
where UC is the uniform distribution over C. Since each πm is a permutation over
C, this is equivalent to UC . Thus, encryption of every message m yields a truly
random ciphertext c ∈ C, which means that K(π1,...,πB) is perfect.

Choosing Good Permutations. We will construct our perfect distribution
K = K(π1,...,πB) by carefully choosing a B-valid family (π1, . . . , πB) such that
Ext(K) is very biased towards 1. We start by choosing π1 to be the identity
permutation π1(c) = c (for all c), and proceed by defining π2 . . . πB iteratively.
After defining each πd, we will maintain the following invariants which clearly
hold for the base case d = 1:

(i) π1, . . . , πd are d-valid.
(ii) There exists a large set Td of “good” ciphertexts (where, initially, T1 = C)

of size qd > S − d2, which satisfies the following equation for all c ∈ Td and
1 < m ≤ d:6

y(m,c) − y(m,πm(c)) ≤ 0 (15)

Now, assuming inductively that we have defined π1 = id, π2, . . . , πd which satisfy
properties (i) and (ii) above, we will construct πd+1 still satisfying (i) and (ii).

This inductive step is somewhat technical, and we will come back to it in
the next subsections. But first, assuming it is true, we show that we can easily
finish our proof. Indeed, we apply the induction for B − 1 iterations and get B
permutations π1, . . . , πB satisfying properties (i) and (ii) above. Then, property
(i) and Lemma 5 imply that K(π1,...,πB) is a perfect encryption distribution. On
the other hand, property (ii) and the definition of kc = {c, π2(c), . . . , πB(c)}
imply that any key kc ∈ TB satisfies Equation (14). Thus, by Theorem 2 we get
that Ext(kc) = 1 for every c ∈ TB . Since, |TB | > S−B2, we get that at most B2

out of S keys kc extract to 0. Thus, since K(π1,...,πB) is uniform over its S keys,
we get

Pr[Ext(K(π1,...,πB)) = 0] ≤
B2

S

which shows Equation (8) and completes our proof (modulo the inductive step).

6 To get some intuition, we will see shortly that “good” ciphertexts c will lead to keys
kc satisfying Equation (14), so that Ext(kc) = 1 by Theorem 2.

4.7 Preparing for Induction: Detour to Matchings

Before doing the inductive step, we recall some basic facts about bipartite graphs,
which we will need soon. A (balanced) bipartite graph G is given by two vertex
sets L and R of cardinality S and an edge set E = E(G) ⊆ L× R. A matching
P in G is a subset of node-disjoint edges of E. P is perfect if |P | = S. In this
case every i ∈ L is matched to a unique j ∈ R and vice versa.

We say that a subset L′ ⊆ L is matchable (in G) if there exists a matching
P containing L′ as the set of its endpoints in L. In this case we also say that
L′ is matchable with R′, where R′ ⊆ R is the set of P ’s endpoints in R. (Put
differently, L′ is matchable with R′ precisely when the subgraph induced by L′

and R′ contains a perfect matching.) The famous Hall’s marriage theorem gives
a necessary and sufficient condition for L′ to be matchable.

Hall’s Marriage Theorem. L′ is matchable if and only if every subset A of
L′ contains at least |A| neighbors in R. Notationally, if N (A) denotes the set of
elements in R containing an edge to A, then L′ is matchable iff |N (A)| ≥ |A|,
for all A ⊆ L′.

We will only use the following two special cases of Hall’s theorem.

Corollary 1. Assume every vertex v ∈ L∪R has degree at least S−d: degG(v) ≥
S − d. Then, for any L′ ⊂ L and R′ ⊂ R of cardinality 2d, we have that L′ is
matchable with R′.

Proof. Let us consider the 2d×2d bipartite subgraph G′ of G induced by L′ and
R′. Clearly, that every vertex v ∈ L′ ∪R′ has degree at least d in G′, since each
such v is not connected to at most d opposite vertices in the entire G, let alone G′.
We claim that L′ meets the conditions of the Hall’s theorem in G′. Consider any
non-empty A ⊆ L′. If |A| ≤ d, then any vertex v in A had degG′(v) ≥ d ≥ |A|
neighbors, so |N (A) ≥ |A|. If d < |A| ≤ 2d, let us assume for the sake of
contradiction that |N (A)| < |A|. Consider now any vertex v ∈ R\N (A). Such v
exists as |N (A)| < |A| ≤ 2d = |R′|. Then no element in A can be connected to
v, since v 6∈ N (A). Thus, the degree of v can be at most 2d− |A| < d, which is
a contradiction.

Corollary 2. Assume L contains a subset L′ = {c1, . . . , cℓ} such that degG(ci) ≥
i, for 1 ≤ i ≤ ℓ. Then L′ is matchable in G. In particular, G contains a matching
of size at least ℓ.

Proof. We show that L′ satisfies the conditions of Hall’s theorem. Assume A =
{ci1 , . . . , cia

}, where 1 ≤ i1 < i2 < . . . < ia ≤ ℓ. Notice, this means ij ≥ j
for all j. Then the neighbors of A at least include the neighbors of ia, so that
|N (A)| ≥ degG(cia

) ≥ ia ≥ a = |A|.

4.8 Mapping Induction into a Matching Problem

We return to our induction. Recall, we are given permutations π1 = id, π2, . . . , πd

satisfying properties (i) and (ii), and need to construct πd+1 also satisfying prop-

erties (i) and (ii). We translate this task into some graph matching problem,
starting with the property (i) first.

For every c ∈ C, we define the “forbidden” set Fc = {c, π2(c), . . . , πd(c)}.
Then, the (d + 1)-validity constraint (i) is equivalent to requiring πd+1(c) 6∈ Fc

for all c ∈ C. Next we define a bipartite “constraint graph” G on two copies L
and R of C containing all the non-forbidden edges: (c, c′) ∈ E(G) if and only if
c′ 6∈ Fc. We observe two facts about G. First,

Lemma 6. Every vertex v ∈ L∪R has degree at least S−d: degG(v) ≥ S−d. In
particular, by Corollary 1 every two 2d-element subsets of L and R are matchable
with each other in G.

Proof. The claim is obvious for v ∈ L as |Fv| = c. It is also true for v ∈ R,
since any value v ∈ R is forbidden by exactly d (necessarily distinct) elements
v, π−1

2 (v), . . . , π−1
d (v).

Second, any perfect matching P of G uniquely defines a permutation π on S
elements such that P = {(c, π(c))}c∈L. Since, by definition, π(c) 6∈ Fc, it is clear
that this π will always satisfy constraint (i). Thus, we only need to find a perfect
matching P for G which will define a permutation πd+1 satisfying condition (ii).

Notice, our inductive assumption implies the existence of a subset Td of L
(recall, L is just a copy of C) of size qd > S − d2 such that Equation (15) is
satisfied for all c ∈ Td and 1 < m ≤ d. Irrespective of the permutation πd+1 we
will construct later, we will restrict Td+1 to be a subset of Td. This means that
Equation (15) will already hold for all c ∈ Td+1 and 1 < m ≤ d. Thus, we will
only need to ensure this equation for m = d + 1; i.e., that for all c ∈ Td+1

y(d+1,c) − y(d+1,πd+1(c)) ≤ 0 (16)

This constraint motivates us to define a subgraph G′ of our constraint graph
G as follows. As edge (c, c′) ∈ E(G′) if and only if (c, c′) ∈ E(G) (i.e., c′ 6∈ Fc)
and y(d+1,c)− y(d+1,c′) ≤ 0. In other words, we only leave edges (c, c′) which will
satisfy Equation (16) if we were to define πd+1(c) = c′. The key property of G′

turns out to be

Lemma 7. G′ contains a matching P ′ of size at least S − d.

Proof. We will use Corollary 2. Let us sort the vertices v1 . . . vS of L and R in
the order of non-decreasing y(d+1,·) values; i.e.

y(d+1,v1) ≤ y(d+1,v2) ≤ . . . ≤ y(d+1,vS)

Then, the edge (vi, vj) satisfies y(d+1,vi) − y(d+1,vj) ≤ 0 whenever i ≤ j. Thus,
such (vi, vj) belongs to G′ if and only if it also belongs to the larger constraint
graph G; i.e., vj 6∈ Fvi

. But since each vi has at most d forbidden edges in G,
and | {j | j ≥ i} | = S − i + 1, we have that degG′(vi) ≥ (S − i + 1)− d. In par-
ticular, degG′(vS−d) ≥ 1, . . . , degG′(v1) ≥ S − d. By Corollary 2, {vS−d, . . . , v1}
is matchable in G′, completing the proof.

4.9 Finishing the Proof

Finally, we can collect all the pieces together and define a good matching P in G
(corresponding to πd+1). With an eye on satisfying property (ii), we start with
a large (but not yet perfect) matching P ′ of G′ of size at least S−d, guaranteed
by Lemma 7. Ideally, we would like to extend P ′ to some perfect matching in
the full graph G, by somehow matching the vertices currently unmatched by P ′.
Unfortunately, we do not know how to argue that such extension is possible,
since there are at most d vertices unmatched, and we can only match arbitrary
sets of size at least 2d by Lemma 6. So we simply take an arbitrary sub-matching
P ′′ of P ′ of size S − 2d, just throwing away any |P ′| − (S − 2d) edges of P ′.

Notice, P ′′ is also a matching of G which has exactly 2d unmatched vertices
on both sides. By Lemma 6, we know that we can always match these missing
vertices, and get a perfect matching P of the entire G. We finally claim that
this perfect matching P defines a permutation πd+1 on C satisfying properties
(i) and (ii).

Property (i) is immediate since P is a perfect matching of G. As for property
(ii), let L′ denote the S − 2d endpoints of P ′′ in L. Now, every c ∈ L′ satisfies
Equation (16), since this is how the graph G′ was defined and (c, πd+1(c)) ∈
P ′′ ⊆ E(G′). Thus, we can inductively define Td+1 = Td ∩ L′ and have Td+1

satisfy property (ii). We only need to argue that Td+1 is large enough, but this
is easy. Since L′ misses only 2d ciphertexts, we get by induction that

|Td+1| ≥ |Td| − 2d > S − d2 − 2d > S − (d + 1)2

completing the induction and the whole proof.

5 Conclusions and Open Problems

We study the question of whether true randomness is inherent for achieving
privacy, and show a largely positive answer for the case of information-theoretic
private-key encryption, as well as computationally secure perfectly-binding prim-
itives. The most interesting question is to study other privacy primitives (either
information-theoretic or computational) not immediately covered by our tech-
nique. For example, what about 2-out-2 secret sharing (which is strictly implied
by private-key encryption [DPP06]) or computationally binding commitment
schemes? Do they still require true randomness?

More generally, we hope that our result and techniques will stimulate further
interest in understanding the extent to which cryptographic primitives can be
based on imperfect randomness.

Acknowledgments. We would like to thank Amit Sahai, Salil Vadhan and the
anonymous referees for suggesting most of the “computational” extensions of
our result. We would also like to thank Shien Jin Ong and Salil Vadhan for
suggesting to use a better Chernoff bound in the proof of Theorem 1(a).

References

[ACRT99] Alexander Andreev, Andrea Clementi, Jose Rolim, and Luca Trevisan. Dis-
persers, deterministic amplification, and weak random sources. SIAM J. on
Computing, 28(6):2103–2116, 1999.

[CG88] Benny Chor and Oded Goldreich. Unbiased bits from sources of weak ran-
domness and probabilistic communication complexity. SIAM J. on Com-
puting, 17(2):230–261, 1988.

[Dod00] Yevgeniy Dodis. Exposure-Resilient Cryptography (PhD Thesis). MIT PhD
Thesis, 2000.

[DOPS04] Yevgeniy Dodis, Shien Jin Ong, Manoj Prabhakaran, and Amit Sahai.
On the (im)possibility of cryptography with imperfect randomness. In
Proc. 45th IEEE FOCS, pages 196–205, 2004.

[DPP06] Yevgeniy Dodis, Krzysztof Pietrzak and Bartosz Przydatek. Separating
Sources for Encryption and Secret-Sharing. In Proc. Theory of Cryptography
Conference (TCC), pages 601–616, 2006.

[DS02] Yevgeniy Dodis and Joel Spencer. On the (non-)universality of the one-time
pad. In Proc. 43rd IEEE FOCS, pages 376–388, 2002.

[DSS01] Yevgeniy Dodis, Amit Sahai, and Adam Smith. On perfect and adaptive se-
curity in exposure-resilient cryptography. In Proc. EUROCRYPT’01, pages
301–324, 2001.

[GL89] Oded Goldreich and Leonid Levin. A Hard-Core Predicate for all One-Way
Functions. In Prof. STOC, pp. 25–32, 1989.

[KRVZ06] Jesse Kamp, Anup Rao, Salil Vadhan and David Zuckerman. Deterministic
extractors for small-space sources. In Proc of STOC, pp. 691–700, 2006.

[MP90] James L. McInnes and Benny Pinkas. On the impossibility of private key
cryptography with weakly random keys. In Proc. CRYPTO’90, pages 421–
436, 1990.

[MW97] Ueli Maurer and Stefan Wolf. Privacy amplification secure against active
adversaries. In Proc. CRYPTO’97, pages 307–321, 1997.

[Ped91] Torben P. Pedersen Non-Interactive and Information-Theoretic Secure Ver-
ifiable Secret Sharing. In Proc. of CRYPTO, pp. 129–140, 1991.

[RW03] Renato Renner and Stefan Wolf. Unconditional authenticity and privacy
from an arbitrary weak secret. In Proc. CRYPTO’03, pages 78–95, 2003.

[SV86] Miklos Santha and Umesh V. Vazirani. Generating quasi-random sequences
from semi-random sources. JCSS, 33(1):75–87, 1986.

[Sha49] Claude Shannon. Communication Theory of Secrecy systems. In Bell Sys-
tems Technical J., 28:656–715, 1949.

[Str80] Gilbert Strang. Linear Algebra and Its Applications. Academic Press, Lon-
don, 1980.

[TV00] Luca Trevisan and Salil Vadhan. Extracting randomness from samplable
distributions. In Proc. 41st IEEE FOCS, pages 32–42, 2000.

[vN51] John von Neumann. Various techniques used in connection with random
digits. National Bureau of Standards, Applied Mathematics Series, 12:36–
38, 1951.

[VV85] Umesh V. Vazirani and Vijay V. Vazirani. Random polynomial time is equal
to slightly-random polynomial time. In Proc. 26th IEEE FOCS, pages 417–
428, 1985.

[Zuc96] David Zuckerman. Simulating BPP using a general weak random source.
Algorithmica, 16(4/5):367–391, 1996.

