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non-equilibrium dynamics, and biotic interactions (Pulliam 
2000). Competitive interactions could, for example, exclude 
a weak competitor from its optimal environmental condi-
tions, while it might persist in more extreme environments 
that the dominant competitors cannot occupy (Loehle 
1998, McGill et al. 2006). If population growth shows such 
negative density-dependence, the realized niche is the set of 
environmental conditions, x, where the intrinsic population 
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The niche concept is fundamental to our understanding of 
range dynamics. The niche is usually defined as the combi-
nation of environmental conditions that allow a species to 
persist (Hutchinson 1957). One might expect that species 
are found if, and only if, the local environment is within 
their ‘demographic’ niche; i.e. where their intrinsic growth 
rate is positive. However, several ecological processes can lead 
to deviations from this expectation: source–sink dynamics, 
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Hutchinson defined species’ realized niche as the set of environmental conditions in which populations can persist in the 
presence of competitors. In terms of demography, the realized niche corresponds to the environments where the intrinsic 
growth rate (r) of populations is positive. Observed species occurrences should reflect the realized niche when additional 
processes like dispersal and local extinction lags do not have overwhelming effects. Despite the foundational nature of  
these ideas, quantitative assessments of the relationship between range-wide demographic performance and occurrence 
probability have not been made. This assessment is needed both to improve our conceptual understanding of species’ niches 
and ranges and to develop reliable mechanistic models of species geographic distributions that incorporate demography 
and species interactions. 

The objective of this study is to analyse how demographic parameters (intrinsic growth rate r and carrying capacity 
K  ) and population density (N  ) relate to occurrence probability (Pocc ). We hypothesized that these relationships vary with  
species’ competitive ability. Demographic parameters, density, and occurrence probability were estimated for 108 tree 
species from four temperate forest inventory surveys (Québec, western USA, France and Switzerland). We used published 
information of shade tolerance as indicators of light competition strategy, assuming that high tolerance denotes high  
competitive capacity in stable forest environments. 

Interestingly, relationships between demographic parameters and occurrence probability did not vary substantially 
across degrees of shade tolerance and regions. Although they were influenced by the uncertainty in the estimation of the 
demographic parameters, we found that r was generally negatively correlated with Pocc, while N, and for most regions K, 
was generally positively correlated with Pocc. Thus, in temperate forest trees the regions of highest occurrence probability are 
those with high densities but slow intrinsic population growth rates. The uncertain relationships between demography and 
occurrence probability suggests caution when linking species distribution and demographic models.
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growth rate (r(x)) is positive in the presence of competitors 
(Maguire 1973). Populations with a positive growth rate 
should also have a positive carrying capacity K.

The relationship between demographic parameters such 
as intrinsic growth rate (r(x)), carrying capacity (K  ), abun-
dance (N) and the probability of species occurrence (Pocc) has 
been studied theoretically (Holt 1997). The standard formu-
lation of logistic growth holds that the equilibrium popula-
tion size at a given location, K, will be independent to any 
variation of the intrinsic growth rate. The dynamics are given 
by the equation dN/dt  rN(1–N/K  ), which takes the form 
N*  K under equilibrium conditions. However, this defini-
tion suggests that density-independent factors affecting birth 
and death rates (and thus r) do not alter carrying capacity 
(Kuno 1991, Holt 1997, Gabriel et al. 2005). An ecologi-
cally more intuitive alternative is to parameterize population 
models in terms of r and a per-capita competition coefficient 
c (Kuno 1991). In these alternative parameterizations, K 
increases with r (for the time-continuous logistic model and 
the time-discrete Ricker model K(x)  r/c), so that for con-
stant c both r and K should increase with Pocc (Holt 1997). 
More complex relationships between K and Pocc can arise if 
competition intensity varies between populations. So far, 
there are very few empirical tests of these alternative predic-
tions due to the unknown relationships between Pocc and r, 
K, and N (McGill 2012).

Species distribution models (SDMs, Guisan and Thuiller 
2005) provide empirical estimates of Pocc by relating occur-
rence (presence/absence) data to spatial variation in the  
environment. However, attempts to relate Pocc to measures of 
species’ local performance (e.g. variation in functional traits, 
Thuiller et al. 2010) or density N (VanDerWal et al. 2009, 
Canham and Thomas 2010) has provided mixed results.  
For instance, VanDerWal et al. (2009) showed that SDMs 
could predict maximum local N, but not mean N. The weak 
relationship between mean N and Pocc occurred because there 
was high variation in N at high Pocc, whereas consistently 
lower N was observed where occurrence Pocc was low. The 
environmental factors influencing Pocc may also differ from 
the ones affecting different aspects of demography such as N 
or r and K (Boulangeat et al. 2012). In addition, under meta-
population dynamics, r will determine which environments 
are suitable for a species to establish a local population, but 
regional demographic processes will ultimately influence Pocc 
(Holt and Keitt 2000). Frequent patch extinctions relative to 
colonization events could eventually lead to regional extinc-
tion, despite favourable environmental conditions.

When focusing on plant dynamics, and more particularly 
on trees, the relationship between demographic parameters 
and Pocc is dependent on several inter- and intra-specific 
factors as well as stochastic processes. For instance, high 
population growth may be observed at locations with low 
occurrence probability because the species has recently 
colonized a patch and is still far from equilibrium. Such 
population growth expectations will be influenced by spe-
cies interactions and competitive ability. For trees, shade- 
tolerance is likely strongly related to r and K measured in the 
presence of competing species. Because shade intolerant trees 
typically establish first and reach their potential growth early 
during secondary succession, their occurrence probability 
should be highly positively correlated with r. Nevertheless, 

those weaker (shade intolerant) competitors are more likely 
to be found away from their environmentally most suitable 
sites thereby potentially decoupling Pocc and K. In contrast, 
growth of shade tolerant species will often be reduced by 
increasing competitive interactions, leading to weaker cor-
relations between Pocc and r. McGill (2012) recently showed 
for eastern North American trees that the environments 
in which species are most abundant are often not those in 
which individuals grow best. He interpreted this finding as 
an expression of ‘inclusive niche structuring’ (Loehle 1998) 
where all species share a similar optimal environment, but 
trade-offs between competitive ability and environmental 
tolerance cause weaker competitors with broader tolerance 
to be most abundant in suboptimal environments. However, 
it is not clear whether this analysis is indicative of large-scale 
variation in intrinsic population growth (r) because McGill 
(2012) did not correct for local density. Failure to include 
this correction precludes quantification of ‘intrinsic’ growth 
of individuals in the absence of conspecifics.

Despite these expectations, there is no published analysis 
of the relationships between demographic parameters and 
occurrence probability. Our main objectives in this study 
were thus: 1) to investigate how occurrence probability 
(Pocc), estimated by SDMs, is related to demographic param-
eters (intrinsic population growth r, and K), and population 
density (N); and 2) to assess how these relationships vary 
with species’ competitive ability. To address these questions, 
we assembled forest–tree data sets from comprehensive 
inventories in Canada, France, USA and Switzerland. We 
used repeated census measurements to model changes in the 
density of tree populations as a function of density in the 
first census and topo-climatic variables. From these analyses, 
we obtained the intrinsic population growth rate (r) and the 
carrying capacity (K) of each population. We then estimated 
occurrence probability (Pocc) with species-specific SDMs for 
each of the study areas using the same topoclimatic variables. 
As a surrogate for competitive ability, we collected published 
information on all species’ shade tolerance, assuming that 
high tolerance denotes strong competitive ability. Finally, we 
investigated the relationships between demographic param-
eters and occurrence probability, focusing either on all esti-
mated data or only on the upper limit of these relationships 
(because stochasticity or disturbance might cause suboptimal 
performance in some populations), and analysed differences 
in relationships between shade-tolerance classes.

Material and methods

We compiled forest–tree datasets from four different areas in 
North America and Europe: Québec, western USA, France 
and Switzerland (Supplementary material Appendix 1,  
Fig. A1). For each dataset and for each species indepen-
dently, we estimated the relationship between occurrence 
probability and demographic parameters (see Fig. 1 for a 
general workflow of the analysis). We used the same climatic 
variables in the SDMs to estimate occurrence probability 
and in the demographic models to estimate demographic 
parameters (Supplementary material Appendix 1, Table A1). 
We only retained plots not affected by harvesting between 
the censuses. Data for the distribution models consisted of 
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linear vs sigmoid

Figure 1. Workflow diagram depicting the analyses carried out in the paper. Nt and Nt  1 represent species-based total basal area at the first 
and second census, respectively. x correspond to the x climatic variables used in each study area.

recorded presence or absence at each sample plot for each 
study area.

In species with strongly size-structured populations (such 
as trees), the number of individuals is a poor descriptor of 
reproductive rates and the intensity of competition. Using 
only the number of individuals does not allow distinguishing 
a dense forest with a few large and reproductive trees from a 
sparsely vegetated site with a few small saplings. While the 
dynamics of size-structured populations could in principle 
be described with matrix models or integral projection mod-
els, these models are rather data demanding and cannot be 
fully parameterized with the data available for this study. 
Instead, we took the simpler approach of expressing popula-
tion dynamics as the dynamics of a species’ summed basal 
area (BA) in a plot. We chose BA because 1) it is used as a 
simple predictor for the intensity of competition in forest 
stands (Dale et al. 1985), and 2) it was found to be propor-
tional to individual seed production for various tree species 
(Clark et al. 1999, Schurr et al. 2008). Hence, BA serves as a 
simple common currency that expresses the contribution of 
different size classes to both reproduction and competition 
in tree stands. Demographic data is described in more detail 
below.

Study areas

Québec
The forest inventory of the Québec Ministry of Natural 
Resources (MRNQ) is a network of permanent plots 
established in the 1970’s and re-measured approximately 
every decade (MRNQ 2013). The forest inventory cov-
ers all public lands in Québec (80% of all forests), from 
temperate northern hardwoods to the boreal forests. By 

including only plots with four measurements, which were 
not subject to major disturbance, we retained 11 062 plots 
in the analysis. Each sampling plot is circular and cov-
ers 400 m2. Each tree with a diameter at breast height of  
9.1 cm or larger is tagged and re-measured in subsequent 
censuses. Recruits are added in each census. We report pop-
ulation density as the summed basal area for each species 
(m2 ha1) and calculate population growth as the change 
in basal area between successive censuses. Because the 
interval between two censuses is not constant, we included 
the elapsed time between them to have an approximate 
measure of basal area increment per year. Overall, we had 
31 species with more than 100 observations of basal area 
increment available for further analyses.

Western USA
The USDA Forest Service Inventory and Analysis (FIA) pro-
gram maintains an extensive census of tree characteristics on 
public and private lands across USA (www.fia.fs.fed.us/). 
Data for 16 selected conifer species in western USA were 
extracted from this dataset. This subset was chosen based 
on sufficient presence–absence data information with high 
detection probability and repeated censuses. Information 
on the number and condition of trees is collected on plots 
approximately 0.4 ha in size. There was approximately one 
plot per 2400 ha, although spatial intensity of sample plots 
varies across USA. The FIA uses a panel rotation sample 
scheme for resampling of plots, with plots in the western 
study region resampled once every 10 years. Population  
densities and population growth were calculated from basal 
areas as described above. Data for analyses were restricted 
to western North America’s mid-latitude dry domain (after 
Bailey 1996) consisting of 1830 plots.
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where the expected density at time t  1 is a function of  
the density in the previous census N, r, K and the time  
interval between the censuses, ∆ t. Rearrangement and log-
transformation of the Ricker model yields (Eq. 2):

log( / ) /N N r t r t K N a b Nt t t t      1 ∆ ∆  (2)

which has the form of a linear regression of log-transformed 
density change against density in the previous census.  
This formulation assumes a relationship between r and K. 
We expanded this linear regression by including linear and 
quadratic effects of climatic variables. We considered two 
possible models: the first model contains only additive effects 
of climate and density so that

a z cx x
x

n
   climate band const∑  (3)

The second model additionally describes climate effects on 
density dependence via an interaction between N and each 
climatic term

a z c cx x
x

n

x x
x

n
      climate  b d climate eand∑ ∑ ( )  (4)

where x refers to a given climatic variable, Fig. 1).
In the model with interactions (Eq. 4), intraspecific 

competition intensity can vary with climate. In the model 
with only additive effects intraspecific competition inten-
sity is constant. The best of the two alternative models for 
each dataset was selected using the small sample size cor-
rected Akaike’s Information Criterion, AICc, (Akaike 1974, 
Burnham and Anderson 2002). This best model was then 
used to calculate the net reproductive rate r of each plot (the 
predicted change in density for Nt  0) and carrying capacity 
K (the Nt at which change in density is 0).

In other words, r corresponds to the prediction of Eq. 3 
or Eq. 4 for Nt   0. Because we took the log ratio of Nt  1 
and Nt, it is actually the exponential of the prediction.

a Nt predict Eq 3or Eq. 4 at( . ) 0  (5)

r a exp  (6)

To estimate K, we made a prediction from Eq. 3 or Eq. 4 at 
Nt   1 to extract the value of (a  b) and then subtract a to 
isolate b.

b N at  predict(3)or(4)at 1   (7)

K
b


a  (8)

Since some datasets had different time intervals between 
censuses, we standardized r by time-interval (∆t).

r
t


r

∆
 (9)

For datasets with a hierarchical sampling block design 
(to account for multiple plots in western USA and for 

France
The French National Forest Inventory (http:// 
inventaire-forestier.ign.fr) comprises a network of  
temporary plots established on a sample of grid approxi-
mately 1000  1000 m (plot randomly located in a square 
of 450 m around the centre of the cell) covering the French 
national territory between 2005 and 2011. The climate  
varies between Mediterranean, oceanic and continental, and 
is also strongly affected by elevation. For each measured tree, 
stem circumference, species, status (alive or died in the last  
5 years), and radial growth over five years were recorded. The 
radial growth was determined from two short cores taken 
at breast height for 41 species. The basal area per species at 
the time of measurement was computed based on the cir-
cumference of each living tree. We then computed the basal 
area five years earlier using the following information to 
reconstruct the stand: the five years radial growth of living 
trees, the trees that died between censuses, and the trees that 
recruited between censuses. We selected plots without har-
vesting or planting between censuses leading to 22 592 plots. 
For more details on the data and the computation of basal 
area, see Supplementary material Appendix 1.

Switzerland
The Swiss National Forest Inventory (LFI) comprises a  
network of permanent plots covering Switzerland on a grid 
of approximately 1.4  1.4 km, with two concentric plots 
of 200 m2 and 500 m2 respectively per grid cell (www.lfi.
ch, Brändli 2010). The network contains ca 5974 plots 
that have been measured three times, while ca 1600 plots 
among these have been measured four times (in a panel rota-
tion scheme since the third inventory period). The climate 
of the lowlands varies between sub-Mediterranean, oce-
anic, continental and is also strongly affected by elevation. 
For each measured tree, stem circumference, species, status 
(alive or dead), and radial growth over ca 10 years (varies 
between 9 and 12 years) were recorded. Radial growth was 
determined from calliper re-measurements taken at breast 
height. The basal area per species at the time of measure-
ment was computed based on the diameter of each living 
tree. We computed the basal area before and after the ca ten-
year time step between re-measurement, and we corrected 
for the deviation from the ten-year interval as we did for the 
Québec data. Data were extracted for the 31 most common 
trees in Switzerland (Brändli 2010).

Estimation of demographic parameters

For each plot (considered as a population) and species, we 
calculated the proportional change in summed basal area 
(‘density’) between two successive censuses and related it 
to climatic conditions (Fig. 1). We initially checked that 
this proportional change was negatively related to species’ 
density at the first census as expected if competition causes 
negative density dependence of basal area change. This was 
done using Pearson’s correlations that indeed showed consis-
tent and significantly negative relationships (Supplementary 
material Appendix 1, Fig. A2).

We fitted the Ricker model (Eq. 1) of population dynam-
ics (Ricker 1954) to the data:
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Analysing the relationship between density, 
demography and probability

We first analysed how demographic parameters are related 
to occurrence probability using Pearson’s correlation tests 
between r, K, N and occurrence probability. We corrected for 
multiple hypotheses testing using false discovery rate (i.e. the 
expected proportion of false discoveries amongst the rejected 
hypotheses).

Second, we built regression models to analyse the  
relationships between r, K, N and Pocc as a function of the 
study area and light-competition strategies. In addition, we 
also focused on the upper limit of the relationship between 
r, K, N, and Pocc. We built quantile regressions by first  
classifying occurrence probability into 10 regular bins. 
Then, for each species and for each bin, we extracted the 
75% quantile of r, K and N. This approach allowed us to 
have the same number of data points for each species and 
dataset. For both strategies, we tested for linear and sigmoid 
relationships between Pocc and the demographic param-
eters (r, K and N) and retained the best model using AICc.  
This analysis was done for each species independently and 
the results were summarised by light-competition strategy. 
We recorded the form of the relationship selected (linear vs 
sigmoid), the slope (decreasing vs increasing) and the R2 of 
the selected regression.

All calculations were carried out with R.3.0.1 using the 
stats and ggplot2 packages (Wickham 2009, R Development 
Core Team 2013).

Results

Demographic rates and occurrence probability

The estimation of r and K for each study area yielded  
demographic models with moderate goodness-of-fits and 
high variability between species (Supplementary material 
Appendix 1, Fig. A5). This suggests that changes in density 
were not easily modelled by the selected climate variables 
and intraspecific density-dependence (Supplementary mate-
rial Appendix 1, Table A2). This limitation of modelled 
demographic parameters has to be taken into account when 
interpreting the relationships between demographic param-
eters and occurrence probability. In addition, for some 
species, some plots had to be removed for the following 
analyses because positive density-dependence was observed, 
which violates the hypothesis underlying the Ricker model 
(Supplementary material Appendix 1, Table A2). In general, 
demographic models with low R2, especially for Québec and 
western USA, were associated with high uncertainty for both 
r and K (Supplementary material Appendix 1, Fig. A6). In 
comparison, SDMs had generally high predictive accuracy 
(Supplementary material Appendix 1, Fig. A4). r, K and 
N were weakly to moderately correlated to Pocc across the 
four study areas (Fig. 2). The relationship between r or K 
and Pocc was variable within and between study areas, with 
both strongly positive and strongly negative correlations for 
France (Fig. 2). N was the parameter for which the percent-
age of significant and positive correlations was the largest.

multiple measurements in Québec and Switzerland), 
we fitted the regressions as linear mixed-effects models 
including a random effect of block (Pinheiro and Bates 
2000). Plots for which density-dependence was estimated 
to be positive (b  0) were omitted from further analy-
ses since the Ricker model is not a plausible model for 
them (Supplementary material Appendix 1, Table A2 for  
the proportion of positive density-dependence for each 
species).

For each selected demographic model, we then extracted 
the goodness-of-fit (R2). For western USA, Québec and 
Switzerland, because mixed-effect models were used, we 
extracted the conditional R2, which corresponds to the 
goodness-of-fit estimated both fixed and random effects, 
respectively. R2 values were extracted using the MuMIn 
(Bartoń 2013) package in R (R Development Core Team 
2013). For France, goodness-of-fit was simply the R2 of the 
linear models.

To assess whether the strength of the relationships 
between the demographic parameters and the probability  
of occurrence was influenced by uncertainty in the estima-
tion of demographic parameters, we used non-parametric 
bootstrap resampling with 1000 bootstrap replicates. From 
1000 bootstrap replicates, we computed the coefficient of 
variation of the bootstrap parameter estimates (standard 
deviation divided by the mean).

Species distribution models

We used generalised linear models (GLM) with linear and 
quadratic effects of climatic variables to estimate occur-
rence probability for each species. Although GLMs are 
not necessarily the best performing models for SDMs 
(Elith et al. 2006), we chose them to avoid overfitting and 
to ensure comparability to the modelling procedure for 
demographic parameters. Because identification of a most 
parsimonious model was not the goal of the paper, we ran 
the GLMs on the full set of selected variables for each 
dataset (Supplementary material Appendix 1, Table A1).  
Models were evaluated by internal validation on the  
training dataset using the area under the curve (AUC, 
Swets 1988). In general, SDMs were relatively good at 
predicting current tree distribution in the four study areas. 
Only species with an AUC  0.7 were kept in the analyses 
(results for SDM and evaluations are in Supplementary 
material Appendix 1, Fig. A4, Table A2).

Light-competition strategy

We extracted information on species shade tolerance 
from (Niinemets and Valladares 2006) to test whether  
the relationship between occurrence probability and 
demographic performance was influenced by competi-
tion for light (Shugart 1984, Bugmann 2001). We used a  
classification algorithm (kmeans) to group species into 
three groups: shade intolerant, moderately shade toler-
ant and shade tolerant species (Supplementary material 
Appendix 1, Table A2, Fig. A3).



1160

r K N
54% 74% 30% 26% 42% 83% 39% 5% 25% 46% 24% 21%

–0.5

0.0

0.5

1.0

Qué
be

c

Fra
nc

e

Switz
er

lan
d

W
es

te
rn

 U
S

Qué
be

c

Fra
nc

e

Switz
er

lan
d

W
es

te
rn

 U
S

Qué
be

c

Fra
nc

e

Switz
er

lan
d

W
es

te
rn

 U
S

P
ea

rs
on

 c
or

re
la

tio
n 

w
ith

 P
oc

c

Figure 2. Pearson correlation between probability of occurrence 
(Pocc) and r, K and N for each study area. The percentage of signifi-
cant correlations (at p  0.05 controlled by false discovery rate) is 
indicated above each bar.

Influence of light-competition strategy

Multi-species regressions per study area and per light- 
competition strategy showed a general tendency for negative 
relationships between r and Pocc, for both standard and quan-
tile regression approaches and for all light competition strat-
egies (Fig. 3–4). The only exception was Québec for which 
positive relationships were generally detected. However, 
these relationships were based on negative r estimates. For 
both France and Switzerland, for which the relationships 
between r and Pocc were marked, the negative relationships 
tended to be steeper for shade intolerant species. K gener-
ally showed a relatively weak but positive relationship to Pocc, 
the exception being Québec with negative relationships for 
shade and moderately shade tolerant species (Fig. 3). When 
using 75% quantile regressions, K–Pocc relationships were 
also weak but generally positive, except for western USA 
where it was slightly negative for shade intolerant species 
but strongly positive for moderately shade tolerant (Fig. 4). 
The relationship with density was more consistent and posi-
tive for all regions and for both raw estimates (Fig. 3) and 
quantile estimates of demographic data (Fig. 4). Especially 
in France these positive relationships were strong.

The goodness-of-fit of the regression models between 
each demographic parameter and occurrence probability 
was relatively low (Fig. 5A), and much higher when con-
sidering quantile in comparison to standard regression 
approaches (Fig. 5B), although highly variable between  
species and within light-competition strategies (Fig. 5A–B). 
Interestingly, the adjusted R2 reached higher values for shade 
intolerant species with sigmoid relationships between the 
demographic parameter and Pocc (Fig. 5A–B). When consid-
ering quantile estimates of population properties, the number 
of significant results increased substantially, although a gen-
eral trend was not easily distinguishable between light com-

petition strategies or the functional form of the relationship. 
This ambiguity was most pronounced for K. The slope of the 
r–Pocc relationship tended to be negative for many species, 
especially for moderately shade tolerant species (Fig. 5B). 
However, when considering sigmoid relationships several 
species have positive relationships between r and Pocc. This 
was especially true for shade intolerant species (although the 
R2 were relatively low). The slope of the K–Pocc relationship 
was more variable between light-competition strategies and 
no clear trend was distinguishable. The slope of the N–Pocc 
relationship was generally positive irrespective of the light-
competition strategy.

The strengths of the above relationships were influenced by 
the precision of the demographic estimates (Supplementary 
material Appendix 1, Fig. A7). This was especially true for 
Québec and western USA for which low R2 between r/K 
and Pocc were always found for species with highly uncer-
tain parameter estimates (high coefficient of variation in the 
bootstrap estimates). For Québec, relationships between r/K 
and Pocc were significant for less than half species (14/24 for 
r, 11/24 for K, and 7/24 for N, results not shown).

Discussion

Our analysis is the first to evaluate extensively the relation-
ship between demographic performance and occurrence 
probability. Our study applied population demography 
approaches in a biogeographic context to test the common 
assumption of a positive relationship of r, K, and N with 
probability of occurrence. This assumption is at the corner-
stone of the application of species distribution models in 
conservation (Araújo and Williams 2000). Our results reveal 
a wide range of relationships varying from moderately strong 
to no relationship of r, K and N to Pocc, although some vari-
ability exists among regions and species. We also found these 
relationships to slightly vary with light competition strate-
gies (shade tolerant vs shade intolerant), both in strength 
and shape but this was not as strong as expected. The major-
ity of populations had positive r and K estimates (except 
populations in Québec for which parameter estimates were 
highly uncertain), which confirms the expectation that most 
populations occur within a species’ realized niche (Maguire 
1973). Beyond this, different population properties revealed 
different relationships with occurrence probability, with a 
trend toward negative relationships for r when considering 
linear relationships but both positive and negative when 
considering sigmoid relationships, weak to moderate posi-
tive trends for K, and positive relationships for N whatever 
the shape of the relationship considered.

We stress two major findings:
1) For a number of species, we found no clear relation-

ship of Pocc to r and K. This could have three explanations. 
First, the climatic variables used in our analyses may not 
adequately capture all processes that drive demography, such 
as disturbance or local microenvironments. Second, Pocc 
might not be very sensitive to variation in r and K within the 
range of conditions under which these species occur. While 
we confirmed the theoretical prediction that most popula-
tions occur within their niche (r  0 and K  0), variation 
of Pocc within the niche might be affected by factors such 
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Figure 3. Global relationship between occurrence probability (Pocc) and r, K and N with respect to species’ light-competition strategy and 
study area.
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Figure 5. R2 values of regression models between and r, K and N, and Pocc as a function of light-competition strategy. The slope (decreasing 
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et al. (2012). Using a hierarchical and nested approach, they 
showed that biotic interactions were the primary drivers 
of variation in abundance along environmental gradients, 
whereas the presence and absence of plant species were bet-
ter predicted by the abiotic environment and by dispersal 
(Boulangeat et al. 2012).

The main limitations of our analysis are both the  
complexity of estimating forest population dynamics and 
the substantial differences between study areas. Size struc-
ture is extremely important in forest ecosystems and com-
plicates the estimation of population dynamics (Easterling 
et al. 2000). To circumvent these complications, we fitted 
population models using summed basal area as a state vari-
able that implicitly represents size structure in even aged 
stands. Additionally, to appropriately model the relationship 
between estimated demographic parameters and occurrence 
probability, a large number of data points is required to  
estimate the lower end of the relationship between demo-
graphic rate and occurrence probability (negative or null 
r for very low probability of occurrence). Such conditions 
are unlikely to be found in the forest systems in our study 
after centuries of management. For instance, if we exclude 
Québec, estimated r almost never reached values close to 0. 
In reality, we may only capture positive growth rates where 
species have ‘viable’ populations and the positive or negative 
relationships only reflect differential effects of inter-specific 
competition and stochastic events.

Another limitation is the estimation of demographic 
parameters. We assumed that density-dependence and cli-
mate influence demography and we used a simple population 
model (Ricker population model, Ricker 1954) to estimate 
r and K. The resulting demographic models varied consider-
ably in their goodness-of-fit between species and study areas. 
SDMs, on the other hand, were of good quality across the 
study areas. The combination of relatively exact estimates of 
occurrence probability and relatively inaccurate estimates  
of demographic parameters likely contributed to the low 
number of significant relationships. This was mostly the 
case for Québec for which the quality of the demographic 
estimates is highly questionable and could explain the very 
low values (often negative) of r and K for those species. The 
bootstrap estimates for this region showed that there was 
a very high uncertainty for these parameters. The elevated 
variance in the parameter b might result in a bias estimate of 
K because of Jensen’s inequality. If only b is varying, then it 
should lead to a systematic underestimation of K, with the 
bias linearly proportion to the variance. Since a and b are 
covarying, the consequence of their joint variability on K is 
not straightforward to estimate (Gravel et al. 2011). The solu-
tion to the problem would be evaluate the parameters using 
a Markov chain Monte Carlo method and to compute the  
posterior distribution of K. Running this scheme for all  
datasets and all species is however far beyond the scope of  
the paper. The results from Quebec are the most likely 
affected by this problem because of the low quality of the 
fit. In this paper we only use the Ricker model for practi-
cal reasons since it has the convenient property that it can 
be fit with linear (mixed) models (which is not the case for 
e.g. the theta-logistic). Fitting alternative models would have 
required custom-coding of hierarchical non-linear models. 
We thus chose to stay with this simple demographic model, 

as the spatial arrangement of suitable habitat, competitive 
interactions, and dispersal (Holt and Keitt 2000). Third, for 
a number of species our demographic estimates may be too 
uncertain. In other words, the models do not fully capture 
the true demography of the populations. This may explain 
why we found weak relationships for species from Québec 
and some species from western USA.

2) r and K show qualitatively different relationships to  
Pocc. r tends to be negatively correlated with Pocc whereas K, 
in contrast, was mostly found to be constant or increasing 
with Pocc, independently of shade tolerance. The relation-
ship between r and K is determined by the intensity of 
intraspecific competition (parameter b in Eq. 3 and 4): the 
overall finding that r tended to decrease with Pocc whereas 
K was constant or increased therefore implies that intraspe-
cific competition is less intense in environments with high 
occupancy. The effect of interspecific competition could 
also explain this pattern. However, interspecific competition 
should simultaneously lower both r and K. The opposite 
direction between r and Pocc, and, K and Pocc can thus only 
explain our findings if there is a negative correlation between 
Nt and the presence/abundance of other species. As inter-
specific competition goes up, the density of other species 
goes down. Remarkably, r and K were both often negative 
for species for Québec. Because we removed cases with posi-
tive density-dependence, there is one way to have a negative 
carrying capacity with our calibration of the Ricker model: 
a negative intrinsic rate of increase). While this situation is 
possible in nature (e.g. if a species is outside of its niche), it 
most likely arose because a poor fit of the model to the data 
(Supplementary material Appendix 1, Fig. A6 and Fig. 7). 
Another non-exclusive reason is the occurrence of natural 
disturbances. While these are unlikely to generate a negative 
growth rate or carrying capacity (it would require a majority 
of the plots being disturbed), it could nonetheless generate 
a significant amount of noise. This is particularly true for 
the boreal forest of Quebec, where a severe outbreak of the 
spruce budworm affected the fir and spruce stands during 
the 1980–1995 period. This massive and synchronized dis-
turbance is a likely cause of the low fit to the model we find 
in this dataset. Logging might also interrupt the dynamics of 
the stand, but it should be minimal in this dataset since the 
plots are supposed to be protected.

These summary points corroborate, to some degree, the 
results from McGill (2012) who tested whether tree individu-
als grow best where the species is found to be most abundant. 
McGill found a negative relationship between ontogenetic 
growth rate and abundance for trees in eastern North America 
across 15 species. He argued that this result is not compatible 
with MacArthur’s (1958) vision of an exclusive niche, in which 
species should be most common at the optimum of their envi-
ronmental niche and should have distinct optima from one 
another. Yet, it is not clear whether the negative relationship 
between individual growth and abundance did not simply 
result from intraspecific density dependence.

The observed positive relationship between occurrence 
probability and N supports previous findings that occurrence 
probability can predict maximal abundance (VanDerWal 
et al. 2009). The fact that Pearson correlations and R2  
were relatively low when considering the full distribution of 
density (Fig. 3–4) also corroborates findings by Boulangeat 
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which is easily tractable. Future studies with a focus on a  
specific site and thus more detailed data could explore a 
wider range of demographic models.

Understanding the relationship between demographic 
parameters and occurrence probability is critical for evaluat-
ing the assumptions made by recent modelling approaches 
that aim to project species’ future distributions under  
climate change scenarios (Franklin 2010). Indeed, SDMs 
cannot directly model dispersal effects, local demography or 
inter-specific competition, which makes them unsuitable to 
simulate range dynamics. Reciprocally, projecting spatially 
explicit demographic models through time requires informa-
tion on local demography over a broad range of environmen-
tal conditions. In attempts to predict species range dynamics, 
SDM outputs have been used to scale spatially explicit  
meta-population models (Keith et al. 2008), stage-structured 
populations (Dullinger et al. 2012), or individual-based 
models (Zurell et al. 2012). These frameworks originate from 
the goals of projecting species’ distributions under changing 
environmental conditions and to account for the transient 
dynamics in these projections. Integrating demographic 
and occurrence data in a hierarchical statistical model is 
an emerging solution, yet still poses substantial conceptual 
and methodological challenges (Schurr et al. 2012). Our 
results caution against untested use of occurrence probabil-
ity estimates from SDM to infer demographic performance, 
because the form and the strength of the relationship may 
strongly differ between species and area. For example, several 
modelling attempts have scaled maximum carrying capacity 
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et al. 2012). Here we showed that the positive relationships 
between K and probability of occurrence are relatively weak 
(even for the upper quantiles), and the form of the relation-
ship seems species-specific. Hence, careful examination or 
validation of the relationship is a clear pre-requisite before 
using such scaling techniques in any biodiversity modelling 
approach.

Conclusion

We tested how variation in demographic quantities relates 
to variation in occurrence probability along environmen-
tal gradients. These relationships varied greatly in nature 
because of the interacting effects of habitat suitability, 
inter-specific competition and intra-specific density- 
dependence. Our study is the first to test these relationships 
between performance and occurrence probability, and from 
our analyses we cannot conclude that a strong relationship 
exists. Rather, we find that the hypothesis holds for some 
species groups in some circumstances while it does not in 
other groups. In this respect, complementary research is 
needed on other taxa and regions to determine why dif-
ferences in occurrence–demography relationships exist.  
This will help to better understand if and when occurrence 
is a suitable proxy for demography.    

Acknowledgments – The research leading to this paper had received 
funding from the European Research Council under the European 
Community’s Seven Framework Programme FP7/2007-2013 grant 
agreement no. 281422 (TEEMBIO). This study arose from two 



1166

Niinemets, Ü. and Valladares, F. 2006. Tolerance to shade, drought, 
and waterlogging of temperate Northern Hemisphere trees  
and shrubs. – Ecol. Monogr. 76: 521–547.

Pinheiro, J. C. and Bates, D. M. 2000. Mixed-effects models in S 
and S-Plus. – Springer-Verlag.

Pulliam, H. R. 2000. On the relationship between niche and  
distribution. – Ecol. Lett. 3: 349–361.

R Development Core Team (ed.) 2013. R: a language and environ-
ment for statistical computing. – R Foundation for Statistical 
Computing.

Ricker, W. E. 1954. Stock and recruitment. – J. Fish. Res. Board 
Canada 11: 559–623.

Schurr, F. M. et al. 2008. Plant fecundity and seed dispersal in 
spatially heterogeneous environments: models, mechanisms 
and estimation. – J. Ecol. 96: 628–641.

Schurr, F. M. et al. 2012. How to understand species’ niches and 
range dynamics: a demographic research agenda for biogeogra-
phy. – J. Biogeogr. doi: 10.1111/j.1365-2699.2012.02737.x.

Shugart, H. H. 1984. A theory of forest dynamics. The ecological 
implications of forest succession models. – Springer-Verlag.

Swets, K. A. 1988. Measuring the accuracy of diagnostic systems. 
– Science 240: 1285–1293.

Thuiller, W. et al. 2010. Variation in habitat suitability does  
not always relate to variation in species’ plant functional traits. 
– Biol. Lett. 6: 120–123.

VanDerWal, J. et al. 2009. Abundance and the environmental 
niche: environmental suitability estimated from niche models 
predicts the upper limit of local abundance. – Am. Nat. 174: 
282–291.

Wickham, H. 2009. ggplot2: elegant graphics for data analysis.  
– Springer.

Zurell, D. et al. 2012. Uncertainty in predictions of range  
dynamics: black grouse climbing the Swiss Alps. – Ecography 
35: 590–603.

Gabriel, J. R. et al. 2005. Paradoxes in the logistic equation? – Ecol. 
Modell. 185: 147–151.

Gravel, D. et al. 2011. Species coexistence in a variable world.  
– Ecol. Lett. 14: 828–839.

Guisan, A. and Thuiller, W. 2005. Predicting species distribution: 
offering more than simple habitat models. – Ecol. Lett. 8: 
993–1009.

Holt, R. D. 1997. On the relationship between range size and local 
abundance: back to basics. – Oikos 78: 183–190.

Holt, R. D. and Keitt, T. H. 2000. Alternative causes for range 
limits: a metapopulation approach. – Ecol. Lett. 3: 41–47.

Hutchinson, G. E. 1957. Concluding remarks. – Cold Spring  
Harbor Symp. Quant. Biol. 22: 145–159.

Keith, D. A. et al. 2008. Predicting extinction risks under climate 
change: coupling stochastic population models with dynamic 
bioclimatic habitat models. – Biol. Lett. 4: 560–563.

Kuno, E. 1991. Some strange properties of the logistic equation 
defined with r and K: inherent defects or artifacts? – Res. Pop. 
Ecol. 33: 33–39.

Loehle, C. 1998. Height growth rate tradeoffs determine northern 
and southern range limits for trees. – J. Biogeogr. 25:  
735–742.

MacArthur, R. H. 1958. Population ecology of some warblers of 
northeastern coniferous forests. – Ecology 39: 599–619.

Maguire, B. 1973. Niche response structure and analytical poten-
tials of its relationship to habitat. – Am. Nat. 107: 213–246.

McGill, B. J. 2012. Trees are rarely most abundant where they grow 
best. – J. Plant Ecol. 5: 46–51.

McGill, B. J. et al. 2006. Rebuilding community ecology from 
functional traits. – Trends Ecol. Evol. 21: 178–185.

MRNQ 2013. Ministère des Ressources Naturelles du Québec  
– Placettes-échantillons permanentes (2013). Direction  
des inventaires forestiers – Secteur des forêts, Ministère des 
Ressources Naturelles, p 231.

Supplementary material (Appendix ECOG-00836 at  
www.ecography.org/readers/appendix). Appendix 1. 


