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Abstract

The stock structure of Canada’s Northern cod, the largest of many depleted groundfish
stocks having multiple spawning areas, is rebuilding by redistribution and not solely by
local population growth. In 2007-2008, late winter acoustic surveys suggested initial
rebuilding in the southern-most part of the offshore range (Bonavista Corridor, NAFO
Divisions 3KL), likely including fish dispersing from the inshore. Thereafter,
acoustically-determined biomass increases averaged 30% per annum (to near 240 000 t in
2014). In contrast, formerly dominant stock areas farther north retained few fish, mostly
juveniles. In 2015, however, biomass in the northern stock range (NAFO Division 2J)
reached 65 000 t and mid-north Notre Dame Channel (3K) reached 101 000 t, with
Bonavista Corridor declining to 136 000 t. Biomass pooled over all surveyed regions
totaled 302 000 t, consistent with sustained 30% growth. Latitudinal gradients in cod size,
age distributions and individual growth existed both historically and recently, but not in
2015. The evidence suggests that the rapid increases of depopulated northern groups

resulted from redistribution from the south within a metapopulation.
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Introduction

It has long been known that many fish stocks have multiple spawning and aggregation
areas (Hjort 1914; McKenzie and Smith 1955; Templeman 1966; Brander 1994).
Spawning area occupation may change as a result of environmental changes or the
impacts of harvesting (Sundby and Nakken 2008; Dragesund et al. 2008; Opdal 2010). In
species that aggregate, changes in abundance typically do not occur uniformly over the
stock area as a result of density-dependent range expansion (e.g., MacCall 1990), but
perhaps of key importance, depleted stocks often become concentrated in fewer areas
(Atkinson et al. 1997; Ames 2004; Fox et al. 2008; Dragesund et al. 2008). Restoring
productivity in these depleted stocks may require repopulation of diminished spawning
sites and capacity, hence management is predicated on how rebuilding might occur, or

indeed if it is possible.

The Northern cod (Gadus morhua) off the northeast coast of Newfoundland and Labrador
(Northwest Atlantic Fisheries Organization (NAFO) Divisions 2J3KL) was historically
the largest of many depleted cod stocks having multiple spawning areas (e.g., Ames 2004;
Rose 2007; Fox et al. 2008). After almost two decades of depletion, recent increases in
the Northern cod have been evident, offering the opportunity to study how rebuilding
might occur (Rose and Rowe 2015). It was evident that increases were first evident in the
southern region, termed the Bonavista Corridor (overlaps NAFO Divisions 3KL
boundary), first in 2007 and then more substantially in 2008 (Mello and Rose 2008,
2009). This was the same area that held the last large concentrations of fish in the early

1990s (Rose 1993). By 2015, increases in biomass and age structure were also evident in
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the northern reaches of the stock in the Hawke Channel and outer portions of the Belle
Isle and Hamilton Banks (NAFO 2J) (Rose and Rowe 2015; DFO 2016; Kincaid and
Rose 2017). A key question posed by Rose and Rowe (2015) concerned the origin and
ontogeny of the fish that formed these increasing aggregations and their latent spawning
capacity, in particular those in the banks to the north (Templeman 1966). In essence were
these increases solely a result of local population growth or were redistributions

occurring?

How the Northern cod might rebuild, or indeed if it would, has been debated since its
collapse. It was argued early on that expansion and recolonization was possible within a
putative metapopulation in which subgroups had been depleted (Smedbol and
Wroblewski 2002; Smedbol et al. 2002). If the Northern cod comprised a metapopulation,
fostering growth in extant groups, particularly but not exclusively the Smith Sound group,
was of paramount importance (Anderson and Rose 2001; Rose 2003; Rose et al. 2011).
On the other hand, some genetic studies suggested that redistribution from the inshore
was unlikely, and that offshore rebuilding, if it occurred at all, was more likely to result
from local production of what were thought to be functionally distinct if near extirpated
groups (Ruzzante et al. 1996; Beacham et al. 2002; Lilly et al. 2005). Such reasoning
influenced management decisions to reopen inshore fisheries in the 1990s. More recently,
new evidence has suggested that redistribution from the inshore to offshore has taken
place. The Smith Sound cod comprised the largest known extant spawning biomass of the
Northern cod complex during 1995-2006 (Rose 2003), but dispersed thereafter

concurrent with a sudden and unexpected increase in the offshore biomass in the adjacent
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Bonavista Corridor (Rose et al. 2011; Rose and Rowe 2015; Cadigan 2016). Nonetheless,
it remained uncertain whether or not larger scale redistribution within the offshore could
occur, particularly to the north in the region around the Hawke Channel and surrounding
banks where formerly large components of the Northern cod overwintered and spawned
(May 1966; Templeman 1966; Lear 1984; Rose 2007). We hypothesized that the
observed abundance of adult fish in the northern regions (Rose and Rowe 2015) resulted
at least in part not from local stock growth but from redistribution within a putative
metapopulation (Smedbol and Wroblewski 2002; Rose et al. 2011). According to this
hypothesis, increases in the north resulted from redistribution of the increasing numbers
of cod present in the southern range of the stock since 2007 (Mello and Rose 2009; Rose

and Rowe 2015; DFO 2016, 2017).

Regaining a broad northern range distribution is key to recovery of this once great stock
and hence to management. The importance of northern spawning to production and
recruitment has been postulated for many years, as a consequence of the strong southerly
flows of the Labrador Current over the continental shelf (Templeman 1966; deYoung and
Rose 1993; Davidson and deYoung 1995). An oceanographic drifter study showed that
northern spawning would enable transport of reproductive products southward and
shoreward to the shelf and northeast coast of Newfoundland (Pepin and Helbig 1997).
Empirical evidence that followed demonstrated the link between northern spawning in
and around the Hawke Channel and juvenile cod distribution and abundance to the south
across a wide region of the northeast Newfoundland Shelf and coastal areas (Anderson

and Rose 2001).
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The objectives of this paper are to test several demographic and life history expectations
of the redistribution hypothesis. Of key diagnostic importance, after a decade of stock
growth at a rate approaching 30% (Rose and Rowe 2015, DFO 2016), biomass in the
Bonavista Corridor should have declined, or at least slowed if redistribution had occurred.
In addition, the strong year classes known to be present in the Bonavista Corridor should
be prominent in the north. Also, the historically consistent differences in size at age and
individual growth rates between the southern and northern regions (Ruivo 1957; Fleming
1960; Templeman 1966; Sherwood et al. 2007; Morgan et al. 2017) should not be evident.
These traits were thought to be diagnostic of residency history and thus provide means to

either advance or reject the redistribution hypothesis.

Methods

Acoustic surveys of the Northern cod were conducted in March of 2007 and 2008 and
May of 2012 to 2015, using trawling to confirm biological characteristics of acoustic
backscatter, based on methods developed in spring surveys since 1990 (e.g., Rose 1993;
Rose and Rowe 2015). These surveys were designed to coincide with the time of
maximum cod aggregation, as cod (mostly age 4+ years) overwintered near the shelf
break (Kulka et al. 1995) then spawned in shallower waters on the shelf (Rose 1993).
Aggregations during this period are typically contracted laterally but expanded vertically,
at times to >100 m off bottom, and only rarely mixed with other species, making
delineation of cod on echograms relatively simple and detection rates high. These factors

make Northern cod highly amenable to acoustic-trawl survey methods at this time of year
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(Fig. 1 shows echograms of aggregations in 2008 — the first such large aggregations

encountered since 1992 and a sign that the potential for rebuilding was latent).

In March of 2007 and 2008, acoustic-trawl surveys were run along the outer part of the
northeast Newfoundland and Labrador Shelves from the North Cape of the Grand Bank
to the Hawke Channel and southern edge of the Hamilton Bank on the research vessel
CCGS Teleost (Mello and Rose 2008, 2009; Fig. 2a shows 2008, 2007 distributions were
similar but densities much lower). Coverage was based on research suggesting that in
winter cod would most likely be concentrated near the shelf break (Wroblewski et al.

1995, G.A. Rose unpublished data).

Based on these surveys and the notion of latent rebuilding after more than a decade of
little growth, more extensive acoustic-trawl systematic surveys were conducted in May of
2012-2015 from the RV Celtic Explorer, a research vessel that for acoustic surveys meets
internationally accepted noise standards of the International Council for the Exploration
of the Sea (Mitson 1995). These surveys attempted to span the continental shelf each 5 or
10 nautical miles from the shelf break at 500m depth to 200m on the banks, at 8-10 knots.
Cod were known to aggregate there prior to and during spawning and the onset of
onshore migration (e.g., Rose 1993, Wroblewski et al. 1995), nominally from 49° N to
54° N in NAFO Divisions 2J3KL. The presence of sea ice and limited ship-time restricted
shoreward and northward coverage to the Bonavista Corridor in 2012 and 2014 (Rose
and Rowe 2015), but more complete latitudinal coverage was achieved in 2013 and 2015

(Fig. 2 b,c). Survey coverage was thought adequate to interpolate densities (kg.m™) to
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biomass (t) in the southern region each year (coverage was similar in 2012 and 2014 as in
2013 and 2015 in the Bonavista Corridor at latitudes < 51°N), but in the northern regions
coverage was adequate to assess biomass only in 2015. All biomass estimates should be

regarded as minimal for the full stock.

Vessels were equipped with an EK60 echosounder (Kongsberg Simrad, Horton, Norway).

Surveys from the CCGS Teleost used only 38 kHz, whereas on the RV Celtic Explorer,

several frequencies were employed simultaneously (18, 38, and 120 kHz). In all cases,

calibrations were conducted prior to each survey with standard spheres (Foote et al. 1987).

The 38 kHz signal was used in these analyses as it has high signal to noise ratios at all
depth ranges surveyed and the acoustic properties and target strength of cod at this

frequency are well known (e.g. Rose and Porter 1996; Ermolchev 2009; Rose 2009).

Standard methods of acoustic integration of 38 kHz signals were employed (Simmonds
and MacLennan 2006) as in previous reports (e.g., Mello and Rose 2009; Rose and Rowe
2015). Initially, all data were edited for any extraneous noise and bottom removal, then
identified cod signal was integrated in 1 nautical mile bins employing Echoview V6
(Myriax, Hobart, Australia). All cod signal had been verified and sampled with fishing
sets (see below). The procedure is straightforward — to confirm the biological
characteristics of the acoustic backscatter (only cod is reported here) at the various
densities identified on the echograms at sea, the backscatter is “targeted”, with the sets

considered as random samples of that signal, and the catch considered to represent the
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assigned integrated echogram backscatter. Sets targeted at cod during these surveys near-
invariably caught almost 100% cod, as a consequence of their aggregative behaviour at
this time of year (e.g., Fig. 3). Only in 2008 did catch of other species approach 10%, in
the other years <5%, and of these, only redfish (Sebastes spp.) has a target strength
comparable to cod (Gauthier and Rose 2001). Overall, the contributions of other species
to the total cod-identified backscatter was thought to be minor, and a small correction
was made only in 2008. A linear seafloor dead-zone correction was made based on the
mean backscatter in the bottom 5 m (Ona and Mitson 1996) but seldom surpassed 15% of
the total integrated backscatter from cod from the RV Celtic Explorer and only slightly
higher from the CCGS Teleost. A length-based target strength model (TSqs = 20 log;o
length — 67.5, after Rose 2009), based on mean length of cod in the catch, was used to
convert backscatter to cod densities. Mean densities were determined by a bootstrapping
procedure (1000 times) with n equal to the number of non-overlapping survey measures
(1 nautical mile [ 1852 m] integrated densities). Confidence intervals (95%) were
determined by dropping the largest and smallest estimates (2.5% each). Biomass was
calculated based on densities, mean weight of sampled fish and the area surveyed. We
note that geostatistical measures based on an equivalent area block design were also
computed and gave similar but more precise results, but were not used in this work to

enable direct comparisons with earlier surveys in which these methods were not feasible.

The fishing sets used to support the acoustic surveys were of short duration (5 to 15

minutes) using a Campelen 1800 research trawl. Experimentation with this trawl using

methods developed by Walsh (1992) has shown a near-constant selectivity by length for

https://mc06.manuscriptcentral.com/cjfas-pubs
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cod > 30 cm (Steve Walsh, Department of Fisheries and Oceans, unpublished data). Two
sets made in 2012 used the larger GOV trawl whose length selectivity for cod is not
known but has been shown to be similar to that of commercial nets (Reid et al. 2012).
Any bias introduced by using GOV data is thought to small relative to the range of our
results. All sets reported here targeted cod at various densities and were standardized to
15-minute duration (Fig. 3). All fish caught were measured for total length and a sample
was selected for collection of otoliths and determinations of sex, maturity status, weights
and other measures. Age was estimated by microscopic examination of annuli of cracked
otoliths using standard procedures employed by experienced cod agers approved by the
Canadian Department of Fisheries and Oceans (DFO). Comparisons of the proportions of
length and age compositions were made using Wilcoxon paired rank sum tests on logit
transformations (Baum 2008). Von Bertalanffy models and parameters were estimated
using individual measures of age and length for fish from each region during 2015 and
also for fish sampled from the same regions from 1996 to 2014. Computational and
statistical analyses of both acoustic and catch data employed Systat (San Jose, USA), and
R (R Core Team 2014). All graphics were done in Grapher and Surfer software (Golden

Software, Colorado, USA).

Results

Distribution
In March of 2008, for the first time since 1992, dense concentrations of cod were located
in the northern part of the Bonavista Corridor around 50°N and 50°W near the shelf edge

(Figs. 1, 2a and 4a). This distribution was similar to that encountered in March of 2007

10
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(not shown) but densities (kg.m™) were much higher in 2008. Much lower densities were
found farther north along the shelf edge in both years. Although coverage was highly
restricted during these years, few cod were located anywhere else or in the comings and

goings of the survey vessel from the surveyed area.

By May 2013, the distribution and relative densities of cod had increased substantially in
the Bonavista Corridor and also, but to a lesser extent, farther north in the Notre Dame
and Hawke Channels (Figs. 2b and 4b). Fish were located primarily on the edges of the

major banks that extend to the deeper waters of the channels.

In May 2015, distributions and relative densities had increased substantially in the Notre
Dame Channel and in the Hawke Channel-Hamilton Bank and Belle Isle Bank region, but

had declined in the Bonavista Corridor (Figs. 2¢ and 4c).

Biomass

The estimated biomass in the Bonavista Corridor grew from <20 000 t in 2007 to near
240 000 t in 2014 at a rate of approximately 30% per year (Fig. 5). If stock growth had
continued at the same rate without emigration then the biomass would have reached
approximately 310 000 t in 2015, but biomass declined sharply from 2014 to 2015 to 136
000 t (95% CI1 93 000-193 000 t) (Fig. 5). In the northern areas in 2015, biomass was
approximately 101 000 t (69 000-139 000 t) in the Notre Dame Channel and 65 000 t (31
000-106 000 t) in the Hawke Channel-Hamilton Bank and Belle Isle Bank region, which

far exceeded expectations based on the observations made in 2008 and 2013 (no

11
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comparable biomass estimates can be made for those years as a result of diminished
coverage). Of key importance, the total surveyed biomass over the range of the stock in
2015 was approximately 302 000 t (193 000-438 000 t), similar to that expected if growth

rates in the Bonavista Corridor had been sustained.

Size and Growth

In 2008, larger cod (> 60 cm) were much more common in the Bonavista Corridor than
they were farther north (Fig. 6 a,b,c). Nonetheless, length distributions did not differ
among groups (Wilcoxon paired rank sum tests, Ps > 0.05), although the Bonavista
Corridor and Hawke Channel-Hamilton Bank and Belle Isle Bank groups differed at the
10% level (P=0.09). By 2013 there had been a slight shift towards larger fish farther
north but the larger fish remained concentrated around 50°N in the Bonavista Corridor
(Fig. 6 d,e,f). Length distributions in 2013 differed between the Bonavista Corridor and
Hawke Channel-Hamilton and Belle Isle Banks regions (P < 0.05), but not between
Bonavista Corridor and the Notre Dame Channel. In 2015, however, larger cod were
numerous in all regions and the size distributions among these groups did not differ (Ps >

0.05; Fig. 6 g,h,i).

In the years between the late 1990s and 2014, the von Bertalanfty growth parameters
(Table 1) indicate larger size at age of cod in the Bonavista Corridor, especially after age
5, compared to those from Hawke Channel-Hamilton Bank and Belle Isle Bank regions
(Fig. 7). As a result, cod aged 9 years, the oldest located in the northern region during

those years, were approximately 7 cm shorter than those in the Bonavista Corridor (Fig.

12
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7). In the Bonavista Corridor, parameters from cod sampled in 2015 did not differ from
those sampled in the earlier years (Table 1, P>0.05). For the Hawke Channel-Hamilton
Bank and Belle Isle Bank region, however, both parameters differed significantly from
those measured in the earlier years (P<0.05) and became similar to those in the Bonavista
Corridor (P>0.05, Table 1). In 2015, cod of all ages were indistinguishable by size at age
in the north and south of the stock range (Fig. 7). The Notre Dame Channel size at age
data in 2015 were not significantly different from those from the other regions or years
(Table 1), and were in the middle of the Von Bertalanffy curves (Fig. 7), but there is
greater uncertainty about that model fit as the sample size was relatively low, with fewer
larger fish, compared to the other groups. No data from the earlier period for this region

were available for comparison.

Age classes

The progression of the relative abundance of age classes present in the Bonavista
Corridor was roughly consistent during 2012-2015, with the 2004 and 2002 year-classes,
8 and 10 years old in 2012, relatively strong (Fig. 8 a,b,c,d). In 2014 and 2015, the 2011,
2009 and 2008 year-classes, ages 3, 5 and 6 years respectively in 2014, were relatively
strong in the Bonavista Corridor (Fig. 8 c,d), and also in the Hawke Channel-Hamilton
Bank and Belle Isle Bank region in 2015 (Fig. 8 f). In 2015, the 2011 and 2009 year-
classes in the Notre Dame Channel were also well represented, and, overall, the age
structures did not differ among the three regions (Wilcoxon paired rank sum tests, Ps >

0.05). It is noteworthy that the age structures in the Bonavista Corridor and Hawke

13
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Channel-Hamilton Bank and Belle Isle Bank regions were particularly well aligned (Figs.

8 d and f).

Instantaneous mortality rates (Z) estimated for cod of ages 5-12 years in the Bonavista
Corridor were low from 2012 to 2013 and 2013 to 2014 (Fig. 9). From 2014 to 2015,
however, the Z became extremely high relative to those in the earlier years. If fish in the
Notre Dame Channel were pooled with those in the Bonavista Corridor the Z was lower,
and if fish from all surveyed regions were pooled, the Z approached those measured in

the Bonavista Corridor in the earlier years (Fig. 9).

Discussion

Several lines of evidence support the hypothesis that the aggregations of cod located in
the Hawke Channel-Hamilton Bank and Belle Isle Bank region and Notre Dame Channel
in the spring of 2015 were an outcome of a northward redistribution from the Bonavista
Corridor, the region of initial rebuilding (Rose and Rowe 2015), and were not solely a

product of local production.

A compelling line of evidence comes from data on biomass distribution. After nearly a
decade of rapid annual growth at a rate approaching 30% (Rose and Rowe 2015; DFO
2016, 2017), biomass declined in the Bonavista Corridor in 2015, with concomitant
increases in both the Notre Dame Channel and Hawke Channel-Hamilton Bank and Belle
Isle Bank region. Moreover, a sum of the biomass in all three regions is consistent with a

continuance of the growth rates evident from 2007 to 2014 in the Bonavista Corridor. In

14
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addition, the increases in size and age of fish comprising the biomass in the north are
difficult to explain solely by local population growth. The older year-classes present in
relatively large numbers in 2015 were concentrated in the Bonavista Corridor in previous
years, and with particular reference to the Bonavista Corridor and Hawke Channel-
Hamilton Bank and Belle Isle Bank regions, the relative size and year-class distributions
were similar in 2015 after being disparate both historically and recently. Finally, low Zs
assessed from 2007 to 2014 in the Bonavista Corridor are consistent with those from the
DFO fall survey data (DFO 2016), but the highly negative Z between 2014 and 2015
suggests emigration and not mortality. The fishery likely had little influence on this high
Z as reported landings in 2014 and 2015 were less than 5 000 t excluding the recreational
fishery. Even if these reported landings are underestimates the fishery is highly unlikely
to have been responsible for the >100 000 t decline in the Bonavista Corridor biomass

estimate that occurred between 2014 and 2015.

Evidence from growth rates also supports the redistribution hypothesis. The lower growth
in cod from the northern regions that was evident historically (e.g., Ruivo 1957; Fleming
1960; Templeman 1966) and persisted from 1996-2003 (Sherwood et al. 2007) and as
recently as 2014 (Cadigan and Konrad 2016; Morgan et al. 2017; this paper), was not
evident in the spring of 2015. As far as we know this is the first time that such
equivalence in latitudinal growth rates has been reported within the Northern cod. Of
further interest, the von Bertalanffy parameters measured in the Bonavista Corridor are
comparable to those reported by Misra (1980) for Newfoundland cod captured in 1940

and 1968 which had similar values (Li,s = 112.5 and K=0.124) and resultant lengths at

15
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age (e.g., approximately 70 cm at age 8). Although Misra (1980) does not report the
location of his samples other than they were provided by the Newfoundland Biological
Station, they almost certainly did not come from the northern region as little research was

undertaken there in those years.

We submit that none of the present results on their own would provide conclusive
evidence of redistribution, although all support that hypothesis. Nonetheless, the weight
of the evidence suggests that the relatively large aggregations present in the Notre Dame
Channel and in the Hawke Channel-Hamilton Bank and Belle Isle Bank region were not
simply a product of local population growth but included large numbers of fish

redistributed from the southern part of the stock range in the Bonavista Corridor.

Redistribution had taken place by 2015, but a more precise determination of timing
remains difficult to achieve. Some speculation may be warranted until further data on
distribution and coming recruitment is available. It is pertinent that some areas around the
Hawke Channel that were highly populated with large cod in 2015 were surveyed in 2013
(and 2008), and showed only low densities of mostly small and immature fish mixed with
relatively few adults (Mello and Rose 2009; Rose and Rowe 2015). Data from the DFO
fall trawl survey are generally consistent with this interpretation, but suggest some
increase in juveniles by 2012-2013, based on very low ratios of biomass to abundance
(data in DFO 2016, 2017). These modest increases in juveniles could have resulted from
spawning of local fish. During and after the collapse of the Northern cod in the early

1990s, with the stock at its lowest abundance, a small remnant group of spawning fish,

16
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peaking at approximately 12 000 t, remained in the Hawke Channel in the mid-1990s
(Anderson and Rose 2001). Although adult abundance from then until 2015 is unknown,
data from the DFO fall survey suggests it was low during this period (Brattey et al. 2010;
DFO 2016), which is consistent with the 2008 and 2013 spring results. Nonetheless, it is
not impossible that a low spawning biomass could have produced the modest increases in
recruitment evident until 2014. The substantial increases of small fish beginning in the
fall of 2014 are more difficult to reconcile with local production (DFO 2016, 2017). It
seems more likely, although speculative, that this increase represented recruits from a
vanguard of redistribution during 2012-2013 leading to a major shift occurring between

2014 and 2015.

Another question related to timing concerns the underlying cause of the redistribution.
What triggered it? One explanation invokes a density-dependent argument, that the
Bonavista Corridor density exceeded some threshold that led to expansion to relatively
unoccupied former ranges to the north. Nonetheless, in 1990, the Bonavista Corridor held
double the biomass assessed in 2014 (Rose 1993), but the early 1990s were very cold
years and the cod were hyperaggregated there (Rose and Kulka 1999), so the comparison
may be suspect. Another argument is that warming ocean conditions made northward
movement more likely, as has occurred in the Barents Sea (e.g., Renaud et al. 2012). A
third is that increases in feeding, especially of capelin (Mallotus villosus) led fish
northward. We cannot distinguish among these hypotheses with present data, and it is

likely that all may be involved.
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How and when, if not why a fish stock may rebuild is critical to modelling stock
abundance trends and especially important for a “stock complex” or metapopulation (e.g.,
Cadigan 2016). The Bonavista Corridor became the core offshore area for the Northern
cod during the collapse in the early 1990s and remained so for over a decade (e.g., Rose
1993; Rose and Rowe 2015; DFO 2016). Nonetheless, from 1995 until 2008, the major
extant over-wintering and spawning group was located not offshore, but inshore in Smith
Sound, adjacent to the Bonavista Corridor, peaking at 26 000 t during the early 2000s
(Rose 2003). There is little indication from history that such a distribution of Northern
cod had occurred previously (Rose 2007; Rose et al. 2011). After 2006, the Smith Sound
aggregation dispersed and no longer overwintered there in large numbers, while at the
same time, the cod in the Bonavista Corridor increased (Rose et al. 2011). Stock models
for the offshore improved markedly under an assumption that the Smith Sound cod had
dispersed to join the offshore stock (Cadigan 2016). Although confirmation through
tagging that migration from the Bonavista Corridor to the inshore did not occur until
2008 (Brattey 2013), recent work using otolith microchemistry has indicated that during
the 1990s the Smith Sound and Bonavista Corridor groups were essentially the same fish
(Neville et al. in press). It seems evident that after 2007 and until 2014 growth in the
offshore abundance occurred primarily within the Bonavista Corridor, with the formerly
abundant northern groups remaining depauperate (this paper; DFO 2016). By 2014,
however, an increasing number of small cod, presumably comprised of age 1 and 2
juveniles, were reported as far north as the Hamilton Bank by the DFO fall trawl survey
(data in DFO 2017). In the spring of 2015, major aggregations of adult fish were located

in the Notre Dame Channel and Hawke Channel-Hamilton Bank and Belle Isle Bank
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regions (this paper; Rose and Rowe 2015; Kincaid and Rose 2017). Our hypothesis to
explain this evidence is redistribution within a metapopulation, first from the southern
inshore to the adjacent offshore, and then to the northern regions — basically a reversal of

what occurred in the early 1990s.

Recognition of the Northern cod stock “complex” was made decades ago (e.g.,
Templeman 1966; Lear 1984; Taggart et al. 1994), but the independence and relative
importance of its components has remained controversial. Northern components likely
sustained the stock historically (May 1966; Rose 2007), but the southern components,
both inshore and offshore, have maintained the stock since the decline in the early 1990s,
despite evidence of some juveniles from northern spawning in the late 1990s (Anderson
and Rose 2001). It is doubtful, however, if the southern components could ever produce
the stock productivity once evident (Rose et al. 2000). deYoung and Rose (1993)
predicted that the southern spawning observed in the early 1990s, even from 450 000 t of
spawners (Rose 1993), would result in poor recruitment as a consequence of
unfavourable drift of eggs and larvae (Davidson and deYoung 1995; Pepin and Helbig
1997) - this has been borne out (data in DFO 2017). As late as 2012, with the dramatic
increase in spawning biomass in the Bonavista Corridor but little evidence of adults
farther north, recruitment has been low. Restoration of production in this stock will

almost certainly depend on the rebuilding of northern spawning components.

If the approximate timing of the range expansion and latent northern spawning increase is

correct, in that major increases occurred between 2014 and 2015, then an expectation is
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that recruitment from 2015 could potentially be higher than in the years since the
northern distribution collapsed in the early 1990s. The increase in abundance in NAFO
Division 2J in the DFO fall survey in 2016 (the highest since the decline in the early
1990s) combined with the low mass reported for these fish, tends to support this
contention (data in DFO 2017). The potential for greater recruitment with spawning

biomass rebuilding in the north awaits verification from further data.

We believe that the present findings have application not only to the Northern cod but to
other depleted stocks of cod and other species. Examples are the cod stocks off the south
coast of Newfoundland (NAFO 3Ps; Lawson and Rose 2000), the Nova Scotia Banks
(McKenzie and Smith 1955) and the Gulf of Maine (Ames 2004), all of which have
multiple potential if not realized spawning areas. Although the Northeast Arctic cod is
thought to have two main spawning areas (Sundby and Nakken 2008), the map of
spawning sites in Hjort (1914) suggests that historically there were many such areas.
Some sites might have been exclusively occupied by the coastal stock, although at
Lofoten, the main spawning area, both the Northeast Arctic and coastal stock spawn, and
perhaps historically that was the case elsewhere (e.g., Nordeide 1998). Pelagic species
also may depend on multiple spawning sites. The Norwegian spring spawning herring
rebuilt from near decimation and spawning concentration in a limited coastal area of
Norway to a widespread and multiple spawning site stock as it had been historically
(Dragesund et al. 2008). Presumably this occurred by redistribution. Within the Northern
cod ecosystem, the key forage species is capelin, whose distribution collapsed markedly

and suddenly in the early 1990s (Frank et al. 1996), and in so doing almost certainly lost
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many of its vast number of coastal spawning sites. The lack of rebuilding in this stock
may be related to a depauperate spawning distribution, especially in the north. Recent
increases, albeit modest (DFO 2015), could be related to repopulation of abandoned
spawning sites. If this is true, a sequential feedback mechanism is likely involved, in
which core groups increase, enabling range expansion, which increases spawning
potential and recruitment, which enables further range expansion. Unfortunately, there
are no data that we know of available to test this notion. No matter the mechanism,
increases in capelin were correlated with increased biomass and condition in the Northern
cod from 2008-2014 (Rose and Rowe 2015), and the potential for post-2015 declines in
this key prey is likely to stall productivity, which should be reflected in management of

this rebuilding cod stock (Rowe and Rose 2017).

Our conclusion that the rebuilding mechanism of Northern cod is range expansion to
repopulate former spawning sites, that it is not limited to local rebuilding, is critical to the
management of this cod stock, and likely to others that may form metapopulations such
as in the North Sea (e.g., Wright et al. 2006). It is essential that the unity of Northern cod
over its entire range be recognized, both inshore and offshore. Recognition includes the
importance of the genetic and behavioral diversity that exists among spawning
components, no matter their location or relative size (Wroblewski et al. 2005), and the
likelihood of temporal discontinuities in their production (e.g., Schindler et al. 2010).
Past notions that these areas may be functionally separate (e.g., Hutchings 1996; Lilly et
al. 2005) and hence might be managed and harvested independently, are not supported.

Furthermore, apart from small and isolated coastal groups such as in Gilbert Bay
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Labrador (Hu and Wroblewski 2009), the inshore regions of the Northern cod should be
included under a unified management plan. This recognizes the dominance of the diverse
offshore spawning groups in supporting the fishery and the long-known early summer
migration of cod to the inshore (e.g., Fleming 1960). The Northern cod stock apparently
can exhibit rapid and unexpected geographical shifts as abundance and environmental
conditions change. It is noteworthy that during the rapid decline in the early 1990s, cod
distributions shifted south from NAFO Division 2J to 3K and 3L (Atkinson et al. 1997,
Rose et al. 2000; Ruzzante et al. 2001) where they hyper-aggregated (Rose and Kulka
1999). As a consequence, large numbers were caught and catch rates remained high both

offshore and inshore prior to and during the total stock collapse (Rose and Kulka 1999).

Finally, and notwithstanding the importance of all spawning groups within the Northern
cod metapopulation, special consideration should be given to the northern spawning areas
that formerly supported the largest fisheries and are believed to be essential to full
productivity in this stock. Repopulation of these spawning areas is essential to any chance
of returning to historical levels of productivity, and protecting them once re-established is
essential to sustaining that production. Since the spawning distribution of the Northern
cod became apparent in the 1950s and 1960s (e.g., Fleming 1960; May 1966), northern
spawning has invariably coincided with relatively strong productivity, even after the
major stock decline that occurred in the early 1970s, but with southern distributions, as in
the 1990s, productivity has been invariably poor (DFO 2017). As stated by Rose et al.
(2011), spawning in the northern region of the stock, anchored by the Hamilton Bank, is

the “engine that drives the Northern cod”.
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In conclusion, the present findings support the hypothesis that the recent range expansion
of Northern cod has been the result of redistribution and not solely based on local
production. This finding supports the hypothesis that the Northern cod comprises a
metapopulation (Smedbol and Wroblewski 2002) and has critical implications for
management. Movement and migration within the range of the Northern cod has been
known for a long time. Over 50 years ago, May (1966) pointed out that the historically
large inshore and offshore fisheries were essentially fishing the same fish. The same
likely applies to fisheries prosecuted along the continental shelf from the Hamilton Bank,
and historically even farther north into NAFO Division 2H, to the northern Grand Bank
(Wroblewski et al. 1995; Cecil Bannister, former trawler captain, personal
communication). The present work takes this a step further in that offshore redistribution
may occur among the main spawning regions, at present to the north, the opposite of
what occurred in the early 1990s (e.g., Atkinson et al. 1997). For management, we stress
that far from meaning that it does not matter where the fishery is prosecuted, it perhaps
matters more, as sustaining inter-connected spawning components could be vital to future
production. It follows that a stock assessment model that can deal with this dynamic
spatial structure will be needed to fully account for the productivity and management of
this stock. Further elucidation of the spatial dynamics, redistributions and migrations
within the Northern cod stock awaits additional data from ongoing studies utilizing

otolith microchemistry, genetics and data storage tagging.
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Fig. 1. Echograms of cod in March 2008 in the Bonavista Corridor, northeast Newfoundland
Shelf (EK60, 38 kHz, threshold -75 dB) from CGGS Teleost. Seafloor is dark red, one dropped
ping shows in the high column in the bottom panel. Horizontal lines are 50 m from surface,
approximately 175 m from bottom shown. Top panel spans approximately 2500 m, bottom panel
approximately 4000 m. Densities in these aggregations scaled by the target strength model in

Rose (2009) exceeded 0.1 fish.m® and areal biomass of 5 kg.m?. Catch was virtually 100% cod.
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Fig. 2. Cod density (kg.m™) in a) March of 2008 and May of b) 2013 and ¢) 2105 and

bathymetry of the northeast Newfoundland and Labrador Shelf and Banks, based on kriging of

densities. Black dots represent sampling transects.
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Fig. 3. Catch mass of species caught in trawl sets targeted at cod in March 2008 (a) and May
2013 (b) and 2015 (c). Logl0 scale used to show minor components of catch. Species are
Atlantic cod (Gadus morhua), redfish (Sebastes spp.), Atlantic herring (Clupea harengus), Arctic
cod (Boreogadus saida), capelin (Mallotus villosus), Myctophids, and shrimp (primarily

Pandalus borealis).
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Fig. 4. Relative latitudinal distributions of northern cod during late winter early spring in 2008,
2013 and 2015. Data normalized to counter bias from inter-annual variation in sampling

intensity.
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Fig. 5. Biomass of cod in the Bonavista Corridor from 2007 to 2015 with 95% Cls (solid circles).
Power curve represents best fit from 2007-2014, projected to 2015. The total biomass measured

in 2015 is shown with a crossed circle.
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Fig. 6. Length frequency percentages from catches of cod in 2008, 2013, and 2015 in the

Bonavista Corridor, Notre Dame and Hawke Channel-Hamilton and Belle Isle Bank regions.
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Fig. 7. Length at age of northern cod from Von Bertalanffy models: Bonavista Corridor 1998-
2014 and 2015 (heavy solid lines), Hawke Channel-Hamilton Bank region 1996-2008 and 2015
(dashed lines) and Notre Dame Channel 2015 (dotted line). Lighter lines are from the earlier

periods, darker lines from 2015.
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from 2012 to 2015 and in the Notre Dame Channel (NDC) and Hawke Channel-Hamilton and
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Belle Isle Bank regions (HC) in 2015.
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Fig. 9. Mean instantaneous mortality rates (Z) of cod aged 5-12 in the Bonavista Corridor from

2012 to 2015 (eg. 2013 indicates Z from 2012 to 2013). BCNDC and Total are for 2015.
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Table 1. Von Bertalanffy parameters estimated from individual length and age data for

cod from 1998-2014 and in 2015 from the Bonavista Corridor (BC) and 1996-2013 and

2015 from the Hawke Channel-Hamilton and Belle Isle Bank regions (HC) and for the

Notre Dame Channel in 2015. Superscripts indicate overlapping CIs (95%).

YEAR- Linr (95% CI) K (95% CI) Ao N
REGION

1998-2014 BC | 112.2(110.2--114.2)" 0.117 (0.113--0.121)*  0.009(0.008-0.010)* 10398
2015 BC 113.8 (109.7--117.9) 0.130 (0.120--0.140)*"  0.468(0.348--0.587) 1284
1996-2013 HC | 98.5 (88.5--108.6)" 0.128 (0.107--0.149)°  -0.098 (-0.230--0.034)" 5369
2015 HC 128.5 (117.4--139.6)" 0.114 (0.084--0.115)*  0.108(-0.082--0.299)" 674
2015 NDC 102.4(93.7--111.2)* 0.136(0.111--0.162)**  0.089(-0.082--0.260)" 370
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