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Abstract

The benefits of remote ischaemic conditioning (RIC) have been difficult to translate to humans, when considering traditional 

outcome measures, such as mortality and heart failure. This paper reviews the recent literature of the anti-inflammatory 

effects of RIC, with a particular focus on the innate immune response and cytokine inhibition. Given the current COVID-19 

pandemic, the inflammatory hypothesis of cardiac protection is an attractive target on which to re-purpose such novel thera-

pies. A PubMed/MEDLINE™ search was performed on July 13th 2020, for the key terms RIC, cytokines, the innate immune 

system and inflammation. Data suggest that RIC attenuates inflammation in animals by immune conditioning, cytokine 

inhibition, cell survival and the release of anti-inflammatory exosomes. It is proposed that RIC inhibits cytokine release 

via a reduction in nuclear factor kappa beta (NF-κB)-mediated NLRP3 inflammasome production. In vivo, RIC attenuates 

pro-inflammatory cytokine release in myocardial/cerebral infarction and LPS models of endotoxaemia. In the latter group, 

cytokine inhibition is associated with a profound survival benefit. Further clinical trials should establish whether the benefits 

of RIC in inflammation can be observed in humans. Moreover, we must consider whether uncomplicated MI and elective 

surgery are the most suitable clinical conditions in which to test this hypothesis.
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Background: challenges and new directions 
in RIC

Bringing the promise of remote ischaemic conditioning 

(RIC) to fruition in the clinical arena, remains a major chal-

lenge [23, 58]. RIC involves the sequential occlusion and 

reperfusion, of an arterial vessel distant to the target organ. 

It has demonstrated multi-organ benefit and cross-species 

cardiovascular protection in studies of ischaemia [13], and 

is highly effective in preventing damage in animal models 

of myocardial infarction [63]. However, large-scale trials in 

humans with ST-elevation myocardial infarction (STEMI) 

have proved inconclusive, with respect to traditional out-

come measures of myocardial infarct size, heart failure and 

survival [36, 48, 58]. RIC confers cardioprotection via a 

combination of humoral and neuronal pathways. These link 

the protective, “conditioning” response to ischaemia induced 

in the remote vascular bed, to the target tissue at risk of 

severe ischaemia and reperfusion (I/R) injury [7, 80]. Whilst 

many potential humoral factors have been proposed such as 

nitric oxide (NO) and nitrite, adenosine, stromal-derived fac-

tor 1α (SDF-1α) and glucagon-like peptide-1 (GLP-1); the 

underlying immunological pathways remain poorly defined 

[8, 27, 58, 80, 118].

The effectiveness of RIC in preventing myocardial I/R 

injury in humans has been assessed in numerous studies, 

most notably the CONDI-2/ERIC-PPCI trial, an interna-

tional, prospective, single-blind, randomised controlled 

outcome trial in 5,401 patients with ST-elevation myocar-

dial infarction (STEMI) undergoing primary percutaneous 

coronary intervention (PPCI), in which no improvement 

in clinical outcomes (cardiac death or hospitalisation for 

heart failure) were seen after 12 months [48]. Importantly, 

however, no harmful effects were seen. Many theories have 

sought to explain why the success of RIC in animal models 

has not been directly translatable to humans [58, 64]. One 

important observation, highlighted in two recent articles, 

is that the population studied in the CONDI-2/ERIC-PPCI 

trial may not have been significantly ‘high-risk’ enough, to 
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demonstrate an improvement in the primary outcome meas-

ures of infarct size and survival [11, 49, 65]. It is likely, 

however, that a plethora of factors make the human model of 

cardioprotection more complex than the animal population, 

who are often devoid of chronic endothelial dysfunction and 

medical co-morbidities [57, 65]. Moreover, the timing and 

size of an experimentally induced infarct in animals can be 

carefully predicted and is reproducible. The key to transla-

tion may lie in better understanding of the underlying mech-

anisms, and how these can be applied to human physiology 

in individual conditions.

We have embarked upon a new era of inflammation in 

cardioprotection. With the arrival of novel diseases such 

as COVID-19, and its associated cardiovascular complica-

tions, there is a need to re-fashion current cardioprotective 

strategies. Moreover, the pandemic has identified the need 

to further investigate the effects of infection on the heart in 

addition to ischaemia. Whilst many reviews have considered 

RIC as an infarct limiting intervention, the effects on the 

innate immune system are less well documented. We present 

this review of the anti-inflammatory effects of RIC, and the 

implications for future organ-protective therapies (Fig. 1).

The in�ammatory hypothesis of organ 
protection

The ‘Inflammatory Hypothesis’ is a term used to define the 

role of the innate immune system in I/R injury. Following 

reperfusion in myocardial infarction, acute inflammation 

contributes to endothelial dysfunction, the development of 

cardiac failure and poor left ventricular remodelling [99, 

109, 157]. Such damage persists well after the initial ischae-

mic insult has ended, and the infarct related territory has 

been reperfused [148]. Upon reperfusion, resident immune 

cells detect the presence of danger-associated molecular pro-

teins (DAMPs) and necrotic tissue in the area of infarction 

[157]. DAMPS combine with other ‘alarmin’ molecules, 

such as high mobility group box one protein (HMGB1), 

extracellular DNA and histones, to trigger the secretion of 

pro-inflammatory cytokines via the cell-mediated nuclear 

factor kappa beta (NF-κB) pathway (Fig. 2) [128, 157]. Mac-

rophages, which engage with DAMPs via toll-like receptors 

(e.g. TLR4), are also responsible for the synthesis of pro-

inflammatory molecules including cytokines and the NLRP3 

inflammasome (Fig. 2).

Following myocardial ischaemia, four varieties of pro-

grammed cell death are observed, including apoptosis, 

necrosis, necroptosis and pyroptosis [21, 61]. Apoptosis 

is triggered by death receptors (DR) and intracellular sig-

nals, and does not induce the release of cellular contents 

beyond the confines of the cell. It is largely mediated via 

caspase-8, 9 and Bc12. Both necroptosis and pyroptosis, 

enhance inflammation by facilitating the release of interleu-

kins such as IL-1β and IL-18. [61, 135]. Pyroptosis is a type 

of programmed cell death (PMD) which is closely related 

to activity of the NLRP3 inflammasome and NF-κβ. Here, 

activated caspase-1 facilitates the release of interleukins via 

the Gasdermin (GSDMD) membrane pore. Not only does 

inflammasome activation contribute to cytokine release and 

extent of inflammation, but also to infarct size, following 

myocardial ischaemia [29, 135]. The latter is, therefore, an 

attractive target for cardioprotection [1]. Whilst there are 

clear associations between RIC and anti-apoptotic path-

ways [122], it remains unclear whether remote condition-

ing can directly limit pyroptosis (and at which step). There 

is, however, evidence for bi-directional cross-talk between 

caspase-1 and caspase-8 (anti-apoptotic) suggesting that 

inhibition of apoptosis might also influence other forms of 

cell death [29].

The microvasculature has a central role in mediating 

inflammation during I/R, and endothelial cells are notori-

ously more resistant to hypoxia than other cell types [109, 

137]. They are, however, sensitive to the presence of reactive 

oxygen species (ROS) and the changes in NO metabolism 

that accompany an ischaemic challenge [4, 47, 125]. The 

coronary endothelial system has an important role in detect-

ing mechanical and flow-mediated changes post-infarct, in 

addition to mediating the vascular immune response. In the 

case of myocardial infarction, within the coronary arteries, 

exposed atherothrombotic plaque causes cells of the innate 

immune system to migrate to the inflamed vessel, prompting 

further cytokine release. Increased neutrophil recruitment to 

the area of vascular inflammation is mediated by cytokines, 

the complement cascade (including IL-8; C5) and directly 

via ROS [109, 125]. Polymorphonuclear neutrophils (PMNs) 

are attracted to the endothelium via selectins and proceed to 

adhere and transmigrate into the microvasculature by bind-

ing to integrins and ICAM adhesion molecules [115].

As the inflammatory hypothesis has evolved, immune-

modulating therapies have been extensively investigated in 

both myocardial and cerebral infarction, and have finally 

met with some recent success. The CANTOS trial dem-

onstrated that the IL-1β blocker, Canakinumab, was able 

to reduce the risk of future coronary and cerebral athero-

sclerotic events [120]. This benefit was, however, associ-

ated with a mild increase in fatal infection, which should 

not be disregarded. Nevertheless, the CANTOS trial was 

important in measuring outcomes of inflammation in car-

diac protection, and included measurements of cytokines 

involved in IL-6 signalling and C-reactive protein (CRP) 

[120]. Both biomarkers were deemed to be prognostic, 

with respect to the primary end-point of non-fatal ath-

erosclerotic events. This might suggest that cytokines are 

valuable biomarkers in predicting future adverse events 

in patients with myocardial infarction [120]. As further 
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justification to pursue cytokine inhibition in I/R, two 

recent clinical studies of STEMI patients have demon-

strated that IL-6 and IL-8 are associated with worsening 

clinical outcome [42, 129].

In the VCUART3 trial, the recombinant interleukin-1 

receptor antagonist, Anakinra reduced CRP levels at 14-days 

post STEMI, and significantly reduced mortality and re-

hospitalisation. Unlike CANTOS, there was no increase in 

severe infection reported following administration [2]. Simi-

larly, IL-1 inhibition was well tolerated when administered 

subcutaneously to patients with acute cerebral infarction, 

in the SCIL-STROKE trial. In this study, Anakinra signifi-

cantly lowered levels of IL-6 and plasma CRP (p < 0.001) 

[132], suggesting that it is a key mediator of the inflamma-

tory response in cerebral ischaemia [72]. Although experi-

mental results are promising in both myocardial and cerebral 

infarction, immune modulation is not currently used as rou-

tine in STEMI patients. Inhibition of individual cytokines 

must be carefully risk stratified, due to the close association 

between innate immune suppression and the development of 

humoral immunity [126].

Cytokines in myocardial infarction 
and infection

The pro-inflammatory cytokines released in response 

to myocardial infarction include IL-1α, IL-1β, IL-6, 

TNFα, IL-8, IL-18 and small chemokine molecules 

such as monocyte chemoattractant protein 1 (MCP-1). 

These cytokines are released by a mixture of damaged 

cardiomyocytes, macrophages and activated endothelium 

[109, 115]. The primary aim of cytokine release is to 

activate and attract immune cells to the area of inflam-

mation, to enable the removal of damaged products via 

phagocytosis [5]. In the infarcted heart, cytokine release 

is triggered by TLR4 signalling pathways, the activation 

of NF-κB in circulating macrophages and by reactive oxy-

gen species (ROS), which interact with IL-6. The result-

ant release of IL-1β further stimulates additional pro-

inflammatory molecules [17, 107]. Cytokine ‘cross-talk’ 

exists between immune cells and the activated endothe-

lium, which maintains the amplitude of the acute inflam-

matory response [133].

There are two distinct phases of inflammation follow-

ing myocardial infarction: an initial, pro-inflammatory 

phase in which damaged cells and debris are eliminated, 

and a second, anti-inflammatory reparative phase leading 

to wound healing and scar formation. Cytokines also have 

a key role in tissue repair. IL-6, (in a second window of 

cytokine release), IL-10, transforming growth factor beta 

(TGF-β) and a sub-population of T-lymphocytes known 

as ‘T Regulatory cells’ (Treg) have all been associated 

with supressing the pro-inflammatory response and steer-

ing the immune system towards repair and resolution fol-

lowing I/R [99, 107]. Macrophages expressing altered 

interleukin signals (such as IRAK-M) are able to down-

regulate other macrophages, contributing towards anti-

inflammatory ‘stop’ signals [107, 155]. For suitable heal-

ing to take place, the amplitude of the initial macrophage 

activation syndrome must not outweigh that of regulatory 

immune cells. In myocardial infarction, cytokine release 

Fig.1  RIC mediates inflamma-

tion in vivo by immune condi-

tioning and cytokine inhibition, 

anti-apoptotic pathways and the 

reduction of NLRP3 inflammas-

omes, (pyroptosis). Decreased 

oxygen tension adjusts cell 

metabolism and limits apop-

tosis. Shear stress induces 

flow-mediated dilatation, which 

enables the transfer of exosomes 

carrying anti-inflammatory, 

chemo-active compounds. 

RISK reperfusion injury salvage 

kinase, ERK extracellular signal 

related kinase, SAFE survivor 

activating factor enhancement, 

MTP mitochondrial transition 

pore, HIF-1α hypoxia inducible 

factor 1 alpha, NFκβ nuclear 

factor kappa beta
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predominantly occurs on the border of the infarct zone, 

but can also be present in non-ischaemic tissue [17].

The cardiovascular system is vulnerable to inflamma-

tory insult induced by infection and cytokine damage, 

including viral myocarditis, septic cardiomyopathy and 

recently the acute cardiovascular syndrome of COVID-

19 [40, 68, 86]. The latter encompasses thrombotic acute 

coronary syndromes, myocarditis and pulmonary emboli, 

amongst other complications of pre-existing cardiac dis-

ease [40]. The cytokine response to infection is similar in 

the acute phase to myocardial infarction, and is triggered 

by DAMPS and danger signals following pathogenic inva-

sion (stimulating IL-6, TNFα and IL-1β). In some indi-

viduals, following exposure to endotoxins or viral anti-

gens, the innate immune system becomes hyper-active 

and a ‘cytokine storm’ develops. Here, further cytokines 

are secreted (IL-17, IL-8, G-CSF, MCP-1, CCL1-3, IFN-

y) and re-circulated via the dysfunctional endothelium. 

The following present an in-depth review of cytokine 

response during infection [84, 112, 153]. This has been a 

topic of much importance in COVID-19 and culminates 

in pan-vascular and multi-organ damage [102].

Given that multiple pathologies affect the heart in this 

pandemic era, it is important to consider protective strate-

gies which will target the inflammation of both I/R and 

pathogenic invasion. Below we will consider the evidence 

for RIC as a cytokine mediator in both animal and human 

studies.

Animal studies of RIC and inflammation

Table.1 demonstrates the animal studies of RIC and cytokine 

release, performed within the last 5 years, following myocar-

dial infarction and reperfusion [9, 15, 33, 114, 136, 141, 152] 

Across several studies, RIC was associated with reduced 

levels of the pro-inflammatory cytokines, IL-1β, TNF-α and 

HMGB1 following reperfusion [114, 152]. Likewise, RIC 

applied 24h prior to myocardial I/R, appeared to increase 

levels of the protective cytokine IL-10 [15], which governs 

the amplitude of the cytokine response [34, 127]. In vivo, 

this increase in IL-10 was STAT5 mediated [15]. STAT5 is 

linked to the survivor activating factor enhancement pathway 

(SAFE) and operates downstream of JAK (Janus Kinase) in 

human myocardial injury [66]. Similarly, previous litera-

ture has discussed the protective effects of IL-10, limiting 

I/R injury via STAT3 [44, 79, 100]. In another study, RIC 

was associated with an increase in IL-6 (which the authors 

propose has reparative function within the infarcted myocar-

dium) via early growth response protein 1 (EGR-1), a mol-

ecule upstream of many apoptotic pathways [9]. In animal 

models of myocardial infarction, RIC combined with other 

therapies such as sevoflurane post-conditioning (anaesthesia 

following ischaemia and prior to onset of reperfusion) vagal 

nerve stimulation or atorvastatin (HMG-CoA reductase 

inhibitor), provided additive organ protection and reduced 

inflammation [33, 141, 152].

RIC has proven effective at attenuating pro-inflamma-

tory cytokine release in animal models of cerebral infarc-

tion, renal, pulmonary and hepatic reperfusion injury [31, 

70, 83, 145, 156]. In a population of aged rats undergoing 

middle cerebral artery occlusion (mCAO), RIC significantly 

reduced levels of IL-1, IL-6 and IFN-γ in both plasma 

and the brain, whilst reducing the expression of hypoxia 

inducible factor (HIF-1α). Although HIF-1α is linked to 

cardioprotection by stimulating pro-survival pathways, it 

can equally induce a shift towards anaerobic glycolysis in 

macrophages resulting in increased cytokine manufacture 

[19]. It is previously discussed that the role of HIF-1α in 

cardioprotection is not fully understood, although deficiency 

in mice appears to dampen a reduction in infarct size [59]. 

In a murine model of hepatic I/R injury, RIC significantly 

reduced levels of intrinsic liver enzymes, IL-6 and TNF-α 

[150]. Furthermore, this anti-inflammatory effect was medi-

ated by the HMGB1/TLR4/NF-κB pathway, an established 

mechanism of cytokine release [150]. Pro-inflammatory 

pathways involving NF-κB, including notch signalling [67, 

121] will be considered in greater detail below.

RIC reduces inflammatory cytokine levels and improves 

survival in rodent models of lipopolysaccharide (LPS) 

induced endotoxaemia [68, 74, 76]. In mice receiving three 

cycles of hind limb I/R (10 min ischaemia/10 min reperfu-

sion) prior to LPS exposure, there was a significant survival 

benefit from RIC (10% of the control group survived vs 60% 

of the intervention group; p < 0.001). In the same study, his-

tology revealed a reduction in the diffuse parenchymal pul-

monary inflammation associated with LPS-induced acute 

lung injury, and a reduction of cytokines in bronchoalveolar 

fluid (TNF-α, IL-1β and IL-6). It was further demonstrated 

that RIC mediates cytokine reduction via a downregulation 

of NF-κB and myeloperoxidase (MPO) pathways [76]. MPO 

is associated with increased neutrophil influx to areas of 

inflammation and, therefore, promotes the release of pro-

inflammatory cytokines from neutrophils, which are sentinel 

cells in the inflammatory response [78].

LPS induces a potent inflammatory state, and causes 

cytokines and alarmins (e.g. HMGB1, HSP70, histones) 

to be released in response to infection. Bacterial DAMPs/

LPS trigger NF-kB activity via TLR4, which potentiates 

further inflammasome and cytokine release (Fig. 2) [77]. In 

septic cardiomyopathy, the myocardial depressant cytokine 

HMBG1 is central to the stimulation of inflammation and 

upregulates the coagulation cascade [68, 94]. There is also 

evidence to suggest that the cytokines IL-1, TNF-α, and IL-6 

play a pivotal inflammatory role in endotoxaemia, and this 

has also been observed in COVID-19 hyper-inflammation 

[113]. IL-6 in particular, can target the vasculature to induce 
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vasodilatation and disruption of endothelial tight junctions, 

which results in capillary leak and circulatory collapse [138]. 

In view of the above, RIC may be a novel treatment modality 

with cytokine-modulating potential, without the associated 

side effects of immune-modulating pharmacotherapy.

Human studies of RIC and cytokine response

Contrary to the findings in animal models, the majority of 

recent randomised control clinical trials have been unable 

to demonstrate a clear effect of RIC on pro-inflammatory 

cytokine release (Table.2) [37, 39, 105, 106, 108, 149, 

158]. However, to date, cytokines have predominantly been 

measured in small studies only (less than 100 participants). 

Despite this, the largest two trials (n = 65, n = 90 partici-

pants) demonstrated cytokine attenuation in the treatment 

group undergoing RIC prior to off-pump CABG and colo-

rectal surgery, respectively [53, 140]. In the latter study, lev-

els of IL-1β and TNF-α were significantly reduced for up to 

3 days post-operatively (p < 0.01) in patients receiving RIC, 

compared with controls. Surgery was performed for a range 

of pathologies, including colorectal neoplasm [53]. Consid-

ering that RIC has conferred a profound survival benefit in 

animal models of intra-abdominal injury, it could be sug-

gested that the inflammatory benefits in humans might differ 

between clinical conditions [110].

Humoral pathways of in�ammation and cell 
survival

RISK, SAFE and HIF-1α

Many studies have demonstrated, that RIC reduces cardio 

myocyte cell death in I/R and other pathologies [31, 63, 

69, 73, 154]. The reperfusion injury salvage kinase (RISK) 

and survivor activating factor enhancement (SAFE) path-

ways, are fundamental in protecting the heart from I/R injury 

[44, 122]. The RISK pathway acts to prevent opening of 

the mitochondrial permeability transition pore (MTP), when 

activated before reperfusion [50]. There is a clear role for 

RIC and protein kinase C (PKC), which has cardioprotective 

actions in both ischaemia and reperfusion [63]. PKC regu-

lates the opening of the MTP by mediating  KATP depend-

ent channels and controlling calcium influx [51]. The RISK 

pathway is also activated by adenosine, bradykinin, and 

Fig. 2  Cytokine release in inflammation is mediated by DAMPS 

binding to TLR4/RAGE receptors on the cell membrane. Both path-

ways activate NF-κB and NLRP3 inflammasome production, result-

ing in secretion of pro-inflammatory cytokines [75, 150]. RAGE 

results in further production of HMGB1 [151]. NLRP3 inflamma-

some activation results in caspase mediated cell death [119]. Several 

studies haves demonstrated that RIC modulates NF-κB activity via 

in both ischaemia and endotoxaemia [74, 76, 92, 117, 130]. TLR4 

Toll-like receptor 4, DAMPS damage associated molecular patterns, 

HMGB1 high mobility group box  1, TNF-α tumour necrosis factor 

alpha, LPS lipopolysaccharide, RAGE Receptor for advanced glyca-

tion end-products, ERK extracellular signal related kinase, MAPK 

mitogen activated protein kinase, EGR-1 early growth response 1, 

TAK1 transforming factor-β-activated kinase 1, Iκβ inhibitor kappa 

beta kinase, NF-κβ nuclear factor kappa beta
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sphingosine which bind to receptors on the cell membrane 

[122]. This leads to upregulation of endothelial nitric oxide 

synthase (eNOS) and nitric oxide (NO) which induces vas-

cular vasodilatation in the heart and vasculature. Cross-talk 

exists between the RISK and SAFE pathways to augment 

cell survival, and this has been demonstrated across different 

species in studies of RIC and I/R [131].

The SAFE pathway (first described by Lecour in 2009) is 

an alternative pro-survival axis to RISK. SAFE was found to 

act on the MTP when ERK/MAPK (RISK) were inactivated 

and thus its independent actions were demonstrated [44, 

88]. SAFE describes the pathway initiated by the binding of 

TNF- α to the plasma membrane and the subsequent activa-

tion of JAK/STAT transcription factors [60]. In experimental 

studies of myocardial I/R, SAFE has upregulated STAT3, 

(likely via the Sphingosine Kinase 1 enzyme) [44, 79]. In 

human studies, RIC is associated with the upregulation of 

myocardial STAT5 [66]. STAT is able to activate NF-κB 

to influence the MTP and promote cell survival; however, 

NF-κB is itself pro-inflammatory, and coupled to cytokine 

secretion and pyroptosis/the NLRP3 inflammasome (Fig. 2). 

This presents somewhat of a conundrum in the treatment 

of inflammatory cardiac conditions. JAK/STAT can further 

evoke ‘notch’ signalling between local monocytes, which 

is directly linked to increased IL-6 manufacture and down-

regulation of the anti-inflammatory M2 macrophage/IL-10 

[67, 121]. As the SAFE pathway can activate JAK/STAT and 

NF-κB, it can also promote adverse cardiac remodelling and 

heart failure [44]. With this in mind, other humoral factors/

pathways must be triggered by RIC to account for a reduc-

tion in pro-inflammatory cytokines.

The molecule hypoxia inducible factor (HIF-1α) has 

been linked to pro-survival signalling in I/R [63]. During 

periods of reduced oxygen tension, HIF-1α mediates a shift 

in mitochondrial metabolism towards anaerobic glycolysis, 

which induces production of pyruvate dehydrogenase kinase 

1 (PDK1) and limits entry of acetyl-CoA into the TCA cycle. 

This acts to preserve cellular energy and limit apoptosis [19, 

90]. In differentiated macrophages, however, this metabolic 

change results in increased synthesis of cytokines such as 

IL-1β and IL-18 via the NF-κB pathway [19, 143]. This 

is somewhat paradoxical, as increased levels of HIF-1α 

have been associated with cardioprotection following RIC 

[59, 147]. It is possible that repeated stimulation of HIF-

1α causes uncoupling of cytokine synthesis and immune 

tolerance; as is the case in other TLR4-dependent pathways 

[6]. It is already established that persistently elevated lev-

els of HIF-1α can induce hypoxia tolerance [89]. Again, 

HIF-1α alone cannot explain the interaction between RIC 

and cytokine levels observed in animal studies [114, 152].

Stromal-derived factor (SDF-1α/CXCR4) has also been 

associated with HIF-1α and cardioprotection secondary 

to reduced apoptosis and upregulation of PI3K/ERK1/2 Ta
b
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(RISK). Exogenous SDF-1α protects human myocardium 

from I/R injury [98] and is released from endothelial cells 

during RIC [12, 27]. In a rodent model of spinal cord injury, 

infused SDF-1α reduced levels of IL-1β, IL-18, TNF-α, and 

NLRP3 inflammasome production, suggesting that it has 

anti-inflammatory actions [150].

NF-κβ and associated inflammatory pathways

NF-κβ is an important molecule and transcription factor, 

involved in all aspects of inflammation and tumour activ-

ity. In addition to stimulation of the NLRP3 inflammasome 

and pyroptosis (discussed extensively above) it has many 

anti-apoptotic actions, making upstream inhibition problem-

atic in inflammatory diseases [134, 146]. In response to this 

observation, strategies such as IL-1 inhibition and caspase-1 

inhibition have been proposed in the treatment of cardiac 

inflammation [1]. NF-κβ is coupled to other proteins such 

as Iκβ (inhibitor of kappa beta) which enable self-regulation. 

Well-known anti-inflammatory drugs such as glucocor-

ticoids e.g. dexamethasone can interact with inhibitors of 

NF-κβ, to reduce cytokines and the inflammatory response 

[146]. It is interesting then to note that RIC has also modi-

fied Iκβα proteins in a rodent model of acute lung injury, 

leading to reduced activity of NF-κβ and reduced TNF-α, 

IL-1β and IL-6 secretion [76].

Several other studies have proposed that RIC can suppress 

the TLR4/NF-κB/inflammasome axis and reduce cytokine 

secretion [74, 130]. Moreover, there are multiple pathways 

that are linked to NF-kB which are mediated by TLR recep-

tors, and HMGB1 [3, 121]. Activity of the JAK/STAT 

pathway has been coupled to RIC-mediated cytokine modi-

fication as described [15, 124]. The receptor of advanced 

glycosylation end-products receptor (RAGE) pathway is 

associated with inflammasome production and HMGB1, 

(Fig. 2). Activation of RAGE is pro-inflammatory, and this 

can also downregulate RISK [124]. In mice undergoing RIC 

following myocardial ischaemia (RICPost), a decrease in 

infarct size was associated with a decrease in cardiac RAGE 

expression and levels of HMGB1 [142]. This may indicate 

that (as yet unidentified) humoral factors stimulated by RIC, 

can inhibit RAGE. The evidence at present for this is limited 

and further research is required.

To summarise, further humoral intermediaries may exist 

to link the vascular phenomenon of RIC to the above inflam-

matory pathways, and the findings of pre-clinical studies 

cannot be explained by RISK/SAFE alone. It seems most 

feasible, that such circulating anti-inflammatory factors 

might originate from the local trigger vessel; however, it is 

also recognised that there is a role of regional and distant 

vasculature [123]. Identifying these intermediate compounds 

and their mechanisms, remains a priority; as targeting both 

pro-survival and anti-inflammatory pathways in synergy 

could result in maximum cardiac protection.

Micro and macrovascular humoral factors

Following myocardial I/R, an increased number of neutro-

phils in the resistance vessels contribute to local vasocon-

striction, microvascular obstruction and ‘no reflow’ [57]. 

Meanwhile, there is further immune cell influx (including 

mast cells), platelet activation and upregulation of the clot-

ting cascade via tissue factor and Von Willebrand’s factor 

[56, 101]. Cytokines induce disruption of endothelial tight 

junctions and this culminates in leakage from capillaries into 

the extracellular space and the concurrent presence of micro-

vessel haemorrhage and thrombi. Both no reflow and MVO 

post STEMI are considered prognostic, and this relationship 

is independent to infarct size [82]. It is, therefore, impor-

tant to investigate ways to target this phenomenon [57]. In 

a large clinical trial of 696 STEMI patients (LIPSIA CON-

DITIONING), neither RIC alone nor in combination with 

post-conditioning following PPCI, demonstrated any reduc-

tion in MVO following cardiac MRI. There was, however, a 

significant improvement in myocardial salvage index in the 

cohort who received RIC and post-conditioning in combina-

tion (p = 0.02) [32].

Despite these results in larger clinical trials, RIC has 

increased both macro and microvascular flow on ultrasound 

Doppler, in two studies [85, 95] and improved forearm blood 

flow (venous occlusion plethysmography) in healthy male 

volunteers [47]. Both RIC and NO donors such as glycerin 

trinitrate (GTN) improve endothelial-mediated dilatation and 

reduce vascular reperfusion injury. Given that GTN in com-

bination with RIC confers no additional endothelial protec-

tive benefit, it is hypothesised that conditioning utilises NO 

pathways to induce vasodilation and organ protection [47]. 

The vascular release of extracellular vesicles and exosomes in 

response to RIC is further considered below.

Does RIC mediate innate immune cell 
activity?

NETs and neutrophil recruitment

Neutrophils are a considerable driver of the inflammatory 

process, and are responsible for significant cytokine release 

and tissue damage [34, 111]. Activated neutrophils release 

neutrophil extracellular traps (NETs), which are structures 

containing DNA and histones, amongst other inflammatory 

molecules. Neutrophils are stimulated to release NETs fol-

lowing exposure to alarmins and defensins, and this is medi-

ated by neutrophil elastase (NE), myeloperoxidase (MPO) 

and activated platelets, which bind to cellular HMGB1 

receptors. NETs can induce host cell death in response 
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to immune invasion, in a slow apoptotic process called 

NETosis [10, 104, 111]. NETs can also cause inflamma-

tory obstruction within the microvasculature, contributing 

to MVO. NETosis is associated with worsening outcomes 

post STEMI [54].

The impact of RIC on neutrophils, adhesion molecules 

and enzymes such as MPO, has predominantly been inves-

tigated in animal models of I/R injury, endotoxemia and 

acute kidney injury [30, 69, 76]. In rats undergoing RIC by 

femoral artery occlusion, prior to 45 min of left renal ischae-

mia, RIC significantly reduced expression of ICAM-1 adhe-

sion molecules, in addition to pro-inflammatory cytokines 

(TNF-α, IL-1β) [69]. In humans with ulcerative colitis and 

moderate disease activity, however, RIC did not reduce neu-

trophil infiltration or other markers of inflammation such as 

CRP, following rectal biopsies [39]. Conversely, in a large 

randomised control trial (n = 206 participants) of patients 

undergoing ablation for atrial fibrillation, RIC significantly 

reduced neutrophil–lymphocyte ratio and levels of CRP up 

to 48 h post-operatively (p < 0.05) [71]. A recent review 

has recognised neutrophils as important targets in cardio-

protection [5], especially considering that these cells have 

the potential to polarise macrophages and enhance the acute 

inflammatory response.

Lymphocytes, monocytes and splenic response 
to RIC

In animals, RIC influences both circulating leucocytes and 

immune precursors in the spleen in models of cerebral 

ischaemia [14, 96]. In rats undergoing middle cerebral artery 

infarction, RIC was associated with increased splenic vol-

ume and lymphocytes, with reduced cytotoxic T cells and 

natural killer cells (NK) in cerebral tissue at day 3 [14]. 

These changes were negated when animals underwent sple-

nectomy, suggesting an underlining mechanism of splenic 

conditioning. Similarly, in a second study, RIC increased a 

colony of non-inflammatory monocytes  (CD43+/CD172a+), 

in addition to increasing circulating B lymphocytes [96]. 

This is interesting given that in infection and immunity, B 

lymphocytes are central to immune conditioning and ‘immu-

nological-memory’ [77]. Others have proposed that RIC uti-

lises a ‘splenic-vagal nerve’ axis of cardioprotection, given 

that the cardioprotective effects of RIC are abated in ani-

mals undergoing splenectomy and vagotomy. Splenectomy is 

associated with reduced amounts of STAT3 (SAFE pathway) 

but not all related humoral factors have been fully identified 

[62, 93]. It is proposed that the anti-inflammatory cytokine, 

IL-10 may be important in an RIC-mediated splenic axis of 

cardioprotection [62].

Platelets and the coagulation cascade

With respect to platelet function and the coagulation cas-

cade, animal models have demonstrated the fibrinolytic and 

anticoagulant benefits of RIC [97]. However, this benefit has 

not been observed in humans [41, 46, 52, 116]. Following 

the ERIC-PPCI/CONDI-2 trial, a subsequent sub-analysis of 

the study population was performed to look for fibrinolysis 

benefit, but no firm trends were observed, with the exception 

of a reduction in time to thrombosis at 48 h [41]. However, 

a recent study of patients with underlining coronary artery 

disease has demonstrated that whilst RIC cannot influence 

platelet aggregation alone, when combined with dual anti-

platelet therapy (DAPT) in vitro, there is significant de-acti-

vation of collagen-dependent, platelet glycoprotein integrin 

molecules [87]. Further studies showing clear fibrinolytic 

benefit post-RIC vs controls are, however, necessary to reaf-

firm this.

Extracellular vesicles (EVs) in in�ammation 
and immunity

It has long been proposed that the organ-protective effects 

of RIC can be attributed to the release of humoral factors by 

the ‘trigger vessel’, which reach the target tissue to reduce 

inflammation and cell death. Recently, endogenous nano-

particles known as exosomes have been thought to facilitate 

this transfer, perhaps aided by an improvement in vascular 

flow, secondary to the release of vasoactive compounds [28, 

35, 38, 139].

Exosomes represent the smallest size of extracellular 

vesicles (measuring 50–100 nm in diameter) and have a 

wide variety of functions in ischaemia and inflammation. 

Such nanoparticles can be derived from many types of cells 

including endothelium, haematopoietic cells and platelets, 

and their function is defined by the underlying pathology 

and cell of origin [22]. Exosomes carry chemokines and 

genetic material such as microRNA, which permits distant 

genetic transcription and cellular cross-talk. Such exosomes 

engage with target cells using a range of surface molecules 

expressed on their lipid bi-layer including tetraspanins, 

annexins, integrins and receptors of the major histocompat-

ibility complex (MHC) [18, 26, 55]. They are distinct from 

other small extracellular vesicles and apoptotic bodies as 

they are smaller and carry different contents; which can be 

both anti and pro-inflammatory, depending on their stimulus 

[22].

It is necessary to define which contents may be most 

implicated in the inflammation of I/R and other conditions 

(Table.3). Exosomes carrying microRNA-21 (miR-21) 

have been identified in two recent RIC studies [35, 110] 
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as limiting apoptosis and infarct size, respectively. In a 

rodent model of endotoxemia induced by LPS, mice under-

going RIC prior to caecal puncture were found to secrete 

organ-protective exosomes carrying miR-21, which medi-

ated HIF-1α and led to cytokine attenuation (reduced lev-

els of IL-6 and TNF-α) [110]. In addition to apoptosis and 

cytokine release, it has been demonstrated that endothelial-

derived exosomes can mediate angiogenesis (via VEGF 

and eNOS) in response to RIC [16], and, therefore, pro-

mote cytokines and endothelial growth factors. Again, this 

illustrates their breadth of function, in different pathological 

conditions.

Regarding the anti-inflammatory actions of exosomes, 

(reductions in apoptosis and cytokine release), many of these 

benefits were negated in a study of diabetic rats vs normo-

glycaemic animals [144]. This suggests that animals with 

underlining co-morbidities and endothelial dysfunction, are 

unable to generate effective vesicles. However, when receiv-

ing exosomes from non-diabetic rats they can be rescued 

and protection is conferred [25, 144]. The authors of the 

latter study, make the important observation, that although 

RIC appears to generate cardioprotective exosomes in vivo, 

similar benefits can also be derived from the exosomes of 

control animals in absence of pre-conditioning [144]. This is 

re-enforced by a recent clinical study of patients undergoing 

RIC prior to treatment for STEMI, where no significant dif-

ferences were found in the release of platelet-derived extra-

cellular vesicles or other leucocyte derived vesicles in the 

intervention group [45].

The study did, however, suggest that whilst there was 

no increase in cardioprotective vesicles, there was also no 

increase in pro-inflammatory EV’s. The trial was limited 

by an absence of inflammatory and traditional end points 

in cardioprotection, such as infarct size and CRP. It is 

also noted that larger extracellular vesicles, as opposed to 

exosomes, may also be more likely to carry pro-inflamma-

tory chemokines [22].

Does RIC reduce in�ammation? Summary

There was never a more appropriate time in this COVID-19 

era, to consider therapies which can treat the over-activity 

of the innate immune response and hyper-inflammation 

[112, 127]. Considering the above evidence, it is clear that 

RIC has anti-inflammatory benefits in vivo, across a wide 

range of different pathologies, at least in animal models. 

Perhaps the strongest evidence relates to the effects of RIC 

on pro-inflammatory cytokine release in endotoxaemia [68, 

74, 110]; however, this has also been observed in models 

of myocardial and cerebral infarction (Table.1). In animals, 

it is proposed that RIC mediates inflammation by cytokine 

inhibition, regulation of anti-apoptotic pathways and possi-

bly the reduction of NLRP3 inflammasome production and 

pyroptosis.

Most evidence from animal studies demonstrates that 

RIC is able to inhibit NF-κB related cytokine release, either 

by TLR4 receptor pathways, or other currently undefined 

mechanisms [134]. Further work is required to establish 

whether there is a clear link between RIC and other known 

mechanisms of cytokine release in inflammation, such as the 

RAGE pathway. It is recognised that, as a result of the nature 

of the NF-κB pathway, cell survival and cytokine release are 

closely related [99, 134] and, therefore, it can be difficult to 

establish if reduced cytokine concentrations are secondary 

to reduced cell death. Nevertheless, cytokine inhibition in 

cardioprotection remains a desirable goal, with prognostic 

value [4, 120].

Previous literature has discussed that an increase in the 

levels of HIF-1α in response to ischaemia, can stimulate 

affected tissue to maintain metabolic function upon further 

hypoxic insult [19]. As RIC has been shown to upregulate 

HIF-1α, it might, therefore, be suggested that this could 

induce hypoxic tolerance of both vascular endothelium and 

target tissue. Both HIF-1α and SDF-1 limit apoptosis follow-

ing RIC [27, 63]. Shear stress and mechanical stimulation of 

the trigger vessel, induce flow-mediated dilatation (via NO/

adenosine/COX), and stimulate the release of exosomes car-

rying chemo-active compounds to target tissue [38, 85, 95]. 

Exosomes can also carry pro-inflammatory compounds and 

chemokines in addition to cardioprotective substances, and 

are, therefore, ‘a double-edged sword’ in inflammation [45, 

55]. Despite this, the aforementioned studies investigating 

RIC and exosome release have reported protective effects 

(Table.3).

Although there is some evidence that RIC can modulate 

immune cell response in animal studies (e.g. neutrophil/

lymphocyte ratio) the authors concede that there is a lack 

of consistent clinical data. The role of immune cells in car-

dioprotection is an emerging and novel field on which to 

base further work, and the effects of RIC should continue 

to be investigated. Other potential immune targets such as 

fibroblasts, pericytes and mast cells have also been identified 

for further study [5]. Consistent with other aspects of RIC, 

it would be misleading to suggest that the anti-inflammatory 

effects have proven profound in humans, although there is 

a lack of large-scale focused RCT’s in patients with hyper-

inflammation. Moreover, a select few studies have offered 

some hope that under the right circumstances, clinical trans-

lation could be achieved [53, 140]. A further step in address-

ing this might be to consider whether we have measured 

inflammatory outcomes in the correct clinical setting to date.
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Future considerations: towards a higher risk 
patient cohort

Reflecting on clinical challenges to date, it is suggested 

that the impact of both baseline and peak inflammation in 

clinical trials of RIC has been underestimated. For example, 

individuals with chronic inflammatory disease and persistent 

low levels of inflammation at baseline, may already be resist-

ant to remote conditioning [39]. The exact reasons for this 

remain elusive, but may be related to persistent endothelial 

activation, chronic cytokine release and defective exosome/

humoral factor production, (as observed in diabetic animals) 

[25, 144]. With respect to the STEMI patients of CONDI-2/

ERIC-PPCI, it is possible that the outcomes do not repre-

sent a failure of RIC to show significant benefit, but instead 

a success of modern primary percutaneous cardiovascular 

intervention (PPCI) in this cohort [11, 49]. I.e. it is not clear 

whether the ‘inflammatory peak’ following successful PCI, 

was significant enough to demonstrate an improvement in 

the primary outcome measures of the trial (cardiac death/ 

hospitalisation at 12 months) [48].

As proposed by several authors [11, 49, 65], higher risk 

patients with amplified inflammatory response to STEMI, 

might be proposed as the appropriate target for RIC e.g. 

those with large anterior infarcts who are late presenting, 

patients in cardiogenic shock, out of hospital cardiac arrest, 

those who develop angiographic no reflow of a large culprit 

vessel and those who are only able to receive thromboly-

sis and not primary PCI [49, 81]. Global inflammation is 

observed in patients with endotoxaemia and viral infec-

tion—these patients may also be favourable candidates for 

RIC [43]. Moreover, remote conditioning in combination 

with pharmacotherapy may be of benefit in preventing the 

development of a cytokine storm.

Given the challenges in clinical translation [65], RIC 

should be trialled as an adjunctive therapy in combina-

tion with gold-standard treatments in the above ‘high-risk’ 

cohort. It has been demonstrated above, that RIC can act 

synergistically to reduce inflammation when combined with 

pharmacotherapy and activation of neuronal pathways [24, 

33, 141].

The difficulty in predicting the timing of a major inflam-

matory insult remains a significant dilemma for human inter-

ventional studies. However, given the reproducibility and 

extent of the survival benefits observed in animal models; 

the anti-inflammatory effects of RIC warrant further clini-

cal pursuit.
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