
44

Does SoC Hardware Development Become Agile by Saying

So: A Literature Review and Mapping Study

AN TTI RAU TAKOURA and TIMO HÄMÄLÄINEN , Tampere University, Finland

The success of agile development methods in software development has raised interest in System-on-Chip
(SoC) design, which involves high architectural and development process complexity under time and project
management pressure. This article discovers the current state of agile hardware development with the ques-
tions (1) how well literature covers the SoC development process, (2) what agile methods and practices are
applied or (3) what proposals are made to increase the agility, and (4) what is the impact for the SoC commu-
nity. To answer the questions, a mapping study and literature review were performed. Seven hundred thirty
papers were first studied, and eventually, after a rigorous filtering process, 25 papers were thoroughly ana-
lyzed. The results show that the popular agile SW development methods are applied in 5 cases, ideas adapted
from the agile Hardware manifesto in 9 cases, and 11 cases do not define the Agile HW development method.
Most of the papers address shorter development time by better methodologies and tools that indirectly shape
the SoC development toward agility. The focus of agile hardware development is mostly on the SoC artifacts
and methodological improvements have not been quantified. However, the literature indicates a significant
impact on many academic chip prototypes. The challenges are better understood and the interest in agile
methods is clearly increasing. The methodological gaps in the prevalent situation encourage further research

and more accurate reporting of the development in addition to the SoC artifacts.

CCS Concepts: • Very large-scale integration design • Application specific integrated circuits • Eco-

nomics of chip design and manufacturing • System on a chip ;

Additional Key Words and Phrases: System-on-Chip, methodology development, agile development, litera-
ture review, mapping study

ACM Reference format:

Antti Rautakoura and Timo Hämäläinen. 2023. Does SoC Hardware Development Become Agile by Saying
So: A Literature Review and Mapping Study. ACM Trans. Embedd. Comput. Syst. 22, 3, Article 44 (April 2023),
27 pages.
https://doi.org/10.1145/3578554

1

S

m

h

S

t

A

l

P

p

t

c

©

1

h

 INTRODUCTION

ystem-on-Chip (SoC) designs are no longer owned by specialized companies like processor
anufacturers, but companies like Amazon, Apple, Tesla, and Google have presented their in-

ouse developed chips. At the same time, multiple smaller companies and academia have started
oC designs that are often based on RISC-V and other open source components. SoC projects are
hus greatly expanded to a much larger community and include many new developers that often
uthors’ address: A. Rautakoura and T. Hämäläinen, Tampere University, Korkeakoulunkatu 7, Tampere, Pirkanmaa, Fin-

and, 33720; emails: {antti.rautakoura, timo.hamalainen}@tuni.fi.

ermission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee

rovided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

he full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,

ontact the owner/author(s).

2023 Copyright held by the owner/author(s).

539-9087/2023/04-ART44

ttps://doi.org/10.1145/3578554

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 3, Article 44. Publication date: April 2023.

https://orcid.org/0000-0002-5236-8363
https://orcid.org/0000-0002-7867-0800
https://doi.org/10.1145/3578554
https://doi.org/10.1145/3578554
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3578554&domain=pdf&date_stamp=2023-04-18

44:2 A. Rautakoura and T. Hämäläinen

h

b

s

p

n

t

k

p

L

y

R

A

m

c

T

s

a

w

(

o

c

w

s

t

r

t

2

S

u

o

s

i

m

p

i

K

c

e

h

M

m

A

ave more software engineering than Application-Specific Integrated Circuit (ASIC) design
ackground. Therefore there is more interest and experience in agile development than before.

At the same time, SoCs have become highly varying from tiny IoT chips to very large multi-
ubsystem chips with the highest possible performance. The development processes should sup-
ort a multitude of reusable Intellectual Property (IP) components, architectures, ASIC tech-
ologies, and changing versions over time. The key difference compared to a SW project is that
he SoC is a physical product. It includes specific design steps that require dedicated tools and
nowledge, which is not used elsewhere. The ordering of the steps is critical and causes long de-
endency chains. One design iteration round including only tool runtime from Register-Transfer

evel (RTL) code to ASIC layout is measured in weeks, and the SoC project can last even three
ears for industry-scale devices. However, the system-level design from initial requirements to
TL code can be carried out faster than synthesis and physical design by using abstracted models.
s a whole, the current situation challenges the traditional HW design approach looking for faster,
ore cost-efficient, and predictable SoC development, and the agile methods focus on solving such

hallenges.
The transition from waterfall to agile methods has been very successful in SW development.

here have also been attempts to bring agile methods to Embedded Systems (ES) [23] as one
tep toward physical systems. The goal of this article is to discover how much and what kind of
gile methods are used in SoC development. We present a literature review and mapping study,
hich is, to our best knowledge, the first of this kind.
The main contributions are (1) introduction of our SoC design process model for reference,

2) search string construction and literature scan for over 20k publications, and (3) deep analysis
f 25 publications and conclusions on state-of-the-art in agile SoC hardware development.
This article is structured as follows. We first present an overview of the SoC development pro-

ess in Section 2 to point out the potential space for agile development. For the clarity of the terms,
e next define agile development in Section 3 . The related work on similar reviews and mapping

tudies is given in Section 4 . The applied research methodology for this article is described in Sec-
ion 5 . The mapping study results are presented in Section 6 , and deeper analysis in the literature
eview takes place in Section 7 . The conclusions are given in Section 9 . The mapping study and
he literature review data can be found in the appendix.

 SOC DEVELOPMENT PROCESS

ystem-on-Chip is composed of an HW structure and SW that is executed on the programmable
nits. An example of a recent SoC architecture is presented in Figure 1 . The SoC is composed
f sub-systems, which are constructed from IP components. The design of these entities requires
everal design abstractions starting from high-level models and ending up with RTL descriptions
n Hardware Description Language (HDL) for ASIC synthesis. The design hierarchy is used to

anage component reuse and enable concurrent development.
SoC development is very demanding, which is why there have been attempts to model the design

rocess. Gajski and Kuhn [19] expressed the system design as early as 1983 as a Y-chart express-
ng the functionality, architecture, and implementation degrees with several levels of abstraction.
eutzer et al. [28] define that the purpose of the SoC design process is to balance development
osts (time and production cost) with system performance and functionality. They state that an
fficient SoC design process can be achieved through orthogonalization of concerns and reusable
ardware. Their methodology is known as Platform-based design.
Keating and Bricaud [26] have published a widely accepted book entitled Reuse Methodology
anual for System-on-a-Chip Designs . They model the SoC development process in a spiral process
odel and propose reusable pre-verified IP blocks to reduce the design costs. The aforementioned
CM Transactions on Embedded Computing Systems, Vol. 22, No. 3, Article 44. Publication date: April 2023.

Does SoC Hardware Development Become Agile by Saying So 44:3

Fig. 1. An example System-on-Chip Ballast [37].

s

m

i

o

a

v

w

p

w

t

l

a

d

a

b

g

(

a

m

a

p

n

t

1

piral process model was originally presented by Boehm [10] to improve the waterfall process
odel of the SW development. As the name indicates, the development should consist of multiple

terative rounds, each of them ending to the prototype of the SW during the development lifecycle
r the SW release to the customer during the maintenance lifecycle. The spiral model has been
lso argued to be the process model toward agile development methods.

Although all of the presented prior works are commonly accepted for the prevalent SoC de-
elopment process, we argue that none of them models the modern complex SoC design process
ith all of the required aspects. To complete the picture, we present a holistic SoC development
rocess in the following. The model has been utilized in our recent SoC development project 1

ith a successful tapeout of a large 15-mm

2 heterogeneous multiprocessor SoC at 22-nm ASIC
echnology [37].

Our SoC development process model is depicted in Figure 2 . It addresses project management,
ifecycles or timeline, hierarchical system composition, parallel iterative development activities,
s well as dedicated development methodologies with tool flows and milestones.

We recognize seven different key activities involved in the SoC development. The activities are
epicted in Figure 2 as horizontal arrows. They include Modeling (1), Mixed signal (combined
nalog and digital circuits) design (2), RTL design (3), Physical design front-end, Physical design
ack-end (4), Verification (5), Prototyping (6), and Hardware Dependent SW and HW/SW inte-
ration and validation (7). The activities are often expressed as Electronic Design Automation

EDA) tool flows, but we want to keep the principles and tools separated. However, most tools
re specific to the activity, which requires dedicated developer expertise. Taken the complexity of
odern SoCs leads to a project with multiple specific teams, tens to hundreds of engineering staff,

nd dozens of very special tools.
Milestones (M0–M9) consider the readiness of the SoC from the project start (M0) to the validated

hysical chip samples (M9). The milestones are used to communicate status across teams, synchro-
ize the work between the activities, and act as quality control points. For project management,
he milestones guide scheduling, resourcing, and decision making in general. The Development
 w w w.sochub.fi.

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 3, Article 44. Publication date: April 2023.

www.sochub.fi

44:4 A. Rautakoura and T. Hämäläinen

Fig. 2. SoC development process: Artifacts, lifecycle, and activities.

(

i

d

l

S

V

l

w

D

u

p

v

t

h

t

b

r

i

A

L2) includes several milestones (M2–M5), which reflect the design maturity from high-level spec-
fication models to verified timing accurate chip logic and layout models. Milestones lack clear
efinitions in the literature, which is why we proposed one view for them in our earlier work [37].
The activities produce tangibles that we call the SoC design Artifacts . Only the most relevant are

isted here. The artifacts from left to right in Figure 2 are Requirements, High-level Architectural
pecification, High-level Models, Micro-Architectural Specifications, HDL codes, Gate netlists,
erification environments and testcases, Prototyping platforms, and SW and eventually physical

ayout descriptions in GDSII format for ASIC production and eventually manufactured chip itself
ith the test devices. The project and SoC development process is divided into Exploration (L1),
evelopment (L2), and Production (L3) Lifecycles to underline the different nature of the work.
Project management is an integral part of large-scale activity. In our case, it is considered an

mbrella for non-development activities, such as setting priorities, resource planning, schedule
lanning, team leading, quality control, and decision-making in general. The agile development
alues, principles, and methods give big emphasis on how the project management and development
eams should interplay to improve productivity and predictability.

The SoC development process looks waterfall at first glance, but concurrent development tasks
appen constantly among the Activities. Intermediate results of the work provide feedback for
he Activities, which leads to an iterative process. The concurrency and iterations also happen
etween design hierarchies (System, Sub-systems, IP components), and often large sub-systems are
un as separate sub-projects with their requirements, schedule, and resources. The great challenge
s the dependency between the activities. That causes long feedback loops over the development
CM Transactions on Embedded Computing Systems, Vol. 22, No. 3, Article 44. Publication date: April 2023.

Does SoC Hardware Development Become Agile by Saying So 44:5

c

b

w

c

a

t

p

s

2

T

t

i

i

a

t

t

p

k

m

m

K

S

t

(

a

e

m

m

t

f

c

c

t

a

m

a

E

p

t

i

c
ycle. For example, the netlist as a result of synthesis activity is dependent on HDL codes qualified
y verification tasks. Long feedback loops between design hierarchies can occur, for example,
hen system-level computation performance or power consumption is not met by underlying IP

omponent synthesis.
Compared to SW projects the flaws are very expensive in human effort and calendar time in

ddition to production material preparation costs of additional chip re-spins. Re-running simula-
ions, synthesis, or physical design can take weeks after a design change. The conclusion is that the
revalent design methodology is waterfall and improvements in the SoC design process can lead to
ignificant economic impact. In this article, we explore the extent of agile methods for the impact.

.1 SoC Development Methodologies

his section gives an overview of the SoC development methodologies. We will focus on those
hat help categorize the mapping study and literature review results. This methodology overview
s written based on our research group’s knowledge rooted in decades of experience in SoC design
n industry collaboration and academia.

The Model-Driven Development (MDD) is a top-down approach. The design starts from
bstract models and the flow continues through multiple intermediate modeling layers toward
he target implementation. Each of the modeling layers adds more implementation-specific details
o the model. MDD attempts well-defined model semantics, which enables correct-by-construct
ractices and formalism for code generation. The Unified Modeling Language (UML) is well
nown to model SW architectures before implementation. UML has also been extended to HW
odeling with specific domain-specific metamodels and profiles. The IP-XACT standard is a
odeling language for SoC development, and there are IP-XACT development tools such as
actus2 [24]. In our previous work, we have demonstrated a multi-layer MDD framework for
oC HW development [38].

The methodologies, or practices, related to MDD-based SoC development are abstraction , model
ransformations , code generation , and synthesis . The abstraction is present in the modeling activity
1) in Figure 2 producing High-level Models as an artifact. Model transformation typically means
utomatic transformations between models. SW compilation with a compiler is a well-known
xample of model transformation. Code generation can be thought of as the last level transfor-
ation to the target artifact such as the Verilog RTL model. The synthesis is also one form of
odel transformation. The key difference is that the synthesis tool produces output by solving

he given constraints. For example, the synthesis from Verilog to netlist based on given target
requency constraint. High-level synthesis (HLS) from C++ to Verilog is an example of source
ode transformation.

The development platform , or development framework, is a collection of tools, repositories, and
ommunication and documentation facilities for carrying out design tasks in a team. We define
he development platform so that it must include multiple design activities and not focus only on
 single methodology.

The HW-SW co-design methodology focuses on efficient design exploration between two imple-
entation alternatives. The work with HW-SW co-design flows start with an abstract model of the

pplication, after which the goal is to find an optimal HW-SW division under given constraints.
xecutable system models written in programming languages are typically used, because the ex-
loration needs measurable results. The HW-SW co-design can be regarded as MDD practice, but
he latter focuses mainly to design exploration.

The open source hardware is not a design methodology in the traditional meaning, but we have
ncluded it due to the significant boom after releasing of the open RISC-V instruction set ar-

hitecture (ISA) and its open source core implementations. Open source HW can mean open
ACM Transactions on Embedded Computing Systems, Vol. 22, No. 3, Article 44. Publication date: April 2023.

44:6 A. Rautakoura and T. Hämäläinen

l

c

e

k

a

t

a

a

p

c

3

T

M

s

t

t

s

g

i

o

d

a

t

a

a

m

(

a

p

i

t

a

S

D

i

r

K

T

U

f

(

c

A

icense-free standards, programming languages and libraries, design tools and tool flows, HW
omponent libraries, or even open ASIC technology libraries. Open source promises transparency,
asier collaboration, and reduced costs, but from the development methodology point of view, the
ey question is the ease of reuse.
The term platform architecture related practices were shortly described by Keutzer et al. [28]

nd mentioned here for later reference. As we notice, all these methods have similarities and are
argeting to increase the productivity of the SoC development. A common nominator is that they
re focusing on the exploration lifecycle of the development. For this reason, the methodologies
re often combined with traditional synthesis and physical design tools and methodologies. The
resented methodology definitions are used later in this mapping study and literature review to
ategorise the results.

 AGILE DEVELOPMENT

he Agile Software Development defines four well-defined values and 12 principles in the famous
anifesto for Agile Development [9]. That was a response and a criticism toward the traditional

oftware development. The defined values are (1) individuals and interactions over processes and
ools , (2) working software over comprehensive documentation , (3) customer collaboration over con-
ract negotiation , and (4) responding to change over following a plan . The given principles are the
econd layer of the manifesto, but still those remain very abstract and do not provide practical
uidance to implement them. Unfortunately the values and principles may not success defin-
ng agility and have led to various interpretations [30]. Thus, Laanti et al. [30] propose to focus
n a different agile practices and benefits of them instead of speaking generally about the agile
evelopment.
Agile practices can be seen as a third layer of abstraction. They give more detailed guidance

bout how different values and principles could be achieved in practice. In the literature, the prac-
ices are also referred to as methodologies, but we rather use the term practice in this context to
void confusion with the SoC development methodologies.

Scrum and Extreme Programming (XP) are the most well-known set of practices for running
gile SW development projects. Scrum focuses to project management practices, and XP focuses
ostly on the practical guidelines for software development such as Test-Driven Development

TDD) and Continuous Integration (CI) [2]. There are also other documented practices such
s Crystal, Adaptive System Development, and Dynamic Systems Development Method, but the
opularity of the deployment or related research for those seems not to be on the same level as it

s for SCRUM and XP [17].
The early work of Agile Software Development focused on small-scale software development and

he practices were addressing team-level work. As a consequence, large-scale agile has also been
ddressed widely [15]. Scaled agile includes framework proposals such as Large-scale SCRUM,
caled Agile Framework, and SCRUM-of-SCRUMS and practices such as Agile Release Train [34].
efinitions of the project scale for large-scale projects measured with the amount of organization

nvolved or engineering headcount varies, but in contrast non-large-scale agile practices often
efer to engineering headcount from 8 to 15 who are responsible for the complete software project.

Tailoring of agile development practices is common for different domains and types of projects.
aisti et al. [23] notice the importance of process tailoring for embedded system development.
here has been also an effort to establish principles and practices for agile SoC development by
C Berkeley [31] (2016). Their proposal includes the following four principles: (1) incomplete,

abricable prototypes over fully featured models ; (2) collaborative, flexible teams over rigid silos ;
3) improvement of tools and generators over the improvement of the instance ; and (4) response to
hange over following a plan (Iterative design) . In this article, we call their proposal an agile HW
CM Transactions on Embedded Computing Systems, Vol. 22, No. 3, Article 44. Publication date: April 2023.

Does SoC Hardware Development Become Agile by Saying So 44:7

m

w

A

i

t

o

p

e

J

a

t

d

a

m

t

i

e

t

o

4

A

H

a

c

c

c

p

d

d

b

p

K

a

r

e

s

p

d

b

w

l

anifesto . We regard it as the best-known formalized agile method in SoC development due to its
ell-documented definition. When we compare these principles to the values of the Manifesto for
gile Development we notice similarities but also an important difference. They contradict clearly

n the importance of the tools. Schrof et al. [40] also find out that when deploying agile approaches
o mechanical HW development, there are needed specific methodologies. They call them technol-
gy enablements that are needed to overcome constraints and the nature of the development of the
hysical product.
Agile practices on SW development have become possible due to widely available tools. For

xample, TDD benefits from a vast amount of free Unit Test Frameworks, such as the JUnit for
ava or Gitlab CI, to execute tests constantly in an automatic manner. Technologies are also seen
s enablers to apply agile methods in automotive [40] where the physical end product complicates
he use of existing methods as such. Due to these observations and the young age of agile HW
evelopment, we look for applied tools and technologies in this work.
Despite the popularity of agile SW development, there are notable shortcomings in defining

gility. In addition, there is a lack of empirical studies to measure the effectiveness of the agile
ethods [1]. As we are facing the same issues in agile HW development even on a larger magni-

ude, it is too early to provide quantified measures as the outcome of this study.
In summary, despite the many descriptions, definitions, and agile SW development articles there

s no single reference that would explain it thoroughly and cover the full development view. How-
ver, the common themes can be recognized such as the importance of the people, the presence of
he customer, short development iterations, fixed cadence of the releases (schedule is prioritized
ver content), and constant improvements of the working practices.

 RELATED WORK

s far as we know there are no prior mapping studies or literature reviews focusing on agile SoC
W development. Work done by Kaisti et al. [23] focuses on agile methods for embedded systems

nd embedded SW development. The primary result is that the embedded systems domain in-
ludes problems that need to be solved before agile methods can be successfully applied. Reported
hallenges were a lack of tools, real-time constraints of the embedded systems, a need for HW-SW
o-design, and a need for documentation to distribute information across different design disci-
lines. However, they also find common themes in successful practices that include test-driven
evelopment, continuous integration, dual targeting (simulation before actual hardware), iterative
evelopment, and customer collaboration.
The literature on embedded systems includes proposals on how to increase the agility of the em-

edded SW and the system development with methodologies such as HW-SW co-design [41] and
latform-based design [12]. The proposed methodologies are relevant also for SoC development.
aisti et al. also discuss embedded HW and ASICs, and they note that very little is known about
gile HW development as peer-reviewed academic work and there is a need for more rigorous
esearch.

Demissie et al. [14] focuses on safety-critical embedded systems. The work shared eight refer-
nces with Reference [23] and included 14 papers published after it. The results show challenges
uch as HW development, team-based communication, and regulation process. Studied works ap-
lied selected agile practices mainly from SCRUM and XP. Some of these included studies ad-
ressed the need for tools support to effectively implement agile practices in the context of em-
edded systems.
The review by Ahmad [3] covers agile development of Cyber-Physical Systems (CPS) . This

ork focuses on the presence of agile development in the CPS domain. The result is that related
iterature is limited, but the trend indicates an increasing interest.
ACM Transactions on Embedded Computing Systems, Vol. 22, No. 3, Article 44. Publication date: April 2023.

44:8 A. Rautakoura and T. Hämäläinen

Fig. 3. The mapping study and literature review process overview.

p

S

5

T

e

a

a

o

p

a

W

d

(

5

T

t

r

S

t

A

To conclude the related work, SoC HW development has not been directly addressed in the
rior literature reviews. Earlier works, however, discuss challenges and solutions relevant to the
oC HW development.

 RESEARCH METHOD

he research methodologies used in this study are systematic mapping study and systematic lit-
rature review defined by Keele et al. [27]. The purpose of the mapping study is to show selected
ttributes among publications to provide an overview. For more detailed insight, the publications
re analyzed thoroughly. The systematic process is described in Figure 3 .

The study starts with the activity of formulating research questions (A1) in Figure 3 , and as an
utcome we came up with four different research questions (RQ1–RQ4) as follows:

• RQ1: What is the SoC HW development process coverage in the agile SoC HW development
literature?

• RQ2: What agile methods or practices are currently applied to SoC HW development?
• RQ3: What methods and practices are proposed to increase the agility of the SoC development?
• RQ4: What is the impact of the work for the SoC HW development?

RQ1 considers how much the literature covers the agile methods from the whole SoC HW design
rocess. The key difference between RQ2 and RQ3 is that the former seeks the usage of known
gile methods while RQ3 addresses the SoC development method proposals to increase agility.
e noticed that it is important to make this separation due to the early age of the agile HW

evelopment and not yet established terminology. The search strategy (A2) and filtering steps
A3–A5) are described in the following sections.

.1 Search Strategy

he purpose of the search strategy is to increase repeatability and quality of the work. The main
ask is to select search engines and databases and define the exact search string. The literature
eview was performed by using two search engines, Google Scholar and IEEE Explore. Google
cholar was used, because it performs the search from multiple databases. IEEE Explore was used
o make sure the other search engine results and get focused results.
CM Transactions on Embedded Computing Systems, Vol. 22, No. 3, Article 44. Publication date: April 2023.

Does SoC Hardware Development Become Agile by Saying So 44:9

A

i

t

d

p

a

s

e

I

a

D

r

v

c

a

p

5

T

s

n

u

u

p

l

c

d

m

t
Based on trial searches, we end up using the search string: agile AND (“integrated circuits” OR
SIC OR FPGA OR SoC OR “system on chip” OR “system-on-chip”) . The term “agile” was selected

nstead of known agile methods in SW engineering, e.g., SCRUM. We noticed that including only
he known agile methods led to exclusion of many HW-oriented papers. This is explained in more
etail in the mapping study results.
The search is limited to the full years 2000–2021. The searches were performed in the browser’s

rivate mode to avoid history and other metadata affecting the results. The accuracy of our
pproach was verified by manually checking that a set of known publications were found in the
earch.

Google Scholar yielded 26,900 search hits, and IEEE explore gave 330 hits. The remarkable differ-
nce is explained by the difference in the search algorithms. Google Scholar seems to be a heuristic.
n practice, it means that after a certain point the results do not anymore represent the search string
ccurately enough. However, 26,900 is not a feasible amount to be explored even at the title level.
ue to that an additional pre-filtering step (A3 in Figure 3) was performed for the Google Scholar

esults. The results were checked in the relevancy order shorted by Google Scholar, just by re-
iewing the search results (title and context of the string match). The first 400 search results were
hecked and included to further review. After that point, the relevancy shorting did not produce
ny more valuable publications for our purpose.

At this point, the combined results from both databases included approximately 730
ublications.

.2 Filtering

he filtering of the search results was performed in two stages (A4 and A5 in Figure 3). The first
tage filtering was based on title, abstract, and publication metadata such as conference or journal
ame, while the second stage filtering was based on the full article review. Both filtering stages
sed the process of inclusion and exclusion [27].
The paper was included when all of the following criteria were met:

(1) The paper addressed agile development of the SoC HW.
(2) The paper was published in a peer-reviewed academic forum.

The exclusion was done if any of the following criteria were met:

(1) SoC development was not addressed.
(2) The agile development was not addressed.
(3) The agile SoC development proposal was too specific to a certain type of designs or tool

flows.
(4) Non-peer reviewed or non-academic publication.
(5) Duplicate of the same work.

The inclusion and exclusion set a clear scope for this work, increased robustness, and enabled
s to address the research question better. However, drawing the line on a decision for including
ublication to further analysis is not trivial. Examples of such borderline exclusions were deep

earning accelerator design flow specific for one type of neural network, and FPGA-based cloud
omputing accelerator specific for a dedicated big-data tool flow. Embedded systems and embed-
ed software-focused papers were the most common reason for exclusion. SoC HW was often
entioned in these papers, but the focus was not on the SoC HW development itself.
As discussed, the term “agile” is a challenging search string. It was often referred to as a broad

erm, and we need to interpret the meaning. Typical exclusions were agile as a buzzword with a
ACM Transactions on Embedded Computing Systems, Vol. 22, No. 3, Article 44. Publication date: April 2023.

44:10 A. Rautakoura and T. Hämäläinen

Table 1. Mapping Study Attributes and Abbreviations

Attribute Description, abbreviations

A1: Index The index (P1–P25) distinguishes literature review publications from other
references.

A2: Year The year of publication.

A3: Publication engineering
field

The primary field of the publication forum: System (Sys), Hardware (HW),
Software (SW)

A4: Target platform Target implementation platform of HW. Application-Specific Integrated
Circuit (ASIC), Field-Programmable Gate Array (FPGA), integrated circuit
(IC), simulation (SIM), embedded system (ES).

A5: SoC project management
and lifecycle level coverage

Which parts of the SoC process the publication address. Project management
(PM), Exploration (L1), Development (L2) See Figure 2

A6: SoC development
activity coverage

Modeling (1), mixed signal design (2), RTL design (3) Synthesis and physical
design (4), Verification (5), Prototyping (6), Hardware dependent SW (7). See
Figure 2

A7: Applied agile
methodology or practices

Recognized agile methods and practices. Also proposals of the complement
agile methods for SoC development are listed here.

A8: Proposed methodology
or practices to increase
agility

The attribute is synthesized from publications. Because terminology varies
the naming has been harmonized. The key practices include: Code
generation, Model transformations, Synthesis, Rising abstraction,
Development platform, Platform architecture, HW-SW co-design, Open

source or open access.

A9: Scale Small (S), Large (L). Determined by the size of the development team.

A10: Evaluation method,
institution and prototype
implementation technology

Proposal (Prop), i.e., not prototyped as a physical chip, Case study in:
Academic (CSA), Industry (CSI), or Mixed (CSM) setting). Implemented
prototype FPGA or ASIC .

Attribute labels A1–A10 matches to columns on Tables 3 and 4 .

n

“

t

T

5

T

w

r

t

o

I

a

F

t

O

a

A

ull meaning or an agile product feature instead of agility of the development process. For example,
a frequency-agile radio SoC” without any agility is mentioned in the design flow.

As an outcome, we had 150 papers after the pre-filtering and the first stage of filtering. Even-
ually, 25 papers were included after a full article review (A5). The selected papers are listed in
ables 3 and 4 .

.3 Mapping Study and the Literature Review Attributes

he research questions are addressed by the mapping study and the literature review. The data
ere organized by attributes defined in this section. The mapping study gives an overview of the

esults while the literature review addresses research questions in more detail. The same publica-
ions and research questions are used for both methods.

The publications and the mapping study data are collected in Tables 3 and 4 . The explanation
f the attributes A1–A10 and abbreviations applied in the mapping study are given in Table 1 .
n all columns, “NA” stands for “not addressed.” The publications are indexed by attribute A1 in
lphabetical order according to the first author.

The year of publication (A2) and publication forum gives insight into the relevancy of the topic.
or the mapping study, we recorded the engineering field (A3) of the forum to see in which fields
he agile HW development gets published.

The target platform (A4) lists all the implementation technologies the publication is addressing.
ne publication can cover multiple technologies. The SoC HW can be implemented with FPGA
nd ASIC technologies, and the SoC can also be addressed as part of an ES. Integrated circuit
CM Transactions on Embedded Computing Systems, Vol. 22, No. 3, Article 44. Publication date: April 2023.

Does SoC Hardware Development Become Agile by Saying So 44:11

(

r

o

w

H

a

t

a

f

m

h

r

o

a

m

i

t

w

l

d

t

a

d

r

t

g

c

6

T

t

r

6

T

a

j

p

m
IC) is a typical term for mixed-signal design. As presented in Figure 2 , the executable models are
elevant and can be synthesized to FPGA and ASIC technologies. Thus simulation (Sim) models
n the SoC domain can be seen as a relevant intermediate target platform. The ES and IC attributes
ere included, because those are present in a few cases when the topic crosses our focus of agile
W development.
The SoC development process coverage of the publications is captured with attributes A5 (Man-

gement and lifecycle coverage) and A6 (Development activity coverage). These attributes address
he research question RQ1. Due to the large scope of SoC development, it would be unlikely that
 publication would address all aspects. Our interest is in observing where the current research is
ocused and on trying to find explanations for it.

The applied known agile methods and practices are recorded under the attribute A7. Known
ethods and practices originate from SW engineering, but we decided to make one exception

ere. The agile HW manifesto [31] is treated as a known methodology, because it has been well
ecognized. This attribute addresses the research question RQ2.

Attribute A8 captures the methodology or practices to increase the agility of the SoC devel-
pment. The purpose is to see what literature proposes to improve the situation. This attribute
ddress the research question RQ3.

The impact of the work is evaluated by attributes (A9) and (A10). The scale of the project (A9)
easures the development organization size. We defined the scale so that a small-scale project

ncludes a single team of up to 10 members. Large-scale projects consist of multiple teams or large
eams beyond 10 members. The attribute A10 records the evaluation method, the institution type
here the work has been performed, and the prototype implementation technology.
The reasons for selecting attributes A9 and A10 to judge the impact are as follows: (1) The

arge project setup resembles a better SoC project setting with a complex design with multiple
evelopment activities and (2) fabrication of physical chips guarantees that the design has gone
hrough the complete SoC development process. Contributions with the hypothesis about the
gile HW development without a use case are listed as proposals. Case studies performed by
ifferent types of institutions consider the development project with measured results. The
esearch setup is captured from the reported affiliations. The key interest in the use case type is
o see the industry interest or if the methods are applied in the industry. The purpose is not to
rade the impact between academic and industry work. Instead, the fabricated prototype gives a
lear measure of the impact. The fabricated chip is regarded as a high-impact work.

 MAPPING STUDY

he mapping study data are illustrated in Figures 4 –10 where the attributes are on the X axis and
he frequency of the attribute is on the Y axis. The mapping study results are presented by data
ecorded in Tables 3 and 4 .

.1 Overview

he timeline of the publications is presented in Figure 4 . The peak for 2020 is explained mainly by
 single special issue on agile hardware [21].

The publication forums and engineering fields are listed in Table 2 . We can notice highly ranked
ournals and conferences focusing on SoC designs being well presented. A clear majority of the
ublications have been published in HW forums.
It can be concluded that the interest is increasing in agile methods on SoC HW.
The target implementation HW platform is presented in Figure 5 . A single publication can cover
ultiple technologies. ASIC, FPGA, or HW simulation were the primary target platforms. ES and
ACM Transactions on Embedded Computing Systems, Vol. 22, No. 3, Article 44. Publication date: April 2023.

44:12 A. Rautakoura and T. Hämäläinen

Fig. 4. The timeline and the amount of publications (A2).

Table 2. Publication Forums and Engineering Discipline (A3)

Forum Field Amount

IEEE Micro HW 8
IEEE/ACM International Conference On Computer Aided Design (ICCAD) HW 3
IEEE Journal of Solid-State Circuits HW 2
Design Automation Conference (DAC) HW 1
IEEE International Conference on Electro/Information Technology HW 1
IEEE Design & Test HW 1
IEEE Nordic Circuits and Systems Conference (NORCAS) HW 1
IEEE/ACM International Symposium on Microarchitecture HW 1
IEEE International Conference on Microelectronics (MIEL) HW 1
IEEE Computer HW 1
Conference on Programmable Logic (SPL) HW 1
Workshop on Domain Specific System Architecture (DOSSA-3) System 1
Journal of Systems and Software System 1
IEEE Software Testing, Verification and Validation Workshops (ICSTW) SW 1
International Workshop on Rapid Continuous Software Engineering SW 1

I

o

6

T

m

c

A

C domains were also present. These are relevant for SoC development and improve the reliability
f the following analysis.

.2 RQ1: What Is the SoC HW Development Process Coverage in the Agile SoC HW

Development Literature?

he SoC process coverage data is presented in Figures 6 and 7 . A single publication can cover
ultiple process elements. From Figure 6 , we see that Exploration (L1) and Development (L2) life-

ycles dominate the results, and project management (PM) has low coverage. This is surprising,
CM Transactions on Embedded Computing Systems, Vol. 22, No. 3, Article 44. Publication date: April 2023.

Does SoC Hardware Development Become Agile by Saying So 44:13

Fig. 5. Target implementation platform of the hardware (A4).

Fig. 6. SoC process coverage (A5): Project management and lifecycles L1 and L2.

b

m

a

m

m

p

o

p
ecause the most common agile methods (Scrum and XP) in SW engineering are project manage-
ent oriented.
When we take a closer look at different SoC development activities in Figure 7 , we see that all

ctivities have been covered at least to some extent. The modeling and the RTL design activities get
ost of the coverage. This might indicate that rising the design abstraction from traditional RTL
odels to high-level models is seen as attractive and feasible. The synthesis, physical design, and

rototyping activities have moderate coverage, although these are very essential for SoC devel-
pment in general. The results in verification are a bit surprising. Verification is commonly using
rogramming languages or patterns such as C or the object-oriented flavor of the SystemVerilog
ACM Transactions on Embedded Computing Systems, Vol. 22, No. 3, Article 44. Publication date: April 2023.

44:14 A. Rautakoura and T. Hämäläinen

Fig. 7. SoC development activity coverage (A6).

H

l

6

F

S

m

t

b

d

o

m

6

F

i

t

m

v

f

m

A

DL. Thus, we would expect much more agile practices. The explanation can be the long feedback
oops: RTL simulation is much slower compared to SW execution.

.3 RQ2: What Agile Methods or Practices Are Currently Applied to SoC HW

Development?

igure 8 depicts applied agile methods and practices. The results show clearly that the traditional
W-rooted agile development methods and practices have not been applied to SoC HW develop-
ent to a large extent. The reason for that is unknown, and more research is needed to study

his observation. The agile HW manifesto [31] seems to be currently the most famous but has not
een published outside UC Berkeley. We also noticed that agile HW development has not been
efined rigorously in most of the literature. Together, the results indicate that agile HW devel-
pment is still in a very early phase. They did not either report problems or unsuitability of the
ethodology.

.4 RQ3: What Methods and Practices Are Proposed to Increase Agility of the SoC

Development?

igure 9 lists various development practices and methods that have been proposed as a way to
ncrease the agility of the development. The terminology and definitions vary between contribu-
ions, but conclusions are still possible from the collected data.

The most popular methodology or practice was related to MDD. Abstraction, code generation,
odel transformations, and synthesis were proposed as a way to increase the efficiency of SoC de-

elopment. Rising the abstraction is essential to implement efficient code generation, model trans-
ormations, or synthesis. In a few cases, the increased abstraction was applied without automatic
odel refinements. It was seen as beneficial alone, because such models give early feedback at the
CM Transactions on Embedded Computing Systems, Vol. 22, No. 3, Article 44. Publication date: April 2023.

Does SoC Hardware Development Become Agile by Saying So 44:15

Fig. 8. Applied agile development methodologies and practices (A7).

Fig. 9. Proposed methodology or practices to increase agility (A8).

b

i

p

n

p

eginning of the development process on the known cost of accuracy. Other proposed practices
ncluded development platform, platform architecture, HW-SW co-design, and open source com-
onents. The proposals are analyzed in more detail as part of the literature review in Section 7.2 .
The important result here is that none of the proposals are novel in the SoC HW domain and,

one of them are agile practices as such. The results indicate that the proposed methodologies and
ractices together with the agile mindset are seen as an enabler for agile HW development.
ACM Transactions on Embedded Computing Systems, Vol. 22, No. 3, Article 44. Publication date: April 2023.

44:16 A. Rautakoura and T. Hämäläinen

Fig. 10. Scale of the case study (A9).

Fig. 11. The evaluation method (A10).

6

T

m

o

A

.5 RQ4: What Is the Impact of the Work for the SoC HW Development?

he impact of the work was evaluated on three metrics: the scale of the work (Figure 10), evaluation
ethod (Figure 11), and prototype technology (Figure 12).
The scale of the work was not typically mentioned, and the team was a small development team

r a research group. Three were regarded as large-scale work. Only one reports the effort as 14,000
CM Transactions on Embedded Computing Systems, Vol. 22, No. 3, Article 44. Publication date: April 2023.

Does SoC Hardware Development Become Agile by Saying So 44:17

Fig. 12. Prototype implementation technology (A10).

e

a

m

b

f

“

t

A

6

T

h

o

e

m

g

l

l

o

m

c

m

ngineering hours [7], which is close to 7 engineering years. We counted that as large-scale work,
lthough the team size was not reported.

Case studies were the most common research setup. The industry is contributing to research
ainly through collaboration with academic partners.
ASIC prototypes were reported in nine papers. One reports 11 different chip prototypes [31],

ut our study regards it as one, because the details of these prototypes are not shown.
In summary, the literature focuses on small-scale work in the academic setting, and the research

avors practical work with prototypes over hypothetical proposals to follow the agile practices
working prototype over fully featured models.” It is very positive to see so many ASIC prototypes
hat include the full design flow. It is well understood that those give the best impact even though
SIC prototypes are costly and labor intensive.

.6 Summary of Results

he mapping study gives an overview of the situation and address the defined research questions at
igh level. The number of publications is gradually increasing. Contributions are mainly reported
n HW research forums, and highly ranked journals and conferences were present in a significant
xtent.

The SoC design process was covered with healthy distributions and exploration and develop-
ent lifecycles gets most of the coverage. The lack of project management perspective is a clear

ap. We also did an observation that the more activities focus on accurate models beyond RTL the
ess we get coverage in the literature. We believe that this is due to long runtimes and feedback
oops in the tool flows that disfavor agile practices on quick iterations.

The agile HW manifesto, SCRUM, and TDD were the most commonly known agile method-
logies. However, in most of the cases the agile methods or practices is not defined, and popular
ethods on SW engineering such as SCRUM and XP were not present on significant extend. This

an indicate that either HW developers are not familiar with the existing project management
ethods or those are not seen feasible.
ACM Transactions on Embedded Computing Systems, Vol. 22, No. 3, Article 44. Publication date: April 2023.

44:18 A. Rautakoura and T. Hämäläinen

p

w

a

r

t

s

w

i

r

7

T

f

b

o

d

7

T

p

n

k

R

d

t

p

H

k

i

i

a

t

o

a

f

T

g

o

m

A

There are many proposed methods and practices to increase agility, but none of them is com-
letely novel or agile as such. Most of the works focuses on increasing the development efficiency
ith MDD practices (abstraction, code generation, model transformations, and synthesis). This is

n important finding and may enable connecting SoC HW development and agile development.
The impact of the contributions is promising. ASIC prototypes are common and indicate that

esearch is looking for practical solutions. Project organisation, team sizes, or other measures about
he complexity were not typically presented, and most of the contributions were done in academic
etting.

The research about agile HW development is clearly at early phase. Agile HW development
as not defined clearly enough in most of the publications. However, the results show challenges

n the traditional development methods and waterfall-driven processes. To improve the situation,
igorous research is needed to study the identified gaps.

 THE LITERATURE REVIEW

his section includes detailed analysis of the publications in the form of literature review. We will
ocus especially on the research questions RQ2 and RQ3, because RQ1 and R2 were well covered
y the mapping study. Because none of the selected publications provide quantified measurements
f the design flow productivity, our contribution is to provide insights to the current state on
etailed level.

.1 RQ2: What Agile Methods or Practices Are Currently Applied to SoC HW

Development?

he SCRUM was the only applied methodology [29 , 44]. Reference [44] presents a tailored SCRUM
roposal for Cyber-Physical Systems and covers SoC hardware development by proposing (but
ot implementing) simulation models of the HW for fast prototyping and HW-SW co-design. The
ey concepts discussed are separated HW and SW sprints and integration of them with Agile
elease Trains. As a result, the paper highlights domain specific challenges such as HW-SW co-
esign, architecture, model-based development and verification, which could be addressed with
he proposed agile methods.

Könnölä et al. [29] apply SCRUM to embedded system and radio frequency–integrated circuit
rojects in the industry. Reported tailoring needs highlight challenges on the slow nature of the
W development and the different knowledge between developers in their disciplines. Different
nowledge base makes the circulation of the tasks difficult, but teamwide planning sessions helped
n understanding different areas. They did not increase productivity in the short term, but the
ncreased team and system-level understanding could help productivity in the longer run.

Due to the nature of SCRUM, References [29 , 44] naturally focus mainly on project management
nd organizational topics. Highlights of the domain challenges are useful for applying agility to
he SoC HW process.

The most common agile practice was TDD [13 , 18 , 20]. To enable TDD for device driver devel-
pment, Reference [18] showcases the usage of an abstract model of the HW by extending QEMU-
nd K VM-based H W virtualization software. Memory-mapped Input-output, DMA, and interrupts
eatures were developed to increase the suitability of the development platform for TDD usage.
he framework also works as an early HW model for rapid prototyping.
Jiang et al. [20] introduces PyMTL3, an open source python framework for hardware modeling,

eneration, simulation, and verification. The PyMTL3 claims to enable the TDD by adopting the
pen source pytest framework designed for unit testing of the python SW. The PyRTL [13] imple-
ents TDD by providing a toolkit where design and simulation (verification) happens in the same
CM Transactions on Embedded Computing Systems, Vol. 22, No. 3, Article 44. Publication date: April 2023.

Does SoC Hardware Development Become Agile by Saying So 44:19

e

a

c

l

t

e

a

f

b

m

p

j

1

l

i

m

a

t

a

d

S

m

m

T

d

i

p

7

T

p

p

d

m

t

s

nvironment to avoid different tooling between these activities. PyMTL3 and PyRTL frameworks
re discussed in more detail in Section 7.2 .

TDD is approached in a similar way in References [13 , 18 , 20]. The abstraction of the clock
ycle–accurate RTL model to a more inaccurate high-level model, or the level of the modeling
anguage, e.g., Verilog to python was used to enable TDD. Abstracted high-level models are faster
o simulate, and led to faster iterations, and the use of programming languages for HW modeling
nables the use of popular SW development TDD tools for SoC development.

Lee et al. [31] promote free and open source RISC-V, Chisel Hardware Construction Language,
nd hierarchical and automated physical design flow as practices to support the agile HW mani-
esto. An alternative implementation of the manifesto is in Reference [20] in the form of python-
ased modeling, generation, simulation, and verification.

The agile HW manifesto has gained much attraction despite its young age. Most importantly,
ultiple chip projects have been carried out. Lee et al. reports 11 chip projects, Reference [7] re-

orts large-scale (14,000 engineering hour project) usage, Reference [25] reports a case study in a
oint academic-industry setting, and [39] reports eight-core multiprocessor system with modern
6-nm FinFET technology. Reference [12] reports usage in industrial organizations and also out-
ines additional guidelines borrowed from the agile SW development community: (1) complexity
s your enemy, (2) do not fear refactoring, and (3) do not over-engineer.

Lee et al. [31] can be regarded as the key reference due to its proven impact and strong agile
indset with defined principles. However, our earlier research [37] indicates that similar efficiency

nd project execution time can be achieved by constructing agility to the top of the more conven-
ional RTL to netlist methodology instead of novel modeling languages.

Petrisko et al. [35] provides alternative principles for the HW community (be tiny, be modular,
nd be friendly (approachable)) based on their experience on how to increase agility. They also
efine four metrics to guide toward principal targets: quality, virality, efficiency, and functionality.
oftware engineering of the hardware is also mentioned as the mindset to build agile HW develop-
ent. Although these principles are defined, they are rather abstract compared to the agile HW
anifesto.
In a summary, the usage of known agile methods and practices in the HW domain is rare.

he literature highlights challenges in adopting methodologies such as SCRUM, but TTD as a
evelopment-oriented practice can be seen as more feasible and beneficial. Early work of form-
ng a definition for Agile HW Development is present to some extent, but still, the majority of the
apers leave agile development undefined.

.2 RQ3: What Methods and Practices Are Proposed to Increase Agility of the SoC

Development?

he proceeding analysis is not an overview of the methodologies in general. Instead, the analysis
rovides a view of the current state of agile HW development. One should be careful when inter-
reting the results. Although the review shows approaches to gain agility, applying these methods
oes not directly lead to agile development. For example, an SoC developed by HW/SW co-design
ethodology can still be applied using conventional, non-agile methods. As we notice already in

he mapping study, proposals often introduce the usage of the multiple methods. Due to that, a
ingle publication can be discussed in multiple sub-sections below.

The proposals are grouped into the following categories.

• MDD: Abstraction, Model transformations, code generation and synthesis.
• Development platforms.
• HW-SW co-design.
• Open source hardware.
ACM Transactions on Embedded Computing Systems, Vol. 22, No. 3, Article 44. Publication date: April 2023.

44:20 A. Rautakoura and T. Hämäläinen

p

t

s

C

a

F

t

2

t

g

r

i

m

l

p

f

O

o

e

a

m

P

c

d

f

g

l

a

c

F

t

t

r

f

e

v

A

7.2.1 Abstraction, Model Transformations, Code Generation and Synthesis. Allen et al. [4] pro-
ose Rapid HDL based on the Microsoft .NET platform and utilizes .NET Common Language Run-
ime, which includes support for C # , Vb.Net, Ruby, F # , Cobal, and others.

The Chisel [31] is based on Scala language and thus inherits the modern SW language features
uch as parameterized types, abstract data types, operator overloading, and type inference. The
hisel generates to RTL HDL model of the HW, but also the Chisel model can be translated to
 cycle-accurate C++ executable for fast simulation. The latest versions of Chisel also include
lexible Internal Representation for RTL (FIRRTL) as a platform for writing circuit-level
ransformations. In addition to Reference [31], Chisel has been applied in References [5 , 7 , 12 , 16 ,
5 , 36 , 39], among the publications included to this literature review.

Trapaglia et al. [43] presents DUTILS, a python-based HW-SW co-design platform. The main
ool is the DUTILS python class library, which abstracts the HW under simulation. It is used to-
ether with the CocoTB python class library for HW verification. The benefit is an incremental
efinement of the python-based system models toward use-case-specific HW models. The proposal
mproves the reuse of verification environments and tests between the high-level models and RTL

odels.
The python-based PyMTL framework is proposed by Jiang et al. [20]. PyMTL3 supports multi-

evel modeling on functional, cycle-accurate, and register-transfer levels. One of the key design
rinciples is the modularity of the framework. That is achieved by dividing the platform into
rontend, intermediate representations and passes similar to the LLVM compiler architecture. The
penPiton platform [8] uses also a PyMTL-based PyOCN network on chip generator in their work
n developing custom SoC chips.
The PyRTL [13] is a python library for HW modeling similar to PyMTL3. The main differ-

nce is that it is a compact core library for HW development, which provides simplicity, us-
bility, and clarity. The PyRTL can be extended with standard python modules, such as math
odules to extend modeling capabilities. Verilog and Chisel FIRRTL code can be generated from
yRTL.
The Chipkit [46] uses a template-based code generation implemented in python to generate

ontrol and status registers for HW implementation with related SW API and documentation.
Mantovani et al. [32] use C/C++/SystemC class templates for different HLS tools. Also, their

esign tool with a graphical user interface generates tile (sub-system) skeletons based on selected
eatures.

Bahr et al. [6] present an HW-SW compiler framework to generate HW accelerators in coarse-
rained reconfigurable array form. The primary input for the flow is a model written with Halide
anguage. Halide is a C++-based Domain Specific Language for image processing applications.

Minutoli et al. [33] propose an LLVM compiler-based multi-layer synthesis framework to gener-
te hardware descriptions of the machine learning accelerators. Multiple front-ends and back-ends
an be supported. The framework is demonstrated with Open Neural Network Exchange to Chisel
IRRTL synthesis through multiple optimizations.

Shalf et al. [41] combine model transformation and optimization for scientific applications writ-
en for example in C++ or Fortran. They utilize commercial Tensilica Xtensa Processor Generator
ool flow to explore and different processor design choices to optimize applications and HW.

The DEC++ by Sorensen et al. [42] is an LLVM-based compiler for model transformations with
elated MosaicSim simulator to perform HW-SW co-design of the heterogeneous systems. Dif-
erent target back-ends for multiple processor ISA such as x86 and RISC-V enables architectural
xploration of the system. The DEC++ does not produce synthesizable RTL HW models but pro-
ides common SW API for custom HW accelerators.
CM Transactions on Embedded Computing Systems, Vol. 22, No. 3, Article 44. Publication date: April 2023.

Does SoC Hardware Development Become Agile by Saying So 44:21

t

p

l

C

fl

s

P

e

p

d

o

h

m

d

t

h

L

i

w

i

w

d

i

r

c

p

a

p

d

w

m

h

n

p
To summarize, high-level programming language–based abstraction, code generation, and syn-
hesis have been used to increase agility of the HW development. Chisel, python, and LLVM com-
iler frameworks are common technologies among the publications.

7.2.2 Development Platforms. Amid et al. [5] introduces Chipyard: Integrated Design, Simu-
ation, and Implementation Framework for Custom SoCs. The key tool is a Chisel-based Rocket
hip RISC-V CPU SoC generator, FPGA-accelerated simulation with FireSim, and modular VLSI
ow named Hammer. Hammer provides an abstraction of the process technology and EDA tool-
pecific concerns, which enables easier changes to the ASIC technology.

The OpenPiton [8] platform consists of a reused Ariane Linux-capable 64-bit RISC-V CPU core,
yOCN network on chip generator compilation framework for open source EDA tools, and Fus-
SoC IP management tool.

The ESP [32] is a GUI-based tool covering accelerator IPs and SoC design tool flows. The ESP
latform addresses verification, FPGA synthesis, device drivers, and test applications based on
esign parameters defined by the user. On the SoC, level connectivity is also addressed in the form
f generated routing tables, memory maps, device trees, and SW header files. The ESP platform
as also been used for ASIC design by Bose et al. [11].
The python-based development platforms [13 , 20 , 43] gain mainly from the ability to develop
odeling, digital design, and verification with the same input language and thus provide a unified

evelopment platform for developers.
Eschweiler et al. [18] base their platform on top of QEMU and K VM H W virtualization tools

hat can address HW modeling and SW development.
The DEC++ [42] supports platform thinking through the use of the LLVM framework, which

armonizes different model transformations (LLVM passes).
The incremental synthesis and simulation framework LiveHD [45] is based on the LLVM-like

Graph, which is a unified data model for open source HW design. The work highlights the slow
teration time of the SoC simulation and synthesis tools as a key challenge for agility. In summary,
e notice that development platforms are built around modeling with programming languages,

ntegration tools to increase automation, or tool flows. In addition, extending some existing frame-
orks like LLVM compiler is present. The code generation makes the best sense when multiple
ifferent targets are generated. Thus, the code generation and development platforms often exist
n combination.

Some platform architectures are present in Reference [32] (ESP) and Reference [35] (Blackpar-
ot), but the border between the development platform and the platform architecture is not always
lear. These “platform development platforms” come with a reference architecture as a starting
oint.

7.2.3 H W-SW Co-design. H W-SW co-design-based approach by Sorensen et al. [42] is based on
 compiler that automates architectural exploration of heterogeneous systems. The flow supports
opular programming languages such as C++ and python. Trapagliat et al. [43] bases HW-SW co-
esign support to reuse between the HW design and the verification. Automation is not involved
hen refining from SW-based models to HW implementations. Instead, they talk about fluent
igration from the models to the implementation. The strategy of proposals by Shalf et al. [41] is

ighly HW-SW co-design focused.
Wagner et al. [44] highlight the importance of HW-SW co-design for agile development but do

ot present a detailed methodology to implement it.
Despite a relatively small number of publications, the typical HW-SW co-design flows are

resent. In a summary, the proposals focus more on exploration and high-level models rather than
ACM Transactions on Embedded Computing Systems, Vol. 22, No. 3, Article 44. Publication date: April 2023.

44:22 A. Rautakoura and T. Hämäläinen

t

c

o

t

p

i

a

r

p

t

e

t

l

a

c

o

e

o

v

r

8

T

a

n

m

t

a

A

he development of lower-level implementations. The HLS approach proposed in Reference [32]
ould be seen as HW/SW co-design, but the authors did not consider it to this category.

7.2.4 Open Source Hardware. The open source HW is present to great extent, but we focused
nly on contributions that increase development efficiency and agility.
Lee et al. [31] outline free, open, and extensible RISC-V ISA as one of the keys for implementing

heir agile HW manifesto. Openness together with ISA extensions provides a possibility to ex-
lore different architectural changes with small teams. Also, the Chisel language is an open source
mplementation.

The Hammer for digital design and the BAG for analog and mixed-signal are ASIC technology
nd tool-agnostic abstraction layers for physical design [5]. These tools help in exchanging flow-
elated information in an open source manner. Exchanging design information in a commercial
hysical design tool format is often forbidden.
As the name suggests, OpenPiton [8] takes openness as its key discipline. They use and con-

ribute open source HW and also share important insights to build and maintain such a community.
PyMTL3 [20] is released as open source but, more importantly, from an agility point of view,

mphasizes interoperability with other open source hardware tools.
The ESP platform [32] contributes to the open source HW community by providing an integra-

ion platform for heterogeneous systems to gain agility on the SoC level.
The Blackparrot [35] base their fast development iterations on the open source RTL component

ibraries BaseJump STL and HardFloat.
In summary, openness is addressed from multiple perspectives. In many cases, the link between

gile development and openness is implied but remains weak. Open source could potentially in-
rease flexibility in the long run by allowing faster and cheaper experiments, easing reuse, and
pening completely new possibilities by making SoC design affordable for a wider audience. How-
ver, we have identified in our previous work also quality issues in open source HW such as lack
f documentation and varying quality [37].
As a whole, when we return to RQ3 we notice that literature addresses the challenges of SoC de-

elopment time and provides some solutions to improve it. However, the link to agile development
emains weak.

 SUMMARY AND DISCUSSION OF THE RESULTS

he number of publications and the presence in high-impact forums shows increasing interest in
gile SoC HW development. The research seems to be in the early phase and not even agreed defi-
itions exist compared to agile SW development. One explanation might be that HW designers are
ore artifact oriented and have not yet seen the importance of the development process. However,

he long feedback loops and highly dependent activities narrow the space for agility.
We summarize our findings from the mapping study and literature review in the following by

ddressing each research question:

• RQ1: The papers covered exploration and development lifecycles of the process but hardly
anything on process management.

• RQ2: None of the famous SW agile methods were literally applied to the SoC HW devel-
opment. The agile HW manifesto is the most established set of principles this far.

• RQ3: Model-Driven Development was not explicitly mentioned, but many papers addressed
abstract models and code generation to improve productivity and quality. However, quan-
tified results on the development efficiency are completely missing.
CM Transactions on Embedded Computing Systems, Vol. 22, No. 3, Article 44. Publication date: April 2023.

Does SoC Hardware Development Become Agile by Saying So 44:23

t

c

p

i

m

9

T

r

b

o

fi

i

t

r

a

r

g

n

m

h

t

a

a

c

i

r

i

s

s

o

• RQ4: Several ASIC implementations were found, which basically fit well to the idea of
frequent prototyping in agile development. However, the mindset change from “first time
right” is not yet seen and projects follow more traditional methods.

Open standards, open source component libraries, and open source tools are clearly present in
he literature. Open source HW will be the game changer. Open source EDA tools already provide
heaper experimenting with promising early results [22]. Commercial tools will stay de facto for
roduction quality designs, but open source helps the development community to freely exchange
deas and experiences. Agility can break out from the new developer communities whose members

ight not have an HW design background.

 CONCLUSIONS

his article presented the results of the literature review and the mapping study to reveal the cur-
ent state of agile SoC HW development. Twenty-five selected papers were included and analyzed
ased on accurately defined research methodology. The baseline for the mapping study was our
wn SoC development process description. It follows the conventional approach, but helped us to
nd the relevant research questions and mapping study attributes. The existing agile methods were

ntroduced, and the research methodology was described in detail for independent reconstruction.
As a summary of the results, little has been published about agile SoC HW development, but

here is increasing interest in the topic. Only the agile HW manifesto by Lee et al. [31] can be
egarded as a defined agile HW development method, but in general researchers are missing an
greed-on definition for agile HW development. Moreover, the link to agile development methods
ooted to SW development was surprisingly weak. Multiple SoC-specific development methodolo-
ies and practices were proposed to increase agility of the development, but none of them were
ovel, and we see them more as enablers toward the agile instead of the agile methods as such.
Agile development is not just a set of development or project practices, and changes in the
indset are needed to become agile to a great extent. None of the contribution provides such a

olistic view, but the agile HW manifesto includes the set of principles in addition to proposed
ools to help the situation.

To be able to address agile SoC HW development better, there should be more data available
bout the used methods across the full SoC development span, including project management
spects. The SoC HW research should also focus more on reporting methodological results, espe-
ially on large-scale projects such as amount and duration of the development iterations, resourc-
ng, and project schedule. The open source HW and the open source EDA tools could act as as
elevant source of data while it could increase transparency of the work in academic and industry.

The results give good insight to the latest advancements in agile SoC HW development. The
dentified gaps need to be addressed before the SoC development can become agile enough to
olve the design challenges in modern complex System-on-Chips. We look forward to seeing more
cientific papers reporting on SoC project calendar timelines and development efforts and details
f the development methodologies in the future.
ACM Transactions on Embedded Computing Systems, Vol. 22, No. 3, Article 44. Publication date: April 2023.

44:24 A. Rautakoura and T. Hämäläinen

A

A

A

PPENDIX

 LITERATURE REVIEW AND MAPPING STUDY DATA

Table 3. The List of Included Literature and the Summary of Mapping Study Results
for Publications P1–P12

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10

P1, [4] 2009 HW FPGA L2 3 NA Rising abstraction, Code gen.
for digital design

S Prop.

P2, [5] 2020 HW ASIC,
FPGA,
Sim

L1, L2 1–7 Agile HW

manifesto
Development platform, Open
source, Rising abstraction,
Code gen.

NA CSA,
ASIC

P3, [7] 2019 HW ASIC L1, L2 1–4 Agile HW

manifesto
Rising abstraction, Generator-
based design, Code gen.

Large CSA,
ASIC

P6, [6] 2020 HW ASIC L1, L2 1, 3, 4, 7 NA Rising abstraction, Code gen. NA CSA

P5, [8] 2020 HW ASIC,
FPGA

L1, L2 1, 3, 6 NA Development platform, Rising
abstraction, Code gen.

NA CSI,
ASIC

P6,
[11]

2021 Sys. ASIC,
FPGA

L1, L2 3, 7 NA Development platform

(ESP) [32]
Large CSM,

ASIC

P7,
[12]

2021 HW FPGA L2 3–5 Agile HW

manifesto
NA NA CSI,

FPGA

P8, 2020 HW Sim L1, L2 1, 3–5 TDD Development platform, Rising NA Prop.

[13] abstraction, Code gen.

P9,
[16]

2021 HW Sim L1, L2 1, 3, 5 Agile HW

manifesto
Rising abstraction (Chisel
verification improvement)

NA CSA

P10,
[18]

2015 SW Sim L2 1, 6, 7 TDD Rapid prototyping,
Development platform

S Prop.,
CSA

P11,
[20]

2020 HW Sim L1, L2 1, 3, 4 Agile HW

manifesto, TDD

Development platform, Rising
abstraction, Code gen., open
source tool interoperability

NA Prop.

P12,
[25]

2021 HW ASIC L1, L2 1,3 Agile HW

manifesto
NA NA CSM,

ASIC

CM Transactions on Embedded Computing Systems, Vol. 22, No. 3, Article 44. Publication date: April 2023.

Does SoC Hardware Development Become Agile by Saying So 44:25

Table 4. The List of Included Literature and the Summary of Mapping Study Results
for Publications P13-P25

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10

P13,
[29]

2016 Sys,
SW

ES, IC L2,
PM

NA SCRUM NA S and
L

CSI

P14,
[31]

2016 HW ASIC,
FPGA,
Sim

L2,
PM

1, 3–6 Agile HW

manifesto
Rising abstraction, Generator-
based design, Open
architecture, continuous and
iterative digital design

S CSA,
ASIC

P15,
[32]

2020 HW FPGA L2 3, 6, 7 NA Platform architecture, Open
source components, High-level
Synthesis, templates and code
gen.

NA CSA,
FPGA

P16,
[33]

2020 HW ASIC L1, L2 1, 3, 4 NA Multi-layer synthesis flow

from ML-models to HW

description, rising abstraction

NA CSA

P17,
[35]

2020 HW ASIC L1, L2 1, 3–5 Principles Prop.:
Be tiny, be
modular, be
friendly
(approachable)

Rising abstraction, Platform

architecture, Open source
components, Evaluating design
complexity and
approachability

NA CSA,
ASIC

[12]
P18,
[36]

2021 HW FPGA L1, L2 1, 3–5 Agile HW

manifesto
NA NA CSA,

FPGA

P19,
[39]

2021 HW ASIC L1, L2 1–5 Agile HW

manifesto
Code generation, Physical
design tool abstraction
(Hammer)

S. CSA,
ASIC

P20,
[41]

2011 HW FPGA,
Sim

L1, L2 1, 3, 6, 7 NA HW-SW co-design, Modeling,
Model transformation, Code
gen., HW emulation.

NA CSA

P21,
[42]

2020 HW Sim L1 1 NA HW-SW co-design,
Development platform,
Modeling of heterogeneous
system, LLVM compiler
architecture.

NA CSA

P22,
[43]

2019 HW FPGA,
Sim

L1, L2 1, 5, 6 NA HW-SW co-design,
python-based development
platform, Abstracting RTL Sim.

NA CSA

P23,
[44]

2014 SW ES,
Sim

PM 1, 3, 7 SCRUM, Agile
Release Train

HW-SW co-design, Sim models
of the HW.

NA Prop.

P24,
[45]

2020 HW ASIC,
FPGA,
Sim

L2 3–5 NA Development platform for
open source EDA tools,
Incremental digital design,
intermediate model for tool
coupling.

NA CSA

P25,
[46]

2020 HW ASIC L2 3–6 NA Code gen., SystemVerilog
coding guidelines, Wrapping
of ASIC technology models

NA CSI

R

EFERENCES

[1] Pekka Abrahamsson, Kieran Conboy, and Xiaofeng Wang. 2009. ‘Lots done, more to do’: The current state of agile

systems development research. 281–284.

[2] Pekka Abrahamsson, Nilay Oza, and Mikko T. Siponen. 2010. Agile software development methods: A comparative

review. In Agile Software Development . Springer, 31–59.

[3] Muhammad Ovais Ahmad. 2019. Agile methods and cyber-physical systems development-A review with preliminary

analysis. In International Conference on Big Data and Security . Springer, 274–285.
ACM Transactions on Embedded Computing Systems, Vol. 22, No. 3, Article 44. Publication date: April 2023.

44:26 A. Rautakoura and T. Hämäläinen

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

A

[4] Jacob N. Allen, Hoda S. Abdel-Aty-Zohdy, and Robert L. Ewing. 2009. Agile hardware development with rapid hard-

ware definition language. In Proceedings of the IEEE International Conference on Electro/Information Technology . IEEE,

383–388.

[5] Alon Amid, David Biancolin, Abraham Gonzalez, Daniel Grubb, Sagar Karandikar, Harrison Liew, Albert Magyar,

Howard Mao, Albert Ou, Nathan Pemberton, et al. 2020. Chipyard: Integrated design, simulation, and implementation

framework for custom SoCs. IEEE Micro 40, 4 (2020), 10–21.

[6] Rick Bahr, Clark Barrett, Nikhil Bhagdikar, Alex Carsello, Ross Daly, Caleb Donovick, David Durst, Kayvon

Fatahalian, Kathleen Feng, Pat Hanrahan, et al. 2020. Creating an agile hardware design flow. In Proceedings of the

57th ACM/IEEE Design Automation Conference (DAC’20) . IEEE, 1–6.

[7] Steven Bailey, Paul Rigge, Jaeduk Han, Richard Lin, Eric Y. Chang, Howard Mao, Zhongkai Wang, Chick Markley,

Adam M. Izraelevitz, Angie Wang, et al. 2019. A mixed-signal RISC-V signal analysis SoC generator with a 16-nm

FinFET instance. IEEE J. Solid-State Circ. 54, 10 (2019), 2786–2801.

[8] Jonathan Balkind, Ting-Jung Chang, Paul J. Jackson, Georgios Tziantzioulis, Ang Li, Fei Gao, Alexey Lavrov, Grigory

Chirkov, Jinzheng Tu, Mohammad Shahrad, et al. 2020. OpenPiton at 5: A nexus for open and agile hardware design.

IEEE Micro 40, 4 (2020), 22–31.

[9] Kent Beck, Mike Beedle, Arie Van Bennekum, Alistair Cockburn, Ward Cunningham, Martin Fowler, James Grenning,

Jim Highsmith, Andrew Hunt, Ron Jeffries, et al. 2001. The agile manifesto. https://agilemanifesto.org/ . Accessed:

2022-07-31.

10] Barry W. Boehm. 1988. A spiral model of software development and enhancement. Computer 21, 5 (1988), 61–72.

11] Pradip Bose, Augusto Vega, Sarita Adve, Vikram Adve, Sasa Misailovic, Luca Carloni, Ken Shepard, David Brooks,

Vijay Janapa Reddi, and Gu-Yeon Wei. 2021. Secure and resilient SoCs for autonomous vehicles. In Proceedings of the

3rd International Workshop on Domain Specific System Architecture (DOSSA’21) . 1–6.

12] Lucas Cordeiro, Carlos Mar, Eduardo Valentin, Fabiano Cruz, Daniel Patrick, Raimundo Barreto, and Vicente Lucena.

2008. A platform-based software design methodology for embedded control systems: An agile toolkit. In Proceedings of

the 15th Annual IEEE International Conference and Workshop on the Engineering of Computer Based Systems (ECBS’08) .

IEEE, 408–417.

13] Deeksha Dangwal, Georgios Tzimpragos, and Timothy Sherwood. 2020. Agile hardware development and instru-

mentation with PyRTL. IEEE Micro 40, 4 (2020), 76–84.

14] Surafel Demissie, Frank Keenan, Özden Özcan-Top, and Fergal McCaffery. 2018. Agile usage in embedded software

development in safety critical domain—A systematic review. In International Conference on Software Process Improve-

ment and Capability Determination . Springer, 316–326.

15] Kim Dikert, Maria Paasivaara, and Casper Lassenius. 2016. Challenges and success factors for large-scale agile trans-

formations: A systematic literature review. J. Syst. Softw. 119 (2016), 87–108.

16] Andrew Dobis, Tjark Petersen, Hans Jakob Damsgaard, Kasper Juul Hesse Rasmussen, Enrico Tolotto, Simon Thye

Andersen, Richard Lin, and Martin Schoeberl. 2021. Chiselverify: An open-source hardware verification library for

chisel and scala. In Proceedings of the IEEE Nordic Circuits and Systems Conference (NORCAS’21) . IEEE, 1–7.

17] Tore Dybå and Torgeir Dingsøyr. 2008. Empirical studies of agile software development: A systematic review. Inf.

Softw. Technol. 50, 9-10 (2008), 833–859.

18] Dominic Eschweiler and Volker Lindenstruth. 2015. Test driven development for device drivers and rapid hardware

prototyping. In Proceedings of the IEEE Eighth International Conference on Software Testing, Verification and Validation

Workshops (ICSTW’15) . IEEE, 1–9.

19] Daniel D. Gajski and Robert H. Kuhn. 1983. New VLSI tools. Computer 16, 12 (1983), 11–14.

20] Shunning Jiang, Peitian Pan, Yanghui Ou, and Christopher Batten. 2020. PyMTL3: A python framework for open-

source hardware modeling, generation, simulation, and verification. IEEE Micro 40, 4 (2020), 58–66.

21] Lizy Kurian John. 2020. Agile hardware design. IEEE Ann. Hist. Comput. 40, 04 (2020), 4–5.

22] Andrew B. Kahng and Tom Spyrou. 2021. The OpenROAD project: Unleashing hardware innovation. In Proceedings

of the Government Microcircuit Applications and Critical Technology Conference . 1–6.

23] Matti Kaisti, Ville Rantala, Tapio Mujunen, Sami Hyrynsalmi, Kaisa Könnölä, Tuomas Mäkilä, and Teijo Lehtonen.

2013. Agile methods for embedded systems development-a literature review and a mapping study. EURASIP J. Embed.

Syst. 2013, 1 (2013), 15.

24] Antti Kamppi, Esko Pekkarinen, Janne Virtanen, Joni-Matti Määttä, Juho Järvinen, Lauri Matilainen, Mikko Teuho,

and Timo D. Hämäläinen. 2017. Kactus2: A graphical EDA tool built on the IP-XACT standard. J. Open Source Softw.

2, 13 (2017), 151.

25] Sagar Karandikar, Chris Leary, Chris Kennelly, Jerry Zhao, Dinesh Parimi, Borivoje Nikolic, Krste Asanovic, and

Parthasarathy Ranganathan. 2021. A hardware accelerator for protocol buffers. In Proceedings of the 54th Annual

IEEE/ACM International Symposium on Microarchitecture (MICRO-54) . 462–478.

26] Michael Keating and Pierre Bricaud. 2002. Reuse Methodology Manual for System-on-a-Chip Designs: For System-on-

a-chip Designs . Springer Science & Business Media.
CM Transactions on Embedded Computing Systems, Vol. 22, No. 3, Article 44. Publication date: April 2023.

https://agilemanifesto.org/

Does SoC Hardware Development Become Agile by Saying So 44:27

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

R

27] Staffs Keele et al. 2007. Guidelines for Performing Systematic Literature Reviews in Software Engineering . Technical

Report. Citeseer.

28] Kurt Keutzer, A. Richard Newton, Jan M. Rabaey, and Alberto Sangiovanni-Vincentelli. 2000. System-level design:

Orthogonalization of concerns and platform-based design. IEEE Trans. Comput.-aid. Des. Integr. Circ. Syst. 19, 12 (2000),

1523–1543.

29] Kaisa Könnölä, Samuli Suomi, Tuomas Mäkilä, Tero Jokela, Ville Rantala, and Teijo Lehtonen. 2016. Agile methods

in embedded system development: Multiple-case study of three industrial cases. J. Syst. Softw. 118 (2016), 134–150.

30] Maarit Laanti, Jouni Similä, and Pekka Abrahamsson. 2013. Definitions of agile software development and agility. In

European Conference on Software Process Improvement . Springer, 247–258.

31] Yunsup Lee, Andrew Waterman, Henry Cook, Brian Zimmer, Ben Keller, Alberto Puggelli, Jaehwa Kwak, Ruzica

Jevtic, Stevo Bailey, Milovan Blagojevic, et al. 2016. An agile approach to building RISC-V microprocessors. IEEE

Micro 36, 2 (2016), 8–20.

32] Paolo Mantovani, Davide Giri, Giuseppe Di Guglielmo, Luca Piccolboni, Joseph Zuckerman, Emilio G. Cota, Michele

Petracca, Christian Pilato, and Luca P. Carloni. 2020. Agile SoC development with open ESP. In Proceedings of the

IEEE/ACM International Conference On Computer Aided Design (ICCAD’20) . IEEE, 1–9.

33] Marco Minutoli, Vito Giovanni Castellana, Cheng Tan, Joseph Manzano, Vinay Amatya, Antonino Tumeo, David

Brooks, and Gu-Yeon Wei. 2020. SODA: A new synthesis infrastructure for agile hardware design of machine learning

accelerators. In Proceedings of the IEEE/ACM International Conference On Computer Aided Design (ICCAD’20) . IEEE,

1–7.

34] Maria Paasivaara. 2017. Adopting SAFe to scale agile in a globally distributed organization. In Proceedings of the IEEE

12th International Conference on Global Software Engineering (ICGSE’17) . IEEE, 36–40.

35] Daniel Petrisko, Farzam Gilani, Mark Wyse, Dai Cheol Jung, Scott Davidson, Paul Gao, Chun Zhao, Zahra Azad,

Sadullah Canakci, Bandhav Veluri, et al. 2020. BlackParrot: An agile open-source RISC-V multicore for accelerator

SoCs. IEEE Micro 40, 4 (2020), 93–102.

36] M. L. Petrović and V. M. Milovanović. 2021. A chisel generator of parameterizable and runtime reconfigurable linear

insertion streaming sorters. In Proceedings of the IEEE 32nd International Conference on Microelectronics (MIEL’21) .

IEEE, 251–254.

37] Antti Rautakoura, Timo Hämäläinen, Ari Kulmala, Tero Lehtinen, Mehdi Duman, and Mohamed Ibrahim. 2022. Bal-

last: Implementation of a large MP-SoC on 22nm ASIC technology. In Proceedings of the 23rd Euromicro Conference

on Digital System Design (DSD’22) . IEEE, 276–283.

38] Antti Rautakoura, Matti Käyrä, Timo D. Hämäläinen, Wolfgang Ecker, Esko Pekkarinen, and Mikko Teuho. 2020.

Kamel: IP-XACT compatible intermediate meta-model for IP generation. In Proceedings of the 25th Euromicro Confer-

ence on Digital System Design (DSD’20) . IEEE, 325–331.

39] Colin Schmidt, John Wright, Zhongkai Wang, Eric Chang, Albert Ou, Woorham Bae, Sean Huang, Vladimir

Milovanović, Anita Flynn, Brian Richards, et al. 2021. An eight-core 1.44-GHz RISC-V vector processor in 16-nm

FinFET. IEEE J. Solid-State Circ. 57, 1 (2021), 140–152.

40] Julian Immanuel Schrof, Alexander Atzberger, Efthymios Papoutsis, and Kristin Paetzold. 2019. Potential of techno-

logical enablement for agile automotive product development. In Proceedings of the IEEE International Conference on

Engineering, Technology and Innovation (ICE/ITMC’19) . IEEE, 1–8.

41] John Shalf, Dan Quinlan, and Curtis Janssen. 2011. Rethinking hardware-software codesign for exascale systems.

Computer 44, 11 (2011), 22–30.

42] Tyler Sorensen, Aninda Manocha, Esin Tureci, Marcelo Orenes-Vera, Juan L. Aragón, and Margaret Martonosi. 2020. A

simulator and compiler framework for agile hardware-software co-design evaluation and exploration. In Proceedings

of the IEEE/ACM International Conference On Computer Aided Design (ICCAD’20) . IEEE, 1–9.

43] Matias Trapaglia, Ricardo Cayssials, Lorenzo De Pasquale, and Edgardo Ferro. 2019. Flexible software to hardware mi-

gration methodology for FPGA design and verification. In Proceedings of the X Southern Conference on Programmable

Logic (SPL’19) . IEEE, 39–44.

44] Stefan Wagner. 2014. Scrum for cyber-physical systems: A process proposal. In Proceedings of the 1st International

Workshop on Rapid Continuous Software Engineering . ACM, 51–56.

45] Sheng-Hong Wang, Rafael Trapani Possignolo, Haven Blake Skinner, and Jose Renau. 2020. LiveHD: A productive

live hardware development flow. IEEE Micro 40, 4 (2020), 67–75.

46] Paul N. Whatmough, Marco Donato, Glenn G. Ko, Sae Kyu Lee, David Brooks, and Gu-Yeon Wei. 2020. CHIPKIT: An

agile, reusable open-source framework for rapid test chip development. IEEE Micro 40, 4 (2020), 32–40.
eceived 19 August 2022; revised 11 November 2022; accepted 30 November 2022

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 3, Article 44. Publication date: April 2023.

	1 INTRODUCTION
	2 SOC DEVELOPMENT PROCESS
	2.1 SoC Development Methodologies

	3 AGILE DEVELOPMENT
	4 RELATED WORK
	5 RESEARCH METHOD
	5.1 Search Strategy
	5.2 Filtering
	5.3 Mapping Study and the Literature Review Attributes

	6 MAPPING STUDY
	6.1 Overview
	6.2 RQ1: What Is the SoC HW Development Process Coverage in the Agile SoC HW Development Literature?
	6.3 RQ2: What Agile Methods or Practices Are Currently Applied to SoC HW Development?
	6.4 RQ3: What Methods and Practices Are Proposed to Increase Agility of the SoC Development?
	6.5 RQ4: What Is the Impact of the Work for the SoC HW Development?
	6.6 Summary of Results

	7 THE LITERATURE REVIEW
	7.1 RQ2: What Agile Methods or Practices Are Currently Applied to SoC HW Development?
	7.2 RQ3: What Methods and Practices Are Proposed to Increase Agility of the SoC Development?

	8 SUMMARY AND DISCUSSION OF THE RESULTS
	9 CONCLUSIONS
	10 APPENDIX
	11 LITERATURE REVIEW AND MAPPING STUDY DATA
	REFERENCESendgraf

