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Does soil color a�ect �sh evolution? 
Di�erences in color change rate between 
lineages of the sail�n tetra
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Several organisms match their skin color to the prevalent background color, 
granting crypsis against predators. The rate at which body color changes occur 
varies among organisms as a result of physiological constraints and adaptation to 
variation in contrasts between objects and the environmental background. Faster 
darkening of body color is favored in environments that show higher amounts of 
contrast between common objects and the prevailing background. Soil types in 
Amazon forest streams (igarapés) create distinct environments with respect to the 
amount of contrast, a result of the amount of sand and clay, which offers different 
contrasts against dead leaves. Here, we investigated differences in the rates of 
color change among populations of the sailfin tetra (Crenuchus spilurus) that 
represent lineages that live in regions of different soil types. Populations inserted 
into blackwaters (sandy soil) showed higher rates of color darkening in response 
to exposure to a dark environment composed by dead leaves. We propose that 
natural selection stemming from predation can favor faster color change rate in 
environments where there is higher variability of contrasts between leaf litter and 
soil, which is common in most blackwater streams.
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Diversos organismos combinam sua coloração corporal com a cor de fundo 
predominante no ambiente, conferindo cripticidade contra predadores. A taxa 
na qual as mudanças de coloração corpórea ocorrem varia entre os organismos 
como resultado de restrições fisiológicas e adaptação à variação de contrastes 
entre objetos e o ambiente. O escurecimento mais rápido da cor do corpo é 
favorecido em ambientes que mostram maiores quantidades de contraste entre 
objetos comuns e o fundo predominante. Tipos de solo em igarapés da floresta 
amazônica criam ambientes distintos em relação à quantidade de contraste, 
resultado da quantidade de areia e argila, que oferece diferentes contrastes contra 
folhiço submerso. Nós investigamos as diferenças nas taxas de mudança de cor 
entre populações do tetra-colibri Crenuchus spilurus que representam linhagens 
que vivem em regiões de diferentes tipos de solo. Populações inseridas em águas 
pretas (solo arenoso) apresentaram maiores taxas de escurecimento da cor em 
resposta à exposição ao ambiente escuro de folhiço submerso. Nós propomos que 
a seleção natural decorrente da predação pode favorecer uma taxa de mudança 
de cor mais rápida em ambientes onde há maior variabilidade de contrastes entre 
o folhiço submerso e o solo, o que é comum na maioria dos igarapés de águas 
pretas.

Palavras-chave: Coloração corporal, Crenuchus spilurus, Cripticismo, Similaridade 
ao plano de fundo, Plasticidade fenotípica.

INTRODUCTION

Reversible darkening or lightening of the skin color are common to many organisms 
(Sugimoto, 2002; Leclercq et al., 2010). Such modification of body coloration can serve 
many purposes, such as in thermoregulation (Silbiger, Munguia, 2007; Munguia et al., 
2013), signaling during contests and courtship behavior (Agrawal, 2001), but is more 
commonly reported as an antipredator mechanism (Sumner, 1935a,b; Whiteley et al., 
2011).

Many fish species adjust their body color as a response to the prevalent background 
(Fingerman, 1965; Healey, 1999; Hemmi et al., 2006; Zuanon et al., 2006; Stevens, 
Merilaita, 2009; Stevens et al., 2013, 2014). Such background matching occurs through 
the expansion or retraction of melanophores, which are responsible for increasing or 
decreasing the exposure of melanin on the surface of the skin (Fugii, 2000; Logan et al., 
2006; Stuart-Fox, Moussalli, 2009).

Although a fast response of the melanophores to changes in the environment may 
represent an important advantage against predation (Fuller, Berglund, 1996), the rate at 
which the response occurs can be constrained by neural and physiological mechanisms, 
especially because fast and precise dissipation of signaling molecules from the sensory 
system to the melanophores can be complex (Tuma, Gelfand, 1999). As such, investment 
in crypsis can be costly and considered a trade-off against energy resources that could 
be allocated to other aspects of the life cycle (Carrascal et al., 2001; Kekäläinen et al., 
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2009). Therefore, the rate at which skin color changes can vary among species as a 
result of natural selection, which is expected to favor faster rates in environments that 
show greater variation in contrast between objects (e.g. plant material, rocks) and the 
predominant background (e.g. soil).

Soil types in the Amazon are highly diverse, especially due to the different degree 
of weathering observed between recent geological formations (such as the Andean 
cordillera) and older cratonic regions (Guyana and Brazilian shields) (Quesada et al., 
2011). River avulsion (i.e. abandonment of the river channel and formation of a new 
one) and aggradation (i.e. land elevation in a riverine system), in turn, may create new 
areas, which retain the previous soil type, further increasing the heterogeneity of the soil 
landscape (Räsänen et al., 1992; Hayakawa, Rossetti, 2015). As such, small Amazonian 
forest streams (locally termed igarapés) may flow on soil types that are typical of 
whitewater floodplains, such as clayey, nutrient-rich gleysols and fluvisols (Sombroek, 
1984). In contrast, streams flowing on sandy, weathered ferralsols and podsols are 
typical of blackwater environments (Klinge, 1965; Janzen, 1974). Such difference in 
soil composition and color gives distinct contrasts between typical leaf litter and the 
predominant background in each environment.

The sailfin tetra Crenuchus spilurus Günther (Characiformes: Crenuchidae) is a small 
fish (maximum 6 cm) that lives predominantly in first and second order igarapés (Pires et 
al., 2016). This species can be subdivided into two main lineages, one constrained to the 
largest blackwater environment of the world (rio Negro basin) and a second distributed 
throughout the remainder of the Amazon, termed Negro lineage and Amazonas lineage, 
respectively (Pires et al., 2018; 2019). We hypothesized that the two lineages differ in 
the rate of body color darkening, which could arise from natural selection based on the 
distinct contrasts observed in their natural habitats.

MATERIAL AND METHODS

Soil and leaf litter samples were taken from two environments where populations 
of C. spilurus from the two main lineages are found. We used a spectrometer 
(Ocean Optics, USA) and a full spectrum light source (ADA, Japan) to measure the 
reflectance of soil samples from each environment and common leaf litter (Fig. 1). 
This simple measure highlighted the greater amount of contrast between an object 
(dead leaf) and background (soil) in the sandy environment.

We sampled individuals of C. spilurus from four localities, two of which harbor 
populations from the Negro lineage (3°6’22.94”S, 59°58’42.48”W; 2°23’25.52”S, 
60°10’15.13”W), while the other two harbor populations from the Amazonas 
lineage (8°41’0.00”S, 63°51’0.00”W; 3°50’25.30”S, 73°22’51.60”W) (Fig. 2).

Fish were kept under laboratorial conditions in 60 x 40 x 20 cm (72 L) tanks, 
separated by population. Light regime was similar to the natural environment, 
with natural light provided by windows covering more than half of a laboratory 
wall. Temperature was kept at 24 ºC using air conditioners, simulating a typical 
igarapé thermic environment (Espírito-Santo et al., 2018; Pires et al., 2018). Each 
tank contained individual air pumps and filtering system. Most importantly, sand 
was used as a substrate for all stock tanks.
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Experimental set-up. We used a 60 x 20 x 20 cm tank for experimental procedures. 
We placed soaked dead leaves taken from a natural igarapé environment to form the 

FIGURE 1 | Reflectance of the types of substrates commonly found in igarapés in the Amazon forest: 

dead leaves (brown), clay (orange) and sand (yellow). The strong dissimilarity between white sand and 

dead leaves creates a higher contrast at the environment. 

FIGURE 2 | Map showing the geographical position of the four populations of Crenuchus spilurus used 

in this study. Shapes represent the two main lineages that each population represents; squares for the 

Negro lineage and circles for the Amazonas lineage. Classification of lineages follows Pires et al. (2018).
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substrate, and filled the tank with 24 l of water. The dead leaves substrate was maintained 
for all individuals tested. The tank was segmented into three sections using glass plates. 
Another glass plate was used to further subdivide the central compartment into two, 
resulting in a 10 x 20 x 20 central compartment that housed the fish during experimental 
procedures. This set-up was built to increase the chances that light reaching the fish’s 
eyes would be reflected from the leaf litter. A 40-watt incandescent light bulb was 
placed 60 cm directly above the central compartment (Figs. 3a–b).

We placed a photo camera (Nikon D90, coupled to 60 mm lenses) on a fixed tripod 
50 cm away from the experimental tank. We transferred individual fish from the stock 
tank to the central compartment of the experimental tank using a fish net. We took 
photographs of the fish every 5 seconds during 10 minutes. After that, individuals were 
measured using a digital caliper and transferred to another 72 l stock tank. All pictures 
were taken using the same custom camera configuration and saved in RAW format 
(without color processing).

Data sampling. We measured 56 fish: 28 from the Negro lineage (15 from the 
eastern population and 13 from the northern population) and 28 fish from the Amazonas 
lineage (15 fish from the westernmost population and 13 from the southern population). 
Color calibration was conducted using a standard color target (X-rite ColorChecker 
Passport) and the software Agyll Color Management System (Bergman, Beehner, 
2008). The open source software Darktable was used to convert images to BMP files 
after color calibration. We used the free software Gpick to extract five RGB values from 
the dorsal region of the fish for each picture (Stevens et al., 2007). We converted RGB 
values to the CMYK system and retained only K (black) values as a proxy for melanin 
expression (Sacchi et al., 2013; Gilby et al., 2015).

Body darkening. For each fish, we conducted linear regressions using K values as 
the dependent variable and the order in which the pictures were taken (chronologic 
sequence of image acquisition) as the independent variable. We extracted the regression 

FIGURE 3 | A. Representation of the stock tank, with sandy bottom. B. Representation of experimental tank showing the compartments, 

leaf litter bottom and light bulb. Inner panes: pictures of fish with bright coloration (in stock tank) and dark coloration (after ten minutes of 

exposure to leaf litter bottom). 
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slope (b) as a measure of color change rate. We contrasted color change rates with the 
size of the individuals and among populations using an ANCOVA and Tukey’s HSD 
post-hoc test.

Color change. We also investigated the changes in raw RGB values among 
populations and across trials. To that end, we categorized the RGB values into 
“Initial” and “Final” moments of the trials. Initial values were the average of the first 
five measurements of body color; and the last five RGB measures were classified as 
“Final”. We then conducted a two-way MANOVA to contrast RGB values against time 
(“Initial” and “Final”) and population. All statistical procedures and data preparation 
were conducted in R (R Core Team, 2019).

RESULTS

Body darkening. The rate of body darkening (b values from the linear regressions) did 
not differ among fish of different sizes (F = 0.57; P = 0.45). Also, the interaction between 
size and population was not significant (F = 0.25; P = 0.85). However, the rate of color 
change differed between populations (F = 8.95; P < 0.001). Tukey’s HSD test indicated 
that both populations from the Negro lineage had similar color change rates (P = 0.98). 
Likewise, the two populations from the Amazonas lineage showed similar responses to 
exposure to the darker environment (P = 0.96). Significant differences were observed 
for all comparisons between populations of different lineages (Tab. 1, Fig. 4). The rate 
of color change in the Negro lineage was, in average, 65% faster than the Amazonas 
lineage.

Color change. For all populations, values of Red, Green and Blue differed when 
comparing initial and final values (Tab. 2, Fig. 5). Changes in blue color were 
comparatively lower and did not differ among populations, as observed by the 
interaction term (Fig. 5, Tab. 2). Interestingly, the initial RGB values (Fig. 5 “Initial”) 
indicate that individuals from the Amazonas lineages showed lighter body coloration 
when maintained during a large period of time to a bright environment (sand).

Lineage comparison Difference Lower Upper P

Negro 1 – Negro 2 6.37-5 -4.42-4 5.70-4 0.987

Amazonas 1 – Negro 2 -6.14-4 -1.12-3 -1.07-4 0.011

Amazonas 2 – Negro 2 -7.06-4 -1.19-3 -2.18-4 0.001

Amazonas 1 – Negro 1 -6.77-4 -1.20-3 -1.53-4 0.006

Amazonas 2 – Negro 1 -7.70-4 -1.27-3 -2.63-4 0.001

Amazonas 1 – Amazonas 2 -9.21-5 -5.98-4 4.14-4 0.962

TABLE 1 | Results of Tukey’s HSD test showing all between-population comparisons of color change 

rate (N=56).

http://scielo.br/ni
http://sbi.bio.br/ni


Kalebe S. Pinto, Tiago H. S. Pires, Gabriel Stefanelli-Silva, Bruno S. Barros, Elio A. Borghezan and Jansen Zuanon

Neotropical Ichthyology, 18(2): e190093, 2020 7/13scielo.br/ni | sbi.bio.br/ni

DISCUSSION

When exposed to a darker environment, populations of the same lineage showed similar 
rates of body darkening. By contrast, individuals from the two populations of the 
Negro lineage showed faster rate of color change when compared to individuals from 
populations of the Amazonas lineage. As such, populations of the lineage that occurs in 
igarapés of sandy bottom (Negro lineage) showed faster rates of body color darkening 
when compared to populations that live in environments with a predominance of 

FIGURE 4 | Mean and SE representing color change rates for each population of Crenuchus spilurus. 

Colors represent populations as in Fig. 1. Black and grey bars represent populations of the Negro 

lineage, red and brown bars represent populations of the Amazonas lineage. Letters represent 

groupings observed in Tukey’s HSD test.

Color Source DF F P

Red

Time 1 86.99 < 0.001

Population 3 57.61 < 0.001

Time x Population 3 3.34 0.022

Green

Time 1 94.32 < 0.001

Population 3 45.26 < 0.001

Time x Population 3 3.45 0.019

Blue

Time 1 43.11 < 0.001

Population 3 0.58 0.628

Time x Population 3 0.31 0.816

TABLE 2 | Significance values of univariate two-way tests from the MANOVA investigating differences 

in RGB colors among populations and during initial and final periods of the experiment. Multivariate 

(Pillai’s trace) statistics for the interaction term between time and population: F = 3.24; P < 0.001.
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FIGURE 5 | Raw values of RBG; A. Red, B. Green and C. Blue measurements of Crenuchus spilurus 

body color during the beginning (Initial) and end (Final) periods of the trials. Black and grey boxes 

represent populations from the Negro lineage; red and brown represent populations from the 

Amazonas lineage. 
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clayey soil. Since sandy bottoms provide a higher contrast against leaf litter, one of the 
most common objects found underwater in igarapés, we suggest that natural selection 
stemming from predation pressure favored a faster response of color change in the 
Negro lineage.

Color pattern can indicate adaptation to the habitats they live in (Macedonia, 2001; 
Macedonia et al., 2003; Rosenblum, 2005; Robertson, Rosenblum, 2009). During 
observations in captivity, we noticed a higher amount of individuals with dark 
coloration in Negro lineage stock tanks. We conjectured that individuals of C. spilurus 
belonging to the Negro lineage would show higher rates of body darkening, which 
could potentially represent adaptations to the distinct environments they inhabit.

We used soil samples from locations where the two lineages occur, measured their 
reflectance to illustrate differences in soil color between these regions and represented 
the differences in contrast between the soil and typical leaf litter in a spectrogram (Fig. 
1). Based on the macroregional study conducted by Quesada et al. (2011), the locations 
where the studied populations occur can be characterized by distinct soil types: ferralsols 
for the populations marked in black and grey in Fig. 2, gleysols for the southernmost 
population (in red) and fluvisols for the westernmost population (in brown). Ferralsols 
are profoundly weathered and can accumulate high amounts of organic matter 
(Konhauser et al., 1994; Quesada et al., 2011), whereas gleysols and fluvisols are found in 
alluvial regions whose soils are typically of higher fertility (Sanchez, 1977; Quesada et al., 
2011). The white sand of rio Negro igarapés is usually transported from eroded ancient 
aeolian or alluvial sandstones (Hardon, 1936; Janzen, 1974), whereas the clayey soil 
found in locations of the Amazonas lineage are alluvial deposits from recent geological 
formations such as the Andean cordillera (Sombroek, 1984).

Body darkening or lightening due to variation in the background has long been 
quantified (e.g. Brown, Sandeen 1948) and the underlying biochemical mechanisms are 
relatively well understood (Fugii, 2000; Ligon, Mccartney, 2016). Color darkening is 
derived from the coordinated transport of melanin from the cell center outward, which 
can be costly in fishes, as it requires both neural and hormonal control (Sugimoto, 2002; 
Sköld et al., 2013).

The eyes usually mediate the response of chromatophores to variation in the prevailing 
background color (Parker et al., 1935; Chiao et al., 2015). In dark substrates such as 
leaf litter, light reaching the retina is mostly provided by direct transmission from the 
above light source, whereas in light substrates (e.g. white sand), both direct light and 
reflected light from the bottom reach the eyes and retina. In addition, C. spilurus has 
paired foramina on the top of the head whose openings lead to an organ that has been 
termed “frontal organ” (Géry, 1963). While the precise function of this organ remains 
ambiguous, a histological study suggests that the organ is most likely light-sensitive 
(Bossy et al., 1965), similar to a pineal gland. Since the pineal gland controls color 
change in many organisms (Gern et al., 1992; Bertolesi, McFarlane, 2018), the observed 
differences in rate of color change potentially represent differences in sensitivity of the 
frontal organ between lineages.

Although color-darkening rates were similar between populations of the same 
lineage, the initial and final body color (RGB values) were different among populations 
(Fig. 5, Tab. 2). Individuals of the population closest to the main channel of the rio 
Negro (black square in Fig. 2) showed a darker initial and final body color, which was 
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highly influenced by red and green values (Fig. 5). As such, the ability to maintain 
distinct body colors might represent adaptation to local conditions, rather than a 
regional characteristic related to water color.

In previous studies, we suggested that the two main lineages of C. spilurus differ in their 
ornament coloration and eye size (Pires et al., 2019), as well as in their osmoregulatory 
requirements for reproduction (Pires et al., 2018). We attributed such differences to the 
lighting (color bias and backscatter) and hydrochemical conditions provided by black 
and clearwater igarapés. In this study, however, we find it unlikely that water color 
could represent, per se, a source of natural selection shaping differences in rates of color 
change. Since the classification of water types is a result of differences in soil (Janzen, 
1974; Sioli, 1984), we find it more parsimonious to attribute the observed differences to 
differences in the contrast between soil color and leaf litter.

Although background matching most likely represents adaptation in response to 
predation pressure, body darkening in C. spilurus is also observed during communication 
among individuals. As such, the reported difference in the rate of color change suggests 
that communication through color change might differ between lineages. As such, 
communication between individuals of distinct lineages might be impaired, which can 
contribute to reproductive isolation. Further studies are needed to assess whether such 
variation in visual communication constitutes a relevant component of speciation.
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