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Does teaching students how to explicitly model the causal structure of 

systems improve their understanding of these systems? 

If students really understand the systems they study, they would be able to tell 

how changes in the system would affect a result. This demands that the students 

understand the mechanisms that drive its behaviour. The study investigates 

potential merits of learning how to explicitly model the causal structure of 

systems. The approach and performance of 15 system dynamics students, who 

are taught to explicitly model the causal structure of the systems they study, was 

compared with the approach and performance of 22 engineering students, who do 

generally not receive such training. The task was to bring a computer simulated 

predator-and-prey ecology to equilibrium. The system dynamics students were 

significantly more likely than the engineering students to correctly frame the 

problem. They were not much better at solving the task, however. It seemed that 

they had only learnt how to make models and not how to use them for reasoning. 

Keywords: engineering education research; modelling; external representations, 

dynamic systems, qualitative reasoning 

 

Introduction 

 The literature on modelling tends to focus on the quantitative model that results 

when the laws of physics have been applied and relevant measurements made. The goal 

of the modelling process is a model that lends itself to mathematical treatment (e.g., 

Lesh & Doerr, 2003; Redish & Smith, 2008). The underlying qualitative model appears 

to be seen as self-evident and/or implicit in the quantitative model. True as this may be, 

we cannot be certain that it is evident to the students.  

When the mathematical model has been manipulated and transformed, and a 

result calculated, the result has to be given meaning (Bissel & Dillon, 2000; Kehler & 

Lester, 2003; Redish & Smith, 2008). The students need to understand why a result is as 

it is. In other words, they have to be able to interpret their results. Furthermore, if they 
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really understand the system under study they would be able to tell changes in the 

system would affect a result. This demands that the students understand the qualitative 

structure of the system, i.e., the mechanisms that drive its behaviour.  

The aim of this study is to investigate the potential merits of training students in 

how to explicitly model the qualitative, or causal, structure of the systems they study. 

Do students who receive such training understand the systems they study better than 

students who do not? It might be the case that students spontaneously model the causal 

structure when the need arises, or that it is sufficient that the causal structure is implicit 

in the mathematical models of the systems that the students create. In either case, there 

would be little to gain from efforts to teach qualitative modelling, or explicit modelling 

of causal structure. The results from this study suggest, however, that there might be. 

Background 

Since 2001, the assessments of engineering programs in the United States by the 

Accreditation Board for Engineering and Technology (ABET), focus on results (what 

the graduates are able to do) rather than, as earlier, what topics they are taught. There 

are eleven criteria for student outcomes that are to be met by all engineering programs 

(General Criteria 3 a-k, the Engineering Criteria 2000). (Accreditation Board for 

Engineering and Technology [ABET], 2011).  

Passow (2007) reports a meta-analysis of ten studies, published 1992 through 

2007, of ratings made by alumni, faculty, and practicing engineers on the importance of 

various competencies to professional practice. She matches competencies reported in 

these studies to the ABET competencies, to investigate which of the ABET 

competencies that the respondents considered most important. Alumni, faculty and 

practicing engineers held fairly similar views on the relative importance of the ABET 
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competencies, and they considered e) problem solving and g) communication skills to 

be the most important competencies for successful professional practice.  

The ABET competencies are fairly broadly stated, which make them difficult to 

operationalise and assess. Besterfield-Sacre et al. (2000) suggest more detailed 

definitions of the outcome criteria, based on how the competencies are described in the 

literature, interviews with engineering faculty and industry practitioners, as well as their 

collective experience as researchers. Besterfield-Sacre et al. (2000) found that the 

problem solving competency (ABET criterion 3e consists of several components: 

problem or opportunity identification, problem statement and system definition, 

problem formulation and abstraction, information and data collection, model translation, 

validation, experimental design, solution development or experimentation, 

interpretation of results, implementation, documentation, feedback and improvement. 

The components of the communication competency (ABET criterion 3g) were found to 

be: writing, speaking, graphical presentation, and communication by electronic media 

(Besterfield-Sacre, et al., 2000). These descriptions of problem solving and 

communication skills correspond to the abilities mapped onto these ABET 

competencies by Passow (2007) in her meta-analysis. 

The role of qualitative modelling in problem solving 

The attributes defined by Besterfield-Sacre et al. (2000) for the problem solving element 

“problem statements and system definition” include: (a) describes the engineering 

problem to be solved; (b) visualizes the problem through sketch or diagram; (c) outlines 

problem variables, constraints, resources, and information given to construct a problem 

statement; and (d) appraises the problem statement for objectivity, completeness, 

relevance, and validity (Besterfield-Sacre, et al., 2000; Felder & Brent, 2003). This can 
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also be seen as the initial step, or steps, of a modelling process (e.g., Brogan, 1991; 

Lesh & Doerr, 2003).  

Consider a baby door bouncer. The baby is put in a harness that is attached 

to a door frame with a clamp. The baby is hanging vertically in the harness and a 

spring inserted between the clamp and the harness allows the baby to bounce up and 

down. Let us assume that the proper designs of the harness and the clamp are dealt 

with by other people. Our task is to deal with the bouncing aspect of the baby door 

bouncer. We have now defined our problem and the system boundary. So, how can 

we model the relevant parts of the system in a way that will help us solve this 

problem? 

I will start by creating a qualitative model. I use the term qualitative model 

to refer to any representation that illustrates the principal workings of a system. 

Qualitative models are used to illustrate the mechanics (or mechanisms) of a 

system, and may assist reasoning about the system.  

Our task is to make sure that the baby doesn’t bump into the floor, but that it 

still is close enough to the floor to be able to kick off and get the bouncing started. 

The bouncing should be enjoyable for the kid. Most children would probably not 

enjoy being shaken about by the spring, but they would also most likely get bored 

with very slow bouncing.  
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Figure 1. A qualitative model of the baby door bouncer problem. 

The sketch in Figure 1 is one example of a qualitative model. It includes 

only the components of the baby bouncer system that I have deemed relevant to the 

task. The sketch, or qualitative model, also presents how the components are 

connected, and may assist reasoning about the causal structure. How do the 

different components affect the solution of the task? 

The traditional textbook problem 

In traditional textbook problems, much of the problem statement and system 

definition is already done. The system boundary is generally defined, and the important 

system elements identified. The students need not trouble themselves with this part of 

the engineering process. In the typical engineering classroom (Rugarcia et al., 2000), 

the professor may refer to (qualitative) models of the system structure when describing 

how the formulas used to solve problem within the actual domain are derived. The 

problems the students are assigned can, however, often be solved by simply the copying 
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a procedure demonstrated by the professor in class. The students are then following a 

recipe rather than analyzing the problem. This relieves the students of the effort to 

actually reflect on what they are doing. For problems that only require that the students 

solve a formula for some variable from given values of other variables, the students do 

not need to reflect much on what the problem is about. They may simply search for a 

formula or a combination of formulae, which will allow them to calculate the variable 

asked for, do the math, and check that the answer is given in the correct units. If this is 

all that is required, it is quite possible to produce the correct answer with very little 

understanding of what has actually been calculated. This was, at least, my personal 

experience as an engineering student in the mid-eighties.  

 A traditional textbook version of the baby bouncer problem would probably 

to look something like this: 

A baby is playing in a baby door bouncer. The baby weighs 10 kg. 

a) What spring stiffness is required for an oscillation of 2 Hz?  

b) If the resting position of the bouncer with the child in it is 25 cm above the 

floor, what will the distance from the floor be once the child is removed? 

Problem a) is solved by treating the bouncing baby as a one-dimensional simple 

harmonic oscillation. The differential equation describing such a system is obtained, 

by applying Newton’s second law and Hooke’s law.
1
 Problem b) is solved by 

                                                 

1
 The differential equation is 

𝑑2𝑥

𝑑𝑡2
= −(

𝑘

𝑚
) 𝑥, where x is the displacement from the equilibrium. 

The solution is x(t) = Acos(ωt – φ), where A is the amplitude, ω = √
𝑘

𝑚
, and φ is the phase. 

This means that 𝑘 = (2𝜋𝑓)2𝑚. The answer to a) is 1.6 kN/m, and the answer to b) is 31.2 

cm. 



7 

 

applying Hooke’s law and calculating the extension of the spring when it is 

opposing the gravitational force on the child (and adding 25 cm).  

 Hooke’s law, and how to derive and solve the differential equation 

describing the simple harmonic oscillation, is likely to be demonstrated by a teacher 

in class. This means that the problems can be solved by finding the appropriate 

formulae, remembering the appropriate procedure, and do the math. Questions like 

“What would happen if a heavier child was put in the harness?” are rarely asked. 

This would not even be a good question to ask if we wanted to assess the students’ 

ability to reflect upon the system. They could just put in a larger number, redo the 

calculations, and report the results. A better question to ask would be “What 

adjustments might be required if a heavier child was to be put in the bouncer?”  

In traditional laboratory exercises, as described by Felder and Brent (2003), 

the students work through a series of fairly rigidly prescribed experiments in which 

they follow instructions on equipment operation, collect the prescribed data, and 

perform the prescribed data analyses. The students are rarely asked to make any 

meaningful interpretation of the results they have reported (Felder & Brent, 2003). 

Qualitative models and communication 

Engineers need to be able to explain their work, not only to colleagues, but also to 

other team members when working in multidisciplinary teams, to managers, to 

clients, as well as to the general public (Rugarcia, Felder, Woods, & Stice, 2000; 

Martin, Maytham, Case, & Fraser, 2005). This entails presenting identified 

problems and suggested or implemented solutions in a way that is readily grasped 

by the intended audience. Regardless of the means of presentation, spoken words or 

written text, it is the qualitative model that ought to serve as the basis for 

explanation. The qualitative model contains the system elements central to the 
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problem, and their interactions. Explaining the engineering problem solving 

requires communicating the qualitative model and how the solution works within 

this model. If it is possible to present the model graphically, this would most likely 

facilitate communication. A well-done sketch can explain a lot (Larkin & Simon, 

1987).  

Student outcomes 

Safoutin et al. (2000) identified 13 components of the ABET criterion 3c: an ability 

to design a system, component, or process to meet desired needs within realistic 

constraints (ABET, 2011). The components were: need recognition, problem 

definition, planning, information gathering, idea generation, modelling, evaluation, 

feasibility analysis, selection, implementation, documentation, communication, and 

iteration (Safoutin et al., 2000). There is a substantial overlap with the components 

of problem solving identified by Besterfield- Sacre et al. (2000), discussed earlier. 

Safoutin et al. (2000) designed a freshman design course for engineering students 

based on the identified components of designing ability. After the course both the 

students and the instructor completed a survey addressing the students’ performance 

on the 13 components. The students assessed their own personal skills, and the 

instructor reported his (or her) assessment of the students’ skills. The means of the 

students’ responses were almost the same for all the components, around 4 (very 

good) on a five-step Likert-scale from 1 = poor to 5 = excellent. The instructor 

expressed less confidence in the students’ modelling skills (assessed as 2 = fair) and 

iteration skills (about 2.7) (Safoutin et al., 2000). 

According to Felder and Brent (2003), problem-based learning and 

cooperative learning are two instructional approaches that if combined may address 

all the ABET Criterion 3 outcomes. This approach to teaching strives to present the 
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students with realistic problems, as similar as possible to the problems the students 

will encounter as practicing engineers. This means that the students have to do more 

in the way of stating the problem, defining the system and collect relevant 

information. When the students do this and work on solving the problem 

collectively in a group, they will have to explain their reasoning to each other, and 

argue their favoured solutions (Dym, 2004; Rugarcia et al., 2000; Zawojewski, 

Difes-Dux & Bowman, 2008). 

Structural engineers, studied by Gainsburg (2006, 2007), employ a wide variety 

of models, ranging from concrete and literal depictions of structures or elements to 

abstract and fragmented representations of structural behaviour. The engineers meet 

with two kinds of major challenges in their modelling activity: to understand the 

phenomenon to be modelled and to keep track of the solution process. The engineers 

use descriptive models, drawings and sketches, to assist their reasoning about the 

structural behaviour of the parts of the building, both in their mathematical modelling 

process and when making sense of the results from performed calculations (Gainsburg, 

2006).  

The present study 

In courses on system dynamics, the students learn to draw simple diagrams to 

sort out the causal structure of a system. Figure 2 shows what such a diagram would 

look like for the baby bouncer task. It could be viewed as a way to depict common 

sense reasoning. 
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Figure 2. The causal structure of the baby bouncer system. 

I assume it to be common knowledge that pulling on a spring by, for 

example, hanging a child in a harness from it will cause the spring to stretch; the 

stronger the spring the less stretching, i.e. the child will find itself further from the 

floor. A plus sign means that there is a positive correlation, and minus signs that it 

is negative. A strong spring will make the oscillations small and fast, and a weak 

spring will make the swinging large and slow. So, with common knowledge and 

common sense reasoning you may reach the conclusion that to solve the task you 

need to first try find a spring that gives the child a nice oscillation. Try a weaker 

spring if you want a slower and wider swing and a stronger one if you want a 

smaller and faster swing. Then adjust the wire so that the child is positioned at an 

appropriate distance from the floor. This covers the left-hand part of Figure 2. The 

right-hand part of Figure 2 addresses the question of how the weight of the child 

affects the system.  

This is another kind of qualitative model of the baby bouncer than the one 

presented in Figure 1. While Figure 1 aids reasoning about the causal structure, 

Figure 2 explicitly depicts the causal structure, and only that. What kind of 
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qualitative model that is most helpful depends on the problem. It is also possible to 

use several models to inspect the problem from different angles.  

A point I wish to make here is that the task can be solved by qualitative 

reasoning alone. It requires some systematic trial-and-error, however, based on the 

qualitative model. The qualitative model may be explicitly presented, as in Figure 1 

and Figure 2, but it can also be kept internal, i.e. as a mental model.  

 A qualitative model informs the creation of a quantitative or mathematical 

model. The qualitative model may be created explicitly, as an intermediate step, or exist 

only as a mental model and that is implicitly present in the resulting mathematical 

model. 

 The present study addresses the question if it is important that students are 

taught how to create explicit models of the qualitative structure for their understanding 

of the systems they study.  

The performance of system dynamics students, who receive explicit and 

extensive training in qualitative modelling, was compared with the performance of 

regular engineering students, who receive considerably less such training, in a task that 

tests system understanding. 

The task 

I needed a task that required attending to the qualitative aspects, i.e. the causal 

structure, of the system. I also wanted a task that provided opportunity for reflection. If 

things did not turn out as expected, the participants should be allowed to reflect on the 

result and have another try (or several as was the actual case). I expected this to 

encourage qualitative reasoning, if this would not be immediately applied. I also wanted 

a task that would be possible to solve by qualitative reasoning alone. 
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The task selected for this study, was to bring is a computer-simulated predator-

and-prey system to equilibrium, where the predators are foxes feeding on rabbits, their 

prey. The task instructions can be found in the Method section. 

In one way, the task looks much like a typical word problem, frequently 

encountered by engineering students. The system boundary, the important variables and 

their relations are already identified, i.e. the qualitative model is implicit in this system 

description.  

What was expected to be unfamiliar to the engineering students was that the task 

requires that the provided information is used to control the system, and not only to 

report the results of some calculations. This means that the participants need to 

understand how the system works. As mentioned in the Introduction, this is important 

both to the ability to solve problems in the system in question, and to the ability to 

communicate with others about it.  

As may be inferred, system dynamics students study dynamic systems. Dynamic 

systems are generally represented mathematically by differential equations. System 

dynamics students are not taught how to solve differential equations, however. They 

model the causal structure of the system, and use computer software to run simulations 

of these models. This requires that quantities are provided, but the computer does the 

math. This allows system dynamics students to examine, in the computer simulated 

model, how various changes in the system affects system behaviour.  

This means that the rabbits-and-foxes task is also fairly similar to what system 

dynamics students might encounter, but a typical assignment would have required that 

they created a model from the information in the task instruction that would enable a 

computer simulation of the system. In this case, the simulation has already been created 
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for them. They were expected to be familiar with the task of using their understanding 

of the system’s structure to bring the system to a desired state. 

Engineering students learn the principles of how to calculate the behaviour of 

dynamic systems in courses on differential equations. In control theory courses, the 

students learn how dynamic systems can be steered. They study what properties are 

required of a controlling device to achieve the desired control of a dynamic system.  

For this study I recruited master’s degree students in system dynamics and 

master’s degree students in engineering. The engineering students were in their third 

year of study or later, and who had taken at least one course in control theory. They are 

required to take courses in differential equations prior to courses in control theory, so 

they had studied differential equations as well.  

Possible approaches to the task 

The task does not require modelling in the sense of indentifying the important 

structures and how they are related in a real-life system. The world to consider is the 

simulation, no more and no less, and the qualitative model is given implicitly in the task 

instructions. What the task demands is the extraction of the qualitative model from the 

information in the task instructions, and productive reasoning based on this model.  

There are four possible approaches to the task: 

1. The participant creates an explicit qualitative model of the task, and 

continues by creating a mathematical model. 

2. The participant creates an explicit qualitative model of the task, but does not 

create a mathematical model. 

3. The participant creates a mathematical model directly. 

4. The participant does not model the problem explicitly at all. 
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The engineering students could approach the task as a differential equations 

problem, which would be a purely mathematical approach (3). They could also 

approach it as a control theoretical problem, and explicitly model the causal structure (2, 

or 1 if they continue by creating a mathematical model). The system dynamics students 

were expected to apply a system dynamics approach (2, or 1 if they continue by creating 

a mathematical model). These approaches are described in more detail below. 

The system dynamics students were expected to be more likely to create explicit 

qualitative models than the engineering students. 

 If participants who create explicit qualitative models outperform participants 

who do not create qualitative models, it would suggest that teaching such skills might be 

worthwhile.  

A differential equations approach 

This is the approach I expected of the engineering students. Population dynamics and 

predator-prey interactions tend to be among the examples in courses on differential 

equations (e.g., Boyce & DiPrima, 1997). They are then modelled mathematically 

directly, with the qualitative model implicit in the mathematical model, as it is implicit 

in the four sentences describing the rabbits-and-foxes system above. 

There are two populations that may vary over time, a population of rabbits )(tR

and a population of foxes )(tF . The rate of change for each population is the birth rate 

minus the death rate. The differential equations that describe the fluctuations in the 

number of members in the animal populations look like this: 

)()(04.0)(2
)(

tFtRtR
dt

tdR
  

)(2.0
180

)()(04.0)(
tF

tFtR

dt

tdF



  
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The information in the four sentences can be directly translated into the differential 

equations. These are the classic Lotka-Volterra equations (Boyce & DiPrima, 1997; 

Lotka, 1925; Volterra, 1926). The engineering students may recognize them from their 

course in differential equations.  

For this task, the students do not have to solve the equations, they are only 

required to find the equilibrium solution, and to perform some qualitative reasoning. 

Calculating the equilibrium solution is the first step in the process of solving differential 

equations, so this step ought to be familiar to the engineering students.  

When a population is in equilibrium, the number of births is equal to the number 

of deaths, and the rate of change is zero.  

If ,0
)(


dt

tdR
 the rabbits can be eliminated from the equation and the number of 

foxes when the rabbit population is in equilibrium can be found: .50
04.0

2
F In turn, 

if ,0
)(


dt

tdF
the foxes can be eliminated from the equation and the number of rabbits 

when the fox population is in equilibrium can be found: .900
04.0

1802.0



R

 

So, when the system of rabbits and foxes is in equilibrium, there will be 50 foxes 

and 900 rabbits. Now remains the task to bring it there. 

Courses on differential equations generally teach the students how to inspect the 

qualitative behaviour of dynamic systems (e.g., Boyce & Di Prima, 1997). The students 

learn to draw so-called direction field diagrams. Figure 3 shows a simple direction field 

diagram of the rabbits and foxes system. If we return to the differential equations 

describing the rates of changes in the two animal populations, we can see that if the 

number of foxes is smaller than 50 the rabbit population will increase, and if the foxes 
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are more than 50 the rabbit population will decrease. Conversely, if the rabbits are more 

than 900 the fox population will increase, and if the rabbits are fewer than 900 the 

number of foxes will decrease.  

 

Figure 3. A simple direction field diagram illustrating the qualitative behaviour of the 

rabbits-and-foxes system.   

The students may adjust the fox population to a number larger than 50 if the 

rabbits are more than 900 and to a number below 50 if the rabbits are fewer than 900, 

and keep on doing this until the number of rabbits is exactly 900. Then they can set the 

number of foxes to 50, and the task will be completed. 

A control theoretical approach 

Control theory is not ideally suited to this task. I include it here because it is how 

the steering of dynamic systems is approached in engineering programs. It is also 

interesting to compare it with the system dynamics approach. When introduced to 

control theory, the students are taught how to model the qualitative structure of 
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systems with block diagrams (Figure 4). The basic block diagram depicts the 

adjustment of one output variable produced by some system. In feedback control, 

the output is registered by some sensor and compared to the desired output, the 

reference. The difference (reference - output) is the input to the controller that 

adjusts the input to the system so that it will bring about the desired adjustment of 

the output (Franklin, Powell, & Emami-Naeini, 2010). 

 

Figure 4. A basic block diagram. 

The properties of each of the system’s components are described by Laplace 

transforms. The Laplace transforms of the components can be fused into one 

expression that describes their combined behaviour, a transfer function that 

describes the input-output relation of the complete system. The transfer function is 

used to find the properties required of a controller output (Franklin et al., 2010). 

This lumping together of the system’s components means that control engineering 

students run the risk of losing sight of the system they are striving to control (Kheir 

et al., 1996). 

A block diagram models a system with one input and one output, while the 

rabbits and foxes task demands the control of two outputs. The block diagram 
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model can however be used to analyze how the two animal populations may be 

controlled. It is easiest to first consider one population at a time. 

The desired output of the rabbit system is a constant rabbit population. If the 

equilibrium population that will keep the fox population constant (900) is known, 

this will be the desired output, the reference. Otherwise the desired output is a 

constant rabbit population, and hence that the output remains the same. The sensors 

will be the participants own eyes in this case, and they will control the simulation 

manually. What the participants is allowed to do is adjust the fox population. This 

will affect the rabbit population. The rabbits make new rabbits and the foxes eat the 

rabbits (Figure 5). 

 

Figure 5. A block diagram of the control of the rabbit population. 

The desired output of the fox system is a constant fox population. If the 

equilibrium population that will keep the rabbit population constant (50) is known, 

this will be the desired output, the reference. Otherwise the desired output is a 

constant fox population, and hence that the output remains the same. Still, what the 

participants can do is to adjust the fox population. The tricky thing is to understand 

that even if the number of foxes can be set to any number, once the simulation 
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continues it is the number of rabbits that determine the behaviour of the fox 

population. Foxes die and how many new foxes are born depends on how many 

rabbits there are for the foxes to eat. So, the adjustment of the fox population will 

affect the rabbit population, as observed above, and this will, in turn, affect the fox 

population (Figure 6). 

 

Figure 6. A block diagram of the control of the fox population. 

The two block diagrams may be combined as in Figure 7 to illustrate the 

total system with the two population sub systems, but I would not expect the 

engineering students to do this. They might, however, use the kind of reasoning 

illustrated above, and analyze one population system at a time. 
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Figure 7. A block diagram of the rabbits-and-foxes task. 

A system dynamics approach 

The aim of system dynamics is similar to that of control theory, in that it is to control 

dynamic systems. Control theory focuses primarily on technical systems and automatic 

controlling devices as the means to control these systems. System dynamics, on the 

other hand, focuses on how to manipulate variables in the system in order to bring about 

the desired output. The systems under study are social, economical or ecological rather 

than technological. The goal is not to construct automatic controllers for these systems, 

but to find out how to control them “manually”, i.e., what decisions to make or policies 

to implement (e.g., Sterman, 2000).  

In system dynamics, the qualitative causal structure of the system is actually 

modelled. System dynamics modelling rests on a kind of tank metaphor (Forrester, 

1961; Sterman, 2000). So-called stocks (or levels) represent resources (the variables, 

such as water in bathtubs). Flows in and out through pipes attached to the containers 
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(stocks) represent changes in the variables. Valves that regulate the flows in the pipes 

model the rates of change (the sizes of the flows). Thus, the basic element is a stock 

with one inflow and one outflow, like a bathtub with water entering through the faucet 

and leaving though the drain (Figure 8).  

 

Figure 8. The basic building block of system dynamics modelling – a stock with an 

inflow and an outflow. 

The basic stock-flow element is rather similar to a block in the block diagram. In 

system dynamics the elements representing the different variables are kept separate, 

however, and are not lumped together as they are in the control theoretical approach. 

The stock-flow model of the system will therefore depict the qualitative structure of the 

system, as expressed by this stock-flow, or tank, metaphor. The central variables (the 

stocks) and their interactions (the flows between them) are all represented in the stock-

flow diagram.  

System dynamics students also learn to draw causal loop diagrams as an initial 

step to sort out the causal structure of the system under study, as mentioned earlier. A 

causal loop diagram of the rabbits and foxes system is presented in Figure 9. The rabbits 

produce new rabbits, and the newborn rabbits add to the rabbit population. This loop 

causes the rabbits to increase. The foxes eat the rabbits, and the more rabbits there are to 

eat the more rabbits will be eaten, and this will cause the rabbit population to decrease. 

The foxes produce new foxes in proportion to how many rabbits they eat. The more 

foxes there are to eat the rabbits the more rabbits will be eaten. Finally, the death of 

foxes causes the fox population to decrease. 
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Figure 9. A causal loop diagram of the rabbits-and-foxes system. 

This causal structure can also be found in the stock-flow diagram of the rabbits 

and foxes system. System dynamics students are taught how to identify the qualitative 

causal structure of the causal loop diagrams in the stock-flow diagrams. 

 

Figure 10. The stock-flow model of the rabbits-and-foxes system. 

The central variables, the stocks, are the rabbit population and the fox 

population. The births and deaths are the inflows and outflows of the two stocks. 

Arrows are drawn to describe how the stocks and flows are affected by other stocks and 
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flows, for example that the inflow of newborn rabbits depends on the existing number 

of rabbits. This is what maintains the structure of the causal loop diagram (Figure 10).  

The final stock-flow model is a mathematical model of the system insofar that 

the inflows and outflows of the stocks are described mathematically. These descriptions 

are connected to the valves regulating the flows in the pipes connected to the container 

(the stock). Newborn rabbits, for example, will be produced at a rate of two new rabbits 

per rabbit and year (Figure 10).  

The systems studied by system dynamicists may have multiple inputs and 

multiple outputs. No calculations to find the behaviour of the system are required. 

Stock-flow diagrams are modelled with computer software, and the software runs 

simulations of the models. The behaviour of the variables in the simulated system is 

presented in line graphs, or time graphs, that show how the modelled variables change 

with time. 

System dynamics students are expected to inspect the output and their models 

and figure out how to adjust variables in the model to bring about the desired output. 

They may try out their ideas in simulation runs of the model. Their background 

therefore seems ideally suited to the task presented in this study. 

Since inflows and outflows are modelled separately in stock-flow diagrams, this 

may facilitate the conclusion that in order to maintain constant levels, or rabbit and fox 

populations, the inflows, or births, should be equal to the outflows, the deaths. I 

expected the system dynamics students to construct the stock-flow model in Figure 10, 

and then perform the following calculations:  

Newborn rabbits = Rabbits caught by foxes 

FRR  04.02   50
04.0

2
F  

Newborn foxes = Dead foxes 
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F
FR




2.0
180

04.0
  900

04.0

1802.0



R  

Now, they have the equilibrium populations, and, as mentioned above, there only 

remains the rather easy task of bringing the system there. Their understanding of the 

causal structure should help them with this. 

Method 

Participants 

The engineering students were 22 students at the Royal Institute of Technology in 

Stockholm, Sweden, seventeen male and five female. Their mean age was 25 years, 

ranging from 22 to 31 years. They were all in their third year, or later, of their studies 

for a master’s degree in physical or electrical engineering, and all of them had 

completed at least one course in control theory. These students have experience with 

dynamic systems from their control theory studies, and they have studied differential 

equations prior to the control theory courses.  

The system dynamics students were 15 students at the University of Bergen in 

Norway, ten male and five female. Their mean age was 27 years, ranging from 23 to 33 

years. Participation in the experiment was part of the course requirements in a course in 

laboratory experiments and bounded rationality. The course, which is an international 

course taught in English, is part of a master’s degree in system dynamics. A few 

participants were other system dynamics students who volunteered to participate in the 

study. All the participants included in the study had taken prior courses in system 

dynamics modelling, and, hence, had continued their studies in system dynamics 

beyond the introductory level. 

All the participants were rewarded with two cinema tickets.  

Task instructions 
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The participants received the following written instructions: In a lake in the Northern 

parts of Sweden, there is an island. The island is covered by a mixture of grassland and 

forest. Initially, there is no animal life on the island. A group of biologists wishes to 

investigate how the vegetation is affected by grazing animals. Therefore they transport 

500 rabbits to the island and set them free on the island to graze and reproduce. As the 

biologists do not want the rabbits to become too numerous (rabbits are fertile creatures), 

40 foxes are also transported to the island. All the foxes are equipped with radio 

transmitters, in order to allow the biologists to locate them and catch them if necessary. 

Your task is to establish a balance between the rabbits and the foxes, i.e., to bring 

the system to equilibrium. You are allowed to transport foxes to or from the island once 

every year. Your task is to, eventually, be able keep the rabbit population at a constant 

level. Your task is also to reach a situation where the fox population also remains 

constant. The goal is to achieve a situation where the rabbits and foxes can be left to 

care for themselves, where both populations remain constant without further 

intervention. The biologists keep track on the population sizes, and reports them to you. 

Once every year you may decide on how many foxes you wish there to be on the 

island. Transports will then be arranged according to your wishes. There is always 

sufficient food for the rabbits, they never stave. If, however, the rabbit population 

exceeds 5000 rabbits, the island is considered “overrabbited” and the game is over. The 

game will also be over if the rabbits are extinguished by the foxes. The rabbits only die 

if they are caught and eaten by the foxes. The rabbits-and-foxes ecology on the island is 

fully described by the following four sentences:  

 A rabbit produces 2 offspring a year.  

 A fox eats 4 % of the existing rabbits a year.  

 For every 180 rabbits eaten by the foxes, a new fox is born.  
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 Every year 20 % of the fox population dies. 

Task interface 

In both the population line graphs (Figure 11), the abscissa represented the years 

passing in the simulation, running from zero (start) to 30 years (end of trial). In the 

graph to the left of the screen, the ordinate represented the number of existing rabbits 

(ranging from 0 to 5000). The graph to the right represented the number of existing 

foxes (ranging from 0 to 150). The actual population sizes were presented numerically 

in their respective graphs. Initial population sizes were 500 rabbits and 40 foxes. 

Population changes were calculated as: 

Rt+1 = Rt + ΔRt; where ΔRt = ( 2 * Rt – 0.04 * Rt * Ft ) * Δt for the rabbits, R, and 

Ft+1 = Ft + ΔFt; where ΔFt = ( (0.04 * Rt * Ft ) / 180 – 0.20 * Ft ) * Δt  for the foxes, F. 

The selected time-step, Δt, was one month (1 year / 12). This may be rough and 

inelegant, but quite sufficient for the purpose of this study. The final results were 

rounded off. There were no fractions of rabbits or foxes reported. 

Close to the fox graph, there was an editing box for changing the actual number 

of foxes to the number desired. Clicking the step-button close to the editing box made a 

year pass in the simulation. The years passed month by month, at a rate of about two 

months per second. The participant had to watch twelve months pass, inviting 

reflection, before he or she was allowed to make another entry. The number of rabbits 

born and the number of rabbits eaten by foxes during the year passing, or just passed, 

were presented separately below the rabbit graph. Similarly, the numbers of foxes born 

and dying during the preceding or passing year were presented below the fox graph 

(Figure 11).  
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Figure 11. The interface to the rabbits-and-foxes task. 

Equilibrium was reached when the fox population remained constant at 50. A 

rabbit population close to 900 is necessary to achieve this. It does not have to be exactly 

900. That would have been really difficult for the participants to achieve. When the 

rabbit population was approximately 900 and the fox population remained constant at 

50, the rabbit population steadily approached and eventually reached 900, where it 

remained. (This was a feature included in the programming of the simulation).  

Procedure 

In the control engineering group, the task was group administered in four sessions with 

three to eight participants in each session. In the system dynamics group, the task was 

group administered to all the participants in one session. 

All the participants were equipped with writing material, paper and pencil, if 

they wished to make notes of any kind. These notes were collected afterwards by the 

experimenter.  
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The participants were introduced to the interface and received the task 

instructions in writing, which they were allowed to keep during the whole session. 

There was no time pressure. The participants decided themselves when to let a new year 

pass in the simulation. There was no limit on the number of trials. The participants were 

allowed to continue until they had learned how to accomplish the task. After 45 

minutes, they were allowed to decide whether they wanted to give up or to continue. If 

they decided to go on, they could continue for another 15 minutes. After that they had to 

stop. 

Throughout the experiment, the experimenter remained in the room to answer 

direct questions only, to decide when the participants had reached the goal. The task 

was considered completed when the participants had figured out how to reach 

equilibrium and were able to repeat the performance on request.  

In the control engineering group, the participants were asked, after they had 

completed the test session, to describe, in writing, how they had approached the task. 

Analysis 

What external models, qualitative and/or mathematical, the participants 

produced was evident from their notes. In addition to solving the task by calculation, it 

was possible to solve it by qualitative reasoning based on either an externally produced 

qualitative model or an internally produced mental model. I had to be able to 

differentiate the participants who managed this from those who just played with various 

inputs and just happened to make a lucky guess.  

All the inputs the participants made were logged, together with the results from 

these inputs. A participant was considered to express a qualitative understanding of the 

system if the following could be observed: The participant did first control the rabbit 

population by consistently increase the fox population if the rabbit population was 
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increasing, and reduce the fox population when the rabbit population was decreasing. 

The participant did then continue to search for the correct size of the rabbit population 

for keeping the fox population constant, by consistently allow the rabbit population to 

grow if the fox population was decreasing and to reduce the rabbit population if the fox 

population was growing. It is fairly easy to differentiate such a pattern of inputs from a 

pattern where the request for foxes is unrelated to the size of the rabbit population, or 

from one where the participant learns how to control the rabbit population but fails to 

figure out the next step. 

Results 

The engineering students 

Table 1 summarizes the approaches applied to the task be the engineering 

students. 

Table 1.  Approaches Applied by the Engineering Students 

Construction of 

qualitative model  

(block diagram) 

Mathematical approach  

(Solution of equilibrium equations) 

 

Sum 

Correct Not fully 

successful 

attempt 

Other 

calculations 

No 

calculations 

made  

Correct 0  0  0 0 0 

Incomplete or 

incorrect  

0 0 0 1 1 

None 2  2 (fox ok)  12 5 21 

Sum 2 2 12 6  22 
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Only one engineering student tried to model the causal structure explicitly. He tried to 

model the rabbit population with a block diagram, but did not get very far with that, and 

he did not solve that task. 

Sixteen of the twenty-two engineering students approached the task 

mathematically. Four of them understood that they should search for a solution where 

births equal deaths in both populations. Of those four, only two managed to calculate 

the numbers of rabbits and foxes in equilibrium (and both solved the task), and the 

remaining two managed to calculate the number of foxes in equilibrium. Of the other 

twelve who approached the task mathematically, five wrote mathematical expressions 

for both the rabbit population and the fox population, although incorrect ones.  

Six engineering students focused only on balancing births and deaths in the 

rabbit population, and one on them managed to calculate the number of foxes that keeps 

the rabbit population constant. 

Six of the engineering students performed no calculations, and if they made any 

notes at all they only recorded the output from the simulation. 

None of the engineering students demonstrated any qualitative analysis of the 

rabbit and foxes system’s behaviour, as illustrated by Figure 3, and their inputs to the 

simulation did not reflect such thinking. One of the participants who got the equations 

wrong, and who failed at the task, did, however, notice the trend switches occurring for 

the rabbits when the fox population passes 50 and for the foxes when the rabbits are 

around 1000, and concluded that the equilibrium population were close to these 

numbers.  

The system dynamics students 

Table 2 summarizes the approaches applied to the task be the engineering 

students. 
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Table 2. Approaches Applied by the System Dynamics Students  

Construction of 

qualitative model 

(stock-flow model) 

Mathematical approach  

(Solution of equilibrium equations) 

 

Sum 

Correct Not fully successful 

attempt 

No calculations 

made 

Correct 4  1 (fox ok) + 1  1 7 

Incomplete or 

incorrect 

0 1 4 5 

None 1  0 2 3 

Sum 5 3 7  15 

 

Twelve of the fifteen participating system dynamics students tried to make 

models of the system, i.e., they made stock-flow diagrams of the rabbits-and-foxes 

system. Seven of them created the correct stock-flow model (Figure 10). Four of them 

also calculated the equilibrium populations, and three of them solved the task. It is 

surprising that one participant who both constructed a correct stock-and-flow diagram 

and solved the equilibrium equations, still failed at the task. It is possible that the 

participant made these notes after the time allowed for the task had elapsed, but before 

the notes were collected. He may also have made the notes while discussing the solution 

with a successful friend, forgetting that the notes were to be collected afterwards. Since 

the task was group administered to all the participants in one single sitting, the 

experimental control was not perfect. It may, however, also be the case that the 

participant actually fully grasped the system structure, and equilibrium calculations, 

without being able to steer the system to the goal, although it seems unlikely. One 
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participant solved the equilibrium equations directly without constructing a stock-flow 

diagram, and she also solved the task. 

Of the remaining three who constructed a correct stock-flow diagram, two made 

unsuccessful attempts at solving the equilibrium equations. One got the equations right, 

but was only able to calculate the fox population in equilibrium. The other one 

understood the principle of the equilibrium equations but failed to get them right. They 

were both very close. The last of the three, who finally made a correct stock-flow 

diagram after several attempts, did not try to calculate the equilibrium populations. 

Of the seven participants who either made incomplete and/or unsuccessful 

attempts at modelling or who did not even try to model the system, only one tried to 

calculate the equilibrium populations. He got pretty far in both his modelling and his 

calculations, but did not quite make it.  

All of the eight system dynamics students who performed calculations 

understood that they should search for a solution where births equal deaths in both 

populations. None of them represented the problem mathematically in any other way. 

This is significantly more than the four engineering students, out of 22, who also 

understood this (χ
2
 = 5.03, p < .05).  

None of the system dynamics students made demonstrated any reasoning about 

the rabbit and foxes system’s qualitative behaviour, as illustrated by Figure 9. They 

made no mention of the causal loop structure in their stock-flow diagram, and their 

inputs to the simulation did not reflect such reasoning.  

Achieving equilibrium 

As mentioned before, the key to solving the task is to understand that even if the 

number of foxes can be set to any number, once the simulation continues it is the 

number of rabbits that determine the behaviour of the fox population. Foxes die and 
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how many new foxes are born depends on how many rabbits there are for the foxes to 

eat. The rabbit population has to be large enough for the foxes to eat enough rabbits to 

give birth enough fox puppies to compensate for the foxes that die, but no larger. I only 

considered the task solved if the participants demonstrated that they understood this. 

This means that only two of the 22 engineering students (9 %) and four of the15 system 

dynamics students (27 %) solved the task. Three of the four successful system dynamics 

students made correct qualitative models, or stock-flow diagrams, which they 

quantified.  

One problem with the chosen task is that since the participants are allowed 

numerous trials, they may sooner or later chance upon the solution. This is somewhat 

controlled for by requiring them to repeat the feat. Their prior success has then, 

however, revealed what the equilibrium populations are, rendering the task more or less 

solved. Nine of the remaining 20 engineering students (45 %) and four of the 11 

remaining system dynamics students (36 %) solved the task by playing with the 

simulation. If a participant chances upon the solution more or less immediately, this 

could mean that he or she never even try to approach the task analytically. This was, 

however, never the case. The participants spent quite a lot of time in the beginning of 

the session thinking and performing calculations. If and when this failed to produce the 

solution, they gave up and started to simply play with the simulation. 

Discussion 

Of the 37 students who participated in this study, 13 participants (12 system dynamics 

students and one engineering student), approached the task by trying to make an explicit 

model of the causal structure. Seven of them (all of them system dynamics students) 

made correct models. An interesting result is that they all modelled the task using the 

representations they had been taught. The system dynamic students made stock-flow 
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diagrams and the engineering student made a block diagram. In previous studies with 

the rabbits-and-foxes task, where the participants were university students with no 

training in modelling, nobody has ever tried to sketch the qualitative structure of the 

problem (Jensen, 2005; Jensen & Brehmer, 2003). It seems not to be something that 

people spontaneously do, but rather something they need to be taught how to do. 

 The only thing the participants used their models for was to support calculation. 

Nobody solved the task by qualitative reasoning, with or without the support of an 

externally produced qualitative model.  

 Besides, the major benefit the participants who made explicit models of the 

causal structure had from their effort was that it helped them understand the problem. 

They were significantly more likely to frame the problem correctly than those who did 

not make such models. They were, however, not significantly more likely to solve the 

task. 

 The results suggest that it is not sufficient to be able to make a model of the 

qualitative causal structure of the system. It is necessary to be able to use the model to 

support reasoning as well.   

External representations, such as models, may function as reminders of the 

constraints pertinent to a problem situation (Scaife and Rogers 1996; Zhang 1997). The 

system dynamics students’ familiarity with stock-flow modelling helped them state the 

problem. They were significantly more likely to identify the problem as finding a way 

to make births equal deaths in both populations than the engineering students. All of the 

eight system dynamics students who performed calculations understood that they should 

search for a solution where births equal deaths in both populations, while this was true 

of only four of the engineering students.  
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Qualitative reasoning 

There were no signs of qualitative reasoning in the notes or control behaviour of either 

the engineering students or the system dynamics students. To the extent that the 

participants considered the causal structure of the system, they did this in search of a 

mathematical solution. The system dynamics students who actually modelled the causal 

structure of the system did not use this model to explain and predict the behaviour of the 

simulation.  

Qualitative reasoning does more than inform quantification, however. 

Qualitative reasoning is also required to figure out how to affect a system in order to 

bring about desired effects. According to Bissel and Dillon (2000), teachers of 

mathematics, engineering and technology tend to emphasize the creation of models, and 

pay less attention to model use. 

System dynamics students are expected to inspect the output from their models 

and figure out how to adjust variables in the model to bring about the desired output 

(Forrester, 1961; Sterman, 2000). As mentioned earlier, they try out their ideas in 

simulation runs of the model. With a simulation, it is possible to simply play with the 

system and achieve the desired state by trial-and-error. Unless the students are tested 

thoroughly on their understanding of the system, they may complete their assignments 

without really understanding the systems they have studied. Kheir et al. (1996) express 

concern that students who use computer-aided control engineering (CASE) software 

risk losing contact with and forget about the properties of actual real-life control 

systems. With CASE software control engineering students can model their systems 

with the software and the software performs calculations and runs simulations, much as 

system dynamics software does.  
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It would be interesting to know how system dynamics students would fare at the 

task, if the system description was purely qualitative. If the written description only 

described the causal relations, without revealing the actual parameter values, what 

would system dynamics students do? Would they be able to make productive use of the 

qualitative stock-flow model, if this were the only system dynamics approach possible?  

Or, would they make the models and then fail to figure out how the models could help 

actually them, or what? 

Bobrow (1985) argues the need for means to model the qualitative causal 

structure of systems, in order to enable an understanding the causal processes which 

underlie the system’s behaviour. In the words of Bissell & Dillon (2000), part of being 

an engineer is to be able to tell stories about, to give causal account of, what is going on 

in technical systems.  

Meta-representational competence 

Meta-representational competence (MRC) is the capability to construct and use external 

representations (such as models). One component of MRC is the ability to invent and 

design new representations (diSessa & Sherin, 2000). The engineering students did not 

demonstrate such ability, and the system dynamics students did not have to. We do not 

know how they would perform if they were presented with a problem that could not be 

represented in a stock-flow diagram.  

Another component of MRC is the understanding of the function of 

representations (diSessa & Sherin, 2000). What are representations for? How can they 

be used? It appears as if neither the system dynamics students nor the engineering 

students understood how to make the best use of models. Schools, in general, offer their 

pupils little training in building and using models, even in science classes (Greca 

&Moreira, 2002). The pupils are taught ready-made models as facts, but have a rather 
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weak grasp of what a model really is and how it can be used (Schwartz & White, 2005). 

Alarmingly, this appears to be true of even a fair number of science teachers (Van Driel 

& Verloop, 1999). 

Conclusion 

The results from this study suggest that modelling the system structure helped the 

system dynamic students state the problem, and what solution to search for. Creating the 

explicit model was thus beneficial. It was only used to as basis for further mathematical 

treatment of the problem, however. It seemed never to support qualitative reasoning to 

figure out how to bring about the desired state. It appears that in addition to learning 

how to model system structure, students need training in how to use these models to 

understand how the system works. Otherwise they will be hard put to explain a 

suggested solution to anybody, themselves included. Students would probably benefit 

from being assigned tasks that truly assess their understanding of the workings of the 

systems under study. This could be done even within the more traditional teaching 

approaches, and would therefore not be too difficult to implement. It is likely to make 

the students both better problem solvers and better communicators, and, consequently, 

better engineers according to the ABET criteria (ABET, 2011).  
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