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Abstract Vegetation is a characteristic feature of shallow aquatic flows such as rivers,

lakes and coastal waters. Flow through and above aquatic vegetation canopies is commonly

described using a canopy mixing layer analogy which provides a canonical framework for

assessing key hydraulic characteristics such as velocity profiles, large-scale coherent tur-

bulent structures and mixing and transport processes for solutes and sediments. This theory

is well developed for the case of semi-rigid terrestrial vegetation and has more recently

been applied to the case of aquatic vegetation. However, aquatic vegetation often displays

key differences in morphology and biomechanics to terrestrial vegetation due to the dif-

ferent environment it inhabits. Here we investigate the effect of plant morphology and

biomechanical properties on flow–vegetation interactions through the application of a

coupled LES-biomechanical model. We present results from two simulations of aquatic

vegetated flows: one assuming a semi-rigid canopy and the other a highly flexible canopy

and provide a comparison of the associated flow regimes. Our results show that while both

cases display canopy mixing layers, there are also clear differences in the shear layer

characteristics and turbulent processes between the two, suggesting that the semi-rigid

approximation may not provide a complete representation of flow–vegetation interactions.
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1 Introduction

Vegetation is a common feature within lowland river environments and influences the

functioning of the river system [1]. It acts as an additional source of channel resistance and

has been shown to alter bulk flow velocities and conveyance [2–4], generate turbulence

through coherent flow structures [5–8], modify sediment transport processes [9–11] and

increase habitat diversity [12, 13]. Therefore, a good process understanding of boundary

layer flow through and around vegetation is central in predicting the functioning of the

fluvial system.

As a result, much research has been conducted into vegetated channels [14]. Our current

theoretical understanding of aquatic vegetated flows has been based on our understanding

of terrestrial flows through crop fields or forest environments (as reviewed by Finnigan

et al. [15]). Terrestrial canopy research led to the development of a canonical theory for

canopy mixing layers, based upon classical free shear layers, or mixing layers, which has

been used to describe flow through and above terrestrial vegetation canopies [16, 17] (see

Sect. 2).

As research into aquatic vegetation canopies has subsequently developed, this theory

has been transferred and applied to aquatic environments with much of the terminology

associated with terrestrial canopy flows being adopted and adapted for aquatic canopy

flows [7, 18]. However, aquatic canopies inhabit very different physical environments to

terrestrial canopies. This will alter the force balance between the flow and vegetation and

may substantially modify the dynamics of flow–vegetation interactions. As a result, aquatic

canopies display differences in morphology and biomechanical properties. Most notably,

submerged aquatic macrophytes are often highly flexible and buoyant, which will affect

posture and plant-flow interaction [19]. Thus, in this paper we test the hypothesis that there

are fundamental differences between aquatic and terrestrial canopy flow structures.

We begin by reviewing general canopy layer theory, which applies to terrestrial veg-

etation and semi-rigid aquatic canopies, before highlighting the potential differences in

highly flexible aquatic canopies. We then use an LES-biomechanical model framework

[20] to simulate flow through both an idealised semi-rigid terrestrial-style canopy and a

highly flexible canopy more typical of those found within rivers. We apply this model in

order to capture the high resolution flow dynamics across the length and breadth of the

canopy. Using these data, we characterise both flows within a canopy mixing layer

framework and compare the predicted and observed canopy flow variables.

2 Canopy mixing layer model for semi-rigid canopies

2.1 Velocity profile

Plant canopies act as a porous blockage [21, 22], restricting flow but not preventing it. This

porous effect creates two very different velocity regimes: one above and one within the

vegetation canopy (U1 and U2 in Fig. 1). This leads to the formation of a 3-zone velocity

profile [23]. The canopy zone is characterised by a region of low longitudinal velocity and

also very low longitudinal velocity gradient in the vertical direction [6, 24]. The log-law

zone above the canopy is unaffected by the additional vegetative drag and therefore the

velocity follows the typical logarithmic boundary layer profile [25]. Where these two

regions meet, there is an inflection point within the velocity profile and a mixing zone
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forms, with a hyperbolic tangent curve, or S-shaped velocity profile [16, 26, 27]. This

velocity profile has been observed both in terrestrial [16] and aquatic canopy flows [5, 7].

2.2 Turbulence structure and characteristics

The turbulence structure of canopy flows can be split into three distinctive length scales,

which correspond to the different velocity profile zones, defined as fine-scale wakes, the

active mixing layer and the inactive boundary layer [16]. Fine-scale wake turbulence as a

result of stem vortex shedding is a key process within the canopy system, controlling the

magnitude of the drag discontinuity between the canopy and the flow above, and in turn

affecting the scale of canopy mixing layer turbulence [14]. However, despite its impor-

tance as a process in defining canopy scale dynamics, stem-scale wake turbulence accounts

for only approximately 10 % of the in-canopy turbulence intensity [28]. As it is small-scale

in space and time, assuming no backscatter of energy, it will quickly dissipate away into

heat [29]. Most canopy flows exist within a larger boundary layer, producing large-scale

turbulent structures that scale with the depth of the entire boundary layer. This turbulence

Fig. 1 Schematic model of canopy flow. The difference between the velocity within (U1) and above (U2)

the canopy leads to the development of an inflected velocity profile (dashed line). This velocity profile can

be split into three zones: (i) the canopy zone, (ii) the mixing zone and (iii) the log law zone. At the inflection

point, Kelvin–Helmholtz instabilities form (dotted line) which develop into roller vortices which are

convected downstream along the canopy top. These vortices are stretched and form pairs of head up (H-U)

and head down (H-D) hairpin vortices which induce ejection and sweep events respectively (blue arrows).

Sweep and ejection events have also been linked to the passage of the roller vortices (blue arrows)
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will interact with the shear-scale eddies but within the canopy it is less likely to impact on

the turbulence statistics and is therefore termed ‘inactive turbulence’ [16].

Instead the active mixing layer turbulence dominates the TKE budget within the canopy

[16]. These vortices are generated by the Kelvin–Helmholtz (K–H) instability mechanism

as a result of the inflected velocity profile of the free shear layer [30, 31]. The initial

inflection point instability evolves and develops into a series of waves which grow

downstream before rolling up into distinct, inclined spanwise roller vortices (Fig. 1)

[5, 15, 32]. These vortices expand with distance and time until shear production equals

canopy dissipation and the vortex reaches its equilibrium size [7, 32, 33].

In between these spanwise rollers, braid regions develop exhibiting high strain rates.

Pairs of counter-rotating streamwise rib vortices form in these regions [26] and interact

with the roller vortices. Ambient turbulence within the flow then causes pairing of the

roller vortices and the interaction between the pair’s vorticity fields causes them to con-

verge and rotate around one another [5, 17]. This eventually leads to the development of

pairs of head-up (H-U) and head-down (H-D) vortices which induce sweep and ejection

events.

This is a key theory as it links two prominent aspects of turbulence research within

canopy flows: the development of K–H instabilities and the occurrence of coherent sweep

and ejection motions within the canopy. Following Lu and Willmart [34], sweeps (Q4

events) are defined as events with larger than average downstream velocity and smaller

than average vertical (upward) velocity, and ejections (Q2 events) as events with a smaller

than average downstream velocity and a larger than average vertical velocity. It is well

documented that within canopy flows, sweeps dominate the canopy region and ejections

dominate the flow above [24, 32, 35–37]. It is also recognised that these intermittent, high

momentum events are responsible for the majority of energy and momentum transfer

between the canopy and the flow above [24, 38].

A number of studies of semi-rigid canopies in both terrestrial and aquatic environments

have shown the correlation between sweep and ejection events and the passage of canopy

roller vortices [8, 17, 23, 24, 39, 40]. In contrast to the theory of Finnigan et al. [17], who

relate sweep and ejection events to hairpin vortex formation, other studies hypothesise that

sweep and ejection events simply represent manifestations of vortex passage within the

velocity signal [39]. Nevertheless, it is clear that mixing layer vortices and sweep and

ejection events are two key observable properties of canopy shear layers and that the two

are mechanistically linked.

2.3 Plant response and interaction with the flow

Plant motion in response to the flow can be categorised as one of four regimes. These are

erect, gently swaying, honami/monami (coherently waving) and prone [6, 18, 41, 42]. The

regime of motion observed for a particular canopy will be determined by the biome-

chanical properties of the vegetation as well as the drag force [32, 43]. While these regimes

apply to all canopies, aquatic plants tend to have greater flexibility leading to a greater

range of plant motion [6]. The most complex regimes are gently swaying and coherently

swaying as these represent dynamic interaction between the flow and canopy. Canopy

motion can help absorb momentum from the flow, regulating canopy turbulence [8] and

there is also evidence that the natural frequency of the stems can modulate the velocity

field and vortex shedding rate [5, 24, 44–46].
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3 Differences between semi-rigid (terrestrial) and highly flexible (aquatic)
vegetation

In the previous section we summarised the influence of vegetation on flow from theoretical

work and observations both in terrestrial and aquatic environments. The majority of aquatic

canopy layer studies have used vegetation analogous in morphology and biomechanical

properties to that used within the terrestrial environment [5, 47] or have focussed on

aquatic equivalents such as seagrasses [7]. However, aquatic vegetation in rivers exhibits a

wide range of forms and can be significantly different to terrestrial vegetation in mor-

phology and dynamical behaviour. Here we suggest that there are three main considera-

tions which must be taken into account when comparing highly flexible aquatic canopies

with their terrestrial counterparts.

3.1 Depth-limitation of aquatic flows

Within terrestrial canopies, where the canopy height is small in comparison to the

boundary layer height, canopy mixing layer processes interact with the larger scale

boundary layer hairpin vortices [17]. Contrastingly, aquatic flows are depth-limited and

therefore boundary layer development is restricted and the flow may be dominated by the

K-H instability process in the mixing layer [6, 48]. Furthermore, vegetation growth is

depth-limited through light availability, and therefore deeper aquatic flows where boundary

layers may be more significant are less likely to be heavily vegetated [49–51].

3.2 Biomechanical properties and force balance

Within terrestrial environments, plants rely upon rigidity to support their own weight as

they grow to compete for light [52]. Conversely, within aquatic environments where the

fluid density is 1000 times greater and therefore the density difference between the plant

and the fluid is smaller, rigidity is less important, allowing aquatic plants to be more

flexible [53]. Furthermore, aquatic species can be positively buoyant [54] and therefore do

not rely upon rigidity to compete for light. While rigidity can still be important, particu-

larly for emergent aquatic plants (e.g. Phragmites spp.), the majority of macrophytes

exhibit low flexural rigidity in response to drag [19, 54]. Aquatic plants can experience a

drag force 25 times larger than terrestrial plants for a given velocity [51, 55]. Therefore,

low rigidity enables aquatic plants to reconfigure within the flow to minimize the drag and

prevent uprooting or damage [56].

The differences between the terrestrial and aquatic environments create different force

balances. In the semi-rigid terrestrial case, the main forces acting on the stem are the drag

(FD) and the internal rigidity force (FR), whereas in the highly flexible aquatic case, the

main forces are the drag force and the buoyancy force (FB). These two types of plant may

be characterised broadly as ‘bending’ and ‘tensile’ plants [57]. This classification is made

on the basis of the Cauchy number (Ca) which is the balance between the drag force and

the rigidity force.

Ca ¼ FD=FR ð1Þ

Nikora [57] categorised plants with large values of Ca as tensile plants and those with

small values of Ca as bending plants. Luhar and Nepf [54] extended this approach by
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characterising the spectrum of vegetation behaviour using both the Cauchy and the

Buoyancy number (B).

B ¼ FB=FR ð2Þ

They used these two parameters and their ratio, which between them represent the ratios

between the three key forces, to predict plant reconfiguration. The classification of plant

(i.e. bending or tensile) will have an impact upon plant-flow interactions, such as flow

modulation by the natural frequency of the vegetation which is likely to be more prevalent

in bending canopies.

3.3 Posture and form

As a result of the different force balance, many aquatic plants adopt a horizontal position

within the flow, which is a departure from the idealized, perpendicular canopy structure

used within terrestrial canopies and many aquatic prototype experiments [47, 58]. It is

therefore likely that plant-flow interactions will reflect that. Aquatic vegetation must find a

balance between drag reduction and photosynthetic capacity [59, 60]. Therefore, aquatic

vegetation commonly has substantial foliage with a large surface area to maximize light

capture. As a result, aquatic vegetation is often characterized by complex plant mor-

phology, which the canopy mixing layer model does not account for. This may be sig-

nificant in terms of flow structure as foliage can inhibit momentum exchange between the

canopy flow and the flow above [61].

Considering all these factors, flow structure and flow–vegetation interaction within

aquatic canopies may be potentially quite different to terrestrial counterparts. However, our

theoretical understanding of aquatic vegetation is still firmly based on our process

understanding of semi-rigid terrestrial vegetation. Simulating flow through both semi-rigid

and highly flexible canopies enables us to assess whether using the theoretical framework

generated from work in terrestrial canopies is directly transferable to aquatic canopies.

4 Methods

4.1 Design of experiments

In order to simulate flow over a canopy, numerical simulations were conducted using a

domain 1 m long (l), 0.16 m wide (b) and 0.32 m deep (h) (Fig. 2). A canopy of 300 stems

Fig. 2 Plan view schematic of the simulation setup with flow from left to right with the vegetation canopy

shown by the shaded region. Domain not drawn to scale
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was placed within the domain, with a solid volume fraction of / ¼ 0:176 (frontal area per

canopy volume, a = 25 m-1) which represents dense aquatic vegetation and is of a similar

order to that used in other canopy studies [62]. Each stem was 0.15 m tall with a radius of

0.005 m, a material density of 950 kg m-3 and a flexural rigidity of 3.0 9 10-4 Nm2 for

the semi-rigid case (Ca & 5, B & 0.40) and 3.0 9 10-8 Nm2 for the highly flexible case

(Ca & 50,000, B & 4000). The stems were positioned in a staggered arrangement

(Fig. 2). The bed was simulated using a no-slip condition and a logarithmic wall function

(y? & 20–40) while, the sidewalls of the domain were simulated as frictionless boundaries

to minimise domain-induced wall effects. The free surface was simulated using a rigid-lid

treatment. A periodic boundary condition was used at the inlet to allow the full devel-

opment of a canopy layer profile with a mean domain velocity of 0.3 ms-1. The flow was

fully turbulent and sub-critical. Flow was simulated for 60 s, of which the final 30 s of data

(approximately 9 flow-throughs) were recorded for analysis.

4.2 Numerical solver

The numerical experiments were conducted within a three-dimensional computational fluid

dynamics (CFD) framework within which the Navier–Stokes equations for mass and

momentum were coupled and solved using the SIMPLEST algorithm [63]. In this algo-

rithm, an initial pressure field is prescribed which is then used to solve the momentum

equations. A pressure correction equation is then applied to ensure continuity. This updated

pressure field is then used to solve the momentum equations again and this iterative process

is repeated until residual errors are reduced to 0.1 % of the inlet flux. A regular Cartesian

grid with cell size of 0.002 m in each direction was used and the flow was solved using

staggered grids for scalar and vector variables. In order to balance the demands of accuracy

and stability, a second order, bounded, upwind differencing scheme was used for the

convective terms, while central differencing was used for the diffusive terms. The Navier–

Stokes equations were solved using Large Eddy Simulation (LES), with a constant

Smagorinsky sub-grid scale model (CS = 0.17). The vegetation stems were represented as

an immersed boundary within the domain using a dynamic mass flux scaling algorithm

[64], whereby individual cell porosities are altered to account for the presence of dynamic

mass blockages within the flow without the need for adaptive re-meshing at each time-step

[20]. Therefore, in contrast to many LES studies which use fitted grids, with refinement

near boundaries, this method represents a low-resolution LES approach, similar to that of

Kim and Stoesser [65]. Consequently, fine-scale turbulent vortices shed from the individual

stems into the wake are not resolved within the model. The impact of this simplification is

discussed in Sect. 5.2. The fluid–structure interaction was solved in a sequentially stag-

gered manner [66], such that velocity and pressure data were passed from the fluid model

after each time-step in order to derive plant motion and then new plant position data were

fed back into the fluid model for the next time-step. The drag force provided the coupling

between the flow and plant models, while other fluid forces where not considered for

simplicity. Thus, the effect of the vegetation on flow was incorporated directly through the

mass blockage, no slip boundary condition at blocked cell edges and resulting drag force.

The corresponding fluid drag force acting on the stems was then calculated from the LES

pressure and velocity data interpolated at the stem boundary. The plant position was then

solved by balancing the external drag force against the internal inertial and bending

stiffness forces [20].
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4.3 Biomechanical models

To simulate plant motion, two different biomechanical models were applied. These two

models were used to represent the two different vegetation types described in Sect. 3.2.

The first was based upon the Euler–Bernoulli beam equation and is applicable to semi-

rigid, ‘bending’ vegetation (Ca & O(1), B\O(1)). Each stem is represented as a can-

tilever beam and shear effects are neglected. This type of model has previously been

successfully applied to semi-rigid vegetation canopies [67, 68]. The second model is based

on an N-pendula approach and treats each vegetation stem as a series of pendula connected

by ‘‘hinges’’ or ‘‘joints’’. This model is suitable for modelling highly flexible ‘tensile’

vegetation (Ca � 1, B � O(1)) with low rigidity and localised bending. Similar models

have previously been applied to seagrasses [19, 69]. Full details concerning the two

biomechanical models are reported by Marjoribanks et al. [20].

4.4 Analysis methods

In order to compare the results within the canopy mixing layer theory framework, four

main analysis methods, which have been used previously to characterise canopy mixing

layers [7, 8, 17, 32, 70] are applied to the data.

4.4.1 Normalised velocity and Reynolds stress profiles

These are calculated using temporally averaged flow data extracted from the end of the

canopy, spatially averaged across the canopy width (x/l = 0.84). The variables are nor-

malised following the approach of Ghisalberti and Nepf [7]. In these equations, U and u0w0

are both temporally averaged but are functions of height (z), �U is defined as the arithmetic

mean velocity of the two flow regions, DU is the difference between the mean velocities

within the two flow regions, h is the momentum thickness which is a measure of the

thickness of the shear layer, and �z is defined such that Uð�zÞ ¼ �U. These normalised

velocity profiles allow comparison of the data to a conventional mixing layer and can also

be used to calculate key mixing layer variables such as the mixing-layer induced KH

vortex frequency (fKH) [7, 31].

U� ¼
U � �U

DU
ð3Þ

u0w0� ¼
u0w0

DU2
ð4Þ

h ¼

Z

1

�1

1

4
�

U � �U

DU

� �2
" #

dz ð5Þ

z� ¼
z� �z

hM
ð6Þ

fKH ¼ 0:032
�U

h
ð7Þ
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The mixing layer velocity profiles are compared to the typical hyperbolic tangent profile

of a mixing layer [7]. The Reynolds stress profiles are compared to two previous studies.

Firstly, the profile of Rogers and Moser [71], who used direct numerical simulation (DNS)

to study plane mixing layers, is used as a comparison to a classical mixing layer theory.

Secondly, the results are compared to the theoretical profile developed by Sukhodolov and

Sukhodolova [72] for vegetated mixing layers using scaling laws and the turbulent vis-

cosity model.

4.4.2 Spectral and wavelet analysis

Time series analysis using both a Fourier and wavelet transform is applied for the full

duration of the measurement period at a point along the centre line of the domain (y/

b = 0.5) at the downstream end of the canopy (x/l = 0.84) just above the canopy-top to

ensure no interference from stems (z/h = 0.5). This enables the identification of key

periodicities within the flow and is therefore used for assessing the representation of

turbulence within the LES model and comparing observed vortex frequencies with those

predicted using the canopy mixing layer model (Eq. 7). A key advantage of wavelet

analysis over other frequency transformations such as spectral analysis is that it retains a

temporal dimension which shows how periodicities change through time [73]. The Morlet

wavelet is fitted to the data across scales from 0.04 s to 20.48 s, centred at each point in the

time series to calculate the wavelet power spectrum. Points that do not have statistically

significant wavelet power compared to a white noise spectrum, and those subject to edge

effects are discarded and the wavelet scale is converted to the equivalent Fourier period for

comparison with other data [20, 74]. For the power spectral analysis, the Welch peri-

odogram method was applied to the time series data, with two non-overlapping windows

[75].

4.4.3 Quadrant analysis

Quadrant analysis is applied to identify the presence of sweep and ejection events within

the flow [34]. Here, downstream (u) and vertical velocity (w) time series extracted from an

x–z plane along the midline of the domain (y/b = 0.5) are decomposed into mean and

fluctuating components using Reynolds decomposition. The fluctuating velocities are then

plotted onto a quadrant plot which divides the flow into a series of 4 distinct quadrant

events: outward interactions, ejections, inward interactions and sweeps [34]. In order to

exclude low energy, small-scale fluctuations, a hole-size (H) condition is applied which

excludes data where u0w0j j\HuRMSwRMS with a hole size of H = 2 [34].

4.4.4 Eulerian and Lagrangian vortex detection methods

To investigate the presence and nature of vortices within the flow, both Eulerian and

Lagrangian vortex detection methods are applied. For the Eulerian methods, the Q criterion

[76] is used which identifies regions where the magnitude of the vorticity vector is greater

than that of the rate of strain. In order to determine the distribution of vortex size, the size

of every vortex identified by the Q criterion was measured for an x–z slice down the centre-

line of the domain for all time-steps. Only the data above the mean canopy top were used to

avoid capturing small-scale and fragmented vortices within the canopy. In addition to the

Q criterion, the spanwise component of the vorticity vector is presented, which provides a
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less stringent condition on vorticity as it is unable to determine between regions of high

lateral shear and vorticity [77] but does retain information on the directionality of the

vortices. Finally, the Lagrangian analysis applied the Finite-time Lyapunov exponent

(FTLE) method, which tracks individual fluid trajectories back through time to identify

regions of attracting phase-space [78, 79]. This method is limited by fluid trajectories

tracking back upstream of the domain inlet, and therefore the time period for tracking

trajectories must balance the benefits of increased tracking back period [80] against the size

of the region of the domain for which a full trajectory can be calculated. In this case, a

track-back period of 0.5 s was applied and regions near the inlet without valid trajectories

are shown as no data. Vortices are identified as regions of attracting flow with ridges in the

FTLE field highlighting the presence of Lagrangian coherent structures [80].

5 Results

5.1 Description of the flow and normalised flow profiles

Instantaneous snapshots of the velocity field (Fig. 3) demonstrate that the model captures

both stem-scale and canopy shear layer scale flow processes. At the stem-scale (Fig. 3a)

there is evidence of individual unstable stem wakes leading to the formation of a vortex

street. Stem Reynolds number values vary between Re & 300–2000 along the stem

depending on the local velocity. For the semi-rigid canopy (Fig. 3b), the flow quickly

develops into a typical canopy shear layer characterised by a sharp velocity gradient at the

canopy top, and formation of coherent turbulent structures along the canopy top. For the

highly flexible canopy, this shear layer is less well defined and there is evidence of more

complex flow structure due to the more prone position of the vegetation and increased plant

motion (Fig. 3c). For example, the canopy height is much more varied than in the semi-

rigid case exhibiting large scale streamwise undulations.

The normalised velocity profiles (Fig. 4) show that for both the semi-rigid (SR) and

highly flexible (HF) canopies the flow is well described by a mixing layer. This is

Fig. 3 Instantaneous snapshots

of a wake flow, b shear flow and

c the entire domain. b,

c demonstrate typical plant

positions for the semi-rigid and

highly-flexible canopies

respectively. Flow is from left to

right
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particularly the case for the highly flexible case which maps closely onto the idealised

mixing layer profile. The semi-rigid case shows substantial asymmetry about the centre of

the mixing layer with a steep decrease in velocity towards the canopy region (z*\ 0). The

momentum thickness of the shear layers (h, Eq. 5), calculated from the normalised profiles

is 0.021 m for the highly flexible case and 0.016 m for the semi-rigid case. This suggests

that for the highly flexible case the shear layer is thicker. The normalised variables estimate

the KH vortex frequencies (Eq. 6) for the semi-rigid and highly flexible canopies as 0.52

and 0.42 Hz respectively. While the normalised profiles characterise the flow over the

mixing layer regions they do not provide information on the location or dimensional width

of the mixing layer. Therefore, the dimensional velocity profiles are also considered

(Fig. 5). These profiles show the difference between the two cases with a much wider and

lower gradient shear layer in the highly flexible canopy case, as compared with the

asymmetric, narrow and high velocity gradient mixing layer evident within the semi-rigid

case. This highlights the generalising effect of the normalisation process which can remove

Fig. 4 Normalised velocity

profiles for the semi-rigid (SR)

and highly flexible (HF)

canopies, as well as the idealised

mixing layer profile as used by

Ghisalberti and Nepf [7]

Fig. 5 Downstream velocity

profiles for the semi-rigid (SR)

and highly flexible (HF) canopies
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significant differences in the velocity profiles and is not a sensitive indicator of self-

similarity [71].

The normalised Reynolds stress profiles (Fig. 6) provide a more sensitive indicator and

show that both the highly flexible and semi-rigid cases have Reynolds stress peaks larger

than those typical of a classical mixing layer [71]. The highly flexible profile is similar in

shape and magnitude to the theoretical profile derived by Sukhodolov and Sukhodolova

[72] (c = 0.02) for vegetated mixing layers which also agreed well with their field data.

The highly flexible profile also displays a smaller secondary peak below the centre of the

mixing layer (z* & -4), which may indicate the presence of additional turbulent pro-

cesses within the canopy due to either plant motion or flow recirculation within the canopy.

This secondary peak is &20 % of the mixing layer peak magnitude and is not present

within the semi-rigid case. A similar peak is seen in the data of Okamoto and Nezu [8] for a

canopy exhibiting monami. The semi-rigid profile confirms the asymmetry evident in the

velocity profile, with a much steeper decrease in Reynolds stress towards the canopy

(z*\ 0). The magnitude of the Reynolds stress peak is 50 % higher than the highly

flexible case and over 200 % higher than the classical mixing layer case. This is due in part

to the increased velocity difference (DU) in the highly flexible canopy, as shown in Fig. 5

which in turn decreases the normalised Reynolds stress (Eq. 4).

5.2 Spectral and wavelet analysis

The velocity power spectra for both simulations (Fig. 7a, b) indicate that the turbulence

predominantly follows the expected Kolmogorov decay rate, indicating that all the scales

of interest lie within the inertial subrange and that the model accurately reproduces the

turbulent processes with this range, with minimal impact of numerical diffusion or energy

dissipation due to the SGS model [81, 82]. As discussed in Sect. 4.2, fine-scale turbulence

at the plant wake-scale is not resolved by the model and therefore experimental data are

required to verify the model’s performance at such scales where, in similar models, low

grid resolution has been shown to result in under-prediction of Reynolds stresses [83]. At

larger scales, both flow spectra exhibit peaks close to the predicted KH frequencies (as

labelled in Fig. 7). In the semi-rigid case, this is a single, well-defined peak. In contrast, for

the highly flexible canopy, there is a broader peak, which extends to higher frequencies

Fig. 6 Normalised Reynolds

stress profiles for the semi-rigid

(SR) and highly flexible (HF)

canopies. The experimental

mixing layer profile of Rogers

and Moser [71] (R&M) and the

theoretical canopy profile of

Sukhodolov and Sukhodolova

[72] (S&S) are also shown
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beyond the predicted KH frequency. The plant motion spectra both display similar peaks to

the flow spectra highlighting the coherence between flow and plant motion.

The wavelet plot for the semi-rigid canopy (Fig. 8a) shows a similar pattern to the

spectral analysis, with a single dominant periodicity which is initially at the KH frequency

Fig. 7 Power spectra for the

velocity (a, b) and stem height (c,

d) time series for the semi-rigid

(a, c) and highly flexible (b,

d) canopies. The Kolmogorov

-5/3 scale is shown by the

triangle while the lines represent

the scales corresponding to the

predicted K–H (fKH) and

vegetation-induced (fv)

frequencies

Fig. 8 Wavelet spectra for the semi-rigid (a) and highly flexible (b) canopies. The black lines indicate the

predicted KH vortex frequencies
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predicted from the normalised profiles (fKH = 0.52, scale = 1.92 s, shown by black line in

Fig. 8a) but then decreases in frequency and wavelet power in the second half of the

simulation. This suggests that local canopy variables may cause the frequency to fluctuate

through time. The dominance of the single mixing layer scale periodicity implies that the

turbulence regime is controlled by the mixing layer. In contrast, the highly flexible wavelet

plot (Fig. 8b) shows a larger range of concurrent scales of periodicity as shown by the

velocity spectra. There is a clear periodicity at the predicted KH frequency

(fKH = 0.42 Hz, scale = 2.38 s), which as with the semi-rigid case appears to vary through

time and is less well defined than in the semi-rigid case. At approximately 15 s this

periodicity appears to decrease in power and potentially merge with the higher frequency

scale before reappearing towards the end of the simulation. There is also a distinct lower

scale (higher frequency) periodicity between 1 and 2 s (0.5–1 Hz) (Fig. 8b, dotted line).

This signal suggests the presence of additional turbulent processes within the canopy

mixing layer region, possibly linked to the secondary peak in the Reynolds stress profile.

This scale is greater than that predicted for stem-wake generated turbulence at the canopy

top (fW = 0.2U/D & 6) and therefore we suggest that this turbulence may relate to plant

motion processes. This higher frequency signal contains significant energy with a similar

magnitude wavelet power to the mixing layer periodicity, suggesting it contributes sub-

stantially to the overall TKE budget. Similar to the lower frequency periodicity, it also

shows significant variation in frequency over the duration of simulation. This periodicity

agrees well with the velocity power spectra (fV in Fig. 7b) where the turbulence production

range extends to frequencies beyond the predicted KH frequency. There is also evidence of

a lower frequency, lower power periodicity, which appears to separate from the mixing

layer frequency temporarily between 10 s and 25 s.

5.3 Quadrant analysis

The distribution of high magnitude quadrant events (Fig. 9) shows a dominance of sweeps

(Q4) within the canopy and a stronger dominance of ejection events above the canopy for

both the semi-rigid and highly flexible cases. Within each case, the peak values for sweeps

Fig. 9 Quadrant profiles for the semi-rigid (SR) and highly flexible (HF) canopies showing the vertical

distribution of high energy quadrant events (H = 2). Approximate canopy heights are shown by the black

lines for the SR (solid) and HF (dashed) cases
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and ejections are similar, with the highly flexible canopy exhibiting a 20–30 % increase in

occurrence of both. There is also a small peak in sweep events above the mixing layer in

both cases. The sweep profiles are similar throughout the flow depth, although the highly

flexible case has a higher proportion of sweep events at the top of the canopy (the pattern is

reversed for the lower canopy). In contrast, the ejection profiles are less similar, with a

larger ‘background’ level of ejection events in the highly flexible canopy, approximately

1–2 % higher occurrence than for the semi-rigid case, which extends throughout the flow

depth.

Inward interactions (Q3) show very little variation with height, with a relatively con-

sistent low level (1 %) throughout the flow depth, suggesting that the canopy flow regime

has very little impact upon these events. Outward interactions (Q1) are prevalent within the

canopy for both cases. This has been found in previous studies [36] and attributed to the

impact of vegetation motion and the impact of a few large magnitude events penetrating

into the low velocity region within the canopy. However, other studies have found no

evidence of such a peak in outward interactions [84] and while this may be due to dif-

ferences in flexibility or in stem density between cases, this remains an area for further

work. The contributions of outward and inward interactions diminish towards the canopy

top, suggesting increased coherence within the mixing layer [23]. Similar to the sweeps,

there appears to be a secondary peak above the mixing layer though the cause of this is

unknown.

5.4 Vortex detection methods

The snapshots of velocity and vorticity within the flow (Figs. 10 and 11) provide insight

into the instantaneous vorticity field. For the semi-rigid canopy case (Fig. 10), the

instantaneous velocity streamlines (Fig. 10a) highlight the presence of the large-scale

coherent structures within the flow. The highest magnitude Reynolds stresses correspond to

a structure just above the canopy top (z/h * 0.5) at approximately x/l = 0.8. The vorticity

field (Fig. 10b) shows the dominance of clockwise (negative) vorticity concentrated along

the canopy top and identifies the structure at x/l = 0.8 as a clockwise vortex, consistent

with a mixing layer roller or possibly hairpin vortex. Above the canopy there are weaker,

large-scale vortices which appear stretched in the downstream direction, including the

structure identified by the velocity streamlines in Fig. 10a, centred at x/l = 0.4. The Q

criterion (Fig. 10c) supports these findings, identifying a small number of large-scale

vortices as well as much smaller scale vortices at the canopy top. The FTLE ridges

(Fig. 10d) also highlight the canopy top as the main region of vorticity, with the clear

formation of a roller vortex at the canopy [78]. Marjoribanks et al. [20] demonstrated that

the growth rate of this roller vortex is consistent with that associated with mixing layer

growth.

The velocity and vorticity plots for the highly flexible canopy (Fig. 11a, b) show a more

complex distribution of vorticity which extends throughout the full depth of the flow and

includes substantial additional regions of anti-clockwise vorticity. Over the duration of the

simulation, 64 % of the above-canopy domain exhibits positive, anti-clockwise vorticity,

in comparison to 41 % for the semi-rigid case. There is also evidence of potential vortex

shedding from individual stems (as labelled by the arrows in Fig. 11). The Reynolds stress

patterns (Fig. 11a) show greater magnitudes of Reynolds stress within the highly flexible

canopy, as compared with the semi-rigid canopy. This appears in contrast to the Reynolds

stress profiles (Fig. 7). However, as discussed earlier, the normalised Reynolds stress

values are scaled by the velocity difference of the shear layer. Therefore, Fig. 11a
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demonstrates that there are high values of Reynolds stress within the flow, but these do not

relate to the strength of the shear layer (i.e. they are the result of additional turbulent

processes). The Q criterion (Fig. 11c) identifies a larger coverage of vortices than in the

semi-rigid canopy, and the individual vortices are visually more complex in form. The

FTLE results (Fig. 11d) highlight vortex ridges extending from the canopy top into the

main flow. The pattern is more complex than the semi-rigid case, with more vortex ridges

present. The FTLE field also highlights the ridge between counter-rotating vortices which

appear to be shed alternately from the canopy top at this instant.

In order to assess whether these observations generalise throughout the simulation, the

vortex size distribution over the entire simulation is assessed statistically. This was cal-

culated by measuring the maximum width in the vertical (z) direction of each vortex at

each time-step throughout the duration of the simulation for an x–z slice along the cen-

treline of the model domain. The resulting distribution of vortex diameters (Fig. 12), shows

that the two cases are broadly similar with an increasing occurrence of vortices with

decreasing size, which is expected given turbulence decay processes. The integral length-

scale associated with the depth of the flow is 0.32 m, however the dense canopy and high

shear means that such vortices are unlikely to remain intact. Instead, the integral vortex

Fig. 10 Vortex identification for the semi-rigid canopy using a Reynolds stress (contours) and

instantaneous velocities (streamlines), b vorticity, c Q criterion and d FTLE methods. Flow is from left

to right and for clarity, only flow above the canopy is shown. The mean canopy height is at 0.35z/h
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Fig. 11 Vortex identification for the highly flexible canopy using a Reynolds stress (contours) and

instantaneous velocities (streamlines), b vorticity, c Q criterion and d FTLE methods. Flow is from left to

right and for clarity, only flow above the canopy is shown. Black arrows highlight the presence of

potentially plant-shed vortices. The mean canopy height is at 0.27z/h

Fig. 12 Occurrence of different

sized vortices throughout a 2D x–

z slice of the domain for the

duration of the simulation for the

semi-rigid (SR) and highly

flexible (HF) canopies
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size scales with the open flow above the canopy (*0.17 m). This is demonstrated clearly

in Fig. 12. The average number of vortices observed at each time-step is similar

(SR = 21.1, HF = 21.81). However, there are noticeable differences in the distribution of

vortex size that suggest different turbulent production mechanisms between the flows,

occurring at a range of scales. Primarily, the semi-rigid canopy produces more small-scale

(\0.02 m) vortices whereas the highly flexible canopy produces more mid-scale vortices

(0.02–0.1 m). For the largest vortices ([0.1 m) the distribution is similar between the two

cases, with only minor differences. These three regions can be broadly related to different

turbulent mechanisms within the flow.

Firstly, the largest vortices ([0.1 m) correspond to shear layer vortices. This can be

seen by examining the distribution of vortex diameter of vortices crossing the location of

the time series extracted for the wavelet analysis. For the first 10 s of the semi-rigid canopy

measurement period, the wavelet spectra (Fig. 8a) are dominated by a single low frequency

periodicity. The distribution of vortex size at the time series location for this period

(Fig. 13) shows that this larger scale vorticity most likely corresponds to the peak in vortex

size between 0.10 and 0.15 m. This is supported by the data of Marjoribanks et al. [20]

who measured a shear-layer generated vortex reaching a width of 0.1 m by the end of the

canopy. Secondly, we suggest that the difference in distribution of small-scale vortices

(\0.02 m) relates to additional stem-wake generated vortices. These can be identified in

Fig. 11b at the canopy top. Assuming Taylor’s frozen turbulence hypothesis holds for these

small scale vortices, a vortex diameter of 0.02 m represents a frequency of approximately

6.25 Hz which is consistent with that predicted for the wake shedding mechanism at the

canopy top.

Finally, we hypothesise that the medium-scale vortices relate to additional plant-flap-

ping related turbulence within the highly flexible case. In order to investigate this further

we study the relation between vortex size and vorticity for both the highly flexible and

semi-rigid canopies. For vortices relating to mixing layer instabilities we expect a domi-

nance of negative (clockwise) vorticity whereas for plant-flapping generated vortex

shedding we suggest that the mean vorticity should be zero given that vortices of positive

and negative vorticity are alternately shed (Fig. 11a). For each vortex scale we analyse the

vorticity in the regions defined as vortices according to the Q criterion using two measures:

Fig. 13 Occurrence of different

sized vortices at the location of

the time series extracted for the

wavelet analysis during the first

10 s of the semi-rigid canopy

simulation
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the proportion of vortices with mean positive and negative vorticity and the mean vorticity

value. The results (Fig. 14) show that the vorticity is very similar between the semi-rigid

and highly flexible cases for vortices smaller than 0.07 m (small and medium scale vor-

tices). In this region, there is a slight dominance of negative vortices (approximately 60 %)

with a mean vorticity of between -1.5 and -2 s-1. Between 0.07 m and 0.11 m the trend

is also similar, but with a greater dominance of negative vortices and correspondingly a

lower mean vorticity of approximately -2.5 s-1. We suggest therefore that this may

correspond to the most dominant mixing layer scale.

For vortices greater than 0.11 m there is a marked difference in vorticity with an

increase in the dominance of negative vorticity for the semi-rigid case and the opposite for

the highly flexible case. For the largest scales in the semi-rigid case the flow only consists

of negative mixing layer vortices. Here the mean vorticity is approximately -5 s-1 though

this decreases substantially at the very largest scale, suggesting a weakening of vorticity.

For the highly flexible case, although the proportion of positive vortices peaks at 90 %, the

mean vorticity peaks at approximately zero suggesting that the negative vortices are on

average nine times stronger at this scale. This general pattern is demonstrated across the

vortex diameter scale range suggesting that the mixing layer vortices are the strongest

vortices within the flow and that counter-rotating vortices which we suggest relate to plant–

flapping, are characterised by weaker vorticity.

6 Discussion

The results presented here for both the semi-rigid and highly flexible canopies display

typical canopy layer flow characteristics. This demonstrates that shear instability charac-

teristics appear to generalise over a range of plant flexibilities [7, 85]. The normalised

velocity profiles demonstrate that both canopy flows contain mixing layers associated with

inflection points in the velocity profiles just above the canopy. Whilst the velocity profiles

both agree with the classical mixing layer profile (particularly the highly flexible case), the

Reynolds stress profiles both peak above the value observed for a classical mixing layer.

This is in agreement with Sukhodolov and Sukhodolova [72] who found that for a natural

vegetation canopy, the Reynolds stress profile was best described by their theoretical

profile multiplied by a factor of two. The agreement with this profile observed for the

Fig. 14 Distribution of vortex sign (rotation direction) and mean vorticity with vortex diameter. Positive

sign corresponds to anti-clockwise rotation and negative sign to clockwise rotation. The bars demonstrate

the proportion of vortices of each sign for the semi-rigid (blue) and highly flexible (red) canopies. The lines

plot the mean vorticity for each vortex size class, for the semi-rigid (solid) and highly flexible (dotted)

canopies
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highly flexible canopy (Fig. 5) suggests that the highly flexible canopy is representative of

the processes occurring in the natural vegetation canopy studied by Sukhodolov and

Sukhodolova [72]. For the semi-rigid case, the Reynolds stress profile exhibits an even

larger peak, This is in common with the findings of Ghisalberti and Nepf [32] who

observed that the magnitude of the Reynolds stress peak increased with stem rigidity,

though they observed a lower magnitude peak most likely due to the lower canopy density

(a = 5.2 m-1).

The wavelet analysis highlights the presence of mixing layer periodicities in both flows,

but also suggests the presence of smaller scale, higher frequency periodicities within the

highly flexible canopy flow. These periodicities do not coincide with either the wake-scale

or mixing layer scale and therefore most likely relate to other turbulent production

mechanisms. This observation agrees with Nikora’s [57] model for canopy flows which

identifies six distinct turbulence regimes, including boundary layers, mixing layers and

wakes across different scales. Of the regimes proposed, some are too large-scale (e.g.

depth-scaled boundary layer, vegetated mixing layer) and others too small-scale (leaf-scale

boundary layers, stem wakes) to relate to the periodicity observed in the highly flexible

canopy. Therefore, we hypothesise that the observed periodicity corresponds to plant

flapping induced turbulence. This mechanism cannot be simply described as one of the

canonical flow types (e.g. boundary layer, mixing layer, wakes) but is most likely to be

caused by a combination of, and interaction between, mixing layer instabilities and wake

vortex shedding, similar to a flapping flag [86–88]. It should be noted however that a

flapping flag is not the perfect analogue for vegetation stem flapping, due to it being fixed

perpendicular to the flow at the bed. This mechanism of turbulence production is of great

interest as it is likely to be closely related to plant form and biomechanics and will

therefore vary across different plant types. Notably, this turbulence mechanism is not

included within the generalised canopy layer model, where vegetation response is treated

as an elastic bending response governed by the plant’s natural frequency [68, 89]. Further

research is therefore required to characterise this turbulent process, assess its overall

significance and contribution and to include it within the aquatic canopy flow model.

The absence of this turbulence scale (resulting from plant flapping) in the semi-rigid

canopy allows a comparison of its effect in comparison to that of the mixing layer which is

present in both cases. The presence of this scale does not dampen the mixing layer signal

within the flow, as shown by both the normalised flow profiles and the quadrant analysis.

However, there are some unexplained features which may be a result of this additional

turbulence scale. The secondary peak in the Reynolds stress profile has previously been

observed in canopies exhibiting coherent plant motion [8] and requires further explanation.

Similarly, the highly flexible canopy exhibits a greater number of large magnitude ejection

events throughout the flow depth. However, there is no corresponding increase in sweep

events and therefore it is unclear as to the origin of these events. Finally, the highly flexible

canopy exhibited much larger Reynolds stresses over the canopy. These phenomena

require further investigation over a wider range of canopy conditions to determine the

physical processes responsible for these observations and assess their persistence across a

range of canopy densities, stem lengths and rigidities.

The additional turbulence production within highly flexible canopies has a clear impact

on vortex characteristics. However, the impact is not straightforward. Whilst large-scale

mixing layer vortices dominate the semi-rigid canopy flow, for the highly flexible canopy

flow there exist large-scale vortices with positive (clockwise) vorticity. This suggests that

the vortex production by plant-flapping is not restricted to the mid-scale range but also

occurs at scales similar to the mixing layer vortices. It is possible that this explains the
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presence of two very similar low frequency scales within the wavelet plot (Fig. 8b) which

split and merge through time. Neither the additional vortex occurrence at wake scales

within the semi-rigid canopy, nor the additional vortex generation in the mid-scale range in

the highly flexible canopy observed in Fig. 12 alter the bulk vortex characteristics as

demonstrated by the similarity in Fig. 14 for scales less than 0.1 m. We suggest that this

may be due to the fact that both these vortex production mechanisms generate both positive

and negative vortices and therefore produce a net zero vorticity. Vortices at these smaller

scales are likely to comprise both decaying mixing layer turbulence and additional tur-

bulence production. However, the net vorticity signals of these two processes are likely to

be similar. Thus we suggest that it is only mixing layer turbulence processes that signif-

icantly alter the vortex characteristics. The exception to this is at the very largest scales in

the highly flexible simulation where positive vortices dominate. Here the vorticity is equal

to zero suggesting the dominance of stem flapping vortices. However, the proportion of

vortices that are positive is approximately 90 % rather than the 50 % expected from this

vortex generation mechanism.

These results suggest a more complex picture of turbulence production within highly

flexible canopies, which retains canopy mixing layer structure, but also exhibits additional

turbulence production mechanisms related to stem flexibility. For highly flexible aquatic

macrophytes with more complex form and foliage than considered here, we suggest that

the role of this plant-flapping scale turbulence may be even further increased. However, the

presence of foliage has also been shown to inhibit momentum exchange [61] and we note

this as an area for future research. The turbulence generated by this mechanism has been

shown to generate large-scale turbulent structures and additional high magnitude turbulent

quadrant (Reynolds stress) events. Therefore, we suggest the utility of canopy-layer

experiments and models employing semi-rigid or rigid vegetation analogues in drawing

conclusions on flow and sediment processes in natural channels with highly flexible

vegetation should be carefully considered.

Future work should be directed at evaluating the observed patterns over a wide range of

canopy densities and plant forms. In order to characterise the effect of vegetation with

highly complex morphology, as observed in natural environments, further model devel-

opment is required to increase our capability of modelling fluid–structure interaction with

increasing resolution and accuracy. This may involve more strongly coupled fluid–struc-

ture interaction models, dynamic meshing and more sophisticated turbulence models. In

particular, we highlight the need to investigate the fine-scale turbulence processes oper-

ating at the wake-scale and the effect these may have on larger scale turbulence dynamics

through turbulent backscatter. Nevertheless, we suggest that the methodology applied here

provides a useful approach for characterising flow–vegetation interactions.

7 Conclusion

This paper presents results from numerical simulations of flow through two canopies: one

semi-rigid and one highly flexible. Two different models were employed to capture the

dynamics of each canopy based upon their characterisation as ‘bending’ and ‘tensile’

canopies respectively. These models were applied to similar flow conditions in order to

evaluate their agreement with canopy flow theory. The main conclusions of this study are:
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1. The fundamentals of canopy flow generalise across a wide range of vegetation

rigidities. This includes the mixing layer flow profile, vortex generation and

occurrence of turbulent sweep and ejection events.

2. However, highly flexible canopies exhibit evidence of additional turbulent processes at

scales that are different to those expected for mixing layers and other known turbulent

processes (e.g. boundary layers and wakes).

3. These processes are most likely related to plant-flapping induced turbulence. Other

than through elastic-response, such plant-related turbulent processes have not been

extensively studied, but may contribute a hereto unrecognised influence on flow and

channel processes in aquatic environments.
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