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Abstract

Positive aboveground biomass trends have been reported from old-growth forests across

the Amazon basin and hypothesized to reflect a large-scale response to exterior forcing.

The result could, however, be an artefact due to a sampling bias induced by the nature of

forest growth dynamics. Here, we characterize statistically the disturbance process in

Amazon old-growth forests as recorded in 135 forest plots of the RAINFOR network up

to 2006, and other independent research programmes, and explore the consequences of

sampling artefacts using a data-based stochastic simulator. Over the observed range of

annual aboveground biomass losses, standard statistical tests show that the distribution

of biomass losses through mortality follow an exponential or near-identical Weibull

probability distribution and not a power law as assumed by others. The simulator was

parameterized using both an exponential disturbance probability distribution as well as

a mixed exponential–power law distribution to account for potential large-scale blow-
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down events. In both cases, sampling biases turn out to be too small to explain the gains

detected by the extended RAINFOR plot network. This result lends further support to

the notion that currently observed biomass gains for intact forests across the Amazon are

actually occurring over large scales at the current time, presumably as a response to

climate change.
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Introduction

Humans are in the process of significantly altering the

global atmospheric environment and climate as docu-

mented by long-term records of atmospheric constitu-

ents and climate (e.g. Keeling et al., 1976; Thoning et al.,

1989; Hulme, 1995; Petit et al., 1999; Brohan et al., 2006).

These changes provide a large-scale ecological experi-

ment of the ‘response’ of land vegetation to external

forcing. Such a response is not only of scientific interest

per se but also of importance for predicting global

carbon cycle feedbacks and in turn future greenhouse

warming, and potentially changes in biodiversity. A

system of particular importance in this regard is the

forest vegetation of the Amazon basin as it accounts for

a large fraction of the global land carbon store and

biodiversity (e.g. Malhi et al., 2007). Its vast size and

largely nondeforested state makes this system also

particularly suited to detect and study such responses.

In order to record such changes, a long-term network

of permanent plots has been established in mature

forests across Amazonia over recent years, uniting

existing efforts of local botanists and foresters, known

as ‘RAINFOR’ (Red Amazónica de Inventarios Fore-

stales, or Amazon Forest-Inventory Network, http://

rainfor.org, Malhi et al., 2002), representing the com-

bined long-term ecological monitoring efforts of 35

institutions worldwide (Fig. 1). Measurements are

mostly biometric, but by tracking the growth and death

of individual trees, rates of change of aboveground

biomass as well as mortality losses on a plot basis can

be estimated.

For interpretation of such results the nature and

representativeness of the statistical sample provided

by the given network is paramount. On a basin-wide

scale, plot locations have been selected to cover the

main axes of variation of forest dynamics (soil fertility,

precipitation, strength of El Niño signal). On a local

scale forests have been selected which have not evi-

dently been recently disturbed by human activities.

However, large-scale natural disturbances thought to

be mainly caused by intense wind gusts (Nelson et al.,

1994; Garstang et al., 1998) cannot be avoided by simply

choosing plots judiciously at a local scale. As a conse-

quence the network provides a well-distributed sample

of intact forest and associated small and large-scale

disturbance regimes across the Amazon basin.

Analysis of earlier tropical plot data has suggested

that large-scale changes in forest dynamics are currently

occurring in Amazonia (Phillips & Gentry, 1994; Phillips

et al., 2004), and that an increase in aboveground

biomass has occurred, with increases in mortality tend-

Fig. 1 Forest census plots from which data are used in this study. Crosses and dots indicate a rough categorization into Western and

Eastern plots respectively (see text for details). The plots in Bolivia have been assigned to one or the other of the two groups according to

geomorphology.
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ing to lag increases in growth (Phillips et al., 1998; Baker

et al., 2004a, b; Lewis et al., 2004a). These conclusions

have drawn major criticism of which the most signifi-

cant is perhaps best characterized by the statement

‘Slow in, Rapid out’ (Körner, 2003). The ‘Slow in, Rapid

out’ argument stresses that forest growth is a slow

process while mortality can potentially be dramatic

and singular in time, thereby entirely resetting forest

stand structure almost instantaneously. As a conse-

quence, sampling over comparably short observation

periods may miss such more severe events. Inferences

based on such sampling could therefore result in posi-

tively biased estimates of aboveground biomass trends

in old-growth forests when results from a small net-

work of large plots, or a large network of small plots are

extrapolated to the whole basin (Fisher et al., 2008).

In this paper, we address the hypothesis that observed

biomass gains are indeed an artefact of insufficient

spatio-temporal sampling. We proceed as follows: we

first characterize growth and disturbance of the Amazon

forests as recorded by the RAINFOR plots, using the

term ‘disturbance’ here to describe any process asso-

ciated with a decrease of living aboveground biomass

(thus we do not distinguish between mortality due to

senescence and external death processes). We then use

the resulting disturbance frequency distribution to esti-

mate the occurrence frequency of rare, large disturbance

events over the last quarter century. As such large-scale

disturbance events have not been recorded to date by

the RAINFOR plots, it is unclear how to extrapolate the

disturbance frequency distribution based on these data

to large events. We therefore use two types of distribu-

tions for representing disturbances: a steeply decreasing

distribution motivated by the RAINFOR statistics and

more slowly decreasing distributions motivated by the

Nelson et al. (1994) remotely sensed forest blow-down

data. These distributions are then combined with ob-

served distributions of growth into a simple stochastic

simulator allowing us to study the statistics of above-

ground biomass gains as a function of total observation

period and plot ensemble size. We may then quantify

the necessary sample size and time coverage to reduce

biases due to the ‘Slow in, Rapid out’ character of forest

dynamics. Finally we conclude with the implications for

the robustness of the finding of increasing Amazon

biomass in intact forests.

Materials and methods

Biometric field measurements

Results presented here are based on net changes in

biomass (t ha�1 yr�1) in forest inventory plots which in

turn are the difference of two terms: biomass gains

(from tree growth and recruitment of new trees to the

threshold size) and losses (from tree mortality) (Fig. 1).

Measurement and analytical techniques have been de-

scribed elsewhere (Baker et al., 2004a, b; Lewis et al.,

2004b; Malhi et al., 2004; Phillips et al., 2004). Plots are

typically 1 ha in size but frequently larger. We here

analyse a total number of 135 plots with a total area of

226.2 ha for which the mean census interval is 3.2 years

(standard deviation 2.8 years). Thus compared with the

sample on which previous results of Baker et al.

(2004a, b) were based, the sample size has approxi-

mately doubled. On average each plot has been cen-

sused 3.5 times, for a mean total observation period of

11.3 years. Aboveground biomass gains within a plot

have been estimated based on measurements of tree

diameter of all trees with diameter larger than 10 cm

and biomass gains calculated from diameter increments

using allometric equations derived from central Ama-

zonia forests (Chambers et al., 2001). These calculations

include species-specific wood density values (Baker

et al., 2004b), and corrections for possible census-inter-

val effects (Malhi et al., 2004). Mortality rates of trees

with diameter 410 cm were determined by observation

and where doubt existed by inspection of the cambium

(wet or dry). Mortality rates have also been corrected

for census–interval effects (Malhi et al., 2004). We base

our analysis on all censuses from the extended RAIN-

FOR network starting as early as 1971 and concluding

in 2006 after the 2005 drought.

Rare large-scale disturbance events and the power law

To assess robustness of conclusions drawn on modelling

disturbance, we use a range of models for

large-scale events bracketing existing observations. In

particular, besides the RAINFOR data we base them

on the only available dataset on large-scale disturbances.

These disturbances attributed to high-intensity wind

gusts have been compiled by Nelson et al. (1994) in

Brazilian Amazonia, using remote sensing. In a recent

paper Fisher et al. (2008) have proposed that the Nelson

et al. (1994) blow-down frequency distribution for events

occuring over one year follows a power law

p1 yearðxÞ ¼
a� 1

xmin

x

xmin

� ��a
; ð1Þ

where a is the power law exponent and xmin the cutoff

above which the power law is defined (e.g. Clauset et al.,

2007). They estimated the power law exponent using

ordinary least squares (OLS) and found a value o2.

However, as demonstrated by Goldstein et al. (2004) the

appropriate method for unbiased estimation of power

law exponents is to use maximum likelihood estimation

(MLE) (for completeness given in Appendix A1) as OLS
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underestimates the exponent. Applying this methodol-

ogy to the original Nelson et al. (1994) data, we find a

power law exponent of 3.1, contrary to the results of

Fisher et al. (2008).

To test in the following plausibility of theoretical

distributions given data we use the bootstrapping

method of Stute et al. (1993) which uses the Kolmogor-

ov–Smirnov distribution distance metric D ¼
max

xi

FdataðxiÞ � FmodelðxiÞj j; FmodelðxÞ ¼
R x

0 pðxÞdx where

Fdata (xi) is the empirical cumulated distribution func-

tion associated with the data x1,....,xn to estimate

p values. p-values are defined as

p �
# bootstrap samples with Dbootstrap > Ddata

total # bootstrap samples
:

Thus, the closer p is to 1 the more plausible is the tested

distribution given the data while po0.1 indicates that the

theoretical distribution is not plausible given the data.

Relation between disturbance probability distributions
from different census intervals

Data used in this analysis are based on a range of

different census intervals. Thus, the question arises of

how to combine these data, or in other words – what is

the relation between empirical probability distributions

based on different census intervals? We thus first demon-

strate how these relations are established. If p1 yearðmÞ is

the probability of a mass loss m due to mortality during a

1-year period then the probability for a biomass loss m

during a 2-year period is the sum (integral) over all mass

loss events m1 during year 1 and m2 during year 2 which

add to a mass loss m over a 2-year period:

p2 yearðmÞ ¼
Z

m1 <¼m

p1 yearðm1Þ|fflfflfflfflfflffl{zfflfflfflfflfflffl}
mass loss
during year 1

p1 yearðm�m1Þ|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
mass loss
during year 2

dm1: ð2Þ

The assumption underlying this rationale is that mass

loss events during subsequent years are independent from

one another. If applied for example to an exponential dis-

tribution p1 yearðmÞ ¼ le�lm, then p2 yearsðmÞ ¼ ðlmÞle�lm.

More generally for an n-year period

pn yearsðmÞ ¼
Z

m1þm2þ���þmn�1 <¼m

p1 yearðm1Þp1 yearðm2Þ � � �

p1 yearðm�mn�1 �mn�2 � . . .�m1Þ
dm1 dm2 . . . dmn�1;

ð3Þ

which for an exponential yields

pn yearsðmÞ ¼
ðlmÞn�1

ðn� 1Þ! le�lm: ð4Þ

The associated expectation value is n/l in time units

of (n year)�1 (and thus 1/l when expressed in units of

year�1) and the variance is

var ¼ 1

nl2
; ð5Þ

when expressed in units of year�2. Similar results

can be derived in principle from Eqn (2) for other

distributions although for a power law they are

somewhat complicated formulas including Euler Beta

functions.

Disturbance severity and return time

The more severe a disturbance event the less often it is

expected to be observed. But how rare are disturbance

events of a given magnitude? We here propose that given

an empirical probability distribution of biomass change

(or mortality) per year, p 5 p1 year(m), the relation

between the severity of an event and its return

time can be established as follows. The probability for a

mass loss event with loss larger than m to occur per year

is PðX � mÞ ¼
R1

m pðxÞdx ¼1�
Rm

0 pðxÞdx ¼ 1� FðmÞ
where FðmÞ �

Rm
0 pðxÞdx is the cumulative prob-

ability distribution function of the probability

density p(x). The return time t of such an event therefore

is

t � 1

PðX � mÞ ¼
1

1� FðmÞ : ð6Þ

By inverting this relation, the biomass loss m asso-

ciated with a given return time t is then given by

mðtÞ ¼ F�1 1� 1

t

� �
: ð7Þ

As an example for an exponential probability density

we obtain t ¼ 1
1� ð1e�lmÞ ¼ elm and mðtÞ ¼ lnðtÞ

l , and

for a power law t ¼ m
xmin

� �a�1
and mðtÞ ¼ xmint1=ða�1Þ;

respectively.

Simple stochastic simulator of aboveground biomass
balance

In order to establish the statistics of aboveground stock

gains and losses implied by observed growth and

mortality data, we formulated a stochastic simulator

of the form

dM

dt
¼ g� m; ð8Þ

where M is aboveground coarse woody biomass per

unit area, t is time, g is a stochastic variable representing

D O E S D I S T U R B A N C E E X P L A I N O B S E R V E D R A I N F O R E S T M A S S G A I N S ? 2421
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the aboveground mass gain rate per unit area due to

growth and m a stochastic variable representing above-

ground mass loss rate per unit area due to mortality

which we subsequently simply term ‘mortality’. To run

the simulations, these parameters are estimated from

the observed distributions as described in the following

section, and we use a 1 year interval time step which is

the natural choice given the observed disturbance sta-

tistics presented in ‘Results and discussion’. To obtain

the relevant statistics of dM/dt we repeated the sto-

chastic simulator for an ensemble of 1000 virtual plots

with each forest plot trajectory spanning a period of 100

years.

Because none of our plots has been affected by very

rare large-scale blow-down events of the type observed

by Nelson et al. (1994), we use in the following two

variants of the observed disturbance parameterisation.

Both variants follow observed exponential functions

over the full range of aboveground biomass losses as

observed by RAINFOR data, but differ in the way they

treat larger and rarer events. Specifically, in one version

the exponential distribution is assumed to extend

‘ad infinitum’ but for the second version, ‘fat-tail’

power law distributions replace the exponential

decrease for the simulation of large disturbance

events. The probability density for these mixed models

is thus

p1 yearðmÞ / le�lm; m < m0;
m�a; m � m0:

�
ð9Þ

Because the ‘Slow in, Rapid Out’ argument focuses on

net system gains as opposed to balances of individual

trees, the stochastic model is formulated on a plot level.

Likewise, as this study is dedicated to existing data

with the focus on aboveground biomass changes rather

than individuals, we do not include any possible

growth enhancement following disturbance. Neverthe-

less, the data do in fact show a small and relatively

minor dependence of growth rates on disturbance,

with growth rates slightly increasing after biomass

loss. Inclusion of this effect, would tend to reduce the

impact of individual disturbances on longer-term

trends in stand biomass, meaning that our final conclu-

sions on the robustness of growth rate trends inferred

from RAINFOR plot data (Phillips et al., 1998) are

conservative.

Based on previous work indicating geographically

determined differences among Amazonian forests in

structure, dynamics, and floristics (Baker et al.,

2004a, b; Lewis et al., 2004b; Malhi et al., 2004; Phillips

et al., 2004; ter Steege et al., 2006), standing stocks and

biomass growth rate observations for plots across the

Amazon basin were first clustered into two groups

based on geographic location, i.e. ‘West’ (Peru, Ecuador,

Colombia, western Bolivia, Acre), and ‘East’ (Venezue-

la, Guyanas, Brazil except Acre). These macrogeogra-

phical categories correspond well to substrate age and

soil fertility (Quesada et al., 2008a, b). Forest plots in the

geographically intermediate area of eastern Bolivia

were allocated to ‘West’ and ‘East’ based on their

nutrient status. Among Eastern Amazon plots standing

stocks of biomass are markedly greater, and growth and

mortality rates lower, than, Western Amazon forests

(Fig. 2). Accordingly we parameterized stochastic pro-

cesses separately for these two regions, but also under-

took (combined) simulations for the Amazon as a

whole.

Results and discussion

Mortality statistics

We characterized the mortality process by first devel-

oping histograms for census periods of suitable dura-

tion given the number of plot data available (Fig. 2). The

Fig. 2 Empirical distributions of decrease rate of living coarse-

wood aboveground biomass stocks due to mortality for increas-

ing census interval lengths, maximum likelihood exponential

distribution fit for (0.5, 1.5 years) interval and derived corre-

sponding distributions for remaining intervals [cf. (Eqn 4)].

2422 M . G L O O R et al.

r 2009 Blackwell Publishing Ltd, Global Change Biology, 15, 2418–2430



upper left panel of Fig. 2 shows the exponential dis-

tribution fit to the observed (0.5, 1.5 years) data ob-

tained using the standard maximum likelihood

estimator, the model curves for the other intervals

being calculated from the fitted (0.5, 1.5 years) distribu-

tion using the formula for pn yearsðmÞ of Eqn (3). Agree-

ment of the predicted distributions with the observed

histograms is mostly very good [p 5 0.15, 0.79, 0.99, 0.82

for p1 yearðmÞ; . . . ; p4 yearsðmÞ; respectively], confirming

our simple rationale for inferring distributions

from different census intervals. The comparably low

p-value for the 1 year distribution is due to a poor fit

for the very smallest disturbances. A better fit is ob-

tained for a Weibull distribution (p 5 0.48), which with

exception of smallest disturbances, is nearly identical

with the exponential distribution. The p-value for a

power law is 0, indicating that this distribution is a

poor descriptor of the mortality process. The good

agreement between model predictions and data for

multiyear periods also suggests that no essential mor-

tality processes are being missed by using longer sam-

pling intervals and that disturbance severity of

subsequent years are nearly independent from one

another.

The very good fit of the histogram for the (0.5, 1.5

years) interval over most of the observed range

was confirmed by replotting the data histogram

with axes scaled in various ways. For example, if the

histogram of disturbance magnitudes does indeed obey

an exponential distribution, then it should follow a

straight line in a semi-logarithmic plot. On the other

hand, if it follows a distribution with a fat tail (such as

the power law function used by Fisher et al., 2008),

then it should follow a straight line in a full logarithmic

plot. Figure 3 shows both types of plot, demonstrating

that the data do follow an exponential function

scaling relationship, but with some hint of a power

law tail with exponent � 2 scaling the frequencies of

the largest events. For the mixed exponential–power

law distribution model we have therefore assumed

power law tails with power law exponents of either

a5 2 or 3.1 (following the Nelson et al., 1994 data) for

m425 t ha�1 yr�1.

One predicted property of the modelled distributions

is that the variance should decrease with increasing

census interval as expected from Eqn (4) and this

behaviour is indeed revealed by the data as well (Fig.

4). The fitted rate parameters l for the exponential

distribution as defined in Eqn (2) are 0.25, 0.22 and

0.25 (t ha�1 yr�1)�1 for Eastern Amazon, Western Ama-

zon, and all plots respectively. The similarity of para-

meters for the Eastern and Western Amazon gives, in

hindsight, some justification for pooling plots to obtain

a sufficiently large ensemble to characterize distur-

bance. It may potentially also tell us something about

the mortality process itself. A speculative dimensional

argument suggests

l � stem density ðha�1Þ
� 	
� individual tree mortality rate ðyr�1Þ
� 	
� mean mass of individualðtÞf g

and therefore

ðstem densityÞ � ðtree mortality rateÞ
� ðmean mass of individualÞ
� const

across the basin. In order to assess the dependence of

our results on plot size we have also repeated the same

analysis but for plots with sizes between 0.5 and 1.5 ha

only. The results were very similar (see Appendix A).

From the fitted distributions, we can infer how the

likely frequency of severe disturbance events relates to

their occurrence frequency using Eqn (6). Results are

shown in Table 1 which shows, for example, that

Fig. 3 Semi-logarithmic (upper panel) and logarithmic (lower

panel) graph of empirical disturbance area distribution. The

three lines in the lower panel indicate a range of power law

distributions. Filled and open circles are based on different bin

width used for calculating the histograms.
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according to the exponential model, events which re-

move 30t ha�1 yr�1 should occur not more often than

every 1000 years. However, according to the mixed

model with power law exponent 2 which assumes a

more frequent high biomass disturbance regime they

should occur approximately every 150 years. Nonethe-

less in both cases, we can still conclude that larger-scale

disturbances as revealed by the RAINFOR network are

very rare.

Modelling stand growth and biomass change

Since the data indicate there is nearly no functional

dependence between gains and standing stocks (Fig.

5c), histograms of gains (Fig. 5b) indicate these can be

approximated by a normal distribution g � N(m, s) with

m5 5.2 (t ha�1 yr�1), s5 1.5 (t ha�1 yr�1) for Eastern

Amazonia and m5 6.1 (t ha�1 yr�1), s5 1.6 (t ha�1 yr�1)

for Western Amazonia respectively (parameters esti-

mated using maximum likelihood and plausibility of

distribution assessed by bootstrapping Stute et al.,

1993).

Fig. 4 Observed and predicted standard deviation [Eqn (4)] of

empirical distributions as a function of census interval length.

Table 1 Predicted relation between severity of disturbance

events and their return time

Return

time t
(years)

Mortality

loss � (west/east)

(t ha�1 yr�1)

Mortality

loss � (west/east)

(%)

Exponential model

20 12.5/13.6 5.0/3.6

100 19.1/20.9 7.6/5.5

200 22.0/24.1 8.8/6.3

1000 28.8/31.4 11.5/8.3

All Amazon All Amazon

Mixed model*

20 12.8 3.4

100 25.4 6.7

200 43.0 11.3

1000 96.4 25.4

*Exponential for mo25t ha�1 yr�1, power law with exponent

a5 2 for m � 25t ha�1 yr�1.

Fig. 5 Empirical distributions of living aboveground coarse-

wood biomass stocks (a) (N is the number of censuses and bin

width refers to the width of the bins used to calculate the

histograms), aboveground coarse-wood biomass gains (b), and

relation between the two (c) for Western and Eastern Amazon.

Note that the gains displayed in (b) include only biomass

increases. In contrast net biomass increase for a plot is given

by the difference of gains minus losses.
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Combined with the mortality parameterization above,

the growth function formulation g enabled a parameter-

ization of the stochastic simulator [Eqn (8)] for two

situations. Firstly, we ran the process for a system in

equilibrium (light curve) by adjusting the centre point of

the gains term such that it balances losses exactly when

averaged over the 1000 plots over 100 years. These

simulations provide us with the expected distribution

from the ‘null hypothesis’ that the net biomass of

Amazon forests is not actually increasing. Second, we

utilized the observed stochastic characteristics of the

gain term with sample trajectories shown in Fig. 6.

Figure 6c shows the statistical distribution of the

integrated change in aboveground biomass (dM) ex-

pected for a 3-year observation period. Thus, even if the

system is in equilibrium as a whole, the distribution of

net biomass change is skewed as anticipated by Körner

(2003) with the maximum (mode) of the distribution

centered off zero. Another, second effect of the skew-

ness of the ‘null’ distribution is an increase of the

variance of the distribution compared with a normal

distribution necessitating a somewhat larger sample of

plots to establish a statistically significant difference of

the mean from zero. With an increasing period of

monitoring the distribution loses its skewness, and

tends towards a normal distribution, as expected.

When based on a 3-year observation period the

equilibrium and nonequilibrium distributions are simi-

lar, but the distributions increasingly separate from

each other as the observation period increases, with

the data-based simulator indicating that after an obser-

vation period of a decade the net biomass change

distribution has largely lost its skewness due to an

insufficient sampling of the rare mortality events. Thus,

to the extent that the data from the RAINFOR plots

reflects the true statistics of Amazon forest disturbance

as a whole, we suggest that a period of a decade is

sufficient to circumvent this aspect of the ‘Slow in,

Rapid out’ problem.

Number of plots required to detect signal

Using the distributions that we have found to be

applicable to the modelling of Amazon forest dynamics,

we can evaluate whether or not the number of plots in

the network imparts sufficient statistical power for a

verification of a net Amazon forest biomass gain occur-

ring at the current time. Considering data from different

plots and census intervals as independent estimates of

net biomass gain rates the reasoning is as follows. The

standard deviation of the statistical distribution under-

lying the net biomass gain rates sample is predicted by

our stochastic simulator (Fig. 6b). The mean net biomass

gain rate is then significant at the one sigma level if the

standard deviation of the simulated mean is smaller

than the observed mean, or, if the ratio between the

standard deviation of the simulated mean and the

observed mean is smaller than 1, and similarly for

significance at the n-sigma level. The variance of the

mean, as usual, scales inversely with the square root of

the number of plots.

In order to establish significance according to this

rationale it is helpful to notice that the variance of the

distributions in Fig. 6b increases linearly with a slope of

20 (t ha�1 yr�1)2 yr�1 for the exponential model, slope 22

(t ha�1 yr�1)2 yr�1 for the mixed model with power law

exponent 3.1 and slope 100 (t ha�1 yr�1)2 yr�1 for the

mixed model for power law exponent 2 (linear growth

of the variance is equivalent to the standard deviation

increasing with the square root of time which is what is

shown in Fig. 6b as a dashed line). From this, the

standard deviations of the distributions follow by cal-

culating the square root (e.g. s(1 year) 5 4.6 where s is

standard deviation of the distribution for the exponen-

tial model and s(1 year) 5 4.7 and 10, respectively, for

the mixed exponential–power-law models). As Table 2

Fig. 6 Summary statistics of stochastic process predicting mass

balance for a 1000 member sample for observed process char-

acteristics (dots) and process adjusted such that gains balance

observed mortality (line): a few members of the sample (a), time

evolution of sample means and standard deviation (dotted) (b),

and histograms of aboveground stocks changes DAGB for dif-

ferent observation from start of the process (c–f) with vertical

lines indicating mean and median (dotted).
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documents, given the data up to 2006 the claim of an

increase in biomass over time is statistically robust at

the 1s level for all periods considered when using the

exponential model and the mixed exponential power

law model with power law exponent 3.1 (the standard

deviations are nearly identical). However, it is not al-

ways robust at the 2s level. The claim is significant at

the 5s level when all periods are combined both for the

Eastern and Western Amazon.

If we repeat our analysis with the two mixed expo-

nential–power-law models the main conclusions re-

garding significance of positive biomass gains remain

robust, although the level of significance for the model

with power law exponent 2 does decrease by approxi-

mately a factor two. It should be noted that the stochas-

tic simulator based on the exponent 2 power law mixed

model under-predicts net gains by a factor of three and

thus is not supported by the observations (not shown).

In contrast, the significance of the exponent 3.1 power

law mixed model which is supported by the Nelson

et al. (1994) data is actually virtually identical with the

exponential model.

One may still argue that plots that are located close to

one another do not provide spatially independent re-

cords. A rough and simple subjective assessment of the

spatial distribution of plots (indicated by circles in the

Fig. 1) indicates there are at least 17 spatially distinct

clusters of plots Amazon-wide. This is a conservative

assessment, because each grouping of plots is within

itself greatly heterogeneous. Assuming temporal statis-

tics to be decoupled from spatial statistics (P. Jansen

et al., in review) and using a mean census length of 3.2

years this reduces the effective census pool size to 39 for

the entire Amazon. Using the same rationale as for

creating the lowest line of Table 2 we obtain

ðs=
ffiffiffiffiffiffi
NÞ

p
= DAGB ¼ 0:35 for the entire Amazon. Thus,

even when taking potential long-range correlations be-

tween plots into account then the conclusions regarding

large-scale biomass gains across Amazonia remain sig-

nificant at the two s level.

Recently there has been a similar attempt to simulate

the implications of such a sampling problem, but for a

hypothetical sample based on only 1-year observation

periods (Fisher et al., 2008). This study likely overstates

the ‘Slow in, Rapid out’ bias, when directly comparing

the model and plot data results because the census

interval length of the plot results is an order of magnitude

greater than the census interval length of the modelling

study. The Fisher et al. (2008) study also significantly

underestimates power law exponents for a range of

disturbance datasets (Lloyd et al., unpublished data;

Goldstein et al., 2004; Clauset et al., 2007). If the correct

power law exponents had been used in their model, the

results would similarly show that the results from the

RAINFOR network were robust to this potential bias.

Summary

A network of long-term forest inventory plots across

Amazonia shows, on average, a net increase in above-

ground biomass. Given that additions of biomass from

tree growth is approximately constant, yet, losses from

mortality are occasional and stochastic, a priori

we expect that our sample comes from a long-tail

Table 2 Summary of statistical significance of observed mean aboveground biomass gains

Census interval

(years)

Eastern Amazon

# censuses r

Western Amazon

# censuses r

All Amazon

# censuses r

Exponential model

(0.5–1.5) 121 0.40 27 0.87 148 0.37

(1.5–2.5) 80 0.35 21 0.67 101 0.31

(2.5–3.5) 18 0.60 30 0.47 48 0.37

(3.5–4.5) 24 0.45 35 0.38 59 0.39

(4.5–5.5) 21 0.44 49 0.28 70 0.24

. . .. . .

All* 303 0.19 178 0.19 481 0.14

Mixed model**

All 303 0.41 178 0.41 481 0.30

Significance is assessed by the ratio r � ðs=
ffiffiffiffiffiffi
NÞ

p
=DAGB between standard deviation of the model based estimate of the sample

mean ðs=
ffiffiffiffiffiffi
NÞ

p
and the observed plot mean net biomass gain DAGB. N is number of censuses. Model predicted standard deviations s

for a 1-year period used for the table are 1.62, 1.55 and 1.63 t ha�1 yr�1 for the entire Amazon, Eastern Amazon and Western Amazon,

respectively.

*Given that variance grows linearly with observation period and assuming independence of plot measurements we can scale

variances to 1 year periods and use 1
s2

tot
¼
P

i
1
s2

i

to estimate stot for plots from different observation period lengths.

**Linearly proportional to exponential function for m � 25, and to power law function with a=2 for m � 25 (t ha�1 yr�1).
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distribution, if our sampling over time is shorter than

the average time that forest plots take to recover from

disturbance events. To explore this relationship we use

a stochastic forest simulator, parameterized using the

plot data, which shows that the distribution of net

change in biomass is skewed for shorter intervals, as

predicted. However, we show that the present-day

sampling across Amazonia is sufficient to detect a

positive trend in biomass over time. While there is little

data with which to characterize the precise shape of the

tail of the distribution, within the bounds of the avail-

able data, even if these occasional larger mortality

events have, by chance, been under-sampled, they

could not occur frequently enough to account for the

increase in biomass seen across the network of inven-

tory plots over the past 30 years.
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Appendix A

Maximum Likelihood Estimation of (a) Power Law

exponents and (b) parameters of multiyear

convolutions of the exponential distribution

The likelihood L of model a given the data x is proportional

to the probability of the data given the model. Thus for a power

law,

LðajxÞ / pðxjaÞ ¼ P
n

i¼1
pðxijaÞ ¼ P

n

i¼1

a� 1

xmin

xi

xmin

� ��a

The most likely model is the one which maximizes L or

equivalently its logarithm which, by setting its derivative equal

to zero, yields,

a ¼ 1þ 1Pn
i¼1 ln xi

xmin

� �

(see e.g. Clauset et al., 2007).

Application of the same principle to

pnyrðmÞ ¼
ðlmÞn�1

ðn� 1Þ! le�lm

yields as MLE l ¼ n=x, where x ¼ 1
n

Pn
i¼1 xi. For evaluating

goodness-of-fit of pnyrðmÞ to data using bootstrapping and

MLE (Stute et al., 1993), the cumulative distribution functions

of pnyrðmÞ are needed. With integration by parts and by

induction one finds

FnðxÞ ¼
Zx

0

pnyrðxÞdx ¼ 1� e�lx
Xn�2

k¼0

ðlxÞk

k!
:

Table A1 Summary of forest census plots used in this analysis. The data were extracted from the RAINFOR data base in July 2007

Plotname Code # plots Latitude Longitude

Large scale

region

Total

observation

time (year)

Total

area (ha)

Aguajal AGJ 1 11 53 08.00 S 71 21 48.00 W W 9.9 2.25

Altos de Maizal ALM 1 11 48 00.00 S 71 28 00.00 W W 10 2

Amacayacu: Agua Pudre AGP 2 03 43 20.54 S 70 18 18.11 W W 28.2 2

Amacayacu: Lorena LOR 2 03 03 22.78 S 69 59 26.60 W W 15.7 2

Allpahuayo ALP 3 03 56 56.94 S 73 26 02.81 W W 35.3 2.76

Añangu ANN 1 00 32 00.00 S 76 26 00.00 W W 4.9 1

Acuario ACU 1 15 14 46.00 S 61 14 34.00 W E 10.9 1

BDFFP BDF 12 02 25 32.46 S 59 51 02.95 W E 243.7 27

BEEM BEE 2 16 32 00.00 S 64 35 00.00 W W 8.5 2

Bionte BNT 6 02 38 00.00 S 60 10 00.00 W E 86.3 6

Bogi BOG 2 00 41 54.66 S 76 28 55.86 W W 23.2 2

Caxiuana CAX 4 01 44 14.13 S 51 27 46.41 W E 23.6 4

Chore CHO 1 14 23 08.00 S 61 08 52.00 W E 4.9 1

Cerro Pelao CRP 2 14 32 16.90 S 61 30 01.22 W W 14.4 2

Cuzco Amazonico CUZ 4 12 29 56.34 S 68 58 25.63 W W 68.9 4

El Dorado ELD 1 06 06 07.63 N 61 24 12.12 W E 32.2 1

Saint Elie ELI 2 05 30 00.00 N 53 00 00.00 W E 20.1 1.78

Forest Reserve Mabura Hills FRM 1 05 13 12.00 N 58 34 48.00 W E 6 1

Huanchaca Dos HCC 2 14 33 39.00 S 60 44 55.00 W W 20.3 2

Jacaranda JAC 2 02 36 23.27 S 60 12 23.53 W E 12 10

Jatun Sacha JAS 6 01 04 06.00 S 77 36 55.00 W W 72 5

Jenaro Herrera JEN 2 04 52 41.12 S 73 37 46.02 W W 4.1 2

Jari JRI 1 00 53 40.00 S 52 11 25.00 W E 11 1

Los Fierros LFB 2 14 33 24.10 S 60 55 40.40 W E 26 2

Las Londras LSL 2 14 24 29.29 S 61 08 24.98 W E 9.9 2

Continued
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Table A1. (Contd.)

Plotname Code # plots Latitude Longitude

Large scale

region

Total

observation

time (year)

Total

area (ha)

Manu MNU 5 11 52 00.00 S 71 21 00.00 W W 80.7 13.25

Maraba MRB 3 05 40.00 S 49 02 00.00 W E 23.3 6

Mishana MSH 1 03 47 00.00 S 73 30 00.00 W W 7.6 1

Nouragues NOR 2 04 05 00.00 N 52 40 00.00 W E 17.1 21

Pakitza PAK 1 11 55 00.00 S 71 15 00.00 W W 4 1

Paracou PAR 10 05 15 00.00 N 52 50 00.00 W E 100 42.4

Pibiri PIB 3 05 01 18.39 N 58 37 15.96 W E 39 3

Porongaba RES 4 10 49 06.00 S 68 46 34.20 W W 53.1 4

Roraima, Isla Maraca ROM 1 03 25 00.00 N 61 40 00.00 W E 11.5 2.25

Rio Grande RIO 1 08 06 49.00 N 61 41 32.00 W E 22.3 0.5

San Carlos de Rio Negro SCR 4 01 55 58.22 N 67 01 18.06 W E 75.6 4

Sacta SCT 2 17 00 00.00 S 64 46 00.00 W W 8.7 2

Sucusari SUC 5 03 15 07.60 S 72 54 26.77 W W 43.1 5

Tambopata TAM 6 12 50 38.81 S 69 17 18.18 W W 120.5 6

Tapajos TAP 5 02 51 00.00 S 54 58 00.00 W E 44 7.99

TEAM Caxiuana TEC 5 01 42 23.51 S 51 27 33.28 W E 18.5 6

TEAM Manaus TEM 4 02 37 08.51 S 60 12 36.11 W E 7.1 4

Tiputini TIP 2 00 38 20.00 S 76 09 17.00 W W 18.2 2

Yanamono YAN 2 03 26 22.38 S 72 50 44.92 W W 25.6 2

Zafire ZAR 4 04 00 24.59 S 69 54 22.00 W W 6.6 4

Fig A1 Dependence of disturbance statistics on size of plots.

Same as Fig. 3 but with analysis restricted to 1 ha plots.

Table A2 Mortality histograms for all Amazon forest plots

DAGB (t ha�1 yr�1) # Events

0.5 yroCensus Intervalo1.5 yr

0.4427 22

1.1057 16

1.7686 16

2.4316 22

3.0946 10

3.7576 10

4.4206 9

5.0836 6

5.7465 10

6.4095 3

7.0725 4

7.7355 3

8.3985 4

9.0615 2

9.7245 3

10.3874 0

11.0504 2

11.7134 2

12.3764 1

13.0394 1

13.7024 0

14.3654 0

15.0283 0

15.6913 0

16.3543 0

17.0173 1

Continued
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Table A2. (Contd.)

17.6803 1

18.3433 0

19.0063 0

19.6692 3

1.5 yroCensus Intervalo2.5 yr

1.3628 8

2.1782 21

2.9936 15

3.8091 10

4.6245 10

5.4399 9

6.2553 6

7.0708 8

7.8862 6

8.7016 1

9.5170 3

10.3325 1

11.1479 1

11.9633 0

12.7788 1

13.5942 0

14.4096 0

15.2250 0

16.0405 0

16.8559 1

2.5 yroCensus Intervalo3.5 yr

1.2185 4

2.4888 8

3.7592 10

5.0296 6

6.2999 9

7.5703 4

8.8407 2

10.1110 2

11.3814 3

3.5 yroCensus Intervalo4.5 yr

2.8296 12

4.7875 28

6.7455 11

8.7035 5

10.6614 0

12.6194 1

14.5773 1

16.5353 0

18.4932 0

20.4512 0

22.4092 1

4.5 yroCensus Interval

2.3396 50

5.1789 54

8.0182 14

10.8574 4

13.6967 2
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