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ABSTRACT: In this paper, a wavelet analysis of long-range dependence (LRD) based on
the Hurst exponent is presented. An estimator is used to perform an analysis of LRD in the
capital markets of six transition economies. The results suggest that we can divide the stock
markets into two groups: markets with strong LRD (the Czech Republic, Hungary, Russia,
and Slovenia), and markets with no or only a weak form of LRD (Poland and Slovakia).
Additionally, if the Hurst exponent is estimated on a sliding time window, the results show
some additional properties, which we believe are representative for the markets in transi-
tion economies.

According to the efficient market hypothesis, an efficient capital market is one in
which security prices adjust rapidly to the arrival of new information, and, therefore,
the current prices of securities reflect all information about the security. Three sets
of assumptions imply an efficient capital market: (a) an efficient market requires that
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a large number of competing profit-maximizing participants analyze and value se-
curities, each independently of the others; (b) new information regarding securities
comes to the market in a random fashion, and the timing of one announcement is
generally independent of others; and (c) competing investors attempt to adjust secu-
rity prices rapidly to reflect the effect of new information.

Although the price adjustment may be imperfect, it is unbiased. This means
that sometimes the market will over- or underadjust, but an investor cannot predict
which will occur at any given time. If we believe that the efficient market hypoth-
esis is a valid proposition, then the current asset prices should reflect all generally
available information. The efficient market hypothesis implies that since market
prices reflect all available information, including information about the future, the
only difference between the prices at time t and t + 1 are events that cannot possi-
bly be predicted. Hence, in an efficient market, stock prices can be statistically
tested for the random-walk hypothesis.

Fama (1965) concluded in an early survey that the stock market was efficient.
Fama analyzed the distribution of a large data set and showed that empirical evi-
dence seems to confirm the random-walk hypothesis––series of price changes have
no memory. There are a number of additional studies where very little evidence
for long memory has been found (references to these can be found in Hiemstra and
Jones 1997). On the other hand, there are several studies where at least some evi-
dence of long memory has been detected in stock market returns, see for example,
studies by Barkoulas and Baum (1996), Barkoulas et al. (2000), Cheung and Lai
(1995), Crato (1994), Henry (2002), Sadique and Silvapulle (2001), and Tolvi
(2003). The results in these articles, however, are often conflicting, and are not
robust to minor changes in the testing methods.

Based on the theoretical literature, one might expect to find long memory par-
ticularly in indices. One reason for this is the fact that long memory can be created
by aggregating certain types of short-memory series (see, e.g., Granger 1980).
Therefore, some studies also analyzed individual U.S. stocks (see, e.g., Barkoulas
and Baum 1996; Hiemstra and Jones 1997) and found evidence of statistically
significant long memory for some stocks listed on the New York Stock Exchange.
On the other hand, Panas (2001) examines the daily returns of thirteen Greek stocks
and finds statistically significant long memory in most of the series.

Because small markets do not always seem to behave as expected, and, more
precisely, the efficient market hypothesis may not necessarily hold for the returns
of stocks in small markets, it is more likely that long memory will be detected in
them. This point was raised by Barkoulas et al. (2000), who examined weekly
returns in the Greek stock market during the 1980s and found clear evidence of
significant long memory (see also Sadique and Silvapulle 2001). Similarly, Wright
(2001) examines some emerging market stock returns and finds that long memory
is more often found in them than in developed markets.

The main goal of this paper is to analyze capital markets in six transition econo-
mies: the Czech Republic, Hungary, Poland, Russia, Slovakia, and Slovenia. We



JULY–AUGUST 2005 81

try to apply some measures of long-memory process to aggregate financial time
series in order to test whether there is evidence of random-walk behavior. The
analysis will be based on the Hurst exponent.

The Hurst exponent is not so much calculated as estimated. A variety of tech-
niques exist for the estimation, though accuracy can be a complicated issue. There-
fore, we will compare standard procedures of estimating the exponent with a new
approach based on discrete wavelet transform.

Testing software to estimate the Hurst exponent can be difficult. The best way
to test algorithms toward estimating the Hurst exponent is to use a data set that has
a known Hurst exponent value. In our research, we tested our software on artificial
data sets with different statistical properties.

The evidence that financial time series are examples of long-memory processes
is mixed. We will compare the results for selected transition economies with the
results for some developed economies.

Analytical Framework

The Long-Range Dependence Phenomenon

The phenomenon of long-range dependence (LRD) has a long history and has
remained a topic of active research in the study of economic and financial time
series (Cutland et al. 1995; Gabaix et al. 2003; Lo 1991; Schwartz 1997). It is
widespread in other areas in the physical and natural sciences (see, e.g., Beran
1994; Mandelbrot 1977), and has been extensively documented in hydrology,
meteorology, and geophysics (see, e.g., Mandelbrot and Wallis 1969). More re-
cently, LRD has also started to play an important role in the engineering sciences,
especially in the analysis and performance modeling of traffic measurements from
modern high-speed communications networks and semiconductor physics (for a
recent bibliographical survey of this area, see Willinger et al. 1996). It is com-
monly accepted that the definition of LRD is the slow power-law decrease of the
autocorrelation function of a wide-sense stationary process expressed as

( ) ( )H
x k c k k2 2~ ,− −

γγ →+∞ (1)

with H ∈ (0.5,1), where γx(k) is a covariance function, and cγ is a positive constant.
The Hurst parameter H measures LRD. An equivalent statement for the spectrum
Γx(ν) of x is

( ) H
x fc 1 2~ , 0,−Γ ν ν ν→ (2)

where cf = π–1cγΛ(2H – 1)sin(π – πH), and Λ is the gamma function. Thus, LRD
processes belong to the class of random processes that take the form 1/|ν|α for a
range of frequencies ν close to 0. The LRD phenomenon is also closely related to
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the properties of scale invariance, self-similarity, and, hence, fractals, and is there-
fore often associated with statistically self-similar processes, such as the fractional
Brownian motion (Mandelbrot and Van Ness 1968).

Standard Estimators

By definition, the LRD phenomenon is related to the power-law behavior of cer-
tain second-order statistics (variance, covariance, . . .) of the process with respect
to the duration T of observation. Many estimators of H are therefore based on the
idea of measuring the slope of a linear fit in a log-log plot. The so-called R/S
(rescaled range statistics) estimators are famous examples of this approach (Beran
1994; Hampton 1996; Taqqu et al. 1996). In short, for a given signal (xi, i ≥ 1)
with partial sum y(n) = Σn

i=1xi, n ≥ 1, and S2(n) = n–1Σn
i=1(xi – n–1y(n))2, n ≥ 1, the

rescaled adjusted range statistic or R/S statistic is defined by

( )
( )

( ) ( ) ( ) ( )
t nt n

R t t
n y t   y n y t   y n n
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1
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≤≤≤≤

    
= − − − ≥    

     (3)

Hurst (1951) found that many naturally occurring empirical records appear to
be well represented by the relation

( )( ) HE R S n ~c n n1/ , as →∞ , (4)

with typical values of the Hurst parameter H in the interval (0.5,1), and c1 a finite
positive constant that does not depend on n. On the other hand, if the observations
xi come from a short-range dependent model, then it is known that

( )( )E R S n ~c n n0.5
2/ , as ,→∞ (5)

where c2 is independent of n and is finite and positive. The discrepancy between
the last two relations is generally referred to as the “Hurst effect” or the “Hurst
phenomenon.”

Because the classical R/S analysis is sensitive to the statistical properties of a
data set, a number of different versions of estimation procedures have been docu-
mented in the literature. The algorithm outlined in this paper uses two different
procedures. In the first, nonoverlapping data regions, where the size of the data set
is a power of two, are used; each subregion is a component power of two. The
second uses overlapping regions and is not limited to data sizes that are a power of
two.

Multiresolution Analysis and Discrete Wavelet Transform

A multiresolution analysis (MRA) consists in a collection of nested subspaces
{Vj}j∈Z, satisfying the following set of properties (Daubechies 1992):
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1. ∩j∈ZVj = {0}, ∪j∈ZVj is dense in L2(R),
2. Vj ⊂ Vj–1,
3. x(t) ∈ Vj ↔ x(2jt) ∈ V0, and
4. there exists a function φ0(t) in V0, called the scaling function, such that the

collection {φ0(t – k), k ∈ Z} is an unconditional Riesz basis for V0.

Similarly, the scaled and shifted functions {φj,k(t) = 2–j/2φ0(2–jt – k), k ∈ Z}
constitute a Riesz basis for the space Vj. Performing a multiresolution analysis of
the signal x means successively projecting it into each of the approximation sub-
spaces Vj:

( ) ( )( ) ( ) ( )
jj V x j k

k

approx t Proj x t a j k t,, .= = φ∑ (6)

Because Vj ⊂ Vj–1, approxj is a coarser approximation of x than is approxj–1.
Therefore, the key idea of the MRA consists in examining the loss of informa-
tion, that is, detail, when going from one approximation to the next, coarser one:
detailj(t) = approxj–1(t) – approxj(t). The MRA analysis shows that the detail sig-
nals detailj can be directly obtained from projections of x onto a collection of
subspaces, the Wj, called the wavelet subspaces. Moreover, MRA theory shows
that there exists a function ψ0, called the “mother wavelet,” to be derived from φ0,
such that its templates {ψj,k(t) = 2–j/2ψ0(2–jt – k), k ∈ Z} constitute a Riesz basis for
Wj:

( ) ( )( ) ( ) ( )
jj W x j k

k

detail t Proj x t d j k t,, .= = ψ∑ (7)

Basically, the MRA consists in rewriting the information in x as a collection of
details at different resolutions and a low-resolution approximation:

( ) ( ) ( )

( ) ( ) ( ) ( )

J
j jj

J
x J k x j kk j k

x t approx t detail t

a J k t d j k t

1

, ,1
, , .

=

=

= +

= φ + ψ

∑

∑ ∑ ∑ (8)

The approxj, essentially being a coarser approximation of x, means that φ0 needs
to be a low-pass function. The detailj, being an information differential, indicates
rather that ψ0 is a band-pass function, and therefore a small wave, a wavelet. More
precisely, the MRA shows that the mother wavelet must satisfy ∫ψ0(t)dt = 0 and
that its Fourier transform obeys |Ψ0(ν)| ~ νN, ν → 0, where N is a positive integer,
called the number of vanishing moments of the wavelet (Daubechies 1992).

Given a scaling function φ0 and mother-wavelet ψ0, the discrete (or
nonredundant) wavelet transform (DWT) is a mapping from L2(R) → l2(Z) given
by
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( ) ( ){ } ( ){ }{ }x xx t a J k k Z d j k j J k Z, , , , , 1,..., , .→ ∈ = ∈ (9)

These coefficients are defined through inner products of x with two sets of
functions:

( )

( )

x j k

x j k

a j k x

d j k x

,

,

, ,

, , ,

= φ

= ψ
(10)

where ψ ~j,k and φ~j,k are shifted and dilated templates of ψ~0 and φ~0, called the dual
mother wavelet and dual scaling function, and whose definitions depend on whether
one chooses to use an orthogonal, semi-orthogonal, or bi-orthogonal DWT (Abry
and Flandrin 1996; Aldroubi and Unser 1993). They can practically be computed
by fast recursive filter-bank-based pyramidal algorithm, whose computational cost
is extremely low (Daubechies 1992).

The Wavelet-Based H Estimator

The coefficient |dx(j,k)|2 measures the amount of energy in the analyzed signal
about the time instant 2jk and frequency 2–jν0, where ν0 is an arbitrary reference
frequency selected by the choice of ψ0. It has been suggested (Abry et al. 1993)
that a useful spectral estimator can be designed by performing a time average of
|dx(j,k)|2 at a given scale, that is

( ) ( )j
x x

kj

d j k
n

2
0

1ˆ 2 , ,−Γ ν = ∑ (11)

where nj is the available number of wavelet coefficients at octave j; essentially, nj =
2–jn, where n is the length of the data. Γ {x(ν) is therefore a measure of the amount of
energy that lies within a given bandwidth around the frequency ν and can be re-
garded as a statistical estimator for the spectrum Γx(ν) of x. In fact, one can show
(Abry et al. 1995) that, when x is wide-sense stationary process, the expectation of
Γ {x is

( )( ) ( ) ( )j j j
x xE d

2

0 0
ˆ 2 2 2 ,−Γ ν = Γ ν Ψ ν ν∫ (12)

where Ψ0 denotes the Fourier transform of the analyzing wavelet ψ0. From this
relation, one sees that Γ {x suffers from the standard convolutive bias, that is, the
spectrum to be estimated is mixed within a frequency range corresponding to the
frequency width of the analyzing window at scale j. The crucial point here is that
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for LRD signals, this bias reduces naturally to a simple form, enabling an unbiased
estimation of H. To see this, recall the spectral behavior (Equation (2)) and assume
for the moment that this form holds for all frequencies. The bias Equation (12) can
then be rewritten as

( )( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

H Hj j
x f

H Hj
x

E c d

d

1 2 21 2
0 0

2 1 21 2
0 0 0

ˆ 2 2

2 .

− −− −

− −−

Γ ν = ν Ψ ν ν

=Γ ν ν ν Ψ ν ν

∫

∫
(13)

From Equation (13), one sees that in the case of 1/|ν|α processes, the standard
convolutive bias turns into a multiplicative one. Moreover, this multiplicative con-
stant is dependent on the analyzing scale j. It is therefore possible to design an
estimator H{ of the parameter H from a simple linear regression of log2(Γ {x(2–jν0)) on
j, that is,

( )( ) ( )j
x x

kj

d j k H j c
n

2
2 0 2

1ˆ ˆ ˆlog 2 log , (2 1) ,−
 
 Γ ν = = − + 
 

∑ (14)

where c [ estimates log2(cf∫|ν|(1–2H)|Ψ0(ν)|2dν), provided that the integral

( ) ( )H d
21 2

0
−ν Ψ ν ν∫ (15)

converges. Performing a weighted least-squares fit between the scales (octaves) j1

and j2 yields the following explicit formula for the estimator of H:
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( )

j j j
j j j j jj j j j j j

j j j
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2
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η − η 

≡ + 
 − 
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(16)

where ηj = log2((1/nj)Σk|dx(j,k)|2), and the weight Sj = (nln22)/2j+1 is the inverse of
the theoretical asymptotic variance of ηj (Abry et al. 1995).

Under Gaussian and quasi-decorrelation of the wavelet coefficient hypotheses,
and in the asymptotic limit, a closed-form for the variance of the estimate of H can
be obtained and given by

( ) ( ) ( )

J

H J J
j

H j j
n J

1

2
ˆ 1 2 2 1 2

2 1 2ˆvar , ,
ln 2 1 2 4 2− + −

−
σ = =

− + + (17)

where J = j2 – j1 is the number of octaves involved in the linear fit, and nj1 = 2–j1n is
the number of available coefficients at scale j1. It can be shown that this variance is
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the smallest possible as that equal to the Cramer–Rao bound for a given J. For
further details on this estimator, see Abry et al. (1995).

From the above closed-form for the variance estimation, one can derive a con-
fidence interval

H H
H z H H zˆ ˆ
ˆ ˆ ,β β−σ ≤ ≤ +σ (18)

where zβ is the 1 – β quantile of the standard Gaussian distribution (P(z ≥ zβ) = β).
All the results presented below, both in numerical simulations and actual data analy-
sis, were computed with β = 0.025 (95 percent confidence intervals), based on the
above hypothesis.

Data

Artificially Generated Data

We used two types of data in our research: artificially generated data and real
financial data. Artificially generated data are necessary for testing the source code
of the developed software and for comparing the different approaches to the esti-
mation of the Hurst exponent. Therefore, the artificial data must have a predefined
(known) value of the Hurst exponent. The generation of data with a predefined
value of the Hurst exponent can be accomplished by estimation of factional Gaussian
noise (FGn) and fractional Brownian motion (FBm). FGn forms a stationary pro-
cess GH(t) with the following properties (Beran 1994):

1. GH(t) = (1/δ)(BH(t + δ) – BH(t)),
2. GH(t) is normally distributed with N(0,σδH–1), and
3. E(GH(t + τ)GH(t)) = σ2H(2H – 1)|τ|2H–2 for τ >> δ.

FBm of the Hurst exponent 0 < H < 1 is the zero-mean Gaussian process BH(t)
with the following properties (Beran 1994):

1. E(BH(t)) = 0,
2. BH(0) = 0,
3. BH(t + δ) – BH(t) is normally distributed with N(0,σ|δ|H),
4. BH(t) has independent increments, and
5. E(BH(t)BH(s)) = σ2/2(|t|2H + |s|2H – |t – s|2H) ⇒ Var(BH(t)) = σ2|t|2H.

BH(t) is nonstationary and does not admit a spectrum in the usual sense. How-
ever, it is possible to attach to it an average spectrum through the lens of wavelets

( )
( )

H

H
B t

2 1 .− +Γ ≅ ν (19)

BH(t) is exactly self-similar, perfectly determined by H. There are several ways
to create an approximation of FBm. One way, which we applied in our source
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code, is by applying random midpoint displacement (RMD). Like all other proce-
dures, the RMD procedure for generating FBm needs random numbers. A true
random number is generated by a physical process, like counting the particles
emitted by the decay of a radioactive element. Pseudo-random numbers are gener-
ated by software functions. They are referred to as pseudo-random because the
sequence of numbers is deterministic. Given a particular function and a seed value,
the same sequence of numbers will be generated by the function. For many appli-
cations, however, high-quality random numbers are needed, because this is the
only way to avoid incorrect conclusions about the statistical properties of the ob-
served estimator. The artificial data in this paper are based on random numbers
generated by the GNU Scientific Library for Microsoft Visual C++.

We have generated data sets with a predefined Hurst exponent for H = {0.5, 0.6,
0.7, 0.8, 0.9} and a different number of observations T = {29, 210, 211, 212, 213}. A
graphical presentation of the data for T = 210 is shown in Figure 1.

Figure 1. Graphical Presentation of the Artificially Generated Data

Notes: FBm—fractional Brownian motion; FGn—fractional Gaussian noise; H—Hurst
exponent.
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Real Financial Data

Because the main objective of this paper is the analysis of selected capital markets
in transition economies, we also need aggregate time series, which will represent
the activity in the observed markets. As indicated in the introduction, we collected
data for the Czech Republic, Hungary, Poland, Russia, Slovakia, and Slovenia. We
decided to use those countries’ major stock market indices (PX50, BUX, WIG20,
RTS, SAX, SBI, respectively). In order to capture the real dynamics of the market,
we use daily closing values.

Most financial models do not attempt to model closing values, but instead deal
with returns on the instrument. This is heavily reflected in the literature on finance
and economics (see, e.g., Campbell et al. 1997; Mantegna and Stanley 2000). The
return is the profit or loss in buying a financial instrument, holding it for some
period of time, and then selling it. The most common way to calculate a return is
the log-return:

( ) ( )t t t tx x x*
, log log .−δ −δ= − (20)

Another way to calculate the return is to use the percentage return:

t t
t t

t

x x
x

x
*
, .−δ
−δ

−δ

−
= (21)

Both transformations yield similar results in our analysis. Because the log-re-
turn is most frequently used in the literature, the results in this paper will be pre-
sented for this type of data.

Some General Considerations About the
Statistical Properties of the Data

Procedures for the estimation of the Hurst exponent are very sensible to the statis-
tical properties of the sample data. The testing of the stationarity hypothesis is
particularly difficult in the presence of LRD, where many classical statistical ap-
proaches cease to hold. Even without LRD, however, there is the fundamental
problem that there are an infinity of ways in which a process can be nonstationary.
Normally, we must choose a particular model framework and test for stationarity
only against the types of nonstationarity encompassed by it (an example is the
augmented Dickey–Fuller test). To assist in the process, it is important to include
a priori information concerning the known physics of the problem (Jagric 2003).

In contrast to standard procedures, the wavelet-based estimator seems to have a
substantial robustness against an important class of nonstationarity, namely, the
addition of deterministic trends (Jagric and Ovin 2004). This is a particularly im-
portant advantage in a LRD context, where it is very difficult in theory and in
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practice to distinguish between real trends and long-term sample-path variations
due to LRD.

Another fundamental feature of the wavelet-based analysis of the LRD phe-
nomenon is that it can be used to meaningfully analyze the important class of
nonstationary processes X(t) with stationary increments, that is, Yτ(t) = X(t + τ) –
X(t) is stationary. The properties of the estimations based on wavelet analysis for
the study of processes with stationary increments are documented in detail in Flandrin
(1989; 1992). The FBm, which we selected as part of the artificially generated
data, is the canonical reference for such processes. If one would like to estimate the
H parameter with classical procedures, it would be necessary to first compute the
increments. With a wavelet estimator, one can work with the process itself.

Results

Estimating the Hurst exponent for a data set provides a measure of whether the
data are a pure random walk or have underlying trends. Another way to state this is
that a random process with an underlying trend has some degree of autocorrelation.
When the autocorrelation has a very long decay, this kind of Gaussian process is
sometimes referred to as a long-memory process.

Processes that we might naively assume are purely random sometimes turn out
to exhibit Hurst-exponent statistics for long-memory processes. One example is
seen in computer network traffic. We might expect that network traffic would be
best simulated by having some number of random sources send random-sized pack-
ets into the network. Following this line of thinking, the distribution might be
Poisson. As it turns out, the naive model for network traffic seems to be wrong.
Network traffic is best modeled by a process that displays a nonrandom Hurst
exponent (Paxson and Floyd 1994).

As outlined in the introduction, we first tested the developed software on the
artificially generated data, which we divided into two major groups. The first group
includes data that have the properties of an FBm process (see Table 1). As the
results suggest, standard estimation procedures fail. All estimates of the Hurst ex-
ponent (H1, H2, and H3) are far from true values of the exponent. This holds for
both short and long samples.

In contrast to the results obtained by standard procedures, it seems that the
results for the wavelet estimation of the exponent are quite robust. Due to the
properties of the FBm, the number of vanishing moments (estimations based on
Daubechies 1 [or Harr], Daubechies 2, and Daubechies 5 wavelets) does not influ-
ence the quality of the results. The results are only improved if the number of
observations in the sample is changed. The developed software also correctly indi-
cated the presence of self-similarity.

The results for the second group of artificially generated data are presented in
the Table 2. The data incorporate the FGn process, which is stationary. Therefore,
the standard procedures can be normally applied. If we carefully examine the re-
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sults for RSA (rescaled range statistic adjusted) and RSA based on octave data
structure, we find an interesting property. The results suggest that both procedures
cannot give correct estimates if the Hurst exponent exceeds a value of 0.8. This
seems to be the case for all data sets—the number of observations does not change
the results. If we consider only the data sets with H < 0.8, the best results are
achieved with RSA, which is based on octave structure.

As expected, the results for the wavelet-based estimations are stable. Based on
the results in Table 1 and Table 2, we can conclude that the wavelet estimation of
the Hurst exponent gives better results. The results are robust for different sample
sizes and some types of nonstationarity. We also experimented with time series,
which include (or are contaminated by) different types of deterministic trends.
The results suggest that if we use a sufficient number of vanishing moments, we
can obtain extremely stable results.

Let us now turn to the analysis of real financial data. As explained above, all
indices are transformed into the log-return format. Basic descriptive statistics for
the financial data in the log-return format are presented in Table 3. Let us first look
at the skewness. The skewness of a symmetric distribution, such as the normal
distribution, is zero. However, none of the series seems to be symmetric. There are
two series (PX50 and SBI) with positive skewness, which means that the distribu-
tions have a long right tail. All other series (BUX, WIG20, RTS, SAX) have nega-
tive skewness, which implies that the distributions have a long left tail.

The next statistic that is important for our analysis is the kurtosis. The kurtosis
of the normal distribution is three. In our case, all series have a kurtosis that ex-
ceeds a value of three. This means that the distributions are peaked (leptokurtic)
relative to the normal distribution.

Because both descriptive statistics (skewness and kurtosis) indicate deviations
from normal values, we can expect that the observed distributions are not nor-
mally distributed. Therefore, we calculated the Jarque–Bera statistic, a test statis-
tic for testing whether the series is normally distributed. The reported probability
is the probability that a Jarque–Bera statistic exceeds (in absolute value) the ob-
served value under the null hypothesis—a small probability value leads to the
rejection of the null hypothesis of a normal distribution. In our case, the results for
all series indicate a rejection of the null hypothesis. These results are also con-
firmed by the quantile–quantile (QQ) plots (Figure 2). If we plot the quantiles of
the chosen series against the quantiles of the normal distribution, we can detect
strong deviation, especially at the tails. In all cases, the plots indicate an S-shape
curve, which is a typical sign of a nonnormal distribution in financial time series.
Such results are similar to the results of other studies (see, e.g., Henry 2002), and
indicate that the stock markets under study exhibit some common features.

Finally, we also performed a simple unit root test in order to test the stationarity
of the selected series. We used the augmented Dickey–Fuller (ADF) test. The re-
sults for the ADF test statistic are compared with MacKinnon critical values for
the rejection of hypothesis of a unit root at the 1 percent significance level. In our
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Figure 2. The Quantile–Quantile (QQ) Plot for Financial Data
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case, all series seem to be stationary, at least in the form that is incorporated in the
ADF test.

After the examination of basic statistical properties of the selected time series,
we can now perform the estimations of the Hurst exponent. The exponent was
estimated for every series for ten different numbers of vanishing moments. This
enabled us to test if the estimations are stable and can be treated as reliable. Addi-
tionally, we can also make some conclusions about the statistical properties based
on the relation between the number of vanishing moments and the Hurst exponent.

The results for the estimated Hurst exponent are presented in Figure 3. The
weighted average estimation of the Hurst exponent gives a surprising picture of
the stock markets. The results indicate that we can make two groups of markets. In
the first group are the markets where strong long-range dependence can be de-
tected. This is the case for the Czech Republic (Hÿ

PX50 = 0.645 ± 0.035), Hungary
(Hÿ

BUX = 0.626 ± 0.030), Russia (Hÿ
RTS = 0.648 ± 0.039), and Slovenia (Hÿ

SBI = 0.656
± 0.033). The second group consist of markets where no or only an extremely
weak form of LRD could be detected. This is the case for Poland (Hÿ

WIG20 = 0.569 ±
0.036) and Slovakia (Hÿ

SAX = 0.525 ± 0.039).
Based on the weighted average estimates of the exponent, the strongest evi-

dence for LRD was detected in Slovenia. Because the Slovenian stock market is
small in comparison to other markets in the group, this could be the reason for its
inefficiency. This is also supported by the results for Poland, which has the largest
stock market in the group and exhibits only an extremely weak form of LRD.
However, the results for other countries do not support this hypothesis. We tried to
find an explanation for these results in different measures of market size (e.g.,
market capitalization, number of domestic firms listed, number of foreign firms
listed); however, none of the statistical measures could successfully explain the
results. We think that the explanation of the different behaviors of the stock mar-
kets is more complex and involves the historical development, institutional regula-
tions, and properties of the respective national economic systems.

As many studies suggest (Jagric 2003), the properties of the transition econo-
mies are changing. Therefore, it is reasonable to assume that the Hurst exponent is
not constant throughout the observed period. In order to test this hypothesis, we
estimated the exponent on a sliding time window of size T = 29 for each stock
market. The results are presented in Figure 4.

The graphs in Figure 4 reveal some interesting features. As expected, the expo-
nent is not constant throughout the observed period. The only exception to this is
in Slovakia, where the exponent seems not to have any long-run direction of change.
This can be explained by the fact that the average value of the exponent for the
whole observed time period is already near 0.5 (random walk). In contrast, all
other markets have clearly identifiable patterns in the changes of the estimated
Hurst exponent.

The results for the Czech Republic indicate a clear tendency of lowering the
exponent. At the beginning the exponent was around 0.9, but its value lowered to
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the point T1
PX50 (August 21, 2000–September 13, 2002), where the exponent reached

the minimum. After the point T1
PX50, the exponent rebounded and slowly increased

for the rest of the observed period. It is also important to note that the lowering of
the exponent was interrupted in the time window from February 7, 1996 to June
25, 1998. During this time, the exponent slightly increased, and volatility increased
considerably. If we look at the history of the Czech stock market, we see that a
domestic currency crisis occurred in the middle of this window (May 7, 1997–
August 25, 1997). This might be considered evidence for the influence of currency
crisis on the behavior of stock market participants.

The exponent for Hungary is mostly constant at around 0.6. The only exception
is the time span between the points T1

BUX (July 8, 1992–August 24, 1994) and T2
BUX

(April 8, 1995–August 18, 1997), when the exponent increased drastically. The
end of this period (point T2

BUX) was marked by an important event—foreigners
were granted permission to trade on the derivatives market of the stock exchange
in January 1997.

Figure 3. Estimated Hurst Exponent for the Selected Stock Market

Notes: H-LRD—wavelet estimation of the Hurst exponent for a different number of
vanishing moments with 95 percent confidence interval; D—number of vanishing
moments (type of the selected wavelet), j2 – j1—number of octaves included in the
estimation.
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As in the case of the Czech Republic, Russia, and Slovenia, the exponent for
Poland was extremely high at the beginning of the observed period. It was even
increasing up to the point T1

WIG20 (July 21, 1995–August 8, 1997). After the point
T1

WIG20, the exponent sharply dropped and rebounded at the point T2
WIG20 (June 25,

1997–July 15, 1999). From this point, the exponent slowly increased for the rest of
the observed period.

The estimated Hurst exponent for Russia was initially around 0.7. Around the
point T1

RTS (March 12, 1998–March 27, 2000), the volatility of the exponent in-
creased considerably. Examining the history of the Russian stock market, we iden-
tify one major event during this period—the Russian currency crisis of 1998. As in
the case of the Czech Republic, the crisis had an impact on the behavior of the
market participants, since after the point T1

RTS the exponent dropped. The rebound
occurred at the point T2

RTS (August 2, 2000–August 19, 2002). From this point on,
the exponent increased again, though it seems that the exponent stopped increas-
ing as it reached the value of approximately 0.65.

Figure 4. Estimated Hurst Exponent for the Selected Stock Markets—Sliding
Time-Windows

Notes: H-LRD—wavelet estimation of the Hurst exponent (dotted line—estimations;
solid line—filtered values), window size = 29, time step = five trading days.

Time-window Time-window
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With the beginning of normal trading on the Ljubljana stock market (January 7,
1993), the SBI index indicates the presence of an extremely strong long-memory
process. The estimated value of the Hurst exponent is over 0.8. However, the na-
ture of the index changed, in conjunction with the value of the exponent lowering
to the point T1

SBI, which represents a window from August 27, 1996 to September
9, 1998. In the middle of this window, there were some important changes on the
Ljubljana exchange. First, there was the imposition of a tax on capital gains deriv-
ing from trading in securities for individuals (January 1, 1997). Second, by decree
of the Bank of Slovenia, custody accounts were made obligatory for all foreign
portfolio investments. Furthermore, these custody accounts and foreign currency
reserves to the amount of funds on the account should appear on the balance sheet
of the Slovene bank maintaining such an account (February 10, 1997). Third, there
was a relaxation of limitations for foreign portfolio investors, imposed by the
Slovene central bank in February 1997. Since then, the Bank allows foreign inves-
tors to buy Slovene securities without balancing a foreign exchange position for
the amount invested. Foreign investors have to undertake the obligation not to sell
the securities for a period of seven years (June 30, 1997).

After the point T1
SBI, the estimated value of the Hurst exponent increased again

and reached the maximum at point T2
SBI, which represents a window from June 26,

2000 to July 18, 2002. As in the case of the point T1
SBI, there were some important

changes that took place in the middle of the time window. First, the stock ex-
change market segments A and B are merged into a single official market (January
1, 2001). Second, the Bank of Slovenia lifted all restrictions on foreign portfolio
investments in the Slovenian capital market (July 1, 2001).

The results for Slovenia and Hungary are similar and can therefore be treated as
strong evidence of the influence of foreign investors on the domestic capital mar-
ket. It seems to us that the market becomes more efficient if there are no restric-
tions on foreign investors.

As mentioned above, most of the stock markets exhibit large values of the ex-
ponent at the beginning of the observed time period. We think that the lack of
adequate infrastructure, both physical and legal, as well as the poor disclosure of
accurate information are possible sources of inefficiency. Most of these institu-
tional failures in transition economies have been removed in recent years, which
may be the reason for the lower values of the exponent at the end of the observed
period. However, their management control systems are still not as effective as the
control systems observed in more developed capital markets. Given the short life
of these equity markets, market imperfections in these transition economies can be
a source of acute inefficiency, because they interfere with the rapid processing of
information.

One important characteristic to note of some Eastern European equity markets,
which can be of direct relevance to the theory of efficiency, is the existence of
price restrictions on price movements. Such price limits certainly hinder the infor-
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mation transmission mechanism, as price can only go down once a ceiling is reached.
Gordon and Rittenberg (1995) noted that these regulations may promote ineffi-
ciency by encouraging investors to base their investment decisions simply on the
presence of regulations alone.

Conclusions

This paper presented a wavelet analysis of LRD. We found that an estimator of the
Hurst exponent can be implemented efficiently, allowing for the direct analysis of
very large data sets. The estimator is highly robust against the presence of deter-
ministic trends and facilitates their detection and identification. Computational
and numerical comparisons are made against traditional estimators based on R/S
analysis. The estimator is used to perform a thorough analysis of the LRD in the
capital markets of six transition economies: the Czech Republic, Hungary, Poland,
Russia, Slovakia, and Slovenia.

Peters (1992) suggests that a Hurst exponent value of 0.5 < H < 1.0 shows that
the efficient market hypothesis is incorrect—returns are not randomly distributed
and there is some underlying predictability. The results in this study are mixed. If
we estimate the exponent for the whole observed period, we can divide stock mar-
kets into two groups. The first group represents the stock markets where quiet
strong LRD is detected (the Czech Republic, Hungary, Russia, and Slovenia). These
are similar to results observed in the case of the S&P 500 (Bollerslev and Mikkelsen
1996; Peters 1992) and seven Asia-Pacific stock markets (Pandey et al. 1995). The
second group included stock markets where no or only a weak form of LRD was
detected (Poland and Slovakia).

However, if the Hurst exponent is estimated on a sliding time window, the re-
sults show some additional features about the observed stock markets. Most of the
stock markets exhibit excessively high values of the exponent at the beginning of
the observed period. In most cases, important events on the markets triggered the
process of the lowering of the exponent. These include not only events like cur-
rency crises, which also had an influence on foreign markets, but also changes in
institutional regulations.

Based on the results of this study and similar findings by Hampton (1996), we
think that the estimated Hurst exponent may be sensitive to the frequencies of the
data employed: daily, weekly, monthly, and so forth. Additionally, the format of
the time series has an important impact on the results. The estimated Hurst expo-
nent is always larger for log-return series than for original time series, where tradi-
tional methods for the estimation of the exponent fail.

Long memory may have important implications for the construction of trading
systems. Hampton illustrated the use of the Hurst exponent for trading. In his
particular example, he uses the ten-day average of the estimated Hurst exponent as
a technical index. If this index is higher than 0.66, then it is time to buy. If this
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index is lower than 0.43, then it is time to sell. Therefore, a future direction for
research in this regard is the matter of how to make use of the property of long
memory to design efficient trading strategies.
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