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Motivated by the recent interest in making delay announcements in large service systems, such as call centers,

we investigate the accuracy of announcing the waiting time of the Last customer to Enter Service (LES). In

practice, customers typically respond to delay announcements by either balking or by becoming more or less

impatient, and their response alters system performance. We study the accuracy of the LES announcement

in single-class multi-server Markovian queueing models with announcement-dependent customer behavior.

We show that, interestingly, even in this stylized setting, the LES announcement may not always be accu-

rate. This motivates the need to study its accuracy carefully, and to determine conditions under which it is

accurate. Since the direct analysis of the system with customer response is prohibitively difficult, we focus

on many-server heavy-traffic analysis instead. We consider the quality-and-efficiency-driven (QED) and the

efficiency-driven (ED) many-server heavy-traffic regimes and prove, under both regimes, that the LES pre-

diction is asymptotically accurate if, and only if, asymptotic fluctuations in the queue length process are

small as long as some regulatory conditions apply. This result provides an easy check for the accuracy of LES

in practice. We supplement our theoretical results with an extensive simulation study to generate practical

managerial insights.

Key words : delay prediction; delay announcements; call centers; many-server queues; heavy traffic

1. Introduction

We study the problem of making accurate delay announcements in large service systems where

customer behavior is affected by the announcements. Delay announcements are especially helpful

in settings where customers cannot observe the current state of the system. This is typically true
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with unobservable queues, such as in telephone call centers. Delay announcements are also useful

in other service settings. For example, they are instrumental in hospital emergency departments

where queues may be observable, yet patients often lack the experience and knowledge needed to

estimate their own delays; see Plambeck et al. (2015). Because it is useful to have a specific context

in mind, we will generally focus here on call centers; e.g., see Aksin et al. (2007) for background.

1.1. Delay Announcements

System managers typically use delay announcements as a relatively inexpensive way of alleviating

customer uncertainty about upcoming delays, thereby increasing the level of customer satisfac-

tion with the service provided. Additionally, delay announcements have been shown to strongly

impact customer behavior. For example, information about long upcoming delays may induce

some customers to balk (hang up immediately). Customers who do not balk may change their

abandonment behavior, depending on the delay information. Since delay announcements typically

impact customer behavior, they may be used as levers of control in the system. For example, delay

announcements may be used in a highly congested system to encourage the most impatient cus-

tomers to balk or abandon, thereby decreasing the number of callers on hold, and reducing system

congestion; e.g., see Whitt (1999a, b), Guo and Zipkin (2007), and Armony et al. (2009).

In this paper, we assume that delay announcements are made to customers upon arrival to the

system. In order to make those announcements, we need effective ways of accurately predicting, in

real time, the waiting times of delayed customers. We contend that making accurate announcements

is important because inaccurate delay information may cause frustration for customers.

We focus on the last-to-enter-service (LES) delay announcement. The LES prediction is equal to

the waiting time of the last customer to have entered service prior to the arrival time of the new

delayed customer. The LES customer is the one who experienced the LES delay. For a detailed

discussion of the LES announcement, see Ibrahim and Whitt (2009). We study the accuracy of the

LES announcement in models with customer response. In particular, we assume that an arriving

customer may balk upon arrival with a given probability, depending on the announcement. If he

does not balk, then he may subsequently abandon the queue before receiving service, and his

abandonment behavior is also dependent on the announcement. To the best of our knowledge, there

are no studies of how customer response to individual delay announcements impacts the accuracy

of these announcements. In this paper, we take a step towards filling that gap in the literature.

1.2. Customer Response

In systems with no customer response, the LES announcement was shown to be remarkably accu-

rate, albeit under steady-state conditions only; see Ibrahim and Whitt (2009). When customers

respond to the announcements, their behavior alters the performance of the system which, in turn,
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affects the future delay announcements given. Therefore, studying customer response requires an

equilibrium analysis of the system. However, it is not clear, a priori, when and whether such an

equilibrium exists; there may even be multiple equilibria. Moreover, even if a unique equilibrium

can be shown to exist, it is not clear how stochastic fluctuations around that equilibrium will

impact the accuracy of the individual LES announcements. Thus, analyzing systems with customer

response entails a complicated analysis. Herein lies the main technical contribution of this paper.

In Figure 1, we illustrate the main complexity in incorporating customer response to the

announcements. We plot simulation sample paths of actual delays and LES predictions in an

M/M/N + M queueing model; see §3 for a description of this model. We let N = 10,000; we

deliberately choose such a large number of servers to minimize the effect of stochastic noise in the

system (however, a smaller number of servers, e.g., N = 100, also leads to similar results but the

corresponding figures are not as clear). In the first subplot of Figure 1, we assume that customers

do not respond to the announcements. In the second subplot, we assume that customers respond

according to a linear abandonment-rate function; in the third subplot, we assume that customers

respond according to a discontinuous abandonment-rate function (the specific functional forms of

those abandonment-rate functions do not matter here and are therefore omitted). We choose system

parameters so as to hold the average waiting time approximately constant across our three models.

Clearly, system dynamics are very similar in the first and second subplots, but are very different

in the third subplot. (Since all parameters are held constant across the three graphs except for the

functional form of customer response, the change in system dynamics is due to this difference in

customer response.) Indeed, actual delays and LES announcements closely match in the first two

subplots, but are evidently out of sync in the third (with larger fluctuations as well). In particular,

since the abandonment-rate function in the last subplot is discontinuous, small fluctuations around

the point of discontinuity drive the abandonment behavior, and the waiting times in the system,

to vary substantially in short time intervals. As a result, the two curves, corresponding to the LES

and actual delays, are out-of-sync in the plot. As such, Figure 1 illustrates that system dynamics

are intimately tied to whether and how customers respond to the announcements.

The accuracy of the LES announcements also depends on customer response. Indeed, the first

and second subplots of Figure 1 illustrate the asymptotic accuracy of the LES announcements.

Stochastic fluctuations, due to the randomness in the system, imply that the LES announcements

are not exactly equal to actual delays; nevertheless, the resulting errors are of a small magnitude

(this will be made more precise later). However, the third subplot of Figure 1 clearly illustrates that

the LES announcement is not accurate, and consistently fluctuates between cycles of overestimation

and underestimation of actual delays. This substantiates the need to formulate conditions under

which the LES announcement will be accurate in systems with customer response, which is what
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we do in this paper. This lies in contrast to systems without customer response, where the accuracy

of the LES announcement was shown to hold in steady state irrespective of specific assumptions

on system parameters; see Ibrahim and Whitt (2009).
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Figure 1 Impact of customer response on the accuracy of the LES announcement.

1.3. Asymptotic Regimes

In this paper, we investigate the accuracy of the LES delay announcement in a Markovian queueing

model. Even though our modeling framework is relatively simple, explicit analysis of the underlying

birth and death (BD) process is analytically complex. This is because balking probabilities and

abandonment rates are all dependent on the announcements. Indeed, computing the transition

rates of the BD process requires, at the minimum, keeping track of all customers in queue, and

their respective announcements. Thus, instead of doing direct analysis, we focus on establishing

many-server heavy-traffic limits which provide useful insights. In this paper, we focus on two such

regimes: (i) The Quality-and-Efficiency-Driven (QED) or Halfin-Whitt regime (Halfin and Whitt

1981; Garnett et al. 2002), and (ii) the Efficiency-Driven (ED) regime (Whitt 2004).

The QED regime is particularly useful in describing large well-managed systems because it strikes

a balance between service quality and operational efficiency. Even though waiting times in the

QED regime are asymptotically small, studying the asymptotic accuracy of the LES announcement

remains of practical importance in that setting. Indeed, the specific time scale under consideration

is critical. For example, operating a hospital ward in the QED regime involves lengths of stay that

are in the order of days, and waiting times that are in the order of hours; see Armony et al. (2015).

As such, although waiting times are “small” compared to service times, predicting them accurately

remains essential. The ED regime is useful in describing highly congested systems where customer

waiting times tend to be long (in the order of service times), and virtually all customers are delayed

before receiving service; see Whitt (2004). Delay announcements are especially important with

such long waiting times. Through our asymptotic analysis in both regimes, we establish the relative

accuracy of the LES announcement. By relative accuracy, we mean the difference between the LES
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and actual waits, scaled by the appropriate order of magnitude of delays in the system. Since the

asymptotic magnitude of waiting times in the ED regime is drastically different from the QED

regime, the scaling that we use differs depending on the particular regime considered.

1.4. Main Insights and Contributions

1.4.1. A Result of Practical Importance. In both the QED and ED regimes, we establish

an important asymptotic result which unifies our analysis throughout: The relative error in the

LES prediction is small if, and only if, the relative error in the queue length is small ; e.g., see

Theorems 1 and 2. By relative error in the queue length, we mean the difference in the queue

lengths seen upon arrival by the LES customer and the newly arriving customer (to whom the

announcement is made), scaled by the order of magnitude of the queue length in the system. We

emphasize that our result concerns the experience of individual customers in the system; thus, it is

stronger than a general result relating wait-time and queue-length averages or distributions, such

as Little’s law; e.g., see Little and Graves (2008) and Bertsimas and Nakazato (1995).

Our result provides a quick and easy check for the accuracy of the LES announcement in practice.

At a high level, to be made more precise later, our result implies that the LES announcement will

be accurate if the relative difference between the queue lengths seen upon arrival by the LES and

newly arriving customers is not too large. Therefore, it is possible to check at the arrival epoch of

a new customer (which is also the announcement epoch) whether or not the waiting time that he

is about to experience will be close to the LES delay. In practice, a system manager may use this

result to decide when to make LES delay announcements. This is particularly important since: (i)

as indicated above, these announcements may not always be accurate, and (ii) real-time queue-

length information is typically readily available in service systems, such as in amusement parks,

banks, or hospitals, and is usually easier to keep track of than wait-time information.

We also performed simulation experiments to investigate, numerically, how the relative error in

the queue length translates into the accuracy of the LES announcement. For example, based on

our numerical results, we find that for a large and heavily-loaded system, a queue-length error of

less than 5% corresponds to a median waiting time error that is about 4%, for continuous and

strictly increasing abandonment-rate functions.

1.4.2. Contributions: The QED Regime. With announcement-dependent abandonment,

it is not clear how customer response, particularly for small wait-time values, will affect both the

asymptotic behavior in the system and the accuracy of the LES announcement. In particular, it may

be that discontinuous customer abandonment behavior at the origin could lead to asymptotically

inaccurate LES announcements. We show that this is not the case, and that the LES announcement

is asymptotically accurate in the QED regime, under relatively mild conditions and provided that

the initial queue length in the system is tight around its fluid limit.
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1.4.3. Contributions: The ED Regime. With asymptotically non-negligible waiting times,

the analysis of the system involves a non-trivial equilibrium. Armony et al. (2009) derived con-

ditions guaranteeing the existence and uniqueness of such an equilibrium in an approximating

deterministic fluid model of the system. In this fluid model, all delayed customers receive the same

delay announcement at equilibrium, and they subsequently experience the same waiting time. In

other words, the LES announcement is accurate, at equilibrium, in the fluid model.

In the stochastic queueing system, waiting times for served customers fluctuate around the

equilibrium expected waiting time value (which is approximated by the deterministic fluid waiting

time). Even if the system is at equilibrium at fluid scale, it is not clear how those stochastic

fluctuations will impact the accuracy of the individual LES announcements. Armony et al. (2009)

left the problem of “quantifying the impact of (such) stochastic fluctuations for future research”

(p. 78). In this paper, we extend Armony et al. (2009) and establish the asymptotic accuracy of

the LES announcement in the ED regime with customer response. In particular, we formulate

sufficient conditions for which initializing the system at equilibrium (at fluid scale) guarantees the

asymptotic accuracy of the LES announcement with customer response.

1.4.4. Insights Based on Numerical Experiments. In §6, we describe results of simulation

experiments which quantify the accuracy of the LES announcement. There, we further our under-

standing of how customer response affects the accuracy of the LES announcement. For example,

we go beyond previous work which focused solely on steady-state conditions. We illustrate that the

LES announcement may not be accurate in the transient state of the system, and derive heuristic

adjustments that outperform the straightforward LES announcement in that state. We also con-

sider examples where our main theoretical results fail to hold. As such, we provide more evidence of

the importance to pay close attention to exactly how customers respond to delay announcements.

The remainder of this paper is organized as follows. In §2, we review the relevant literature. In

§3, we introduce our model. In §4, we present theoretical and numerical results for the QED regime.

In §5, we present theoretical and numerical results for the ED regime. In §6, we present simulation

experiments which validate and extend our theoretical results. In §7, we draw conclusions. We

present all proofs in the appendix.

2. Literature Review

Asymptotic Analysis of Multiserver Queues. We perform an asymptotic analysis of queueing

systems in this paper. In particular, we focus on both the QED and the ED heavy-traffic limiting

regimes. The QED or Halfin-Whitt limiting regime was first formalized in the seminal paper by

Halfin and Whitt (1981). The authors of that paper focused on the classical GI/M/N model with

a general renewal arrival process, exponential service times, and no customer abandonment; they
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showed that the delay probability approaches a limit strictly between 0 and 1 if, and only if,

the system is staffed according to the square-root staffing rule. Here is a sample of other work

along similar lines. Jennings et al. (1996) used the QED regime to determine staffing levels in

Markovian queues with a time-varying demand. Fleming et al. (1994) and Garnett et al. (2002)

extended the QED framework and incorporated the phenomenon of customer abandonment into

their models. Puhalskii and Reiman (2002) studied multiclass queueing systems with a renewal

arrival process and phase-type service times, both with and without customer priorities. Talreja

and Whitt (2009) extended Garnett et al. (2002), and established stochastic-process limits for

waiting times in multi-server queueing models with generally distributed service times and times

to abandon. For additional references, see Aksin et al. (2007).

The ED regime supports low-to-moderate quality of service, and often yields useful and simple

approximations. Whitt (2004) derived stochastic-process limits for the M/M/N +M model in the

ED regime, and developed approximations based on those limits. Borst et al. (2004) investigated

the staffing problem of large call centers in an asymptotic optimization framework. They focused

on three operational regimes, including the QED and ED regimes. Whitt (2006) conjectured the

existence of a deterministic fluid limit for the general G/GI/N + GI model in the ED regime.

That fluid limit was later established in Kang and Ramanan (2010) and Zhang (2013). Talreja and

Whitt (2009) established stochastic-process limits for waiting times in the ED regime as well.

Delay Announcements. The most closely related works to the current paper are Armony et al.

(2009) and Ibrahim and Whitt (2009). Armony et al. (2009) studied the performance impact of

making LES delay announcements by analyzing an approximating fluid model. They discussed the

motivation for the LES delay announcement, and modeled changes in customer behavior that result

from such an announcement. However, unlike our work here, the authors of that paper did not

establish the accuracy of the individual announcements. Ibrahim and Whitt (2009) established the

accuracy of the LES announcement in many-server Markovian models, in the ED regime, but they

did not consider customer response to the announcements. They also focused solely on steady-state

behavior in their models. Some other references related to delay announcements include Whitt

(1999a, b), Armony and Maglaras (2004), Guo and Zipkin (2007), Ibrahim and Whitt (2009), Jouini

et al. (2011), Allon et al. (2012a, b), Jouini et al. (2015), and references therein. The recent work

in Senderovich et al. (2015) takes an empirical process mining approach to study the accuracy of

snapshot-based predictions (essentially delay-history-based predictions such as LES). The authors

provide evidence of the accuracy of these predictions with real-life data. Some of the published

literature on delay announcements focused on the problem of determining “the best” wait-time

quote (by assuming appropriate cost structures) and studied the advantages of both overestimating
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and underestimating anticipated delays, e.g., see Jouini et al. (2015). In this paper, we focus on

the problem of accurately predicting anticipated delays in the system instead.

Several recent papers emphasize the importance of incorporating customer response to the

announcements, and demonstrate empirically that customers respond to delay announcements in

practice. Mandelbaum and Zeltyn (2013) quantified the effect of the announcements by statistically

estimating the hazard-rate of the abandonment-time distribution. Aksin et al. (2015) modeled cus-

tomer abandonment decisions with delay announcements. They used an empirical approach which

estimates the parameters of the abandonment distribution from data, and studied the effect of

customer behavioural changes in a queueing setting. Yu et al. (2014) explored the impact of delay

announcements using an empirical approach. Interestingly, they found that delay announcements

affect customer abandonment behavior in a complex way, and that they directly affect the waiting

costs of delayed customers. Acknowledging the importance of customer response to the announce-

ments, Huang et al. (2015) studied the optimal timing of delay announcements and optimal staffing

decisions in an asymptotic framework which accounts for the impact of delay announcements on

the abandonment-time distribution.

3. Modelling Framework

In this paper, we consider single class M/M/N + M queues, also known as Erlang A, with

announcement-dependent balking and abandonment. We let the times between successive arrival

epochs be independent and identically distributed (i.i.d.) exponential random variables with rate

λ. We assume that there are N homogeneous servers working in parallel. We let service times be

i.i.d. exponential random variables with rate µ. We let the times to abandon be i.i.d. exponential

random variables with rate θ. The traffic intensity, ρ, is given by ρ ≡ λ/Nµ. There is unlimited

waiting space and we use the first-come-first-served (FCFS) service discipline.

We envision that each delayed customer is given, upon arrival, a single-number prediction of his

waiting time before entering service. A delayed customer, arriving to the system at time t, receives

a delay announcement wt and may balk, upon arrival, with probability b(wt). If that customer

does not balk, then he will abandon the queue before being served if his waiting time exceeds an

exponentially distributed random variable with rate θ(wt). That is, individual balking probabilities

and abandonment rates depend on the announcements.

We are now ready to give a precise definition of the LES announcement. Let t denote the arrival

epoch of a new customer. Let the patience of that customer be denoted by K(t). Let the virtual

waiting time, at time t, be denoted by W (t), i.e., W (t) is the waiting time of a hypothetical

infinitely patient customer arriving to the system at time t. Let τN
t be the arrival time of the last

customer to have entered service prior to t, which is defined as:

τN
t = sup{s≤ t : There is an arrival at time s, s+W (s)≤ t, and K(s)>W (s)}; (1)



Ibrahim, Armony, and Bassamboo: Asymptotic Accuracy of the LES Predictor
Article submitted to ; manuscript no. (Please, provide the mansucript number!) 9

the customer arriving to the system at time τN
t is the LES customer at time t.

4. Asymptotic Accuracy of LES in the QED Regime

Waiting times in the QED regime are asymptotically small, converging to zero at a rate which is

proportional to 1/
√
N , as N →∞, where N is the number of servers. Given that the magnitude of

waiting times is asymptotically negligible, it seems natural to conclude that only the abandonment

response behavior at the origin should matter asymptotically. In our setting, if system dynamics

could be well approximated by assuming a constant abandonment rate, equal to θ(0), then the

asymptotic accuracy of LES should carry through from previously established results, which do

not assume any customer response to the announcements (Ibrahim and Whitt, 2009).

However, customer abandonment response may very well be rapidly changing around zero. In

particular, we may have discontinuous customer abandonment behavior at the origin. For example,

this may arise in practice when customers are “extremely” impatient to any waiting so that there

is a jump in their impatience in response to being announced a positive delay; e.g., see Figure

12 in Mandelbaum and Zeltyn (2013). More generally, customer abandonment response may be

irregular in a real-life context: Yu et al. (2015) present empirical evidence supporting that delay

announcements are influential on customer abandonment times, but that there are “no particu-

lar patterns” (p. 11) for how announcements impact those abandonment times. When customer

abandonment behavior changes rapidly around zero, approximating system performance by using

the abandonment rate at the origin is no longer appropriate. With such abandonment behavior,

it is not clear, a priori, how customer response, particularly around the origin, will affect both the

asymptotic behavior in the system and the asymptotic accuracy of the LES announcement.

Similar ideas about the importance of customer abandonment behavior for small wait-time val-

ues were advanced in Reed and Ward (2008) and Reed and Tezcan (2012). These authors proposed

heavy-traffic limits which capture rapidly-changing abandonment behavior at the origin. Their

limits result from scaling the abandonment hazard-rate function appropriately, and involve the

entire abandonment-time distribution. They showed that the superiority of their new heavy-traffic

approximations is most pronounced when the hazard rate changes rapidly around zero. That is,

they showed that simply approximating system performance with abandonment behavior at the

origin may lead to poor approximations. In our setting, this means that the asymptotic accuracy of

LES is not obvious, and cannot be simply deduced from the existing literature. In this section, we

demonstrate that the LES announcement is asymptotically accurate in the QED regime, irrespec-

tive of customer abandonment response to the announcements (around the origin or elsewhere)

provided that the abandonment-rate function is bounded. Interestingly, we show that this asymp-

totic accuracy continues to hold for non-monotonic and/or discontinuous customer abandonment
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behavior (in contrast, the third subplot in Figure 1 corresponds to an overloaded system, where

additional initial conditions on customer abandonment behavior are needed).

4.1. Asymptotic Framework

Consider a sequence of queueing systems indexed by N , and let N →∞. Let the arrival rate in the

N th system be given by λN . There are N servers in the N th system, each having the same service

rate µ. As in Garnett et al. (2002), and consistently with the QED regime, we assume that:

lim
N→∞

√
N

(

1− λN

Nµ

)

= β, for β ∈ (−∞,∞). (2)

We now consider the N th system in that sequence. At time t, the LES delay announcement is

given by WN(τN
t ) for τN

t in (1). We let b :R+ → [0,1], where R+ denotes the set of nonnegative real

numbers. We assume that b(·) is a Lipschitz continuous, monotone non-decreasing function with

b(0) = 0. We also let θ :R+ → [θ, θ̄) with θ̄ > θ ≥ 0. A new arrival at time t balks with probability

b(WN(τN
t )). If the customer does not balk, then he may abandon the queue prior to beginning

service, and his abandonment rate is given by θ(WN(τN
t )). We assume that θ > 0 if β ≤ 0 in (2),

in order to guarantee the stability of the system. We note that θ(·) and b(·) do not scale with N .

We let ⇒ denote convergence in distribution; see Whitt (2002). Next, we state our main theorem

and outline its proof. We relegate the details of the proof to the appendix. In this section, we

consider an exponential patience distribution. In §9, we go beyond this assumption and consider

a general patience distribution; this is important because there is empirical evidence showing that

the patience distribution is usually non-exponential in practice; e.g., see Brown et al. (2005).

4.2. Main Theorem and Outline of Proof

Let ZN(s) denote the number of customers at time s in the N th system. We assume that the

sequence {(ZN(0)−N)/
√
N}N≥1 is tight; for more on tightness, see §5 of Pang et al. (2007).

Theorem 1. For the M/M/N + M model in the QED many-server heavy-traffic regime: if

{(ZN(0)−N)/
√
N}N≥1 is tight, then

√
N |WN(t)−WN(τN

t )| ⇒ 0 in R, (3)

for every fixed time point t, as N →∞.

Theorem 1 specifies an initial condition which guarantees the asymptotic relative accuracy of the

LES announcement at time t. This condition implies that the initial number of customers in the

queue and the initial number of idle servers are not too large, which is consistent with QED char-

acteristics and is a common assumption often made in the literature, e.g., see Garnett et al. (2002).
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1 Since delays are asymptotically of the order of Op(1/
√
N) 2, we divide the absolute difference

in (3) by 1/
√
N . The key to proving Theorem 1 lies in establishing that the LES announcement

is relatively accurate if, and only if, the relative difference between the queue lengths seen upon

arrival by a customer and his corresponding LES customer is asymptotically negligible.

Technical challenges. In a system with no customer response, the asymptotic accuracy of the LES

announcement follows directly from the snapshot principle; e.g., see Reiman (1982) and Puhalskii

and Reiman (2000). In the existing literature, diffusion limits for waiting times have been usually

proven using Puhalskii’s invariance principle for first-passage times (Puhalskii, 1994) together

with established diffusion limits for queue-length processes; e.g., see Puhalskii and Rieman (2000).

However, employing a similar proof technique is prohibitively difficult in our system; perhaps

even impossible. Indeed, our proof technique does not rely on establishing diffusion limits for the

(scaled) queue-length and wait-time processes in a system with customer response. Instead of

establishing that convergence directly in the original system (with customer response), we show

that the snapshot principle holds in two bounding auxiliary queueing systems; see §8. As such, we

show that the snapshot principle must hold in the original system too. The bounding arguments

that we rely on require that the scaled state at zero has a limit as N goes to infinity. In particular,

this is needed in order to be able to apply the results of Garnett et al. (2002) to the upper and lower

bound processes (that bound our original system). Our assumed tightness at the origin implies

that any sequence of diffusion-scaled states at time zero has at least one converging subsequence.

Then, we can apply results from Garnett et al. (2002) with respect to each such subsequence, and

the asymptotic accuracy of LES in our original system follows. It is important to emphasize that

our proof technique does not amount to a standard sandwiching argument, i.e., to showing that

the scaled wait-time and queue-length processes in the upper and lower bound systems converge

to the same limit. Indeed, the bounding processes do not converge to the same limit; additionally,

the processes in the original system need not converge at all.

Proof outline. To prove Theorem 1, we proceed as follows. First, we show that the time between

the arrival epochs of the LES and current customer is negligible in the heavy-traffic limit. Then, we

show that the snapshot principle holds, i.e., that the queue length (system state) changes negligibly

between the arrival epochs of the LES and current customer. When establishing that the relative

error in the queue length is small, we scale the difference in queue lengths by
√
N since this is the

order of magnitude of queue lengths in the QED limiting regime; see Garnett et al. (2002). Finally,

1 For a back-of-the-envelope example which violates this initial condition, consider a system where all servers are busy
and QN (0) is a constant that grows with N faster than

√
N , e.g., QN (0) =N3/4. Then, it is clear that our initial

tightness condition does not hold.

2 Let {Xn, n ≥ 1} be a sequence of random variables and {an, n ≥ 1} be a sequence of real numbers. We say that
Xn =Op(an) if for every ǫ > 0 there exists a finite M > 0 such that P (|Xn/an|>M)< ǫ for all n.
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we establish an asymptotic relation between the queue length and the waiting time. Combining

those results yields Theorem 1.

4.3. Supporting Numerical Results

In this section, we describe results of a simulation study which quantifies the accuracy of the LES

announcement. Our objective is to substantiate our theoretical results by considering many-server

M/M/N +M queues in the QED regime. To quantify the accuracy of the LES announcement,

we use the average-squared-error (ASE): ASE ≡ (1/n)
∑n

j=1(aj − pj)
2, where aj > 0 is the virtual

delay of customer j, pj is his predicted delay, and n is the number of customers in our sample. The

ASE is a point estimate of the mean-squared-error (MSE) which is defined as the expected value of

the square of the difference between delay prediction and actual delay. For abandoning customers,

we compute the delay experienced, had the customer not abandoned, by keeping him “virtually”

in queue until he would have begun service.

Unless stated otherwise, our simulation results throughout are based on 10 independent repli-

cations of 2 million events each, where an event is either a service completion, an arrival, or an

abandonment from the system. Our simulations are steady-state simulations. For this, we exclude

from each simulation run the first 5,000 events so as to remove the effect of the initial transient

period. In Figure 2, we vary the number of servers, N , and consider values ranging from N = 10 to

N = 1000. Without loss of generality, we assume that the service rate is µ= 1. That is, we measure

time in units of mean service time. We define the balking probability, b(w), as follows:

b(w) =
1

10
− 1

10
e−w for w≥ 0 . (4)

This balking function yields a balking proportion of roughly 6% in response to a delay announce-

ment w = 1, i.e., to an announcement equal to the mean service time in the system. We let the

abandonment rate of a customer who does not balk be defined as:

θ(w) =
3

4
− 1

2
e−w for w≥ 0 . (5)

Then, θ(0) = 1/4 is the abandonment rate corresponding to a delay announcement w= 0.

In Figure 2, we plot N× ASE(LES) as a function of N . We fix ρ= 1. For ρ= 1 and relatively

large values of N , QED approximations are relatively accurate; see Garnett et al. (2002). Theorem

1 shows that the LES announcement is asymptotically accurate in this case. Figure 2 shows that

N× ASE(LES) decreases as N increases, and converges to 0 for large N . This is consistent with our

theoretical results where we show that ASE(LES) is roughly o(1/N) in the QED regime 3. Figure

2 illustrates that the LES announcement performs relatively poorly with a very small number of

servers (N = 10), but its accuracy improves rapidly as the number of servers increases, e.g., causing

a sharp decrease for N× ASE(LES) in going from N = 10 to N = 30.

3 Let f and g be two functions defined on some subset of the real numbers. Then, f(n) = o(g(n)) as n→∞ if for all
ǫ > 0, there exists N such that |f(n)| ≤ ǫ|g(n)| for all n≥N .
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Figure 2 N× ASE(LES) in the M/M/N +M model

in the QED regime with customer response

given by (4) and (5).
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Figure 3 N× ASE(LES) in the M/M/N +M model in

the ED regime with customer response given

by (4) and (5).

5. Asymptotic Accuracy of LES in the ED Regime

We now focus on overloaded scenarios, in which the arrival rate exceeds the maximum possible total

service rate. In particular, we consider the ED limiting regime where the asymptotic magnitude of

waiting times is non-negligible. It is practically important to consider the ED regime because we

are primarily interested in making delay announcements when delays are large.

Establishing the asymptotic accuracy of the LES announcement in the ED regime is compli-

cated. Essentially, since waiting times are asymptotically long, the state of the system may change

significantly during the LES delay, and the LES delay announcement may not be close to the new

arrival’s delay. With non-negligible waiting times and customer response to the announcements,

the analysis of the system involves a complex equilibrium. Armony et al. (2009) derived conditions

guaranteeing the existence and uniqueness of that equilibrium in an approximating determinis-

tic fluid model of the system. In this fluid model, all delayed customers receive the same delay

announcement at equilibrium, and they subsequently experience the same waiting time. In other

words, the LES announcement is accurate, at equilibrium, in the fluid model.

In the stochastic queueing system, waiting times for served customers fluctuate around the

equilibrium expected waiting time value (which is approximated by the deterministic fluid waiting

time). Even if the system is at equilibrium at fluid scale, it is not clear how those stochastic

fluctuations will impact the accuracy of the individual LES announcements. Armony et al. (2009)

left the problem of “quantifying the impact of (such) stochastic fluctuations” for future research
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(p. 78). In this section, we extend Armony et al. (2009) and establish the asymptotic accuracy of

the LES announcement in the ED regime. We show, in Theorem 2, that initializing the system at

equilibrium at fluid scale is sufficient to guarantee that asymptotic accuracy.

5.1. Asymptotic Framework

We consider a sequence of queueing systems indexed by N , where N is the number of servers.

The arrival rate in the N th system is given by λN =Nλ. We let N →∞ while holding the traffic

intensity ρ> 1 fixed. For every system, we fix the service rate and let it be equal to µ, independently

of N . Let b̄(w) denote the probability of joining the system (not balking) when receiving an LES

delay announcement equal to w. Then, b̄(w) = 1−b(w), where b(w) is the corresponding probability

of balking. We assume that b̄(0) = 1, b̄(w) → 0 as w → ∞, and b̄(·) is a strictly decreasing and

continuous function. We also assume that θ(·) is a continuous and strictly increasing function.

These assumptions on b(·) and θ(·) are sufficient to guarantee the existence and uniqueness of

a fluid equilibrium in the system, as we show in §5.2 4. We need those additional assumptions

on b(·) and θ(·) because the magnitude of the equilibrium waiting time in the ED limit is not

asymptotically negligible, unlike in the QED limit. In our proofs, we also assume that b(·) and θ(·)
are differentiable at that unique fluid equilibrium point. We note that θ(·) and b(·) do not scale

with N .

5.2. Fluid Steady-State Equilibrium

We begin by considering the fluid model approximation of the system. At equilibrium, the

announced delay must be consistent with the actual delay for served customers, after customer

response. Let w̄ denote an equilibrium waiting time in the fluid model. Let z̄ denote an equilibrium

fluid content in the system. Then, w̄ and z̄ must satisfy the two following equations:

λb̄(w̄) = µ+ θ(w̄)(z̄− 1), (6)

w̄ =
1

θ(w̄)
ln

(

1+
θ(w̄)(z̄− 1)

µ

)

. (7)

Equation (6) is a balance equation which follows since the long-run rate into the system must equal

the long-run rate out of the system, by service or abandonment. Equation (7) follows from the

relation between the waiting time and the queue content in the fluid model; e.g., see Equation (3.7)

of Whitt (2006). In the ED regime, we must have that λ> µ. The continuity assumptions on b̄(·)
and θ̄(·), along with the boundary conditions on b̄(·), guarantee the existence of an equilibrium. The

monotonicity assumptions on those two functions guarantee the uniqueness of that equilibrium.

Thus, under our assumptions, there is a unique solution (w̄, z̄) that satisfies (6) and (7).

4 The assumptions on b(·) and θ(·) are only needed to guarantee the existence and uniqueness of a fluid equilibrium.
Thus, we could also assume instead that such an equilibrium exists and is unique.
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5.3. Main Theorem and Outline of Proof

In this section, we focus on a special case of customer response: We assume that customer abandon-

ment behavior is unaffected by delay announcements; customers may still balk upon arrival, and

their balking probabilities depend on the announcements. Theorem 2 is our main theorem for this

case (we provide its proof in the appendix): It states that, under a mild technical condition on the

function b̄, LES is asymptotically accurate if the system is initialized at equilibrium at fluid scale.

That is, we impose convergence of ZN(0)/N to its fluid limit z̄ in Theorem 2. For a back-of-the-

envelope example where this initial condition does not hold, consider an initial system state where

ZN(0) =N(z̄+ δ) for some δ > 0. Then, the system state will change considerably until the system

reaches its equilibrium, and the LES announcement will not be accurate as it will overestimate the

actual delay at all times. Establishing the case with both announcement-dependent balking and

abandonment is more complicated algebraically; that is why we relegate the relevant theorem and

proof to the appendix. Recall that ZN(s) is the number of customers in the system at time s. We

also let T > 0.

Theorem 2. For the M/M/N + M model in the ED heavy-traffic limiting regime with

announcement-dependent balking and a constant abandonment rate θ,

If

ZN(0)

N
⇒ z̄ in (6) and (7) as N →∞, (8)

then

∣

∣

∣

∣WN(t)−WN(τN
t )
∣

∣

∣

∣

[0,T ]
→ 0 almost surely as N →∞ , (9)

under the condition that
∣

∣

∣

∣

b̄′(w̄)

b̄(w̄)

∣

∣

∣

∣

< θ. (10)

It is readily seen that the condition in (10) is satisfied when b̄ is equal to an exponentially decaying

function whose rate is smaller than θ. It is important to stress that we focus on the relative accuracy

of the LES announcement in this paper. By relative accuracy, we mean the difference between the

LES and actual delays, scaled by the appropriate asymptotic order of magnitude of delays in the

system. As a result of this, the expressions for asymptotic accuracy in the QED and ED regimes

are different; e.g., compare (3) with (9). The
√
N factor in (3) is due to dividing the difference of

the waiting times by 1/
√
N , which is the asymptotic order of magnitude of the waiting times in

the system. Thus, the
√
N factor is a reflection of the smaller magnitude of waiting times.
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Technical challenges. As in the proof of Theorem 1 for the QED regime, the main step is to show

that the relative error in the waiting times is asymptotically negligible if, and only if, the relative

error in the queue lengths is asymptotically negligible. In the ED regime, the queue length is

Op(N) and the waiting time is Op(1); that is why we use these scalings in (8) and (9), respectively.

Since customer response complicates system dynamics, it is difficult to characterize limits for the

wait-time process on [0, T ] directly, as in (9). Indeed, stochastic fluctuations in the waiting times

affect the LES announcements made, which in turn affect balking probabilities. These probabilities

determine both the number of customers in the system and subsequent waiting times. To circumvent

that difficulty, we devise a stopping-time argument instead, as in Gurvich and Whitt (2009).

Proof outline. Our proof proceeds as follows. We begin by bounding the stochastic fluctuations of

the scaled number of customers in the system up to a given stopping time, σN . We restrict attention

to the bounded stopping time, αN =min{σN , T}. Then, we show that if the stopped number of

customers in the system is close to its equilibrium value up to αN , then the stopped waiting time

will be close to its equilibrium value up to αN as well, i.e., we establish the stochastic boundedness

of the stopped waiting times. We do so by proving an asymptotic relationship between the waiting

time in the system and a function of the number of customers in the system, and then exploiting

a Taylor series expansion argument. Next, we show that T < σN , for every T > 0; since T can be

made arbitrarily large, we obtain that the stopping time itself diverges to ∞. For this, we establish

that the scaled number of customers in the system is stochastically bounded at αN as well. To do

so, we exploit results on the convergence of the scaled number of customers in a system with state-

dependent arrival rates (since balking probabilities depend on the delay announcements made),

together with a bounding argument and the additional technical condition in (10). Consequently,

drawing on the analysis above, (9) must hold too. In other words, the relative errors in both the

queue lengths and the waiting times are asymptotically negligible, provided that the system is

initialized at its equilibrium fluid steady state.

5.4. Supporting Numerical Results

5.4.1. Validating Theorem 2. We substantiate our theoretical results by considering many-

server M/M/N +M queues in the ED regime. For b(w) and θ(w), we consider the functions in

(4) and (5). With those balking and abandonment-rate functions, it can be readily checked that a

unique equilibrium exists in the system, as per (6) and (7).

In Figure 3, we let ρ = 1.4 and consider the same values for N as in Figure 2. With ρ = 1.4

and large N , ED approximations are relatively accurate; see Whitt (2004). Figure 3 shows that

N× ASE(LES) is roughly constant as N increases. This suggests that the LES announcement is

asymptotically accurate in the ED regime and that ASE(LES) converges to 0 at a rate which is
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inversely proportional to N . This substantiates and supplements our theoretical results. Indeed,

in Theorem 2 (and Theorem 4) we show that ASE(LES) is asymptotically negligible in the ED

regime, but do not specify the rate at which it converges to 0. Figure 3 suggests that ASE(LES)

is O(1/N) 5. Consistent with Figure 2 for the QED regime, Figure 3 shows that the accuracy of

LES is poor with a very small number of servers (N = 10), but quickly improves as the number of

servers increases. Indeed, Figure 3 shows that N× ASE(LES) does not vary by much for N ≥ 30.

5.4.2. Customer Response and Fluid Equilibrium. As illustrated in Figure 1, introduc-

ing customer response to the announcements may significantly complicate system dynamics. The

main complexity in incorporating customer response to the announcements lies in the existence, or

possibly lack thereof, of a unique equilibrium of the system. This equilibrium is non-trivial when

waiting times in the system are long, e.g., as in the ED limiting regime. Theorem 2 shows that if

there exists a unique equilibrium of the system, then initializing the system at that equilibrium,

at fluid scale, is sufficient to ensure the asymptotic accuracy of the LES announcement. There, we

imposed continuity and strict monotonicity assumptions on θ(·) and b(·) which guarantee both the

existence and uniqueness of that equilibrium. We also showed that the relative error in the wait

times is asymptotically negligible if, and only if, the relative error in the queue lengths is negligible.

We now consider abandonment-rate response functions for which: (i) there does not exist an

equilibrium of the system, or (ii) there exist multiple equilibria of the system. We investigate

whether our previous results continue to hold in such scenarios. Interestingly, we show that this may

not be the case. This is in contrast to systems without customer response, where the asymptotic

accuracy of the LES announcement was shown to hold irrespective of specific assumptions on

system parameters; e.g., see Ibrahim and Whitt (2009).

Our objective is twofold: (i) to investigate, numerically, how the relative error in the queue length

translates into the accuracy of the LES announcement in systems where there exists a unique

equilibrium; and (ii) to show that the equivalence between small wait-time and small queue-length

errors may not hold more generally, specifically when an equilibrium does not exist. Therefore,

our results show that the existence (or lack thereof) of a unique equilibrium strongly affects the

asymptotic accuracy of the LES announcement, and illustrate how the respective magnitudes of

wait-time and queue-length errors are affected.

Stability of Wait-Time and Queue-Length Errors. Point (i) above is important from a practical

perspective so that system managers, who may typically observe the queue-length, are able to

quantify the errors in the LES announcements based on the queue-length errors that they observe.

5 Let f and g be two functions defined on some subset of the real numbers. Then, f(n) =O(g(n)) as n→∞ if there
exists M > 0 and N > 0 such that |f(n)| ≤M |g(n)| for n≥N .
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In our simulation experiments, we collect the relative queue-length errors reported (differences

between the queue lengths seen by the new and LES customers, scaled appropriately), and partition

these into the following intervals:

(0,0.05), (0.05,0.1), (0.1,0.2), (0.2,0.3), (0.3,0.4), (0.4,0.5), and (0.5,1).

For example, the first interval corresponds to queue-length errors that are smaller than 5%, while

the second interval corresponds to queue-length errors which are between 5% and 10%. For each

interval, we collect the corresponding relative wait-time errors in the simulation run. For example,

we collect all relative wait-time errors which correspond to queue-length errors that are smaller

than 5% (first interval), or those which correspond to queue-length errors that are between 5% and

10% (second interval), and so on. We then compute the median of those wait-time errors to assess

precisely how the error in the queue length translates into the wait-time error.

We consider two forms for the abandonment-rate response function, and assume that there is no

customer balking in the system. We consider θ1(w) given by:

θ1(w) = b− e−aw where a, b > 0. (11)

With θ1(w), there exists a unique equilibrium of the system, and our theoretical results continue

to hold. We vary a and b in (11) to consistently have that w̄ = ln(ρ) = ln(1.4); this is the steady-

state fluid waiting time in a system with no customer response to the announcements, and with

θ(w) = 1 for all w. Increasing a amounts to increasing the intensity of customer response to the

announcements. Second, we violate the continuity assumption and let

θ0(w) =

{

0.5, if w≤ 0.5,

1.5, otherwise,
(12)

so that θ0(w) has a discontinuity at w = 0.5. Then, it is not hard to show that there do not exist

w̄ and z̄ which simultaneously solve (6) and (7); thus there is no equilibrium of the system. In the

online supplement, we present more simulation results for various models, in particular we consider

alternative abandonment-rate functions and alternative system sizes and congestion levels.

In Table 1, we report our results for N = 1000 and ρ = 1.4. Table 1 shows that the order of

magnitudes of the queue-length and wait-time errors are generally close for θ1(·), irrespective of a

and b. For example, for queue-length errors that are smaller than 5%, the median of corresponding

wait-time errors is about 4%. Table 1 also shows that wait-time errors fluctuate less extremely

than queue-length errors. For example, for queue-length errors that are in (0.1,0.2), the median

of corresponding wait-time errors, under θ1(·), remains around 6%. This suggests that the LES

announcement will be accurate in practice, even when the queue-length error is not too small.
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Queue Length θ1(w) in (11) θ0(w) in (12)

a= 0, b= 2 a= 0.5, b= 1.85 a= 1, b= 1.71 a= 1.5, b= 1.6 a= 2, b= 1.51

< 0.05 0.0428 0.0434 0.0436 0.0437 0.0439 0.103
∈ (0.05,0.1) 0.0479 0.0487 0.0490 0.0495 0.0497 0.101
∈ (0.1,0.2) 0.0618 0.0621 0.0627 0.0630 0.0630 0.115
∈ (0.2,0.3) 0.105 0.1076 0.109 0.108 0.108 0.153
∈ (0.3,0.4) 0.176 0.169 0.175 0.167 0.165 0.202
∈ (0.4,0.5) 0.185 0.210 0.202 0.237 0.231 0.229
> 0.5 0.405 0.407 0.407 0.414 0.421 0.413

Table 1 Relative errors for the queue length and median wait-time estimates for the M/M/1000+M model

with ρ= 1.4, θ1(w) = b− e−aw, and θ0(w) in (12).

In contrast, Table 1 shows that, for θ0(·), “large” wait-time errors may correspond to “small”

queue-length errors. For example, a median wait-time error of over 10% corresponds to queue-

length errors which are smaller than 5%. Indeed, because of the discontinuity in θ(·), it is possible
that two customers who encounter, upon arrival, the same queue lengths in the system will still

experience very different waiting times. This is because customers waiting in the queue may have

considerably different abandonment rates, depending on the announcements that they received, so

that the queue length seen upon arrival is not, by itself, a sufficient indicator of the ensuing wait.

We now make a comparison with a system with no customer response to the announcements, i.e.,

where θc(w) = 1 for all w. In Figures 4 and 5, we plot relative errors for queue-lengths as a function

of relative errors for the waiting times under θ0(w) and θc(w), respectively. On one hand, Figure 4

shows that small queue-length errors of roughly 10% may correspond to large wait-time errors of

about 50%. On the other hand, Figure 5 clearly shows that the relative errors in the waiting times

are small if, and only if, the relative errors in the queue lengths are small. Contrasting Figures

4 and 5 illustrates how incorporating customer response to the announcements may drastically

change the underlying dynamics of the system.

Stability of the Equilibrium. We now consider a system where there exist multiple equilibria. In

particular, we exclude customer balking and consider that the abandonment rate

θ00(w) =











4, if w< 0.1,

7.5− 35w if 0.1≤w< 0.2,

0.5, if w≥ 0.2;

(13)

then, it is easy to verify that there exist three equilibria of the system: w̄1 = 0.084, w̄2 = 0.15,

and w̄3 = 0.67. In Figure 6, we plot the relative errors in the queue lengths as a function of the

relative errors in the waiting times, for θ00(w) in (13); otherwise, we consider the same modelling

assumptions as in Figure 4. Figure 6 shows that some large wait-time errors correspond to small

queue-length errors, and vice versa. Once more, comparing Figures 5 and 6 illustrates the changes

in system performance due to incorporating customer response to the announcements.
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Figure 4 Relative errors for the waiting times and

queue lengths for θ(w) in (12).

Figure 5 Relative errors for the waiting times and

queue lengths for θ= 1.

In Figure 7, we plot sample paths of the LES delays and actual delays observed in the same system

as in Figure 6. Figure 7 shows that the system alternates between two equilibria. Indeed, the waiting

times first stabilize around w̄1 = 0.084, and then around w̄3 = 0.67. It is interesting to see that w̄2 =

0.15 is an unstable equilibrium of the system, because small stochastic fluctuations drive waiting

times away from w̄2. Figure 7 illustrates an important phenomenon which is due to incorporating

customer response in the system: With multiple equilibria, if the system is initialized around one

equilibrium, then stochastic fluctuations may drive the system away from that equilibrium. In

general, our results in Theorem 2 no longer hold. This is why, with customer response, we need to

impose additional assumptions on system parameters to guarantee stability, as in §5.2.

6. Additional Numerical Results

In this section, we describe results of a simulation study with the objective to improve our under-

standing of how customer response affects the accuracy of the LES announcement by going beyond

our theoretical results in Theorems 1 and 2. First, we study how changes in model parameters

(customer response, congestion level, and arrival process) affect the accuracy of the LES announce-

ment, in steady state (§6.1-§6.3). Then, we derive heuristic adjustments to the LES announcement,

and show that they are more accurate than the straightforward announcement in the transient

state, albeit at the expense of requiring more information about system parameters (§6.4).
In addition to the ASE, and to get a relative measure of accuracy, we also compute point

estimates of the relative-average-squared error (RASE), which is defined as the ratio between the

square root of the ASE and the average waiting time in the queue. The RASE is useful because it

relates the error in the LES announcement to the magnitude of waiting times in the system.
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Figure 6 Relative errors for the waiting times and

queue lengths in the M/M/1000 +M model

for ρ= 1.4 and θ(w) in (13).
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Figure 7 LES and actual waiting times in the

M/M/1000 +M model for ρ = 1.4 and θ(w)

in (13).

6.1. Congestion Effects

We begin by studying how changes in the system’s congestion level affect the accuracy of the

LES announcement. We control system congestion in two ways: (i) by varying the magnitude of

customer abandonment; and (ii) by altering the traffic intensity in the system. In both cases, we

exclude balking from the system, to focus solely on the effect of customer abandonment and traffic

intensity, i.e., we let b(w) = 0.

Abandonment-Rate Function. In Table 2, we study how changes in the abandonment rate func-

tion, θ(w), affect the accuracy of the LES announcement. We fix N = 100 and let ρ = 1.4, i.e.,

we focus on the ED regime. We do so because customer abandonment is then non-negligible. We

consider an exponential functional form for θ(w), and vary its parameters to either speed-up or

slow-down customer abandonment; in particular,

θ(w) = k ·
(

3

4
− 1

2
e−w

)

for some k > 0. (14)

We consider the following values for k: 0.2, 1, 2, and 4. (The expression in (5) corresponds to

k = 1.) The system experiences slower customer abandonment as the value of k decreases, and is

then more congested. Therefore, we expect that ASE(LES) will be large for small values of k, but

that the LES announcement will be relatively more accurate, i.e., yielding a smaller RASE(LES).

Table 2 shows that this is indeed the case; e.g., RASE(LES) ranges from roughly 28% for k= 2 to

roughly 9% for k= 0.1, whereas ASE(LES) is nearly 10 times larger for k= 0.1 than for k= 2.

Decreasing k leads to both an increase in ASE(LES) and an increase in the average waiting time

in the system. Interestingly, Table 2 shows that, for a given decrease in k, the relative increase in
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ASE(LES) is equal to the corresponding relative increase in the average waiting time. For example,

both ASE(LES) and the average waiting time are multiplied by roughly 1.7 in going from k = 4

to k = 2. Therefore, RASE(LES) will be smaller for k = 2 than for k = 4. Indeed, Table 2 shows

that RASE(LES) for k = 1 is roughly 1/
√
1.7≈ 0.76× RASE(LES) for k = 4. We observe similar

relationships for all other values of k considered in Table 2.

Traffic Intensity. For Table 3, we fix N = 100. We consider θ(w) in (5). As before, we exclude

balking from the system. We vary ρ from 1.0 to 1.6. Consistent with intuition, Table 3 shows that

an increase in ρ leads to both an increase in ASE(LES) and an increase in the average waiting time.

Table 3 also shows that RASE(LES) decreases as ρ increases. For example, RASE(LES) varies

from roughly 60% for ρ= 1 to roughly 14% for ρ= 1.6.

Interestingly, for a given increase in ρ, the relative increase in ASE(LES) is smaller than the

relative increase in the average waiting time. For example, ASE(LES) is roughly 3 times larger for

ρ= 1.4 than for ρ= 1.2. In contrast, the average waiting time is roughly 5 times larger for ρ= 1.4

than for ρ= 1.2. As such, RASE(LES) is smaller for ρ= 1.4 than for ρ= 1.2. We observe similar

relationships for all other values of ρ considered in Table 3.

This section demonstrates an important principle, which should be useful from a managerial

perspective: the relative accuracy of LES improves with increased congestion in the system. As

such, it is more useful to implement LES delay announcements in more congested systems. In

particular, although the absolute magnitudes of the LES errors increase as the congestion in the

system increases, the relative accuracy of LES, relative to the increasing average waiting time,

improves. Comparing the first and last rows of Table 2, we see that when the average waiting

time is multiplied by 10, RASE(LES) is roughly divided by
√
10 ≈ 3. Similarly, comparing the

second and third rows of Table 3, we find that when the average waiting time is multiplied by 1.6,

RASE(LES) is roughly divided by
√
1.6 ≈ 1.3. So, based on our numerical examples, it appears

that when the average waiting time in the system is multiplied by c > 1, as a result of increased

congestion, RASE(LES) is divided in that system by approximately
√
c. This should give some

indication to practitioners regarding the relative accuracy of LES in their systems.

6.2. Impact of Customer Response Intensity

We now study the impact of customer response on the asymptotic accuracy of the LES announce-

ment. In particular, we show that the accuracy of the LES announcement degrades with the

intensity of customer response. We consider different abandonment-rate functions, and vary their

parameters so as to increase the “intensity” of customer response to the announcements. To control

for the effect of congestion, we hold the expected waiting time in the system fixed.

In modelling customer abandonment response to the announcements, we draw on the recent

literature. In particular, Brown et al. (2005) and Mandelbaum and Zeltyn (2013) quantified the
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k ASE(LES) Waiting time RASE(LES)

4 4.37× 10−3 0.240 0.275
±2.3× 10−5 ±3.2× 10−4

2 7.40× 10−3 0.408 0.211
±2.1× 10−5 ±7.4× 10−4

1 1.24× 10−2 0.684 0.163
±7.2× 10−5 ±1.2× 10−3

0.2 4.17× 10−2 2.40 0.0851
±4.4× 10−4 ±3.6× 10−3

Table 2 Accuracy in the M/M/N +M model

with ρ= 1.4 and alternative k in (14).

ρ ASE(LES) Waiting time RASE(LES)

1 2.88× 10−3 8.96× 10−2 0.599
±1.7× 10−5 ±6.9× 10−4 ±3.6× 10−4

1.2 8.22× 10−3 0.429 0.211
±4.4× 10−5 ±1.5× 10−3 ±6.9× 10−5

1.4 1.24× 10−2 0.684 0.163
±7.2× 10−5 ±1.2× 10−3 ±5.1× 10−5

1.6 1.51× 10−2 0.878 0.140
±1.4× 10−4 ±1.2× 10−3 ±8.3× 10−5

Table 3 Accuracy in the M/M/N +M model

for θ(w) in (5) and alternative ρ.

effect of the announcements by statistically estimating the hazard-rate of the abandonment-time

distribution and showing that customers typically become more impatient as delay announcements

increase; e.g., see Figure 5 in Brown et al. (2005) and Figures 13 and 14 in Mandelbaum and Zeltyn

(2013). Consistent with this evidence, we assume in §5 that the abandonment rate is an increasing

function of the announcement.

Once more, we exclude balking from the system; we also let ρ = 1.4 and N = 100. To ensure

robustness, we consider three functional forms for θ(w):

θ1(w) = b− e−aw; θ2(w) = aw+ b; θ3(w) = b+ eaw where a> 0; (15)

for example, letting k= 1 in (14) corresponds to θ1(w) with a= 1 and b= 1.5. It is readily seen that

the functions θ1, θ2, and θ3 are all continuous and strictly increasing in w. Moreover, even though

the sufficient conditions on balking behavior stated in §5.1 do not apply with a constant balking

probability (equal to 0), it is readily seen that a unique equilibrium continues to exist in each case.

We vary a and b in (15) to consistently have that w̄= ln(ρ) = ln(1.4); this is the steady-state fluid

waiting time in a system with no customer response to the announcements, and with θ(w) = 1 for

all w. Increasing a amounts to increasing the intensity of customer response to the announcements.

In Table 4, we present estimates for ASE(LES) and RASE(LES) for each abandonment-rate

function. In each case, a= 0 corresponds to a constant, announcement-independent, abandonment

rate equal to 1. Table 4 clearly shows that RASE(LES) increases with a. That is, the LES announce-

ment is less accurate with customer response in the system. For example, with θ3, RASE(LES)

increases from roughly 22% for a= 0, to roughly 42% for a= 4 (we do not increase a further to

guarantee that θ3(w)≥ 0). Similarly, for θ2, RASE(LES) increases to roughly 33% for a= 10.

Table 4 illustrates an interesting phenomenon: The asymptotic accuracy of the LES announce-

ment does not degrade as extremely for function θ1, as it does for functions θ2 and θ3. Indeed,

as explained in §5, stochastic fluctuations, particularly around the equilibrium wait-time value,
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θ1(w) θ2(w) θ3(w)

a b ASE(LES) RASE(LES) a b ASE(LES) RASE(LES) a b ASE(LES) RASE(LES)

0 2 5.88× 10−3 0.224 0 1 5.88× 10−3 0.224 0 0 5.88× 10−3 0.224
±2.3× 10−5 ±2.3× 10−5 ±2.3× 10−5

2 1.51 6.22× 10−3 0.231 2 0.32 6.57× 10−3 0.238 1 -0.4 6.35× 10−3 0.235
±3.2× 10−5 ±2.2× 10−5 ±2.9× 10−5

4 1.3 6.27× 10−3 0.230 4 -0.35 7.58× 10−3 0.254 1.5 -0.66 6.76× 10−3 0.243
±2.13× 10−5 ±3.7× 10−5 ±3.3× 10−5

8 1.1 6.15× 10−3 0.227 8 -1.7 1.09× 10−2 0.301 2 -0.96 7.48× 10−3 0.255
±3.2× 10−5 ±6.5× 10−5 ±4.0× 10−5

10 1.03 6.08× 10−3 0.226 10 -2.4 1.32× 10−2 0.330 4 -2.8 1.99× 10−2 0.421
±2.6× 10−5 ±9.3× 10−5 ±1.1× 10−4

Table 4 Effect of varying the intensity of customer response on the asymptotic accuracy of LES in the

M/M/100+M model with ρ= 1.4 and the abandonment-rate functions θ1, θ2, and θ3.

typically impact the accuracy of the LES announcement. Comparing the values of the derivatives

of θ1, θ2, and θ3, around w̄, reveals that θ1 changes more slowly than both θ2 and θ3. In other

words, stochastic fluctuations around w̄ have a relatively mild impact under θ1, which ensures that

the system state is relatively stable, and that the LES announcement is relatively accurate.

Our results show that the accuracy of the LES announcement is intimately tied not only to

whether or not customers respond to the announcements, but also to how they do so. This sub-

stantiates the importance of incorporating customer response in the analysis of the system.

6.3. Time-Varying Arrivals

We now consider time-varying arrival rates. This is practically important to consider because

arrival processes to service systems, in real life, typically vary significantly over time. We consider

a sinusoidal arrival-rate intensity function to mimic cyclic behavior that is common in arrival

processes to service systems:

λ(u) = λ̄+ λ̄α sin(γu), for 0≤ u<∞ , (16)

where λ̄ is the average arrival rate and α is the relative amplitude. Given an appropriate constant

staffing level, this arrival-rate function corresponds to alternating periods of underload and overload

in the system. As pointed out by Eick et al. (1993), the parameters of the arrival-rate intensity

function, λ(u) in (16), should be interpreted relative to the mean service time. Then, we speak of

γ as the relative frequency. Small (large) values of γ correspond to slow (fast) time-variability in

the arrival process, relative to the service times.
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γ Cycle length ASE(LES) RASE(LES)

0 1.14× 10−2 0.174
±3.8× 10−5

0.0436 144 1.18× 10−2 0.176
±8.0× 10−5

0.0873 72 1.19× 10−2 0.177
±9.5× 10−5

0.262 24 1.38× 10−2 0.190
±6.1× 10−5

0.524 12 1.8× 10−2 0.219
±6.6× 10−5

1.571 4 2.79× 10−2 0.268
±7.8× 10−5

Table 5 Effect of the arrival-rate frequency γ on

the accuracy of the LES announcement.
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Figure 8 Relative errors for the waiting times and

queue lengths (γ = 0.0873, α= 0.3).

Accuracy of the LES Announcement. In Table 5, we study the effect of varying γ on the accuracy

of the LES announcement. We also include values of the relative frequency as a function of the

mean service time, assuming a 12 hour daily cycle, e.g., from 8:00AM to 8:00PM.

As before, we consider b(w) and θ(w) in (4) and (5). The first row in Table 5 corresponds to

the case with stationary arrivals, which we include here as a benchmark. Consistent with intuition,

Table 5 clearly shows that the accuracy of the LES announcement deteriorates as γ increases.

Indeed, the LES announcement performs poorly when the arrival rate changes rapidly over time,

because delays then vary systematically over time. For example, RASE(LES) ranges from roughly

17% for γ = 0.0436 (slow time variation) to roughly 27% for γ = 1.57 (fast time variation). Inter-

estingly, ASE(LES) appears to be roughly constant for different values of γ.

The conclusions that we draw from Table 5 are consistent with those in Ibrahim and Whitt

(2011). They showed, in the context of delay announcements with no customer response, that the

accuracy of the LES announcement degrades as arrival rates become more time variable. Table 5

shows that the same holds with announcement-dependent balking and abandonment as well.

Relative Errors of the Queue Length and Waiting Times. With a stationary arrival process, in

both the QED and ED regimes, we established an important asymptotic result which unified our

analysis throughout: The relative error in the LES prediction is small if, and only if, the relative

error in the queue length is small. We now investigate whether this main result continues to hold

with time-varying arrivals as well. We consider a system with a sinusoidal arrival-rate function as

in (16), and with N = 100 servers. We let γ = 0.0873, α = 0.3, and λ̄= 140. As such, the arrival

rate fluctuates from a minimum of 98 (ρ= 0.98) to a maximum of 182 (ρ= 1.82). In the bottom
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Figure 9 Actual and LES delays in the M/M/5000 +

M which is initially empty with ρ = 1.4 and

θ(w) = 1.51− e−2w.
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Figure 10 Direct and adjusted LES announcements,

LES-H and LES-QL, and actual delays in the

same model as in Figure 9.

subplot of Figure 8, we plot the relative errors for the waiting times and for the queue lengths

seen upon arrival in the system. The results in Figure 8 are based on one simulation path, rather

than being averaged over multiple simulation replications as before. In the top subplot of Figure

8, we plot the arrival-rate function. Figure 8 shows that our asymptotic result continues to hold

with time-varying arrival rates. Indeed, the relative errors in the queue lengths and waiting times

increase and decrease in sync, as can be seen by their matching curves in the plots. We remove from

the bottom subplot of Figure 8 the top and bottom 0.5% of the relative errors which correspond

to dividing by very small values for the queue length and the waiting time.

6.4. Adjustments of the LES Announcement

Delay announcements are typically both noisy and biased. The noise is equal to the variance of the

conditional waiting times (conditional on the information about current system state); the bias is

the difference between the delay announcement and the expected conditional waiting time in the

system. The ASE of the LES announcement captures both the aforementioned noise and bias.

As with time-varying arrivals (Figure 8), Figure 9 shows that the LES announcement is typically

biased in the transient state of a given system. In Figure 9, we consider customer abandonment

response according to θ1(w) in (15) with a = 2 and b = 1.51; we let N = 5,000 to reduce the

effect of stochastic noise. For example, in the transient state of a system which is initially empty,

LES announcements are systematically biased downwards. In the online supplement, we derive

an adjustment of the LES announcement, in a system with no customer response, which exploits
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fluid-model dynamics. We show that this adjustment is more accurate (less biased) than the LES

announcement in the transient state. The adjusted announcement, LESa, is given by:

LESa announcement =
1

θ
ln(ρ+1− ρe−θwLES ) , (17)

where wLES is the direct LES announcement. In this section, we derive adjustments of the LES

announcement in systems with customer response. Since the direct analysis of transient fluid-model

dynamics in such systems is difficult, we derive heuristic adjustments instead.

Our adjusted LES announcement in a system with no customer response depends on the constant

abandonment rate, θ, in the system, as shown in (17). Here, we derive a heuristic adjustment of

the LES announcement by replacing θ (no response) with θ(0) (at the origin). That is, we propose

the following adjustment to the direct LES announcement, wLES:

LES-H announcement =
1

θ(0)
ln(ρ+1− ρe−θ(0)wLES ) . (18)

We tried replacing θ(0) in (18) by θwLES
, but this lead to slightly less accurate delay announcements;

this is why we exclude such an announcement from consideration here.

We also propose another adjusted LES announcement which exploits the queue-length seen upon

arrival by the LES and new customers. Let QLLES denote the queue length seen upon arrival by

the LES customer, and let QLn be the queue length seen by the new customer. Then, we study

the accuracy of the following queue-length-based adjustment:

LES-QL announcement =wLES ×
QLn

QLLES

. (19)

Additionally, we considered announcements based on several past LES delays (either a pre-

determined fixed number, or all LES delays occurring within a certain time window) experienced

by successive customers in the system. We fit linear, quadratic, and exponential functions to those

delays (as a function of the time of arrival to the system), and extrapolated those functions to

the time of arrival of the current customer. We did so to obtain adjusted announcements based

on additional past delays besides the most recent LES delay. Here, we do not include a separate

discussion for those adjusted announcements because numerous simulation experiments indicated

that they did not consistently perform better than the LES announcement.

In Table 6, we present estimates for both the ASE and bias of the LES announcement and the

heuristic adjustments, LES-H and LES-QL. We let N = 1,000 and ρ= 1.4. We consider different

simulation run lengths, but generally focus on the transient state of the system, which we assume

starts empty. We also consider two abandonment-rate functions. Table 6 shows that both LES-H

and LES-QL are less biased than the LES announcement and their ASE’s are also smaller, irre-

spective of the abandonment-rate function considered. Based on Table 6, we can also compute the
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θ(w) = 4w− 0.35 (units of 10−4 for ASE and Bias)

Run length ASE(LES) Bias(LES) ASE(LES-QL) Bias(LES-QL) ASE(LES-H) Bias(LES-H) Number
Delayed

2000 1.87 95.6 0.759 -5.0 0.841 35.9 164
±1.7 ±34 ±0.24 ±14 ±0.89 ±32 ±52

3000 12.5 300 2.48 -45.5 3.09 91.7 932
±4.0 ±55 ±0.71 ±17.2 ±1.29 ± 53.2 ±59

5000 21.2 354 6.99 -78.3 11.4 219 2740
±3.5 ±44 ±2.0 ±47 ±2.8 ±40 ±84

10,000 12.6 118 7.94 -42.5 7.93 84.7 7749
±1.7 ±14 ±1.2 ±13 ±1.3 ±16 ±93

θ(w) =−2.8+ e4w (units of 10−4 for ASE and Bias)

Run length ASE(LES) Bias(LES) ASE(LES-QL) Bias(LES-QL) ASE(LES-H) Bias(LES-H) Number
Delayed

2000 1.87 95.6 0.759 -5.0 0.841 35.9 165
±1.7 ±34 ±0.24 ±14 ±0.89 ±32 ±52

3000 15.5 331 2.33 -30.4 4.42 124 910
±5.7 ±68 ±0.63 ±14 ±2.4 ±66 ±54

5000 65.6 228 30.2 -223 45.1 169 2834
±16 ±64 ±11 ±42 ±13 ±55 ±68

10,000 63.5 103 36.9 -160 45.8 92.0 7773
±23 ±28 ±11 ±49 ±17 ±19 ±96

Table 6 Accuracy of heuristic adjustments for the LES announcement in the M/M/1000+M model with

ρ= 1.4 and alternative abandonment-rate functions.

noise (i.e., conditional variance) in each of the predictions, and find that it is smaller with LES-QL

and LES-H compared to LES. Table 6 also shows that ASE(LES-QL) is generally slightly smaller

than ASE(LES-H). Since LES-QL is usually less biased than LES-H, as shown by Table 6, this

implies that LES-QL announcements should be slightly more noisy than LES-H announcements.

In Figure 10, we plot LES-H, LES, and actual delays for the same system as in Figure 9. Figure

10 nicely illustrates how the LES-H and actual delays closely match, particularly initially, and

LES-QL announcements exhibit slightly stronger variations, consistently with Table 6.

In practical terms, selecting which predictor to implement, either LES-H or LES-QL, ultimately

depends on the error measure that is of interest in the system. Indeed, if the manager is interested

in reducing bias so that the announcements given are, on average, close to actual delays, then our

experiments suggest that LES-QL is the better alternative since it reduces that bias. On the other

hand, if the manager is interested in reducing the average square of the errors, so as to penalize
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against both underestimation and overestimation in the announcements, then our experiments

suggest that LES-H is the better alternative.

7. Conclusions

In this paper, we studied the problem of making accurate real-time delay announcements in large

service systems. In particular, we focused on the LES delay announcement: This type of announce-

ment is practically appealing because it depends solely on the history of delays in the system, i.e.,

it does not require any additional information about current system parameters.

There is ample empirical evidence showing that customers typically respond to delay announce-

ments in practice; e.g., see Yu et al. (2014) and Aksin et al. (2015). Nevertheless, to the best of our

knowledge, besides Armony et al. (2009) who focus solely on a fluid model of the system, there are

no studies of how the customer response impacts the accuracy of the individual announcements. In

this paper, we took a step towards filling that gap in the literature. In particular, we established the

asymptotic accuracy of the LES announcement in a system with announcement-dependent balk-

ing and abandonment. Doing so is complicated mainly because customer response impacts system

dynamics which, in turn, impact the future announcements made. For example, customers who

are announced a very long delay may become very impatient and abandon rapidly. In consequence

to this increase in customer abandonment, delays in the system decrease, which in turn decreases

future delay announcements. In response to the decreased announcements, customers abandon less,

which causes the delays in the system to increase again. Thus, future announcements will increase

as well. The analysis of such a system involves a complex high-dimensional equilibrium since it is

necessary to keep track of all customers in queue and their respective announcements.

Our theoretical results showed that the LES announcement is asymptotically accurate, i.e., with

a large number of servers. Through our numerical study, we found that the LES announcement

performs relatively poorly when the number of servers is very small, but that its accuracy improves

rapidly as the number of servers increases. We also found that the relative asymptotic accuracy of

LES improves as the system’s congestion increases, which suggests that this type of announcement

would be particularly useful in busy service contexts.

Our results also illustrated that customer response on one hand, and time-variation in the arrival

rates, on the other hand, both lead to a degradation in the asymptotic accuracy of the LES

announcement. We numerically investigated how the relative error in the queue length translates

into the accuracy of LES announcement, and found that wait-time errors fluctuate less extremely

than queue-length errors, and that the LES announcement should be accurate even when the

queue-length error is not so small. This provided a practical dimension to our theoretical result

establishing the equivalence between the stability of wait-time and queue-length relative errors.
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This is particularly useful because real-time information about the queue length is routinely col-

lected, e.g., as in the Automatic Call Distributor (ACD) of call centers.

There are several research directions that remain to be investigated. One such direction is to

further analyze systems with time-varying arrival rates, and to provide theoretical support for our

observations in §6.3. Another direction for future research is to consider multiple customer classes

and multiple customer priorities. Those are often observed in real-life, particularly in hospital

emergency departments where patients are often seen according to the severity of their ailments.

In that setting, it would be interesting to study the effectiveness of the LES announcement and to

develop appropriate adjustments, if need be. Yet another setting which is interesting to consider is

that of queueing networks, which is also useful in representing service in a hospital context where

patients sequentially go through several units for treatment. One could then think of other types of

announcements which would be more appropriate in that setting, given the additional information.
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TECHNICAL APPENDIX

We present additional analytical results in this appendix to the main paper.

8. Asymptotic Results in the QED Regime: Proof of Theorem 1

We begin with the following lemma which establishes the tightness of {
√
NWN(τN

t )}N≥1 and

{QN(τN
t )/

√
N}N≥1, under the initial condition in Theorem 1, where QN(s) denotes the queue

length at time s in the N th queueing system. We need to establish tightness because τN
t is a random

variable, and it is not clear whether
√
NWN(τN

t ) and QN(τN
t )/

√
N converge as N →∞.

Lemma 1. For a fixed time t, {
√
NWN(τN

t )}N≥1 and {QN(τN
t )/

√
N}N≥1 are tight.

Proof. By assumption, Z̄N(0) =ZN(0); thus, {(Z̄N(0)−N)/
√
N}N≥1 is tight. Since Q̄

N(0)/
√
N =

(Z̄N(0)−N)+/
√
N = (ZN(0)−N)+/

√
N , {Q̄N(0)/

√
N}N≥1 is also tight by the continuity of the

positive part function. Additionally, we can write the following:

√
NW̄N(0) =

√
N

Q̄N (0)
∑

i=0

Xi,

where Xi are independent and exponentially distributed with rate Nµ+ iθ̄. Thus,
√
NW̄N(0) is

stochastically dominated by (Q̄N(0) + 1)Y/
√
N , where Y is exponentially distributed with rate

µ. By assumption, (Q̄N(0) + 1)/
√
N converges in distribution to a finite limit as N →∞. Thus,

(Q̄N(0)+1)Y/
√
N converges in distribution as well (assuming that Y is defined on the same prob-

ability space as Q̄N(0)), and
√
NW̄N(0) is stochastically dominated by a sequence which converges

weakly to a finite random variable. Thus, {
√
NW̄N(0)}N≥1 is tight. Since tightness on products

of separable metric spaces is characterized by the tightness of the individual components, we con-

clude that (Q̄N(0)/
√
N,

√
NW̄N(0)) is also tight. Given our construction,

√
NWN(τN

t ) is stochas-

tically dominated by sup0≤s≤t

√
NW̄N(s). Additionally, QN(τN

t )/
√
N is stochastically dominated

by sup0≤s≤t Q̄
N(s)/

√
N . By Theorem 2 and Theorem 3 of Garnett et al. (2002), we have that both

supremum upper bounds converge weakly to finite random variables as N →∞. Tightness easily

follows, and will be used subsequently to establish convergence for the quantities above.

We are now ready to state and prove Proposition 1.

Proposition 1. For any fixed time point t,

τN
t ⇒ t as N →∞. (20)

Proof. By the tightness of {
√
NWN(τN

t )}N≥1 (Lemma 1), we may conclude that

WN(τN
t )⇒ 0 as N →∞ . (21)



Ibrahim, Armony, and Bassamboo: Asymptotic Accuracy of the LES Predictor
34 Article submitted to ; manuscript no. (Please, provide the mansucript number!)

Thus, to show that τN
t converges weakly to t, it is sufficient to establish that

P(t− τN
t −WN(τN

t )> ǫ, i.o.) = 0 for every ǫ > 0, (22)

where t− τN
t −WN(τN

t is the time elapsed since the LES customer entered service until the new

arrival epoch t. Fix ǫ > 0, and define the following events:

EN : t− τN
t −WN(τN

t )> ǫ ,

E1N : At least one service completion occurs in the interval (τN
t +WN(τN

t ), τN
t +WN(τN

t )+0.5ǫ] ,

E2N : At least one arrival occurs in the interval [τN
t +WN(τN

t )+ 0.5ǫ, τN
t +WN(τN

t )+ ǫ] ,

E3N : At least one arrival occurs in the interval (τN
t +WN(τN

t ), τN
t +WN(τN

t )+ ǫ] ,

AN : All servers are busy at τN
t +WN(τN

t ).

Then, the following relation holds:

EN ⊆ ((E1N ∩E2N)
c ∪Ac

N)∩ (E3cN ∪AN) . (23)

This leads to:

P(EN)≤ P((E1N ∩E2N)
c ∩AN)+P(E3cN ∩Ac

N)+P((E1N ∩E2N)
c ∩E3cN) .

Further,

P((E1N ∩E2N)
c ∩AN)≤ P(E1cN |AN)+P(E2cN |AN) = P(E1cN |AN)+P(E2cN).

Also, using the fact that λN satisfies (2), there exists a constant C2 > 0 such that for large N

P(E2cN)≤ e−C2ǫN .

Additionally, if all the servers are busy, then the time until the next service completion is expo-

nentially distributed with rate Nµ. Thus, we have that for large N

P(E1cN |AN)≤ e−C1ǫN .

Also, note that there exists C3 > 0 such that P(E3cN ∩Ac
N)+P((E1N ∩E2N)

c ∩E3cN)≤ P(E3cN)≤
e−C3ǫN . Hence, we have that

∞
∑

N=1

P(t− τN
t −WN(τN

t )> ǫ)<∞.

Using the Borel-Cantelli lemma, we obtain (22). In conclusion, we obtain, by Theorem 11.4.5 of

Whitt (2002), the following joint convergence since limits are deterministic:

(WN(τN
t ), t− τN

t −WN(τN
t )⇒ (0,0) as N →∞;
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this implies that

τN
t ⇒ t, as N →∞ , (24)

as desired.

We now prove, appealing to Proposition 1, that the relative error between the queue lengths

seen upon arrival by the LES and new customer is also asymptotically negligible.

Proposition 2. For any fixed t,

QN(t)−QN(τN
t )√

N
⇒ 0, as N →∞.

Proof. For each queueing system indexed by N , we consider two auxiliary queueing systems: (i)

System LN is an Erlang-B pure loss system (customers who cannot be served immediately are lost)

with N servers and the same arrival and service rates as the original system; and (ii) System UN is

an Erlang-A system with N servers and the same arrival and service rates as the original system.

There is no balking in system UN and the abandonment rate there is constant and equal to θ.

Let QN(s), ZN(s), IN(s), and WN(s) denote the queue length, number of customers in the

system, number of idle servers, and virtual waiting time, at time s, in system LN . Similarly, let

Q
N
(s), Z

N
(s), I

N
(s), and W

N
(s) denote those same quantities in system UN . By appropriately

coupling the arrival, service, balking, and abandonment times, we can construct all systems on

the same probability space such that if, for a given u, ZN(u)≤ZN(u)≤Z
N
(u), then the following

inequalities hold for all v≥ u:

ZN(v)≤ZN(v)≤Z
N
(v),

QN(v)≤QN(v)≤Q
N
(v),

WN(v)≤WN(v)≤W
N
(v),

IN(v)≥ IN(v)≥ I
N
(v).

Lastly, we initialize systems LN and UN at time 0, for N ≥ 1, as follows:

ZN(0) =min{ZN(0),N} and Z
N
(0) =ZN(0). (25)

We will establish that (ZN(t)− ZN(τN
t ))/

√
N ⇒ 0 as N →∞. The stated result then follows

immediately by the continuous mapping theorem. Our objective is to find upper and lower bounds

which are aligned with ZN(·) at τN
t and are tight in the vicinity of t. Therefore, we need to define

two more auxiliary processes, ZN
H (s) and ZN

L (s) for 0≤ s≤ t, as follows:

ZN
H (s)≡ Z̄N(s)−

(

Z̄N(τN
t )−ZN(τN

t )
)

and ZN
L (s)≡ZN(s)−

(

ZN(τN
t )−ZN(τN

t )
)

.
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By construction, it is easy to verify that:

ZN
L (τN

t ) =ZN
H (τN

t ) =ZN(τN
t ). (26)

First, we need to prove that:

ZN
L (sN)− o(

√
N)≤ZN(sN)≤ZN

H (sN)+ o(
√
N) for sN ∈ {τN

t , t}. (27)

We begin by proving the left-hand side of (27), and then restrict attention to proving the right-

hand side of that equation here. To prove the left-hand side of (27): By definition,

ZN
L (s)−ZN(s) =

(

ZN(τN
t )−ZN(τN

t )
)

−
(

ZN(s)−ZN(s)
)

. (28)

By construction, for s ∈ [τN
t , t], the right-hand side of (28) is upper bounded by the difference in

the number of departures (service completions, abandonment, and balking) between the original

system and system LN in the interval [τN
t , t]. In particular,

1√
N

(

ZN
L (s)−ZN(s)

)

≤ 1√
N

LN

aban +
1√
N

LN
comp +

1√
N

LN

balk, (29)

where, with a slight abuse of notation,

LN

aban ∼Poisson

(

(t− τN
t ) · θ̄ · sup

τNt ≤u≤t

Q̄N(u)

)

,

LN
comp ∼Poisson

(

(t− τN
t ) ·µ · sup

τNt ≤u≤t

IN(u)

)

,

and

LN

balk ∼Poisson

(

(t− τN
t ) ·λN · b

(

sup
τNt ≤u≤t

W̄N(u)

))

,

where “aban” stands for abandonment and “comp” for service completions. In particular, if Y is

a non-negative random variable, then we take X ∼Poisson(Y ) to mean that (X|Y = y) is Poisson

distributed with mean y. We also need the following lemma.

Lemma 2. Let XN , Y N be two sequences of non-negative random variables such that XN ∼
Poisson(Y N) and Y N/

√
N ⇒ 0 as N →∞. Then, XN/

√
N ⇒ 0 as N →∞.

Proof. Let ǫ > 0. We will establish that P
(

XN
√
N
> ǫ
)

→ 0, as N →∞. Let 0< δ < ǫ. Then,

P

(

XN
√
N
> ǫ
)

= P

(

XN
√
N
> ǫ

∣

∣

∣

Y N
√
N

> δ
)

P

(

Y N
√
N
> δ
)

+P

(

XN
√
N
> ǫ

∣

∣

∣

Y N
√
N

≤ δ
)

P

(

Y N
√
N
≤ δ
)

≤ P

(

Y N
√
N
> δ
)

+P

(

XN
√
N
> ǫ

∣

∣

∣

Y N
√
N

≤ δ
)

≤ P

(

Y N
√
N
> δ
)

+P

(

ZN
√
N
> ǫ
)

,

(30)
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where ZN ∼ Poisson(δ
√
N). Recall that δ < ǫ. Then by the law of large numbers and by the

assumption that Y N
√
N
⇒ 0, we have that the right hand side of (30) converges to 0, as N →∞.

It follows from Lemma 2, Garnett et al. (2002), Proposition 1, and Jagerman (1974) who estab-

lishes diffusion limits of a pure loss system in the QED regime, that

1√
N

LN

aban +
1√
N

LN
comp⇒ 0 as N →∞.

Thus, there remains to establish that b
(

supτNt ≤u≤t W̄
N(u)

)

is Op(1/
√
N). The latter follows from

Garnett et al. (2002) and the Lipschitz continuity of the balking probability function b(·). This
completes the proof of the left-hand side of (27).

We now prove the right-hand side of (27). By definition,

ZN(s)−ZN
H (s) =

(

Z̄N(τN
t )−ZN(τN

t )
)

−
(

Z̄N(s)−ZN(s)
)

. (31)

By construction, for s ∈ [τN
t , t], the right-hand-side of (31) is upper bounded by the difference in

the number of departures (service completions and abandonment) between system UN and the

original system in the interval [τN
t , t]. In particular,

1√
N

(

ZN(s)−ZN
H (s)

)

≤ 1√
N

MN

aban +
1√
N

MN
comp, (32)

where, with a slight abuse of notation, we define:

MN

aban ∼Poisson

(

(t− τN
t ) · θ̄ · sup

τNt ≤u≤t

Q̄N(u)

)

,

and

MN
comp ∼Poisson

(

(t− τN
t ) ·µ · sup

τNt ≤u≤t

IN(u)

)

.

It follows from Lemma 2, Garnett et al. (2002), Proposition 1, and Jagerman (1974) establishing

diffusion limits of a pure loss system in the QED regime, that:

1√
N

(

ZN(sN)− ¯̄ZN(sN)
)

⇒ 0, sN = τN
t , t.

By (26) and (27), we have that:

ZN
L (t)−ZN

L (τN
t )− o(

√
N)≤ZN(t)−ZN(τN

t )≤ZN
H (t)−ZN

H (τN
t )+ o(

√
N),

Hence, by the definition of the processes ZN
H and ZN

L , we have that:

ZN(t)−ZN(τN
t )− o(

√
N)≤ZN(t)−ZN(τN

t )≤ Z̄N(t)− Z̄N(τN
t )+ o(

√
N). (33)
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By Garnett et al. (2002), Proposition 1, Jagerman (1974), and a time change argument, we have

that both sides of (33) converge weakly to 0 asN →∞, when divided by
√
N . That is, we established

that the snapshot principle holds for both the lower and upper bound systems, LN and UN .

Consequently, it must hold for our original system as well, as desired.

We complete the proof of Theorem 1 by stating and proving Proposition 3 which establishes an

asymptotic relation between the waiting time and queue length seen upon arrival for both the LES

and new customer. Appealing to Propositions 2 and 3, we can then establish that the relative error

in the LES announcement is asymptotically negligible, under the initial condition in Theorem 1,

as desired.

Proposition 3. For sN ∈ {t, τN
t },

√
N

(

WN(sN)− QN(sN)+ 1

Nµ

)

⇒ 0 as N →∞.

Proof. Let Yi be a sequence of i.i.d. random variables which are exponentially distributed with

expected value EY = 1 (we omit subscripts when the specific index is not important). Then, given

that θ and θ bound the abandonment rate, the following holds:

QN (s)
∑

i=0

Yi

Nµ+QN(s)θ
≤D

QN (s)
∑

i=0

Yi

Nµ+ iθ̄
≤D WN(s)≤D

QN (s)
∑

i=0

Yi

Nµ+ iθ
.

Upper bound. We begin by establishing convergence for an upper bound of the difference in

Proposition 3.

√
N

(

WN(s)− QN(s)+ 1

Nµ

)

≤D
√
N





QN (s)
∑

i=0

Yi

Nµ
− QN(s)+ 1

Nµ



=
√
N

QN (s)
∑

i=0

Yi − 1

Nµ
=: V N .

Note that EV N = 0 since EY N = 1. Also, using the conditional variance formula:

V ar(V N) = V ar
(

E
(

V N | QN(s)
))

+E
(

V ar
(

V N | QN(s)
))

=
1

Nµ2
E[QN(s)+ 1] ,

where V ar(X) denotes the variance of random variable X. Additionally,

QN(s)≤D Q̃N(s), (34)

where Q̃N(s) is the queue length, at time s, in an M/M/N +M system with arrival rate λN and

identical service and abandonment rates, both equal to min{µ, θ}. We let the initial state in this

system be the same as in our original system. We need the following lemma.

Lemma 3. Let XN(s) be the number of customers in an M/M/∞ system with arrival rate λN

and service rate µ, at time s. Assume that
EXN (0)−N√

N
is bounded. Then, there exists c > 0 such that

E[(XN(s)−N)+]< c
√
N .
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Proof. Let λN =NρN , where ρN → 1 as N →∞, be the arrival rate to the system. Let XN(0) be

the number of customers in the system at time 0. Let s > 0. Then, the total number of customers

in the system at time s, XN(s), can be written as

XN(s) = Y N
1 (s)+Y N

2 (s),

where Y N
1 (s) is the number of customers who were present at time 0 and remain in the system at

time s, and Y N
2 (s) is the number of customers who have arrived after time 0 and remain in the

system at time s. Thus, Y N
1 (s) is binomial with parameters XN(0) and success probability e−µs.

As in Eick et al. (1993), Y N
2 (s) is Poisson distributed with rate (λN/µ)(1−e−µs) = (NρN/µ)(1−

e−µs). We can show the following.

Lemma 4. Let Y N is a random variable that has Poisson distribution with mean Nν. Then,

there exist a constant C such that

E[(Y N −Nν)+]≤ (1+ ν)
√
N.

Proof. The proof follows by noting that the following

E[(Y N −Nν)+] =

∫ ∞

0

P((Y N −Nν)+ >x)dx

=

∫

√
N

0

P((Y N −Nν)+ >x)dx+

∫ ∞

√
N

P((Y N −Nν)+ >x)dx

(a)

≤
√
N +

∫ ∞

√
N

E[(Y N −Nν)2]

x2
dx

=
√
N +

∫ ∞

√
N

Nν

x2

=
√
N +

√
Nν =

√
N(1+ ν),

where inequality (a) follows from Markov’s inequality. This completes the proof.

Combining the above lemma with the fact that XN(0) is assumed to be bounded establishes the

desired.

By Lemma 3, we have that there exists C > 0 such that

EQ̃N(s)<C
√
N. (35)

Finally we have that, for all ǫ > 0,

P (V N > ǫ) ≤ P (|V |N > ǫ)

≤ V ar(V N )

ǫ2
(by Chebyshev’s inequality)

≤ EQN (t)+1

Nµ2ǫ2

≤ C
√
N

Nµ2ǫ2
→ 0, as N →∞ .

(36)

This implies that V N ⇒ 0 as N → ∞, which completes our proof of convergence for the upper

bound. We are now ready to establish convergence for the lower bound.
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Lower bound.
√
N
(

WN(s)− QN (s)+1

Nµ

)

≥D
√
N
(

∑QN (s)

i=0
Yi

Nµ+QN (s)θ
− QN (s)+1

Nµ

)

=
√
N
(

∑QN (s)

i=0
(Yi−1)Nµ−QN (s)θ

Nµ(Nµ+QN (s)θ)

)

= 1

1+
QN (s)θ

Nµ

V N −
√
NRN ,

(37)

where V N :=
√
N
∑QN (s)

i=0
Yi−1
Nµ

as before, and RN := θQN (s)(QN (s)+1)

(Nµ+θQN (s))Nµ
. By (34) and (35) we have that

1

1+ QN (s)θ

Nµ

⇒ 1, as N →∞,

and that

−
√
NRN ≥ −θ (QN(s)(QN(s)+ 1))

√
N

(Nµ)2
⇒ 0 as N →∞.

Thus,
√
N
(

WN(s)− QN (s)

Nµ

)

⇒ 0, as desired.

Combining the above results yields the proof for Theorem 1.

9. QED Regime with a General Abandonment Distribution

Consider the system where, depending on the announcement wN(τN
t ), the new arrival abandons

according to a general distribution whose hazard rate is given by hwN (τNt )(·). Further, assume that

hw(·) is bounded from above and below, i.e.,

θ≤ hw(y)≤ θ for all y≥ 0.

We begin by establishing the following lemma, which will be used in the proof of our main

theorem below.

Lemma 5. Consider a random variable U with hazard rate h(·) such that θ≤ h(x)≤ θ. Then,

e−θs ≤ P(U > t+ s|U > t)≤ e−θs .

Proof. Using the definition of hazard rate, one can express the cumulative probability function

for U , denoted by FU , as follows:

FU(t) = 1− e−
∫ t
0 h(s)ds.

Thus, we have that P(U > t) = e−
∫ t
0 h(s)ds. Based on this, we obtain

P(U > t+ s|U > t) = e−
∫ t+s
t h(u)du.

Using the fact that θ≤ h(u)≤ θ, for all u, completes the proof.

Theorem 3. If (ZN(0)−N)/
√
N is tight, then

√
N |wN(t)−wN(τN

t )| ⇒ 0,

as N →∞.

Proof. The proof follows along the lines of to the Theorem 1.
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Tightness of QN(τN
t )/

√
N . By noting that the abandonment times in the given system are

stochastically larger than for an exponential distribution with rate θ, we can proceed as in Lemma

1 in the main paper.

The time elapsed between the arrival of LES customer τN
t is asymptotically close to t. Again,

using Lemma 5 along with the arguments in Theorem 1 we can prove that τN
t is close to t by

establishing that:

P(t− τN
t −wN(τN

t )> ǫ i.o.) = 0 for all ǫ > 0. (38)

Two Systems. For the construction of the two systems, as in Proposition 2, we use the result

of Lemma 5 which states that the excess distribution of the abandonment time is stochastically

bounded above and below by exponential random variables with rate θ and θ, respectively. Thus,

the two systems constructed in the proof of Theorem 1 will also bound our system. Following the

arguments of the proof of Theorem 1 completes the proof.

10. Asymptotic Results in the ED Regime: Proof of Theorem 2
10.1. Stopping time.

Let ǫ > 0. For the N th system, we define σN and αN as follows:

σN = inf{s : |Z̄N(s)− z̄|> ǫ} , and (39)

αN = min{σN , T} , (40)

where Z̄N(s) =ZN(s)/N . Then, for all N , we must have that on the interval [0, αN):

|Z̄N(s)− z̄| ≤ ǫ. (41)

10.2. Stochastic boundedness of the stopped waiting times.

We now establish that if (41) holds, then WN(s) will be stochastically bounded on [0, αN) as well.

To this aim, we define the function Γ(·) as follows, for all x≥ 1:

Γ(x) =
1

θ
ln

(

µ+ θ(x− 1)

µ

)

. (42)

We will need this function Γ(·) to establish a relationship between the waiting time and the scaled

number of customers in the system. For a customer arriving at a time s∈ [0, αN):

WN(s) =

ZN (s)
∑

j=N

Yj

µN + θ(j−N)
, (43)

where Yj is exponentially distributed with mean 1. Let δ > 0, and define

Uj ≡
Yj − 1

µN + θ(j−N)
for j ≥N.
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Then, subtracting E[WN(s)], we can write:

P





∣

∣

∣

∣

∣

∣

WN(s)−
ZN (s)
∑

j=N

1

µN + θ(j−N)

∣

∣

∣

∣

∣

∣

> δ



= P





∣

∣

∣

∣

∣

∣

ZN (s)
∑

j=N

Uj

∣

∣

∣

∣

∣

∣

> δ



 .

We can also establish the following lemma.

Lemma 6. There exists C1 > 0 such that for sufficiently large N ,

P





∣

∣

∣

∣

∣

∣

ZN (s)
∑

j=N

Uj

∣

∣

∣

∣

∣

∣

> δ



< e−C1δN . (44)

Proof.

Note that

P





∣

∣

∣

∣

∣

∣

ZN (s)
∑

j=N

Uj

∣

∣

∣

∣

∣

∣

> δ



= P





ZN (s)
∑

j=N

Uj > δ



+P





ZN (s)
∑

j=N

Uj <−δ



 (45)

We shall show the bound on the first term; the bound on the second term proceeds similarly and

will therefore be omitted. Let C > 0. Then by Chebyshev’s inequality,

P





ZN (s)
∑

j=N

Uj > δ



≤ P





ZN (s)
∑

j=N

CUj −Cδ > 0



≤E



exp



C

ZN (s)
∑

j=N

Uj −Cδ







 . (46)

Note that for N ≤ j:

E[exp(CUj)] =E

[

exp

(

C(Yj − 1)

µN + θ(j−N)

)]

(47)

=
µN + θ(j−N)

µN + θ(j−N)−C
exp

(

− C

µN + θ(j−N)

)

. (48)

Taking logarithms on both sides and choosing C =C0N where 0<C0 <µ we obtain

logE[exp(C0Uj)] = log

(

µ+ θ( j

N
− 1)

µ+ θ( j

N
− 1)−C0

)

− C0

µ+ θ( j

N
− 1)

(49)

<
C0

µ+ θ( j

N
− 1)−C0

− C0

µ+ θ( j

N
− 1)

, (50)

=
C2

0

(µ+ θ( j

N
− 1)−C0)(µ+ θ( j

N
− 1))

(51)

≤ C2
0

(µ−C0)µ
, (52)

where the first inequality follows from the fact that log(1+x)<x and second by noting that N ≤ j.

Hence, we obtain

logP





ZN (s)
∑

j=N

Uj > δ



<
C2

0

(µ−C0)µ
E[ZN −N ]−C0Nδ (53)

<−N

[

C0δ−
C2

0

(µ−C0)µ
z̄

]

(54)
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where the last inequality holds using (41) from the paper. Note that one can choose C0 small

enough that makes
[

C0δ−
C2

0

(µ−C0)µ
z̄

]

> 0,

Thus, we have that there exist C ′ > 0 such that

P





ZN (s)
∑

j=N

Uj > δ



< exp(−C ′Nδ).

Similarly, we can show that there exist C ′′ > 0 such that

P





ZN (s)
∑

j=N

Uj <−δ



< exp(−C ′′Nδ).

Combining both inequalities, we obtain that there exists C1 > 0 such that:

P





∣

∣

∣

∣

∣

∣

ZN (s)
∑

j=N

Uj

∣

∣

∣

∣

∣

∣

> δ



< e−C1δN .

From (44), we deduce that for any δ > 0, some integer N0, and some M <∞:

∞
∑

N=1

P





∣

∣

∣

∣

∣

∣

WN(s)−
ZN (s)
∑

j=N

1

µN + θ(j−N)

∣

∣

∣

∣

∣

∣

> δ



≤M +
∞
∑

N=N0

P





∣

∣

∣

∣

∣

∣

WN(s)−
ZN (s)
∑

j=N

1

µN + θ(j−N)

∣

∣

∣

∣

∣

∣

> δ





<M +
∞
∑

N=N0

e−C1δN <∞.

By the Borel-Cantelli lemma, we obtain that for all s∈ [0, αN):

∣

∣

∣

∣

∣

∣

WN(s)−
ZN (s)
∑

j=N

1

µN + θ(j−N)

∣

∣

∣

∣

∣

∣

→ 0 almost surely as N →∞.

Now, let’s write:

∣

∣WN(s)−Γ(Z̄N(s))
∣

∣=

∣

∣

∣

∣

∣

∣

WN(s)−
ZN (s)
∑

j=N

1

µN + θ(j−N)
+

ZN (s)
∑

j=N

1

µN + θ(j−N)
−Γ(Z̄N(s))

∣

∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

∣

WN(s)−
ZN (s)
∑

j=N

1

µN + θ(j−N)

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

ZN (s)
∑

j=N

1

µN + θ(j−N)
−Γ(Z̄N(s))

∣

∣

∣

∣

∣

∣

We have just shown that the first part on the right-hand side converges to 0 almost surely as

N → ∞; there remains to show that the same holds for the second part. For this, we need the

following lemma:
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Lemma 7. For n≥ 0, and any α∈R:

n
∑

j=0

1

nα+ j
= ln

(

1+α

α

)

+O(1/n).

Proof. For this, first note that

n
∑

j=0

1

⌈nα⌉+ j
≤

n
∑

j=0

1

nα+ j
≤

n
∑

j=0

1

⌊nα⌋+ j
.

There remains to show that both upper and lower bounds converge as desired, which can be done

as follows.

n
∑

j=0

1

⌊nα⌋+ j
=

⌊nα⌋+n
∑

k=⌊nα⌋

1

k
=

⌊nα⌋+n
∑

k=1

1

k
−

⌊nα⌋−1
∑

k=1

1

k
,

= ln(⌊nα⌋+n)− ln(⌊nα⌋− 1)+O(1/n)

= ln

(⌊nα⌋+n

⌊nα⌋− 1

)

+O(1/n).

Proceeding similarly for the lower bound, we obtain that:

n
∑

j=0

1

⌈nα⌉+ j
= ln

(⌈nα⌉+n

⌈nα⌉− 1

)

+O(1/n).

It’s not hard to see that, letting n→∞ both bounds converge to ln ((1+α)/α) as desired.

Based on Lemma 7, we can deduce that:

ZN (s)
∑

j=N

1

µN + θ(j−N)
=

ZN (s)−N
∑

k=0

1

µN + θk
=

1

θ

ZN (s)−N
∑

k=0

1

(µ/θ)N + k
.

=
1

θ
ln

(

Z̄N(s)− 1+µ/θ

µ/θ

)

+O(1/N)

=
1

θ
ln

(

µ+ θ(Z̄N(s)− 1)

µ

)

+O(1/N)

= Γ(Z̄N(s))+O(1/N).

Based on the above, we get that:
∣

∣

∣

∣

∣

∣

ZN (s)
∑

j=N

1

µN + θ(j−N)
−Γ(Z̄N(s))

∣

∣

∣

∣

∣

∣

→ 0 almost surely as N →∞.

That is,
∣

∣WN(s)−Γ(Z̄N(s))
∣

∣→ 0 almost surely as N →∞.

Since the null limit above has (trivially) continuous sample paths on [0, αN), we also have almost

sure convergence in the uniform topology. That is, we have that:

lim
N→∞

||WN(s)−Γ(Z̄N(s))||= 0 almost surely over [0, αN), (55)
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where we use the notation || · || to represent sup norm over the time interval [0, αN). Noting that

Γ(z̄) = w̄, and due to (41), we obtain by using a Taylor expansion argument that:

lim
N→∞

∣

∣

∣

∣WN(s)− w̄
∣

∣

∣

∣≤ Γ′(z̄)ǫ+O(ǫ2) almost surely over [0, αN). (56)

10.3. Divergence of the stopping time.

Since the LES announcement is the waiting time for some customer, and since b̄(·) is a monotone

decreasing function, we obtain, based on (56), that the arrival rate to the N th system is bounded

above and below by Nλb̄(w̄+Γ′(z̄)ǫ+O(ǫ2)) and Nλb̄(w̄−Γ′(z̄)ǫ−O(ǫ2)), respectively on [0, αN)

(we consider that O(ǫ2) denotes a positive quantity). Using Mandelbaum and Pats (1995), we know

that the scaled number in the system Z̄N(s), for s∈ [0, αN), satisfies

lim
N→∞

Z̄N(s) ≤ 1

θ
(λb̄(w̄+Γ′(z̄)ǫ+O(ǫ2))−µ)+ 1 (57)

=
1

θ
(λb̄(w̄)−µ)+ 1+

λb̄′(w̄)Γ′(z̄)ǫ

θ
+O(ǫ2) (58)

= z̄+
λb̄′(w̄)Γ′(z̄)ǫ

θ
+O(ǫ2) almost surely. (59)

Similarly, we can obtain a corresponding lower bound. Consequently, we have that:

lim
N→∞

∣

∣

∣

∣Z̄N(s)− z̄
∣

∣

∣

∣≤ λb̄′(w̄)Γ′(z̄)ǫ

θ
+O(ǫ2) almost surely.

Noting that Γ′(z̄) = 1/λb̄(w̄), we obtain that

lim
N→∞

∣

∣

∣

∣Z̄N(s)− z̄
∣

∣

∣

∣≤ b̄′(w̄)ǫ

b̄(w̄)θ
+O(ǫ2) almost surely.

Now, assume that (10) holds. Combining this with the fact that Z̄N(s) cannot jump by more than

1/N , we obtain for large N and small ǫ > 0, the following:

∣

∣Z̄N(αN)− z̄
∣

∣< ǫ. (60)

Thus, we must have that αN < σN for large N , and that T < σN . Since the above holds for all

small enough ǫ > 0 and any T > 0, we obtain the following:

lim
N→∞

∣

∣

∣

∣Z̄N(s)− z̄
∣

∣

∣

∣

[0,T ]
= 0 almost surely , (61)

as desired. This establishes that the relative error in the number of customers in the system

(or, equivalently, the queue length) is asymptotically negligible uniformly over compact sets. The

asymptotic accuracy of LES follows by applying the continuous mapping theorem using Γ(·):

lim
N→∞

∣

∣

∣

∣WN(s)− w̄
∣

∣

∣

∣

[0,T ]
= 0 almost surely , (62)

which completes the proof.
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11. ED Regime with Announcement-Dependent Abandonment

We consider theM/M/N+M system in the ED limiting regime. We assume that customers respond

to the announcements via announcement-dependent balking and abandonment. We establish the

asymptotic accuracy of LES in that case. The main theorem and its proof are largely similar to

Theorem 2. First, we characterize the corresponding equilibrium fluid behavior, as in §5.2 of the

main paper.

11.1. Fluid Steady-State Equilibrium

Let z̄ denote an equilibrium fluid content in the system. Then, w̄ and z̄ must satisfy the two

following simple equations:

λb̄(w̄) = µ+ θ(w̄)(z̄− 1) , (63)

w̄ =
1

θ(w̄)
ln

(

1+
θ(w̄)(z̄− 1)

µ

)

. (64)

Sufficient conditions for the existence and uniqueness of this equilibrium were stated in §5.1.

Theorem 4. For the M/M/N + M model in the ED heavy-traffic limiting regime with

announcement-dependent balking and abandonment,

If
ZN(0)

N
⇒ z̄ in (63) and (64) as N →∞ , (65)

then

||WN(t)−WN(τN
t )||[0,T ] → 0 as N →∞ almost surely , (66)

under the condition that

λb̄′(w̄)+
|θ′(w̄)|
θ(w̄)

λb̄(w̄)− µ|θ′(w̄)|
θ(w̄)

< θ(w̄)λb̄(w̄)(1− θ′(w̄)K) , (67)

and

K|θ′(w̄)|< 1 . (68)

Proof. The proof is similar to that for Theorem 2, so we will be brief. We define the three stopping

times, for ǫ > 0, δ > 0, and T > 0:

σN = inf{s : |Z̄N(s)− z̄|> ǫ} , (69)

νN = inf{s : |WN(s)− w̄|> δ} , (70)

αN = min{σN , T} . (71)

Define the following function, paralleling (42), for x≥ 0 and y≥ 0:

Γ(x, y) =
1

y
ln

(

µ+ y(x− 1)+

µ

)

.
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We note that on the interval [0, αN),

|θ(WN(s))− θ(w̄)| ≤ |θ′(w̄)|δ+O(δ2) .

Using Taylor series expansion, we can show that:

limsup
N→∞

||WN(s)− w̄|| ≤ ǫ
∂Γ

∂x

∣

∣

∣

∣

(z̄,w̄)

+ θ′(w̄)δ
∂Γ

∂y

∣

∣

∣

∣

(z̄,w̄)

.

We know that
∂Γ

∂x

∣

∣

∣

∣

(z̄,w̄)

=
1

λb̄(w̄)
,

and
∂Γ

∂y

∣

∣

∣

∣

(z̄,w̄)

=− w̄

θ(w̄)
+

1

θ(w̄)

z̄− 1

λb̄(w̄)
.

Now, let

K =

∣

∣

∣

∣

−w̄

θ(w̄)
+

1

θ(w̄)

z̄− 1

λb̄(w̄)

∣

∣

∣

∣

.

Further,

lim
n→∞

Z̄N(s) ≤ 1

θ(w̄)(1− |θ′(w̄)|δ
θ(w̄)

)
(λb̄(w̄)+λ|b̄′(w̄)|δ+O(δ2)−µ)+ 1 , (72)

=
1

θ(w̄)

(

1+
|θ′(w̄)|δ
θ(w̄)

+O(δ2)

)

(

λb̄(w̄)+λ|b̄′(w̄)|δ+O(δ2)−µ
)

+1 (73)

= z̄+ δ

(

1

θ(w̄)
(λ|b̄′(w̄)|+ |θ′(w̄)|

θ(w̄)
λb̄(w̄)−µ

|θ′(w̄)|
θ(w̄)

)

)

+O(δ2) . (74)

To ensure that αN ≤ σN and αN < νN for large N , we need the following conditions to hold:

δ

(

1

θ(w̄)
(λ|b̄′(w̄)|+ |θ′(w̄)|

θ(w̄)
λb̄(w̄)−µ

|θ′(w̄)|
θ(w̄)

)

)

< ǫ , (75)

and
1

λb̄(w̄)
ǫ+ θ′(w̄)Kδ < δ . (76)

Equations (75) and (76) will be satisfied if:

|θ′(w̄)K|< 1 ,

and
(

1

θ(w̄)

(

λ|b̄′(w̄)|+ |θ′(w̄)|
θ(w̄)

λb̄(w̄)−µ
|θ′(w̄)|
θ(w̄)

))

1

λb̄(w̄)(1− θ′(w̄)K)
< 1 .

The above inequalities can be restated as:
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λb̄′(w̄)+
|θ′(w̄)|
θ(w̄)

λb̄(w̄)− µ|θ′(w̄)|
θ(w̄)

< θ(w̄)λb̄(w̄)(1− θ′(w̄)K) , (77)

and

K|θ′(w̄)|< 1 . (78)


