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To V. I. Arnold with profound respect.

Abstract

We consider the sigma-finite measures in the space of vector-valued distributions

on the manifold X with characteristic functional

Ψ(f) = exp{−θ

∫

X
ln ||f(x)||dx}, θ > 0.

The collection of such measures constitutes a one-parameter semigroup relative to θ.

In the case of scalar distributions and θ = 1, this measure may be called the infinite-

dimensional Lebesgue measure. We prove that the weak limit of Haar measures on

the Cartan subgroup of the group SL(n, R) when n tends to infinity is that infinite

dimensional Lebesgue measure. This measure is invariant under the linear action of

some infinite-dimensional Abelian group that can be viewed as an analog of an infinite-

dimensional Cartan subgroup; this fact can be a justification of the name Lebesgue as

a valid name for the measure in question. Application to the representation theory

of the current groups was one of the reason to define this measure. The measure also

is closely related to the Poisson–Dirichlet measures well known in combinatorics and

probability theory.

The only known example of the analogous asymptotical behavior of the uniform

measure on the homogeneous manifold is classical Maxwell-Poincaré lemma which as-

serts that the weak limit of uniform measures on the Euclidean sphere of appropriate

radius as dimension tends to infinity is the standard infinite-dimensional Gaussian

measure. Our situation is similar but all the measures are no more finite but sigma-

finite. The result raises an important question about the existence of other types of

the interesting asymptotic behavior of invariant measures on the homogeneous spaces

of Lie groups.
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Dedication. On the 70th anniversary of Arkady Raikin, one actor addressed him with

approximately these words:

“Some of us attend some performances of some of their friends-actors from time to time;

however, ALL of us, without exception, have seen ALL your programmes”.

Similarly, I want to say the mathematical analog of this:

“Some of us (mathematicians) sometimes read some papers written by some of their

colleagues, but ALL of us, without exception, read ALL Arnold’s papers!”

Contents

1 Introduction 3

1.1 On asymptotic approach to measure and integration in infinite-dimensional

spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 About this paper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 A brief historic digression: white noise according to Maxwell–Poincaré–
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1 Introduction

1.1 On asymptotic approach to measure and integration in infinite-

dimensional spaces

In his remarkable but less known, compared with other works, paper “Approximative proper-

ties of matrices of high finite order” ([34]), J. von Neumann wrote that experts in functional

analysis neglect problems concerning spaces of high finite dimension in favor of the study of

actually infinite-dimensional spaces. Possibly, in the last third of the 20th century the situa-

tion has slightly changed, but one still cannot say that we understand analysis in the spaces

of dimension, say, 1024 better than in the infinite-dimensional Hilbert space (where “almost

everything is clear”!)1 Specifically, this is true in what concerns problems in measure theory

and integration in infinite-dimensional spaces. Never-ceasing attempts to justify the notion

of Feynman integral, which is so important to physicists, and to embed it into one or another

general scheme of integration over a measure do not evoke interest or approval of physicists

and apprehension of mathematicians. It is easy to understand this lack of enthusiasm: physi-

cal modelling is always or almost always based upon asymptotic constructions (in dimension,

number of particles, some constants, etc.). On the contrary, mathematicians usually try to

interpret these constructions as actually infinite (infinite-dimensional). This is productive

and necessary within some limits but inevitably results in certain difficulty of interpretation

when one tries to absolutize the limiting constructions. Certainly, it is impossible to say

that asymptotic approach can be a substitute of actually infinite constructions, and there

is no need in such substitution. It is important to understand what effects, in the infinite-

1A subheading of Chapter 5 in the E. Borel’s book [2] reads: “Functions in high number of variables:

areas and volumes in the geometry of 1024-dimensional spaces”.
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dimensional case, really survive, or grow out of asymptotic finite-dimensional properties, and

how to obtain them. We will investigate an example of asymptotic behavior of measures on

classical homogeneous spaces which leads to a remarkable limiting measure (to be precise, a

one-parameter family of measures), the Lebesgue measure in the infinite-dimensional space.

This measure (in different, actually infinite terms) was earlier discovered in connection with

representation theory of current groups [16]. The role it plays in combinatorics and repre-

sentation theory is probably not smaller than that of the Gaussian measure. Its properties

and deep connections with, for instance, Poisson–Dirichlet measures are probably covered in

this work for the first time (cf. [19]) and need further investigation.

1.2 About this paper

We begin Subsection 2 with the classical and well-known calculation, the so-called “Poincaré’s

Lemma” that substantiates the Maxwell (Gaussian) distribution of velocities in statistical

physics. This example shows how the infinite-dimensional Gaussian measure (“white noise”)

arises as a limiting distribution of the radius-vector of a point on the Euclidean sphere as the

dimension and the radius of the sphere tend to infinity coherently. The aim of the present

paper is to demonstrate that, as in the above-mentioned example, which will systematically

play the role of a reference example for the main theme of the paper, there exists another

series of homogeneous spaces of the Cartan subgroup in SL(n,R), on which the invariant

measures, as in the case of Maxwell-Poincaré’s Lemma, weakly converge to quite another,

now sigma-finite, measure which reminds the infinite-dimensional Lebesgue measure. The

symmetry group of the measure in question is as large as in the case of the Gaussian measure,

but quite different one. This measure is related to the remarkable Poisson–Dirichlet measures

of combinatorial origin. There is reason to compare the Wiener and our Lebesgue measures:

they can be viewed as the measures corresponding to the extreme values in the segment

α ∈ [0, 2] whose inner points parameterize Lévy measures of stable laws; to be more precise,

our measure is the derivative of these measures over α at the point 0. Apart from interest

per se, the measures in question are used (and first appeared) in representation theory of

current groups. However, our main aim is the description of these measures in the geometric

and asymptotic aspects. In Sect. 2, we give proofs of the Maxwell-Poincaré Lemma which

we use for comparison in many situations. This comparison is useful and allows us to outline

further natural generalizations. We comment this lemma from various points of view.

In Sect. 3, we consider the orbits of the Cartan subgroup SDiag(n,R) in the group

SL(n,R). It is convenient to start with the study of the positive part SDiag+(nR) of the

Cartan subgroup and of its orbit, postponing the general case to Sect. 4. Further, we embed

the orbits into the cone K+ of positive step functions on the segment and define the weak

convergence of the invariant measures on these orbits as the convergence of their Laplace
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transforms. The limit of the Laplace transformations of the properly normalized measures

on SDiag+(nR) is the functional

Φθ(f) = exp
{
− θ

∫

X

ln f(x)dx
}
, θ > 0,

and we use several methods of finding it. This functional is defined on the set of functions

whose logarithm has finite integral; it is invariant under all changes of variables keeping the

measure invariant and under multiplication by functions whose logarithm has zero integral.

The main object of Sect. 4 is an explicit definition of the sigma-additive sigma-finite

measure L+
θ . First we define the weak distribution Ξθ (Subsect. 4.1) on the cone K whose

Laplace transform is Φθ. Then we introduce the cone D+ of discrete positive measures of

finite mass defined on X, which is in duality with the cone K+. Thus the weak distribution

Ξθ may be viewed as a premeasure on D+. We emphasize once more that our object is not

finite but infinite weak distributions and measures. So the usual tools like projections, etc.,

cannot be applied here. The final step of the construction is the proof of the existence of a

true sigma-additive measure that is a continuation of our weak distribution. This is done in

a constructive way using an infinite (“poissonized”, or conic) version of the Poisson–Dirichlet

measures PD(θ), θ > 0, which became popular in the last years. These measures are defined

on the simplex of monotone positive series with sum one; we describe them in Appendix 1.

We need their sigma-finite versions, PDC , the “conic Poisson–Dirichlet measures”, which

are defined on the cone of monotone convergent positive series. These measures are direct

products of the Poisson–Dirichlet measure D(θ) and the measure on the half-line Lθ defined

by the density tθ−1/Γ(θ). (The measure on the half-line is a “distribution” of the sum of the

series.)

In Subsection 4.2, which plays a central role in our exposition, we define the principal

object, the multiplicative measures Lθ, as an image of the product of the Bernoulli measures

m∞ and the conic Poisson–Dirichlet measures PDK(θ) described above.

These measures are eventually the weak limits of the measures defined on the sequence

of SDiag+(n,R)-orbits. The measure corresponding to θ = 1 is called the multiplicative

Lebesgue measure on the cone D+.

Thus, our scheme of the introducing the multiplicative measures, the Lebesgue measure

in particular, is the following.

We define the measures on the orbits of the Cartan subgroup, then find the limit of their

Laplace transform; the latter is the Laplace transform of some weak distribution and we

define the measure, which is a continuation of this distribution, by taking an explicit image

of the conic Poisson–Dirichlet measures multiplied by the Bernoulli product measure.

In this apparently long way the concluding step does not depend on the preceding ones.

This allows one to introduce the measures we are looking for directly, independently of the

5



preceding steps. However, this economy of efforts conceals the asymptotic and geometric

sense of the measure constructed. The reader who does not care of this sense can pass to

the Subsection 4.2 immediately after the introduction.

We summarize the properties of these measures.

1. They are the weak limits of the measures on orbits of the positive Cartan subgroups;

2. Their Laplace transform is

Φθ(f) = exp
{
− θ

∫
ln f(x)dx

}
, θ > 0;

3. They are the images of the product of the Poisson–Dirichlet measures on the simplex of

positive convergent series summing to one by the Bernoulli measure and the Lebesgue

measure on the half-line.

On the other hand, these measures behave like the laws of Lévy processes, but with

infinite probability: our measures are absolutely continuous and even equivalent to the laws

of Lévy gamma processes on subordinators. Exactly in this way they were defined in [19],

and eventually in this way they were discovered in [14, 15]. In Subsection 4.3, we connect

these measures to Lévy gamma processes, subordinated or complete. In [16, 19], an opposite

way to define the measures is adopted. They are defined via a gamma process by the

introduction of densities. This method is less analytic and transparent, especially in the

infinite-dimensional case.

In Subsection 4.4, we give an additive version of the description of these measures and

show that they present the first example of a sigma-finite measure invariant under shifts by

vectors of an infinite-dimensional Banach space.

Further, in Subsection 5.1, the main definition and all the other definitions are repeated

in the case of signed measures; the cone is replaced by the vector space D, positive series by

absolutely convergent ones, etc. This transition is easy, and the most important properties

are already visible in the “positive” version. These extended and most important measures

have the following properties.

1. They are the weak limits of measures on the orbits of the complete Cartan subgroup.

2. Their Laplace transform is

Φθ(f) = exp
{
− θ

∫
ln |f(x)|dx

}
, θ > 0

(the logarithm is replaced by the logarithm of the modulus).
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3. They are the images of the products of extended Poisson–Dirichlet measures on the

octahedron composed by all decreasing (in modulus) absolutely convergent series, a

Bernoulli measure, and the Lebesgue measure on the line.

4. Finally (the most important): these measures are invariant relative to the group of

multiplicators by the functions f with zero integral of log |f |, they are projectively

invariant relative the multiplication by the functions f with finite integral of log |f |,
and (Subsection 5.2) they are invariant under the changes of variables that leave the

measure invariant.2

In Subsection 5.3, we remind the connection of these measures with representation theory

of current groups. Finally, in Subsection 5.4 we define a generalization of the Lebesgue and

the Poisson–Dirichlet measures to the vector case, which is necessary for the representations

of current groups with coefficients in the group SO(n, 1).

The first appendix contains the most important information about the Poisson–Dirichlet

measures and their applications in probability, algebra, and number theory. In the second

appendix we discuss the conditions that are imposed on the group of admissible shifts by

the properties of invariance and quasi-invariance of the measures under this group, and we

explain what is new in the additive approach to infinite-dimensional Lebesgue measures

introduced here.

2 A brief historic digression: white noise according to

Maxwell–Poincaré–Borel, and commentaries

2.1 Maxwell-Poincaré’s Lemma

A remarkable example of asymptotic approach to infinite-dimensional objects is presented by

the following way to introduce the Maxwell-Boltzmann distribution in mathematical physics.

Consider the small canonical ensemble of the velocities of a system of identical particles with

energy

H(v1, . . . vn) =
1

2

∑

k

||vk||2.

Since we do not care about the dimension, the velocities may be treated as scalars (d = 1).

A natural measure carried by the small ensemble is the normalized Lebesgue measure on the

corresponding Euclidean sphere (because the measure must be orthogonally invariant). On

the other hand, consider the canonical ensemble of velocities with Gibbs measure, i.e., the

2I.e., they are invariant relative to the normalizer of the infinite-dimensional torus (= the group of

multiplication operators).
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measure with density exp{−H(v1, . . . vn)}, c > 0, on it. When normalized, it becomes the

standard Gaussian measure. Then we increase the number of particles and, simultaneously,

the total energy. The question is: do the asymptotic distributions in both ensembles coincide?

The answer is contained in the following beautifully simple fact that can be formulated, in

the current terms, as follows.

Theorem 1. Consider the sequence of the normalized Lebesgue measures on the Euclidean

spheres Sn−1
rn

⊂ R
n of radius rn = c

√
n, c > 0, and the limit of spaces

R
1 ⊂ R

2 ⊂ · · · ⊂ R
n ⊂ · · · ⊂ R

∞.

Then the weak limit of these measures is the standard Gaussian measure µ which is the

infinite product of the identical Gaussian measures on the line with zero mean and variance

c2. It is clear that the sequence of Gibbs measures has the same weak limit.

Thus the infinite-dimensional ensemble that is the limit of both canonical ensembles in

the above-described sense exists.

Proof. The weak convergence of a sequence of measures is, by definition, the convergence

of the corresponding sequence of finite-dimensional distributions for any finite collection

of linear functionals. In its turn, it is sufficient for this that the distribution of a single

(arbitrary) functional converge; for instance, one can consider the functional that takes the

first coordinate of a vector. As a result, the question reduces to the following calculation.

One should find the limiting distribution of the projection of the Lebesgue measure on

the sphere Sn−1
rn

onto the first coordinate. The density relative to the Lebesgue measure

of the projection of the (normalized) such measure is Cn(r2
n − x2)

n−2

2 . After an evident

renormalization, as r/
√
n→ θ > 0, we get the density C exp(−θx2), θ > 0, of the Gaussian

measure as a limit.

The same result can be obtained in a number of different ways. For example, one can

use the Fourier transform and consider the asymptotic behavior of Bessel functions. For the

sphere Sn−1, set ν = (n− 2)/2. From [35], formula 3.771.8

∫ r

0

(r2 − x2)ν−1/2 exp(itx)dx = C ·
(

2r

t

)ν

Jν(tr),

where C =
√

π/2
Γ(ν+1/2)

, and the formula giving the asymptotical behavior of the Bessel function

Jν(.) as its argument and number ν tend to infinity, it follows that

lim
n→∞

∫

Sn−1
rn

exp(itω)dΩn(ω) = exp(−θt2)
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as r/
√
n = r/

√
2(ν + 1) → θ > 0, where Ωn is the normalized Lebesgue measure on the

sphere Sn−1
rn

. Thus the sequence of the Fourier transforms tends to the Fourier transform of

the Gaussian measure, and the weak convergence of the measure follows. We give an analog

of this very proof in the situation in question replacing Fourier transform with Laplace

transform.

2.2 Comments

1. A more serious comprehension of the latter calculation is the following. This demon-

stration can be viewed as the derivation of the empirical distribution of the first (and then

any) coordinate of the vector in the space R
∞ relative to an a priory unknown spherically

invariant measure. Indeed, it follows from the general ergodic and martingale convergence

theorems (see the so-called ergodic method in [12, 13]) that the limit of such functional is

the limit of its empirical distributions for any probability Borel ergodic measure in the space

R
∞ that is invariant under the action of all finite-dimensional orthogonal (in the l2 sense)

groups (and, consequently, under the whole infinite-dimensional orthogonal group O(∞) in

l2). But the thing is that we do not know in the beginning what set of vectors constitutes

the set of “almost all” vectors relative to the measure we are looking for, and so we do not

know what orbits to take. However, the theorems cited imply that taking all the orbits we

will not miss any invariant ergodic measure. It turns out that in our case it suffices to take

orbits having the form

(x, x, . . . x︸ ︷︷ ︸
n

, 0, 0 . . . ),

these and only these orbits give all necessary measures, the other sequences of orbits do

not have nontrivial limits. This is the manifestation of the fact that the average square of

the norm of such vector relative to the Gaussian measure grows proportionally to n, and

consequently there are no ergodic measures except the Gaussian ones. It is clear that the

knowledge of the distributions of all (in our case, one) linear functionals defines the measure

completely.

It immediately follows that the general spherically invariant measure is a mixture of

Gaussian measures with various dispersions, i.e., the general form of the characteristic func-

tional of a spherically invariant measure is the following:
∫∞

0
exp(−cx2)dm(c). Hence the

Schoenberg theorem follows which states that all indecomposable positive definite normal-

ized functions of the norm of a vector in an infinite-dimensional Hilbert space have the form

φ(h) = exp(−||h||2). This fact, which is essentially one of the versions of the ergodic theorem

(or the martingale theorem), makes it possible to describe all invariant measures, not only in

this particular example but also in the general case, by choosing in a special way the orbits

of the subgroups that approximate the given group. This is essentially what we do in the
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example of noncompact Cartan subgroups, where we also describe all invariant measures.

2. A more delicate fact, which we will use below, is that the action of the whole infinite-

dimensional orthogonal group O∞ in the space R
∞ should be meant only in the sense that

every orthogonal operator g ∈ O∞ is defined, and acts leaving the Gaussian measure invari-

ant, on a certain measurable linear subspace of total measure (it can be easily constructed

using, for example, the spectral decomposition of g in l2) that depends on the operator, but

a common linear measurable subspace where all orthogonal operators were defined simulta-

neously does not exist, as was proved in [11]. It was also shown recently in [36] that no

measurable set of total measure exist where all the elements of the group O∞ were defined

simultaneously. 3 This gives an example of the group action that does not admit an indi-

vidual measurable realization. It is well known that in the case of locally compact groups a

measurable realization always exists.

3. One can define a measure invariant under arbitrary group possessing a dense subgroup

that is a union of an increasing sequence of compact or locally compact subgroups in a similar

manner (this is the ergodic method of the description of invariant measures, characters, etc.)

We choose an orbit for any subgroup from the given sequence of groups and take an invariant

measure on the orbit. Then we look for all cases when these measures on the orbits weakly

converge. The ergodic theorem or the martingale convergence theorem guarantee that the

list of invariant measures thus obtained is complete. The case of compact groups is simpler.

For the Maxwell-Poincaré– case, the orbits are n-dimensional spheres of radius c
√
n, and

the Lebesgue measures on them weakly converge to the Gaussian measure. Exactly in the

same way, changing the spheres and embedding maps, one can obtain any Gaussian measure

in the infinite-dimensional space, since they all are linearly isomorphic. For example, the

Wiener measure can be constructed in this manner. We will use the described technique for

noncompact groups in what follows.

4. Some remarks of historical character. The above calculation can be found in many books

and papers. Most commonly, it is called Poincaré’s Lemma, or even the Maxwell Theorem [5],

(make sense to mention also the name L.Boltzmann - Maxwell-Boltzmann distribution). Yet

a number of authors [7, 9] claim that they could not find this lemma nowhere in the papers by

Poincaré. E. Borel quotes it many times [2, 3]; however, he does not mention Poincaré in this

connection while abundantly quoting him on many other occasions [1]. D. Strook, G. McKean

and M. Yor [8] showed me a paper [4] (1866) by the German mathematician F. Mehler where

on can already find this calculation; It seems that E. Borel did not know about this work. In

3It was not mentioned in [36] that the absence of common linear subspace was proved in [11].
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fact, there is a theorem in [4] that the generating function of spherical harmonics converges,

as its index increases, to the generating function of Hermite polynomials. This evidently

implies our modest fact (and even the convergence of all the moments of the distributions);

however, the geometrical picture that is the essence of the method remains concealed in

this general theorem. H. McKean informed me that, among the others, M. Kac mentioned

H. Poincaré as the author of this statement. See also the recent preprint by P. Cartier [6].

One can guess that H. Poincaré mentioned this method of obtaining Maxwell’s distribution

in his lectures but has not written it down: the fact that he was aware of this calculation can

be seen from his lectures [1]. Thus, according to the principle expressed by many authors

(some of whom, following this very principle, attribute the principle itself to V. I. Arnold)

which states that the names ascribed by the later generations to theories, theorems, lemmas

rarely belong to the true discoverers of these theories etc., we continue to call the statement

in question Maxwell-Poincaré’s Lemma, taking a risk to violate the (possibly erroneous)

tradition.

In the present paper we show that in another, non-compact, sigma-finite version, the

analogous asymptotic method brings us not to the Gaussian measure, but to a no less

remarkable infinite-dimensional measure. It appeared earlier in representation theory of the

current group [15] and, as it turned out later, is closely related to the Lévy gamma process.

We will describe it in various aspects but will show what is the most natural way to discover

it using geometric approach.

3 Orbital measures on a Cartan subgroup and the limit

of their Laplace transforms

3.1 Orbits of the Cartan subgroups

Instead of (n − 1)-dimensional spheres Sn−1
r of radius r in Maxwell-Poincaré’s Lemma, we

consider the hypersurfaces

Mn−1
r =

{
(x1, . . . xn) :

n∏

k=1

xk = rn > 0; xk > 0

}

in R
n. The number r wil be called the radius of the hypersurface and will be specified

later. On this hypersurface Mn−1
r (for all r), the group SDiag+(n,R) of positive diagonal

matrices with determinant one, i.e., the positive part of the Cartan subgroup of the group

SL(n,R), acts freely and transitively. Therefore, an invariant sigma-finite measure mn,

which is finite on any bounded set, is defined on the hypersurface; this measure is the image

of the Haar measure on SDiag+(n,R). In the sequel, it is important that when the radius is
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multiplied by a positive number, the invariant measure also changes being multiplied by the

nth power of this number, though it remains an image of the Haar measure. Our aim, as in

the Maxwell-Poincaré’s Lemma, to find under what conditions the sequence of the measure

spaces (Mn−1
r , mn) has a limit in some sense and to study the properties of the limiting

measure. The difference with the spherical case are rather important. First of all, in our case

the measure mn is not a probability measure any more but only a sigma-finite one. Second,

the symmetry group is commutative while in the spherical case it is the group SO(n). All

this brings us to a different interpretation of the weak limit. In particular, the manifolds

Mn−1
r are embedded into the space of distributions, not into the space of sequences (R∞) as

in the case of spheres.

Notice that the positivity property of the coordinates xk and of the group will be lifted

in the sequel and we will consider the whole group SDiag(n,R); however, the main point of

the problem will clear up already in this particular case.

3.2 Embedding of the orbits into the cone

Consider the cone K(X) = K of measurable positive step functions on the intervalX = [0, 1]

with the Lebesgue measure (we take the interval only for the sake of simplicity, one can

replace X by an arbitrary measure space isomorphic to the interval, see below). We embed

the hypersurface Mn−1
r into K sending each vector (x1, . . . xn) to the function taking the

values xk on the intervals [ k
n
, k+1

n
). The image of the manifold Mn−1

r in K is the orbit of

the constant function φ(t) = r1/n relative to the corresponding piecewise linear action of

the group SDiag(n,R) on the space of step functions. The topology on the cone K will be

defined, for instance, as a usual weak topology. In other words, we introduce the duality of

the cone K and itself by the form 〈f, g〉 =
∫

X
f(x)g(x)dx, and consider the weak topology

corresponding to this duality. The cone K is not complete in this topology. We carry the

measure mn from the hypersurface Mn−1
r to its image and thus get a sigma-finite measure

µn,r on the cone K that is concentrated on the set of the functions that take constant positive

values on the intervals [ k
n
, k+1

n
), with the product of all values equal to rn, where r depends

on n in general.

3.3 Weak convergence: definitions

Consider real Borel finite or sigma-finite measures on K which take finite values on precom-

pact (= relatively compact) sets in K. We will introduce a notion of weak convergence in

itself for Borel measures. This can be done in a traditional way defining the convergence of

measures as the convergence of the integrals on a certain class of functions or sets. Minor

difficulties arise as a result of the infiniteness of measures. However, we adopt here, for the
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sake of brevity, a more direct and convenient way. In what follows, we restrict ourself only

with those measures µ on the cone K for which the Laplace transform µ̂ (or the characteristic

functional) is defined for every step function f ∈ K:

µ̂(f) ≡
∫

K

exp

{
−
∫

X

f(x)g(x)dx

}
dµ(g) <∞,

and, in accordance with this notion, we assume the following definition.

Definition 1. A sequence of sigma-finite Borel measures µn on the cone K is said to weakly

converge in itself if, for any step function f ∈ K, the sequence limn µ̂n(f) converges; we

say that the sequence µn converges to a measure µ if the functional limn µ̂n(f) is the Laplace

transform of some measure µ that is concentrated on the cone K itself, not on its completion.

For finite measures, this definition coincides with the usual one. In the case of Maxwell-

Poincaré’s Lemma the sequence of measures converges to the Gaussian measure. The tech-

nical difference is that in our case we cannot use the Fourier transform because the integrals

diverge, we use the Laplace transform instead.

3.4 The limit of the Laplace transforms and the direct description

of the convergence of distributions

Theorem 2. Let the radius of our hypersurface be equal to rn = θ
n
, θ > 0. Then the

sequence of measures µn,rn,θ
≡ µn,θ on the cone K weakly converges in itself. More precisely,

the sequence of the Laplace transforms of the measures µn,θ on the orbits converges to the

functional

lim
n
µ̂n,θ(f) = exp

{
− θ

∫

X

ln f(x)dx
}
.

This theorem is an analog of Maxwell-Poincaré’s Lemma with the only difference that in

the lemma, the limiting measure is immediately identifiable with the Gaussian measure. In

our case the measure whose Laplace transform is the right-hand side of the relation remains

to be described.

Proof. The proof goes along the lines of the proof of Maxwell-Poincaré’s Lemma in the

version that uses Fourier transform (see above); here we use Laplace transform instead.

In essence, the following computation exactly repeats the deduction of the formula for the

characteristic functional of the law for the Lévy process starting from the characteristic

function of the infinitely divisible law that determines this process:

EΨ exp i〈f, ξ〉 = exp
{
−
∫

lnψ
(
f(x)

)
dx
}
,

13



where ξ(.) is the trajectory of the process, f(.) a function, and 〈f, ξ〉 =
∫

X
f(x)dξ(x); the

Lévy process is defined by an infinitely divisible distribution α (for example, on the half-

line), and ψ(.) is the Fourier transform of the measure α. An essential difference is that we

consider sigma-finite infinitely divisible measures Γ(θ)
−1
tθ−1dt on the half-line, in particular,

the Lebesgue measure, and their Laplace transforms (1/λ for the Lebesgue measure). It

should be noted that the Haar measure on SDiag+ is infinitely divisible. For simplicity,

consider θ = 1. Let f(x) be a fixed step function on X with positive values f1, . . . fm. The

step function y(x) taking the values (y1 . . . yn) on the intervals, with n = ms steps, will vary

as s→ ∞. Recall that Mn =
{
y = (y1, . . . yn) :

∏
k yk = n−n

}
. We have:

lim
n→∞

ln
{∫

Mn

exp
(
−
∑

k

fkyk

)
dmn(y)

}
= lim

n→∞

1

n
ln
{∫

Mn

exp
(
−
∑

k

fk ŷk

)
dm′

n(y)
}

=

= lim
n→∞

1

n
ln
{∫

Hn

exp
(
−
∑

k

fk expxk

)
dx1 . . . dxn

}
= lim

n→∞

1

n
ln

1∏n
k=1 fk

= lim
n→∞

1

n

{
−
∑

k

ln fk

}
= −

∫

X

ln f(x) dx,

where Hn =
{
x = (x1, . . . xn) :

∑
k xk = 0

}
. Passing from the first expression to the second

one, we used the change of variables yk = nŷk, so that
∏

k ŷk = 1, and the measure mn is

replaced by the measure m′
n, which invokes the appearance of the factor 1

n
in front of the

logarithm. In this passage, the property equivalent to the infinite divisibility of measures is

used: a measure on the orbit can be represented as an n-fold convolution with itself of the

proportional measure on the orbit; this fact follows from the invariance and uniqueness (up

to a factor) of the Haar measure.4 The passage from the second expression to the third one

consists in the change of variables ŷk = expxk, k = 1 . . . n. The concluding expression in

the computation is defined for positive measurable functions f ∈ K with finite integral of

the logarithm; therefore, according to our definition, we can conclude that the sequence of

measures weakly converges. It should be particularly pointed out that when passing from the

integral to the product [
∏n

k=1 fk]
−1 (the last but one equality), we replaced the integration

over the hyperplane Hn by the integration over the whole space R
n. The validity of such

change is based upon the application of the ergodic method; we discussed this in detail in

the first comment to Maxwell-Poincaré’s Lemma, where we explained the replacement of the

integration over one orbit by the integration over the whole space. The difference is that

here the method is applied to the sequence of noncompact groups. We will not dwell on

this.

4In other words, we extract the nth root of the initial Laplace transform of the measure on Mn, which

corresponds to a renormalization of the infinitely divisible Haar measure.
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Remark. Unfortunately, the author failed to find the asymptotical behavior of the

integral over the hyperplane Hn by a direct computation using asymptotical properties of

cylindrical functions. It would be sufficient for our purposes to prove only the following

intriguing identity (λ > 0):

lim
n→∞

{∫

Hn=
{

x:
Pn

k=1 xk=0
} exp

(
− λ

n∑

k=1

expxk

)
dx1 . . . dxn

}1/n

= 1/λ.

Integrating over the whole space R
n of the integrand multiplied by the function exp

∑
k xk

(which is equal to one on Hn), we get 1/λ (without passing to the limit). However, these

formula (and more general ones) can be proved without computations using probabilistic

arguments.

A different proof of weak convergence of the measures, which leads to the same limiting

functional, is outlined below.

We obtained the formula for the values of the characteristic functional of step functions

f(·):

Φθ(f) = lim
n→∞

∫

K

[
exp

(
−
∫

X

f(x)y(x) dx
)]

dµn,θ = exp

{
−θ
∫

X

ln f(x) dx

}
, θ > 0.

It can be continued to the class of all measurable functions f with finite integral of the

logarithm in a natural way.

Corollary 1. The obtained characteristic functionals Φθ are invariant under the multiplica-

tion of the argument by an arbitrary measurable nonnegative function a(·) with zero integral

of its logarithm:

Φ(a · f) = exp

{
−θ
∫

X

ln a(x)f(x) dx

}

= exp

{
−θ
(∫

X

ln a(x) dx+

∫

X

ln f(x) dx

)}
= exp

{
−θ
∫

X

ln f(x) dx

}
;

it is multiplied by a constant if the integral
∫

X
ln a(x) dx is finite.

Thus the sigma-finite measure whose Laplace transform is Φθ is invariant (correspond-

ingly, projective invariant) under the multiplication operators Ma by the functions a with

zero (correspondingly, finite) integral
∫

X
ln a(x)dx.

We note that the most direct way to establish the weak convergence of the measures on

orbits is to compute the distributions of the system of functionals; this brings us to the weak

distribution considered in the next section.

Denote by md the Lebesgue measure in the space R
d, let θ > 0. The following lemma

actually is equivalent to the claim of theorem 2.
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Proposition 1.

lim
n→∞

mn−1

{
(x1, x2 . . . xn) :

n∑

k=1

xk = 0,

n∑

k=1

exp(θxk) ≤ rn · t
}

= Ctθ

where rn = exp(An) and A,C are constants independent of n.

4 Description of the Lebesgue measures L+
θ and of the

Poisson–Dirichlet measure.

4.1 Measures L+
θ as weak distributions.

Now we proceed to the description of the measures which have been described indirectly

so far and which are our main object. We need to prove that, in some completion of the

cone K, there exists a one-parameter family of measures Lθ with the following remarkable

Laplace transform:

∫

K

exp(−〈f, g〉)dL+
θ (g) = Φθ(f) ≡ exp

(
−θ
∫

X

ln f(x)dx

)
,

θ > 0, and to explain what set supports it. For θ = 1, this measure L+
1 is the one that

should be called the multiplicative Lebesgue measure in the infinite-dimensional space. All

these measures are supported by some completion of the cone K, whereas the cone itself has

measure zero for all θ.

First, we describe these measures in a way this is done for weak distributions, namely,

by means of coordinated families of finite-dimensional sigma-finite measures. For that, we

restrict our characteristic functional Φθ to the finite-dimensional cone of step functions that

are constant on the elements of a given finite partition ξ of the set X, X = ∪n
k=1Fk, and

take the inverse Laplace transform. As a result of this direct computation, we obtain some

sigma-finite measures Lθ,ξ in R
n whose densities are described as follows.

Proposition 2. The density of the measure Lθ,ξ with respect to the Lebesgue measure is

dLθ,ξ

dx
(x1, . . . xn) =

n∏

k=1

1

Γ(θmk)
xθmk−1

k , xk > 0, k = 1, . . . , n

(here mk is the Lebesgue measure of the set Fk, Γ(·) is the Euler Gamma).

See [16], and also [19], where the measures L+
θ were defined in a different way.

Proof. The formula is checked using the standard formulas for the integrals of gamma dis-

tributions.
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We note that the consistency of the measures relative to the refinement of the partitions

cannot be interpreted in the sense of projections of finite-dimensional spaces, as for finite

measures: this is impossible since the projections are infinite. A dual description is involved

instead: the Laplace transforms of all finite-dimensional distributions are the restrictions to

finite-dimensional subspaces of a single functional. The two interpretations of the consistency

are equivalent in the case of probability measures. Specifically, in the case where θ = 1, all

these finite-dimensional measures are the Lebesgue measures with consistent normalization

(say, on the unit cubes).

This description is an analog of a pre-measure, or a weak distribution in an infinite-

dimensional vector space, and does not present an explicit description of the measure itself.

However, it helps to see that the corresponding measure (we will see that it exists) is an

analog of the measure generated by the process with independent nonnegative values, yet a

sigma-finite one. We will give a direct description of such measures.

4.2 Direct description of the measures L+
θ using the Poisson–Dirichlet

measures

Consider another cone

D+ =
{
ξ =

∑
ciδxi

, xi ∈ X, ci > 0,
∑

ci <∞
}

of all positive finite (non-normalized) measures with countable support in the space X. If X

is a segment, such a measure may be regarded as a monotone step function with countable

number of jumps whose sum is finite. In stochastic processes, probability measures on

such a space are called subordinators. We would prefer to regard the elements of D+ as

positive discrete measures, i.e., the positive linear combinations of delta functions, the more

so because the previous interpretation is possible only on a segment.

There is a natural coupling between the space D+ and the cone K: each step function

f =
∑
fkχFk

defines a functional on D+:

〈f, ξ〉 =
∑

k

fk ·
( ∑

i:xi∈Fk

ci
)
.

Therefore, the cone D+ lies in the weak completion of the cone K; we will not use this later.

We define the measures L+
θ on the cone D+ in a direct way and show that they are the

continuations of the above-defined weak distributions on the cone K to true sigma-additive

sigma-finite measures.

To do this, we describe the cone D+ in a more convenient and direct way. Namely,

consider the family Σ∞ of decreasing (in a nonstrict way) series with nonnegative summands

and finite nonzero sums. This family constitutes a blunted cone (without the vertex) with
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an infinite-dimensional simplex Σ1 of the monotone nonnegative series summing to one as a

base. Note that Σ∞ = Σ1 × R+. Let X∞ be the direct product of a countable number of

copies of the space X. We take the product

Σ∞ ×X∞ = Σ1 × R+ ×X∞

and identify it with D+ using the map T that sends the pair made up by the series {c1 ≥
c2 . . .} ∈ Σ∞ and the sequence {x1, x2, . . .} ∈ X∞ to a discrete measure as follows:

T
(
{ck}, {xk}

)
=
∑

k

ck · δxk
∈ D+.

It is clear that T is a bijection between the product

Σ∞ ×X∞

and the space D+.

Next we describe the measures onD+ as the T -images of some canonical measures. Take a

product measure m∞ (a Bernoulli measure) on X∞ (it does not depend on θ). We consider a

one-parameter family of probability Poisson–Dirichlet measures PDθ, θ > 0, on the simplex

Σ1, see [20]; we discuss them below and in Appendix 1. The most significant of them, the

proper Poisson–Dirichlet measure, corresponds to θ = 1. Finally, we introduce the measures

on the half-line R+ defined by the density dLθ = tθ−1

Γ(θ)
dt, θ > 0, relative to the Lebesgue

measure; it is the Lebesgue measure on the half-line if θ = 1.

A useful notation for the measure on the cone Σ∞ of monotone convergent positive series

is

PDCθ = PDθ × Lθ.

The measures PDC might be called the “poissonization” of the Poisson–Dirichlet measures

(or the conic Poisson–Dirichlet measures), in contrast to the usual measures PD(θ) con-

centrated on the simplex Σ1. It seems that the sigma-finite measures PDCθ have not been

considered so far.

Definition 2. The measure L+
θ on the cone D+ is defined as the T -image of the product of

measures:

L+
θ = T

(
PDC(θ) ×m∞

)
.

It is clear that these measures are sigma-finite, sigma-additive and finite on compact

sets. The following theorem identifies the measure L+
θ and the measure with Laplace trans-

form equal to the above-computed functional. To be precise, we prove that this measure
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corresponds to the weak distribution introduced above and computed in Proposition 2. Fur-

ther, this implies that the weak distribution in question leads to the measure with the given

Laplace transform and therefore, by Theorem 2, these measures are the weak limits of the

measures on the orbits.

Theorem 3.
∫

D+

exp
{
− 〈f, ξ〉

}
dL+

θ (ξ) = Φθ(f) ≡ exp
{
−
∫

X

ln f(x) dx
}
.

Thus the measures L+
θ are the weak limits of the measures on the positive parts of the Cartan

subgroups.

Proof. We use the following remarkable property of the conic Poisson–Dirichlet measures

supported by the cone Σ∞.

Theorem 4. Consider an arbitrary random partition of the set of positive integers N into a

finite number r of subsets. In other words, we ascribe each positive integer, independently of

the others, to one of the r subsets with equal probability 1/r. Then the joint distribution of r

partial sums over these sets of a random series (distributed according the measure PDC(θ))

is the product measure Lθ × · · · × Lθ︸ ︷︷ ︸
r

in R
r
+.

We do not prove this characteristic property of the measures PDC(θ) here. The corre-

sponding property of the measures PD(θ), with the multiple product of measures replaced

by the Lebesgue measure on the r-dimensional simplex, follows from the results in [10] about

the relation between these measures and the Lévy processes defined by stable laws; however,

it can be deduced directly from the definitions of these measures (see Appendix). In the

sequel, we use only this characteristic property of the measures PDC(θ); it shows that the

operations on the measures PD(θ) are closely connected with the admissible independence

of the the terms of the series. It immediately follows from this property that the measure

L+
θ is a continuation of the weak distribution described in the previous section, and thus it

has the Laplace transform we need.

The most profound properties of the measures L+
θ , including their invariance relative

to multiplication operators, are evidently related to the properties of the Poisson–Dirichlet

measures. On the contrary, the Poisson–Dirichlet measures can be defined via the measures

L+
θ as the projections onto a simplex (ore a cone).
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4.3 Relationship with the gamma process, and a different defini-

tion of the measures L+
θ

Gamma distribution on the half-line [0,∞) is the distribution with density tθ−1e−tdt
Γ(θ)

relative

to the Lebesgue measure. This infinitely divisible distribution generates the Lévy process yθ

with characteristic functional

χθ(f) = exp
{
− θ

∫
ln
(
1 + f(x)

)
dx
}
.

The realizations of this process, with probability one, are discrete positive measures with

countable support on X, i.e., countable linear combinations
∑
ckδxk

, xk ∈ X, ck > 0, k =

1, 2, . . . , with finite total charge
∑

k ck < ∞. The distribution of this charge (i.e., of the

sums
∑

k ck) is the gamma distribution. The law of this process will be denoted by Gθ.

Theorem 5. The measure L+
θ is absolutely continuous relative to the measure generated by

the gamma process χθ, with density dLθ

dGθ
(ξ) = exp

{∑
k ck
}
, where ξ =

∑
k ck. This density

is not integrable, due to the infiniteness of the sigma-finite measure Lθ.

Corollary 2. The measure Gθ is quasi-invariant relative to the multiplication by functions

with finite integral of the logarithm.

Note that in [16, 19], the statement of this theorem was the definition of the measures Lθ,

thus all properties of Lθ were deduced from the properties of Gθ. For instance, the invariance

relative to the multipliers was deduced from the quasi-invariance of the measure Gθ and the

type of the density. Here we choose an opposite and more natural line (though the proof

of the quasi-invariance of the measure Gθ was established in [16, 19] without difficulty): we

use the weak approximation by finite invariant measures and their relation, important on

its own, with the Poisson–Dirichlet measures. Moreover, the remarkable and characterizing

properties of the gamma process find a natural explanation under this approach.

It was shown in [32] that the sigma-finite measure Lθ may be treated as a derivative

of the infinite-dimensional distribution of the Lévy processes according to the parameter

α of stable laws at the point α = 0 (see also [19]). At the same time, to obtain the

distribution of the gamma process in a similar way, a passage to the (weak) limit as α → 0

with simultaneous renormalization of the measures is also needed. Thus the measure Lθ

is absolutely continuous relative to the distribution of the gamma process, but it is more

natural to regard it as a derivative with respect to α. This fact is undoubtedly deeply

related with the representation theory of the group of the SL(2,R)-currents since the state

corresponding to the ground representation, which lies in the base of the construction of

the irreducible representation of the current group (the canonical state), is the exponent

of the derivative of the spherical function corresponding to the complemented series, with
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respect to the parameter, taken at the end point (see [16]). This is not a formal resemblance

since the above-indicated realization of the representation is constructed using the measure

L1 that is a derivative with respect to the same parameter. The relation of stable laws

spherical functions of the complemented series is doubtless. All this suggests the comparison

of the Wiener measure corresponding to α = 2 with the measure L1 corresponding, as was

indicated, to α = 0: these values are the ends of the segment [0, 2] whose points parameterize

stable laws. The symmetry group of these two measures is an infinite-dimensional group of

linear transformations in both cases: the group of orthogonal operators in the Hilbert space

in the case of the Wiener measure, and the commutative group of multipliers in the case of the

group of measure preserving transformations. Stable laws form a sort of deformation joining

these two laws; their symmetry groups (already essentially nonlinear) are not described yet.

We may conjecture that they constitute a nonlinear deformation similar to the homotopy

between the orthogonal group and the diagonal one.

The symmetrized gamma process induced by the symmetric gamma distribution |t|θ−1e−|t|dt
2Γ(θ)

on the line is similarly related to the measures Lθ introduced below in Subsection 5.1.

4.4 An additive version of the Lebesgue measure in the infinite-

dimensional space

The measures L+
θ constructed above were invariant under the action of the multiplication

operators. It is more habitual to regard the finite-dimensional Lebesgue measure as a unique

(up to a factor) shift-invariant measure. By taking logarithms of the elements of the support

of the measure constructed, one can transform them into shift-invariant measures.

Consider the cone K+, see Sect. 3, of positive step functions on X and the measures on

it. We pass from the multiplicative notation of the actions of the multipliers to the additive

one, i.e., we take logarithms of the elements of K and of the multipliers. Then the cone

turns into the vector space V of step functions and the finite-dimensional Cartan groups

SDiag+(n,R) into the vector spaces of dimension n− 1 that act on V additively. V

We come to the following, probably more transparent, situation. The map Log transforms

the space D+ of discrete positive measures of finite variation into a vector space, namely,

the space E(X) =
{∑

k bkδxk
, xk ∈ X;

∑
k exp(−bk) <∞

}
of discrete sigma-finite (signed)

measures on the segment X:

Log : DX 7→ E(X) Log
(∑

k

ck · δxk

)
= −

∑

k

log(ck) · δxk
;

it is clear that the sequences bk must grow to infinity fast enough. This space is the support

of the measure L̄θ ≡ LogL+
θ that is the image of the measure L+

θ under the logarithmic map.

The topology on E(X) is also defined as the image of the topology on D+ under the map
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Log. The measures L̄θ are infinite, sigma-finite and finite on the compact sets in E(X).

Consider the following action of the vector space L1
µ,0(X) = {f ∈ L1

µ(X) :
∫
f = 0} ⊂ L1 on

the space E(X):

Tf(
∑

k

bkδxk
) =

∑

k

[bk + f(xk)]δxk

. Both spaces are the spaces of measures: of absolutely continuous and, correspondingly,

countable signed measures. Therefore, G(X) is also a Banach space of measures. We restrict

ourselves with the measure L̄(1) in E(X), which will be regarded as a measure in a wider

Banach space G(X).

Theorem 6. The Banach space L1
µ,0(X) acts by the operators Tf , f ∈ L1

µ,0(X) on the space

E(X) leaving the measure L̄(1) invariant. More precisely, for any element f ∈ L1
µ,0(X)

a set Ef of total L̄(1)-measure exists such that for all ω ∈ Ef , ω ≡ ∑
k bkδxk

, the image

(Tf)(ω) ≡
∑

k[bk + f(xk)δxk
] lies in E(X) and Tf leaves invariant the measure L̄(1).

The theorem follows from the theorem proved in Sect. 4.2 about the invariance of the

multiplicative action, i.e., about the conservation of the measure under the multiplication by

a function with zero integral of the logarithm. The invariance under the shifts by arbitrary

elements of the space L1
µ(X) can be obtained when one takes the direct product of the

measure constructed and the Lebesgue measure on the line of constants.

Thus, we have defined a Banach space and a Borel sigma-finite measure on it which is in-

variant under the translations by any elements of some infinite-dimensional closed subspace.

This is the circumstance that allows us to call this measure an infinite-dimensional additive

Lebesgue measure.

The map Log allows us to analyze the properties of the measure L̄(1) using the properties

of the Poisson–Dirichlet measure PDC(1). The remark in the theorem about the choice of

the set of total measure is essential (see comments in Sect. 2.2 concerning Maxwell-Poincaré’s

Lemma). Recall that f ∈ L1 is not an individual function but a class of coinciding mod 0

functions. Therefore, the action by shifts must be understood in the following sense. Take

an individual function f̂ in the class f which is defined on some set A bf ⊂ X of total measure

and single out those ω ∈ Φ(X) for which xk, k = 1, 2, . . . , are in A bf . Then the formula

Tf

(∑

k

bk · δxk

)
=
∑

k

(
bk + f(xk)

)
· δxk

determines such an action: the shift of the coefficients in the configuration ω by the values

of the function f at the corresponding points. This formula makes sense and is well defined

relative to the change of values mod 0: if f = f ′ mod 0, then Tf = Tf ′ mod 0. Neverthe-

less, there is no set on which all the shifts would be defined simultaneously. The reason is

somewhat different from that in the Maxwell-Poincaré’s Lemma example. Here the action
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itself for a fixed element f ∈ L1 is defined as a class of mod 0 coinciding transformations.

It is interesting that, in addition, the group of shifts is commutative. This is an algebraic

example of an action of a commutative group with invariant measure which does not admit

a simultaneous individualization (of the pointwise action) of all the elements in the group.

See our comments about invariant measures in Appendix.

5 Properties and applications of the measures intro-

duced

5.1 Removing the positivity condition

Up to now, we assumed nonnegativity of the parameters of orbits and groups, i.e., the

positive part SDiag+ of the Cartan subgroup, the positivity of the step functions forming

the cone K and of the multipliers a(·) acting on them, the positivity of the series forming

the simplex Σ1 and the cone Σ∞, measures on the half-line (Lθ), and so on. The measures

L+
θ we constructed were defined on the cone D+ of discrete positive measures on the space

X.

It is not difficult to lift the positivity restriction and to extend all the definitions and

statements to the real parameter case. We mention the evident changes. The whole

Cartan subgroup SDiag ⊂ SL(n,R) replaces its positive part SDiag+; its entire orbit

Mn = {(x1, . . . xn) : |
∏
xk| = r > 0} is considered (the condition xk > 0 is lifted); the

cone K is replaced by the vector space of all step functions and, finally, we consider the mul-

tipliers with zero or finite integral of the modulus of their logarithm
∫

X
ln |a(x)| dx instead

of the
∫

X
ln a(x) dx. The measure space is the family of all absolutely convergent series with

decreasing moduli of their members5 instead of the cone Σ∞ of decreasing positive conver-

gent series, etc. All the proofs and constructions remain unaltered, the only essential change

worth noting concerns the construction of the measures (Sect. 5.4). As to the definition of

weak distributions, in all places where the measures on the half-line R+ or on the cone R
n
+

were considered, one must extend them to R or R
n using the multiplication of the cones

by 2n vectors ε1 . . . εn, where εk = ±1, with the uniform measure on them. The extension

of the measure PD(θ) from the simplex of positive monotone series summing to one to the

octahedron O1 of all absolutely convergent series with decreasing moduli summing to one is

made in the same way: one takes the direct product of the Poisson–Dirichlet measure and

the uniform (Haar) measure on the family of infinite sequences of numbers ±1. Then we

take the space D of all discrete measures (charges) of finite variation on X instead of the

5The family of the series where there are members of equal moduli has zero measure for all the measures

considered, thus the ordering is defined unambiguously on the set of total measure.
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cone D+. The isomorphism of the space D and the product

O1 × R ×X∞

is constructed using the extension of the map T :

T
(
{ck}, {xk}

)
=
∑

k

ck · δxk
∈ D+,

with the only difference that ck may be positive or negative numbers with finite sum -
∑ |ck| < ∞. We denote the measures obtained on D by Lθ, θ > 0 (omitting the subscript

+). The measure L1 corresponding to θ = 1 is called the infinite-dimensional Lebesgue

measure. As above, the following principal result is true.

Theorem 7. The Lebesgue measure L1 is the weak limit of measures on complete orbits,

and its characteristic functional has the form
∫

D

exp
{
− 〈f, ξ〉

}
dL1(ξ) = exp

{
−
∫

X

ln |f(x)dx|
}
.

The analogous formula can be written in the case of the measures Lθ:
∫

D

exp
{
− 〈f, ξ〉

}
dLθ(ξ) = exp

{
− θ

∫

X

ln |f(x)dx|
}
.

The further properties of these measures will be discussed in the next section. We note

that the difference between the positive and the signed versions are not important, and the

theorems about the invariance and uniqueness are proved in the general case in the same

way as in the positive one.

5.2 Invariance and uniqueness

Proposition 3. The above-constructed measures Lθ in the vector space D

1) are invariant relative to the group M of multipliers Ma by the functions a ∈ L0 with zero

integral
∫

X
ln |a(x)| dx; they are also projectively invariant, i.e., are multiplied by the

constant exp
∫

X
ln |a(x)| dx if this integral is finite;

2) are invariant relative to the group A(X) of all transformations that leave the measure m

on X invariant.

Both propositions follow directly from the definition of these measures. It follows that

the measures Lθ are invariant relative the crossed product A(X) ⋌ M.

It is easy to show (see [19]) that the action of the group M, and even of the crossed

product, on (D,Lθ) is ergodic.
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Proposition 4. The list of the measures invariant and ergodic relative to the group A(X)⋌

M is exhausted by the measures Lθ, θ > 0.

The measure Lθ is concentrated on countable linear combinations of the delta functions

with absolutely convergent series of coefficients. The distribution of the sum of the coeffi-

cients is the Lebesgue measure on the line. The property of the measures L+
θ expressed in

Theorem 4 also holds.

Recall that on the space of countable discrete real measures (or on the space of countable

linear combinations of delta-measures), there exists an ergodic equivalence relation: the

equivalence class consists of the measures with the same support. This equivalence relation

is ergodic in the case of the measure Lθ. In other words, the corresponding partition into

the classes is absolutely nonmeasurable. It is, in essence, the partition into the orbits (mod

0) of the multiplier group action.

It is interesting that the measures whose support consists of discrete measures has so

large infinite-dimensional group of linear symmetries. For comparison, the support of the

white noise, which also has a large symmetry group (see above), consists of distributions

rather than measures.

5.3 Application to the current group for the group SL(2,R)

The main application of the measures constructed is in the current group representations.

This is how they were first discovered in [15]: the L2 spaces with respect to these measures

are the natural Hilbert spaces where the representations of the current groups can be imple-

mented. Here the invariance of the measure relative to the multiplications by the elements

of the infinite-dimensional diagonal subgroup is used; this fact generalizes the classical re-

sult about the representations of the group SL(2,R), namely, the possibility to extend the

representations from the parabolic subgroup to the Cartan involution, and consequently to

the whole current group.

Consider the group of lower triangular matrices with determinant one and elements in

the space of real functions with integrable logarithm of the modulus.
(
a(·) 0

b(·) a(·)−1

)

Note that this group, together wit the involution
(

0 1

1 0

)

,

generates the whole group SL(2,F), where F =
{
f :
∫

X
ln |f(x)|dx <∞

}
.
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Theorem 8. Consider the Hilbert space L2(D,Lθ) of complex square-integrable functions on

the space D with measure Lθ.

The unitary operators

(Ua,bF )(ξ) = exp
{
i
∑

ckb(xk) +

∫

X

ln |a(x)dx|
}
F (M2

aξ),

where ξ =
∑

k ckδxk
∈ D, Ma is the operator of multiplication by the function a, define an

irreducible unitary representation of the above group of lower triangular matrices that extends

to an irreducible representation of the group SL(2,F). This representation also extends to

a unitary representation of the group A(X) of transformations of X that leave the measure

m invariant.

The correctness of the definition and the unitariness of the operators is the consequence

of the fact that the measures Lθ are projectively invariant relative to the group of multipliers,

the remaining properties are proved directly. The formulas that define the involution are

given in [14], however the principal possibility to extend the representation to the group

SL(2,F) had been proved in [15] still before the measures Lθ were discovered. Also note

that for all θ > 0, the representations are equivalent; therefore, it suffices to consider only

the Lebesgue measure, i.e., the case θ = 1. The mentioned commutative model of the

representation of the current group SL(2,F) is a direct continual analog of the classical

representation of the group SL(2,R) in the space L2(R) of functions on the line (or the

projective line) with the Lebesgue measure: the line is replaced, in a sense, by the continual

product of lines, the space D, and the Lebesgue measure on the line by the Lebesgue measure

in the space D introduced here. It is interesting that the space L2(D,L) has the structure

of metric factorization, i.e., of a continual tensor product of the L2 spaces, but this metric

factorization is not isomorphic to the Gaussian, i.e., the Fock factorization, but is isomorphic

to the latter as a Hilbert factorization (see [33]).

5.4 Many dimensional generalization of the Poisson–Dirichlet mea-

sures and the representations of the current groups of the

groups SO(n, 1)

We considered the measures in the space D of countable real linear combinations of delta

measures on the space X so far. For applications, it is important to broaden the range of the

coefficients and pass to the vector delta measures. We denote by Dn(X) ≡ Dn the vector

space of countable linear combinations
∑

K ckδxk
with coefficients in the Euclidean space R

n

that satisfy the following two conditions:

1)
∑

k ||ck|| <∞;
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2) The space Dn is invariant under the action of the pointwise action of the orthogonal

group SO(n − 1) and the homothety group in R
n, i.e., it is invariant with respect to the

current group with coefficients in the group SO(n − 1) × R
∗. In other words, given a linear

combination
∑

k ck · δxk
∈ Dn, the linear combination

∑
k εk · gk(ck) · δxk

, with εk ∈ R
∗, gk ∈

SO(n − 1), k = 1, 2, . . . , is also in Dn.

The topology in Dn is defined in the usual way. Note that the direct product Σn ×X∞,

where Σn is the set of the convergent vector series with members decreasing in the Euclidean

norm, is an everywhere dense thick set in the space Dn. A bijection between Σn ×X∞ and

a dense subset of Dn is constructed as in the case n = 1: to an arbitrary linear combination
∑

k ckδxk
∈ Dn, where all ||ck|| are different, we assign a decreasing in the norm permutation

of the sequence ck and the corresponding permutation of xk. Let T denote the converse map

(defined in the obvious way).

An analog of the measure Lθ in the case n > 1 was defined in [17, 18] by analogy with

the case n = 1. First, we define the vector gamma process with characteristic functional

Φ(f) = exp
{
− θ

∫
ln
(
1 + ||f(x)||2

)
dx
}
,

with subsequent introduction of a density. The geometry of the measure (asymptotic ap-

proach) as well as Poisson–Dirichlet measures are in no way used under this approach.

Here we define these measures using geometric point of view and applying again an

analog of the Poisson–Dirichlet measures. A direct analog of the Poisson–Dirichlet measures

as measures on the convergent series hardly exists in the case n > 1: it is not clear what does

positivity mean, and thus there is no analog of the simplex of the series. However, there is an

analog of the conic Poisson–Dirichlet measures which we introduce using the characteristic

property of these measures given in Theorem 4. After that the sigma-finite measures can

be defined in the same way as in the case n = 1. We restrict ourselves with the case where

θ = 1, for brevity.

We define a generalized (conic) Poisson–Dirichlet measure PDCn in the space Dn as a

measure in the space of convergent vector series with members decreasing in the Euclidean

norm that have the following property: for any partition of the members of the series inde-

pendently into an arbitrary finite number r of classes (see Theorem 4) the joint distribution

of the r-dimensional vector composed of the sums of these members over the classes is the

r-dimensional Lebesgue measure. It follows from the definition that these measures are

spherically (i.e., in the sense of SO(n − 1)X) invariant. The uniqueness of such measure is

verified exactly as in the one-dimensional case. The measure Ln
1 on the vector space Dn is

defined as the T -image of the product PDCn × m∞ of measures. The correctness of the

definition follows from the fact that the PDCn-measure of the family of the series that have

at least two members with equal norms is zero.
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Theorem 9. 1. The measure Ln
1 is sigma-finite and take finite values on compact sets.

2. The Laplace transform of the measure Ln
1 is the functional

Φ(f) = exp
{
−
∫

X

ln ||f(x)|| dx
}
.

3. Thus the measure is invariant under the action (by the pointwise multiplication) of the

elements a(·) of the group of measurable currents with coefficients in SO(n − 1) × R
∗

satisfying the condition ∫
ln ||a(x)|| dx = 0.

Moreover, it is invariant relative to all changes of the variable x that leave invariant

the measure m.

4. There is a natural representation in the Hilbert space L2(Dn(X),Ln
1 ) of the current

group composed by the elements of O(n, 1)X with finite integral of the modulus of the

current.

The items 1-3 are proved as in Sections 3-4 for n = 1. As to the proof of item 4, see

[17, 18]. We only note that the action of the subgroup of the commutative unipotent currents

is realized by the operators of the multiplication of the functionals h(·) ∈ L2 by the exponent

of a linear functional. The action of the subgroup of compact currents SO(n − 1)X and of

the homotheties is described above: it is the action on the argument of the functional h(·),
and this model generalizes the one given in the previous Subsection 5.3. A similar definition

of the Poisson–Dirichlet measures and of the Lebesgue measures in the infinite-dimensional

Hilbert space is also possible. The details will be given in a forthcoming paper.

A Appendix

A.1 On the Poisson–Dirichlet measures on the space of positive

series

The Poisson–Dirichlet measure D(θ) received widespread interest in the 70s on several rea-

sons (see [20], [29] [22]). They are used in combinatorics, partition theory, population ge-

netics, etc. Here we touch upon the three most spectacular occurrences of these measures.

A deep analysis of the measure D(1) and of an interesting Markov chain related to it ap-

peared in the 70s in papers [21, 22, 24]. Although these papers are mentioned sometimes

(however, insufficiently, in our opinion), the deep analysis and the ideas developed in them,
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in particular, the reduction to a stationary Markov chain, did not develop further for the

time being.

1. The stick breaking process. Consider a sequence of independent identically

distributed random variables ξ1, ξ2, . . . on the unit interval with the Lebesgue measure. We

break the interval into parts putting the points

x1 = ξ1, x2 = ξ2(1 − ξ1), . . . , xn = ξn

(
1 −

n−1∑

k=1

ξk

)
, . . .

one by one, so that the interval is finally broken into a countable number of parts. The

corresponding measure on the family of positive series summing to one is sometimes called

the Ewens measure. One gets the Poisson–Dirichlet measure PD(1) from it by passing to

the variational series: each of the initial series is rearranged using the (random) permutation

in the decreasing order of its members. If the Lebesgue distribution of the variables ξk is

replaced by the distribution with density 1
Γ(θ)

tθ−1 (relative to the Lebesgue measure), then

the same procedure leads us to the measure PD(θ).

2. The limiting distribution of the cycle lengths in a random permutation

([22], see also [29] and references therein). Consider the symmetric group Sn and assign to

each permutation in it the vector of the lengths of its cycles normalized by the coefficient n,

in the descending order, i.e., a point in the simplex Σn = {(x1 . . . xn) :
∑

k xk = 1}. Denote

by µn the image in Σn, under this map, of the uniform measure on the group Sn and embed

the simplices Σn into the infinite-dimensional simplex Σ∞. The sequence of the measures

µn weakly converges to the measure PD(1). The measures PD(θ) are obtained using the

same procedure if one replaces the uniform measure on Sn with the measure defined by the

density proportional to the (θ − 1)th power of the number of cycles.

3. The limiting distribution of the prime divisors of positive integers [28, 24,

29, 30].

Consider the expansion of positive integers into the product of primes arranged in the

descending order,

n = p1 · p2 . . . pk, p1 ≥ · · · ≥ pk > 1,

and take the vector
(

ln p1

lnn
, . . . , ln pk

ln n

)
∈ Σ1. If we take the first N positive integers and the

uniform distribution on them, then we obtain a measure on the simplex, and the sequence

of such measures is weakly convergent in Σ∞ to the measure PD(1).

Here many questions are left open. Undoubtedly, a mysterious universality of the measure

PD(1) is present in the additive problems of analytical number theory with infinite number of

summands, and in combinatorics. The comprehension of this phenomenon advanced slowly

and did not reach a satisfactory level so far.6 The technical reason of the universality is that,

6The German mathematician K. Dickman was the first to put, in 1930, the question on the distribution
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as mentioned, the summands of a random series with respect to these measures have, in a

sense, the maximal possible independence. A more accurate meaning of this statement is

revealed when one passes from the random series to the Markov sequence of the quotients of

the summands and the remaining sums, see [22]. This explanation is, however, insufficient

for the understanding why such independence occurs in these and many other examples.7

The lifting of the measures PD(θ) (the “poissonization”) from the simplex to the cone of

positive monotone convergent series Σ∞ with the conic Poisson–Dirichlet measure PDC(θ) =

PD(θ)×Lθ plays a no less important role: see its characteristic property (Theorem 4). This

property can be proved directly; moreover, it is a consequence of the theorem in [10] which

states that the measures PD(θ) are the measures on the set of the trajectory jumps of the

gamma process with parameter θ, i.e., of the Lévy process constructed by means of the

gamma distribution 1
Γ(θ)

tθ−1e−tdt (see Subsect. 4.3).

Some other characteristic properties of these measures are known. One of them was

used above, another is the recently proved in [27] author’s conjecture (see an important

preliminary result in [26]): the measure PD(1) is a unique invariant measure on the simplex

Σ1 for the Markov chain generated by the merging and subdivision of the summands of

the series. The Poisson–Dirichlet measures find applications also in representation theory

of the infinite-dimensional symmetric group (see [37]). All these facts show a fundamental

character of the Poisson–Dirichlet measures. These measures also play a role in combinatorics

and in the problems concerning the series and partitions which may be compared to that of

Gaussian measures in the theory of vector spaces. The multi-dimensional generalization of

the Poisson–Dirichlet measures was treated in Subsect. 5.4.

A.2 Restrictions on the groups imposed by the invariance and

quasi-invariance of measures

The fact that a Borel nonzero nonnegative finite or sigma-finite measure on a separable

group that is left-invariant under all shifts exists only on locally compact groups is the clas-

of the logarithm of the maximal prime divisor. In the 40s, V.L. Goncharov (who apparently did not know

Dickman’s work) studied the distribution of the maximal cycle length of the random permutation. The

understanding of the identity of the two questions came only in the 80s.
7We can add to the discussion initiated by the letter by V.I. Arnold in [25] that the pioneering work

[22] and paper [24] are tightly related. When the author was writing paper [24], he did not know about

[28]; however, though short paper it was, [24] contained some statements that were new as compared to [28]

and used the results of [22], including the functional equation for the Dickman–Goncharov density of the

distribution. We note that the functional equations for these densities introduced in [22] and [24] are slightly

different and are proved in a different way, but the solutions remain the same, as well as the statement about

the invariant measure for the Markov operator. Thus the quoting of both papers in the reviews about the

Poisson–Dirichlet measures is a necessity.

30



sical theorem by A. Weil [38]; it is “converse” to Haar’s theorem about the existence of

an invariant measure on locally compact groups. Its most simple and more recent proof

uses representation theory. A slightly stronger result is that the same statement about the

measures is true if they are only quasi-invariant relative to all (left) shifts. Therefore, in

the case of non-locally compact groups, one can only ask about the (quasi-)invariance of the

measure under the elements of some subgroup of admissible shifts. For any quasi-invariant

measure on a non-locally compact group, this subgroup must have measure zero; however,

this subgroup can be massive. For probability measures on groups, the subgroup of admissi-

ble shifts (with quasi-invariant measure) may be a Banach or a Hilbert infinite-dimensional

space (for instance, the group of admissible shifts for the standard Gaussian measure in

R
∞ is l2). Numerous works of probabilistic or analytical character are devoted to this sub-

ject starting with the 1940s. Such measures, according to a rather improper tradition, are

called quasi-invariant; nevertheless, this does not raise a confusion because there exist no

“true” quasi-invariant measures (i.e., the measures for which the set of admissible shifts

has positive measure). Of special interest are the quasi-invariant measures on non-Abelian

infinite-dimensional groups, which remain still not adequately studied. They are needed for

the development of the analysis and the representation theory of such groups, and their ap-

plications to theoretical physics (a groups of diffeomorphisms, current groups, automorphism

groups of various structures).

If one wishes that nonnegative and nonzero measure were invariant, rather than quasi-

invariant, with respect to the shifts by the elements of a non-locally compact group, then

this measure must already be infinite. Only sigma-finite Borel measures that take finite

values on compact sets are of interest for us. It is easy to present such examples with meagre

group of admissible shifts. Here is one of them. Consider the infinite product m∞ of the

infinite number of copies of the Lebesgue measure m on the unit interval in the space of

all real sequences R
∞, and a sigma-finite measure that is obtained using the shifts of this

product measure by the finite integer-valued sequences. This measure is invariant under the

translations by finite vectors in the space R∞. However, this example is not very interesting

due to the poor family of linear symmetries of the measure. The group of admissible shifts

is merely the sum of finite-dimensional spaces here.

Our example in Subsect. 4.4 of an additive infinite-dimensional Lebesgue measure LogL+

is new and unexpected in this very aspect: the group of admissible shifts that leave invariant

some sigma-finite measure that is finite on compact sets is an infinite-dimensional Banach

space (L1(X)). Moreover, this measure is concentrated on the set of countable linear combi-

nations of delta functions. Possibly that in essence this example exhausts all the possibilities

where the group of shifts is a Banach space. It is interesting, which non-Abelian complete

infinite-dimensional groups can play the role of the group of admissible shifts. One may
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expect that the study of such examples would lead to interesting applications in the theory

of infinite-dimensional integration.

A.3 The model of continuous tensor product which is associated

with infinite dimensional Lebesgue measure

The measure Ln
1 for all values of n gives new model of the continuous tensor product of

the Hilbert space. Usually the right meaning of continuous tensor product plays Fock space

(or exponent of Hilbert space). It is possible to substitute Fock space with another space

L2 over the law of Levi processes. Using the measure L1 we can give decomposition of the

continuous tensor product onto direct integral with respect to L1 of the countable tensor

product of Hilbert space. More precisely, it is possible to give exact interpretation of the left

side of the formula (continuous tensor product)

∫ N

X

L2(R;K)dm =

∫ L

D(X)

∞⊗

i=1

Hξi
dL1(ξ),

using right side of this formula; - here X is an arbitrary Lebesgue space with finite measure

m; the space L2(R;K) is a space of K-valued L2-functions with respect to Lebesgue measure

on R with some auxiliary Hilbert space K; Hλ, λ ∈ R+ is a family of Hilbert spaces which

depend of real positive parameter λ, and related to the space K, and ξ = {ξi} runs over

the elements of the set of full L1-measure in the space D(X). Thus this formula reduces (or

gives definition) of the continuous tensor product (LHS) to the direct integral of countable

tensor products (RHS). The role of measure L1 here is crucial, - we use the invariance and

ergodicity of the measure L1 with respect to the group of multiplicators (see 5.2). One

concrete example of such interpretation will be done in the paper [39] concerning to the

representations of the current groups with coefficients in the groups O(n, 1) and U(n, 1).
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