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ABSTRACT
Topology control in ad-hoc networks tries to lower node en-
ergy consumption by reducing transmission power and by
confining interference, collisions and consequently retrans-
missions. Commonly low interference is claimed to be a
consequence to sparseness of the resulting topology. In this
paper we disprove this implication. In contrast to most of
the related work—claiming to solve the interference issue
by graph sparseness without providing clear argumentation
or proofs—, we provide a concise and intuitive definition of
interference. Based on this definition we show that most
currently proposed topology control algorithms do not ef-
fectively constrain interference. Furthermore we propose
connectivity-preserving and spanner constructions that are
interference-minimal.
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1. INTRODUCTION
In mobile wireless ad-hoc networks—formed by autono-

mous devices communicating by radio—energy is one of the
most critical resources. The main goal of topology control is
to reduce node power consumption in order to extend net-
work lifetime. Since the energy required to transmit a mes-
sage increases at least quadratically with distance, it makes
sense to replace a long link by a sequence of short links. On
the one hand, energy can therefore be conserved by aban-
doning energy-expensive long-range connections, thereby al-
lowing the nodes to reduce their transmission power levels.
On the other hand, reducing transmission power also con-
fines interference, which in turn lowers node energy con-
sumption by reducing the number of collisions and conse-
quently packet retransmissions on the media access layer.1

Dropping communication links however clearly takes place
at the cost of network connectivity: If too many edges are
abandoned, connecting paths can grow unacceptably long
or the network can even become completely disconnected.
As illustrated in Figure 1, topology control can therefore
be considered a trade-off between energy conservation and
interference reduction on the one hand and connectivity on
the other hand.

Topology Control
Conserve Energy

Reduce Interference

Network Connectivity

Spanner Property

Figure 1: Topology control constitutes a trade-off
between node energy conservation and network con-
nectivity.

The interference aspect is often maintained by developers
of topology control algorithms to be solved by sparseness
or low node degree of the resulting topology graph, with-
out providing rigorous motivation or proofs. The foremost
contribution of this paper is to disprove this assertion.
In contrast to most of the related work—where the inter-

ference issue is seemingly solved by sparseness arguments—,
we start out by precisely defining our notion of interference.
The definition of interference is based on the natural ques-
tion, how many nodes are affected by communication over a

1Sometimes also the construction of node clusters and dom-
inating sets of nodes is considered topology control. In this
paper we restrict ourselves to the study of topology control
based on transmission power reduction.
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certain link. By prohibiting specific network edges, the po-
tential for communication over high-interference links can
then be confined.
We employ this interference definition to formulate the

trade-off between energy conservation and network connec-
tivity. In particular we state certain requirements that need
to be met by the resulting topology. Among these require-
ments are connectivity (if two nodes are—possibly indirect-
ly—connected in the given network, they should also be con-
nected in the resulting topology) and the spanner property
(the shortest path between any pair of nodes on the result-
ing topology should be longer at most by a constant factor
than the shortest path connecting the same pair of nodes in
the given network). After stating such requirements, an op-
timization problem can be formulated to find the topology
meeting the given requirements with minimum interference.
For the requirement that the resulting topology should re-

tain connectivity of the given network, we show that most
currently proposed topology control algorithms—already by
having every node connect to its nearest neighbor—commit
a substantial mistake: Although certain proposed topologies
are guaranteed to have low degree yielding a sparse graph,
interference becomes asymptotically incomparable with the
interference-minimal topology. We also show that there ex-
ist graphs for which no local algorithm can approximate the
optimum. With respect to the sometimes desirable require-
ment that the resulting topology should be planar, we show
that planarity can increase interference.
Furthermore we propose a centralized algorithm (LIFE)

that computes an interference-minimal connectivity-preserv-
ing topology. For the requirement that the resulting topol-
ogy should be a spanner with a given stretch factor, we
present (based on a centralized variant of the algorithm) a
distributed local algorithm (LLISE) that computes a prov-
ably interference-optimal spanner topology.
Our results are not confined to worst-case considerations;

we also show by simulation that on average-case graphs
traditional topology control algorithms—in particular the
Gabriel Graph and the Relative Neighborhood Graph—fail
to effectively reduce interference. Moreover these construc-
tions are shown to be outperformed by the LLISE algorithm,
which therefore proves to be average-case effective in addi-
tion to its worst-case optimality.
After discussing related work in the following section, we

state the model for this paper in Section 3. Focusing on
the drawbacks of currently proposed topology control algo-
rithms with respect to interference in Section 4, we present
interference-optimal algorithms in the subsequent section.
Section 6 assesses our algorithms as well as previously pro-
posed topologies regarding their interference on average-case
graphs and the subsequent section concludes the paper.

2. RELATED WORK
In this section we discuss related work in the field of topol-

ogy control with special focus on the issue of interference.

2.1 Topology Control
The assumption that nodes are distributed randomly in

the plane according to a uniform probability distribution
formed the basis of pioneering work in the field of topology
control [7, 21].

Later proposals adopted constructions originally studied
in computational geometry, such as the Delaunay Triangula-
tion [8], the minimum spanning tree [19], the Relative Neigh-
borhood Graph [10], or the Gabriel Graph [20]. Most of
these contributions mainly considered energy-efficiency of
paths preserved by the resulting topology, whereas others
exploited the planarity property of the proposed construc-
tions for geometric routing [4, 13].
The Delaunay Triangulation and the minimum spanning

tree not being computable locally and thus not being prac-
ticable, a next generation of topology control algorithms
emphasized locality. The CBTC algorithm [24] was the
first construction to focus on several desired properties, in
particular being an energy spanner with bounded degree.
This process of developing local algorithms featuring more
and more properties was continued partly based on CBTC,
partly based on local versions of classic geometric construc-
tions such as the Delaunay Triangulation [15] or the mini-
mum spanning tree [14]. One of the most recent such results
is a locally computable planar distance (and energy) spanner
with constant-bounded node degree [23]. Another thread
of research takes up the average-graph perspective of early
work in the field; [3] for instance shows that the simple al-
gorithm choosing the k nearest neighbors works surprisingly
well on such graphs.
Yet another aspect of topology control is considered by

algorithms trying to form clusters of nodes. Most of these
proposals are based on (connected) dominating sets [1, 2, 9]
and focus on locality and provable properties, such as [12],
which achieves a non-trivial approximation of the minimum
dominating set in constant time. Cluster-based construc-
tions are commonly regarded a variant of topology control in
the sense that energy-consuming tasks can be shared among
the members of a cluster.
Topology control having so far mainly been of interest to

theoreticians, first promising steps are being made towards
exploiting the benefit of such techniques also in practical
networks [11].

2.2 Interference
As mentioned earlier, reducing interference—and its ener-

gy-saving effects on the medium access layer—is one of the
main goals of topology control besides direct energy conser-
vation by restriction of transmission power. Astonishingly
however, all the above topology control algorithms at the
most implicitly try to reduce interference. Where interfer-
ence is mentioned as an issue at all, it is maintained to be
confined at a low level as a consequence to sparseness or low
degree of the resulting topology graph.
A notable exception to this is [16] defining an explicit

notion of interference. Based on this interference model be-
tween edges, a time-step routing model and a concept of con-
gestion is introduced. It is shown that there are inevitable
trade-offs between congestion, power consumption and dila-
tion. For some node sets, congestion and energy are even
shown to be incompatible.
The interference model proposed in [16] is based on cur-

rent network traffic. The amount and nature of network
traffic however is highly dependent on the chosen applica-
tion. Since usually no a priori information about the traffic
in a network is available, a static model of interference de-
pending solely on a node set is consequently desirable.
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Figure 2: Nodes covered by a communication link.

3. MODEL
Mobile ad-hoc networks are commonly modeled by graphs.

A graph G = (V, E) consists of a set of nodes V ⊂ R
2 in the

Euclidean plane and a set of edges E ⊆ V 2. Nodes represent
mobile hosts, whereas edges represent links between nodes.
In order to prevent already basic communication between di-
rectly neighboring nodes from becoming unacceptably cum-
bersome [18], it is required that a message sent over a link
can be acknowledged by sending a corresponding message
over the same link in the opposite direction. In other words,
only undirected (symmetric) edges are considered.
We assume that a node can adjust its transmission power

to any value between zero and its maximum power level.
The maximum power levels are not assumed to be equal for
all nodes. An edge (u, v) may exist only if both incident
nodes are capable of sending a message over (u, v), in par-
ticular if the maximum transmission radius of both u and v
is at least |u, v|, their Euclidean distance. A pair of nodes
u, v is considered connectable in the given network if there
exists a path connecting u and v provided that all trans-
mission radii are set to their respective maximum values.
The task of a topology control algorithm is then to compute
a subgraph of the given network graph with certain prop-
erties, reducing the transmission power levels and thereby
attempting to reduce interference and energy consumption.
With a chosen transmission radius—for instance to reach

a node v—a node u affects at least all nodes located within
the circle centered at u and with radius |u, v|. D(u, r) denot-
ing the disk centered at node u with radius r and requiring
edge symmetry, we consequently define the coverage of an
(undirected) edge e = (u, v) to be the cardinality of the set
of nodes covered by the disks induced by u and v:

Cov(e) :=
�
�{w ∈ V |w is covered by D(u, |u, v|)}∪
{w ∈ V |w is covered by D(v, |v, u|)}��.

In other words the coverage Cov(e) represents the number
of network nodes affected by nodes u and v communicating
with their transmission powers chosen such that they exactly
reach each other (cf. Figure 2).
The edge level interference defined so far is now extended

to a graph interference measure as the maximum coverage
occurring in a graph:

Figure 3: Low degree does not guarantee low inter-
ference.

Definition 1. The interference of a graph G=(V,E) is
defined as

I(G) := max
e∈E

Cov(e).

Since interference reduction per se would be senseless (if
all nodes simply set their transmission power to zero, inter-
ference will be reduced to a minimum), the formulation of
additional requirements to be met by a resulting topology is
necessary. A resulting topology can for instance be required

- to maintain connectivity of the given communication
graph (if a pair of nodes is connectable in the given
network, it should also be connected in the resulting
topology graph),

- to be a spanner of the underlying graph (the shortest
path connecting a pair of nodes u, v on the resulting
topology is longer by a constant factor only than the
shortest path between u and v on the given network),
or

- to be planar (no two edges in the resulting graph in-
tersect).

Finding a resulting topology which meets one or a com-
bination of such requirements with minimum interference
constitutes an optimization problem.

4. INTERFERENCE IN KNOWN TOPOLO-
GIES

It is often argued that sparse topologies with small or
bounded degree are well suited to minimize interference. In
this section we show that low degree does not necessarily
imply low interference. Moreover we demonstrate that most
currently known topology control algorithms can perform
badly compared to the interference optimum, that is a topol-
ogy which minimizes interference in the first place.
In particular we consider in this section the basic problem

of constructing an interference-minimal topology maintain-
ing connectivity of the given network.
The following basic observation states that—although of-

ten maintained—low degree alone does not guarantee low
interference. Figure 3 for instance shows a topology graph
with degree 2 whose interference is however roughly n, the
number of network nodes. A node can interfere with other
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Figure 4: Exponential node chain with interference Ω(n).

nodes that are not direct neighbors in the chosen topol-
ogy graph. Whereas the maximum degree of the underlying
communication graph of the given network (with all nodes
transmitting at full power) is an upper bound for interfer-
ence, the degree of a resulting topology graph is only a lower
bound.
There exist instances where also the optimum exhibits

interference Ω(n), for instance a chain of nodes with expo-
nentially growing distances (cf. Figure 4, proposed in [16]),
whose large interference is caused as a consequence to the
requirement that the resulting topology is to be connected.
Every node ui (except for the leftmost) is required to have
an incident edge to the left, which covers all nodes left of ui.
Assessing the interference quality of a topology control algo-
rithm, its interference on a given network therefore needs to
be compared to the optimum interference topology for the
same network.
To the best of our knowledge, all currently known topol-

ogy control algorithms constructing only symmetric connec-
tions have in common that every node establishes a sym-
metric connection to at least its nearest neighbor. In other
words all these topologies contain the Nearest Neighbor For-
est constructed on the given network. In the following we
show that by including the Nearest Neighbor Forest as a sub-
graph, the interference of a resulting topology can become
incomparably bad with respect to a topology with optimum
interference.

Theorem 1. No currently proposed topology control algo-
rithm establishing only symmetric connections—required to
maintain connectivity of the given network—is guaranteed
to yield a nontrivial interference approximation of the op-
timum solution. In particular, interference of any proposed
topology can be Ω(n) times larger than the interference of the
optimum connected topology, where n is the total number of
network nodes.

Proof. Figure 5 depicts an extension of the example
graph shown in Figure 4. In addition to a horizontal ex-
ponential node chain, each of these nodes hi has a corre-
sponding node vi vertically displaced by a little more than
hi’s distance to its left neighbor. Denoting this vertical dis-
tance di, di > 2i−1 holds. These additional nodes form a
second (diagonal) exponential line. Between two of these
diagonal nodes vi−1 and vi, an additional helper node ti is
placed such that |hi, ti| > |hi, vi|.
The Nearest Neighbor Forest for this given network (with

the additional assumption that the transmission radius of
each node can be chosen sufficiently large) is shown in Fig-
ure 6. Roughly one third of all nodes being part of the hor-
izontally connected exponential chain, interference of any
topology containing the Nearest Neighbor Forest amounts

to at least Ω(n). An interference-optimal topology, how-
ever, would connect the nodes as depicted in Figure 7 with
constant interference.

In other words, already by having each node connect to
the nearest neighbor, a topology control algorithm makes an
“irrevocable” error. Moreover, it commits an asymptotically
worst possible error since the interference in any network
cannot become larger than n.
Since roughly one third of all nodes are part of the hori-

zontal exponential node chain in Figure 5, the observation
stated in Theorem 1 would also hold for an average interfer-
ence measure, averaging interference over all edges.
The following theorem even shows that for connectivity-

preserving topologies no local algorithm can approximate
optimum interference for every given network. Thereby the
definition of a distributed local algorithm assumes that each
network node is informed about its network neighborhood
only up to a given constant distance.

Theorem 2. For the requirement of maintaining connec-
tivity of the given network, there exists a class of graphs for
which there is no local algorithm that approximates optimum
interference.

Proof. In Figure 8 the maximum transmission radius
of a node is |u, v|. Let n be the number of nodes in the
graph. Then the shaded area contains Ω(n) evenly dis-
tributed nodes which can be connected with constant inter-
ference. For each such node i the inequalities |i, v| < |u, v|
and |u, i| > |u, v| hold. It follows that edge (u, v) has Ω(n)
interference since it covers all nodes in the shaded area. In
addition there is a chain of nodes (dashed path) connecting
node u with node v indirectly through the nodes located in
the shaded area. The nodes in the chain are located in such
a way that it is possible to connect them with constant inter-
ference. For such a graph O(1) interference can be achieved
by connecting u to the rest of the graph through the chain
of nodes and not directly through edge (u, v), which would
cause Ω(n) interference.
A local algorithm at node u has to decide if it can drop

edge (u, v) or not. This is only possible if u knows about
the existence of an alternative path from u to v in order to
maintain connectivity. By elongating the chain sufficiently,
the local algorithm can thus be forced to include edge (u, v),
pushing up interference to O(n) whereas the optimum is
Ω(1).

As mentioned in Section 3, another popular requirement
for topology control algorithms besides bounded degree is
planarity of the resulting topology, meaning that no two
edges of the resulting graph intersecty. This is often desired
because numerous well-understood routing algorithms exist
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Figure 5: Two exponential node chains.

Figure 6: The Nearest Neighbor Forest yields in-
terference Ω(n).

Figure 7: Optimal tree with constant interfer-
ence.

that are only applicable to planar graphs. But topology
control algorithms enforcing planarity are not optimal in
terms of interference:

Theorem 3. There exist graphs on which interference-
optimal topologies—required to maintain connectivity—are
not planar.

Proof. In Figure 9 the maximum transmission radius of
a node is |a, b|. All eligible edges are depicted together with
the coverage area for edges whose incident nodes are both
in {a, b, c, d}. The indicated weight of an edge e corresponds
to its coverage Cov(e). V and W represent sets of 3 and 4
nodes, respectively. The nodes in set V andW , respectively,
can be connected among themselves with interference 3. A
topology control algorithm can only reduce interference by
removing all edges with maximum interference (here (a, c)
and (b, c)) from the graph. Thereafter, no further edge can
be removed without breaking connectivity since the graph
without (a, c) and (b, c) is a tree. Thus the resulting tree is
interference-optimal and non-planar since both edges (a, b)
and (c, d) must remain in the resulting topology.

5. LOW-INTERFERENCE TOPOLOGIES
In this section we present three algorithms that explic-

itly reduce interference of a given network. The first algo-
rithm is capable of finding an interference-optimal topology
maintaining connectivity of the given network. The other
two algorithms compute an interference-optimal topology
under the additional requirement of being a spanner of the
given network. Whereas the first spanner algorithm assumes

global knowledge of the network, the second can be com-
puted locally.

5.1 Interference-Optimal Spanning Forest
In the following we again require the resulting topology

to maintain connectivity of the given network. A topol-
ogy graph meeting this requirement can therefore consist of
a tree for each connected component of the given network
since additional edges might unnecessarily increase interfer-
ence. A Minimum Interference Forest is therefore a set of
trees maintaining the connectivity of the given network with
least possible interference.
Algorithm LIFE computes a Minimum Interference For-

est.

Low Interference Forest Establisher (LIFE)

Input: a set of nodes V , each v ∈ V having attributed a
maximum transmission radius rmax

v

1: E = all eligible edges (u, v) (rmax
u ≥ |u, v| and rmax

v ≥
|u, v|) (� unprocessed edges �)

2: ELIF E = ∅
3: GLIF E = (V, ELIF E)
4: while E �= ∅ do
5: e = (u, v) ∈ E with minimum coverage
6: if u, v are not connected in GLIF E then
7: ELIF E = ELIF E ∪ {e}
8: end if
9: E = E \ {e}
10: end while
Output: Graph GLIF E
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Figure 8: Worst case graph for which no local algo-
rithm can approximate optimum interference.

Theorem 4. The forest constructed by LIFE is a Mini-
mum Interference Forest.

Proof. The LIFE algorithm computes a minimum span-
ning forest (MSF) of the graph G = (V, E), where E is the
set of all eligible edges, if every edge e ∈ E is attributed the
weight Cov(e). With its greedy strategy, it follows the lines
of Kruskal’s MSF algorithm [5]. To prove the theorem, it is
therefore sufficient to show that the MSF is optimal with re-
spect to interference. Optimality of LIFE then follows from
the fact that a minimum spanning forest also minimizes the
maximum edge weight in any spanning forest. (Assuming
for contradiction that G∗ is an MSF with maximum weight
edge e∗, whereas GLIF E is a spanning forest with lower max-
imum edge weight, e∗ could be replaced by a corresponding
edge from GLIF E , yielding a spanning forest with total edge
weight smaller than G∗’s, which contradicts the assumption
that G∗ is an MSF.)

With an appropriate implementation of the connectivity
query in Line 6 the running time of the algorithm LIFE is
O(n2 log n). If the given network is known to consist of one
connected component only, Prim’s minimum-spanning-tree
algorithm can be employed with running time O(n2). Algo-
rithms computing a minimum spanning tree in a distributed
way—as particularly suitable for ad-hoc networks—are de-
scribed in detail in [17].

5.2 Low-Interference Spanners
LIFE optimizes interference for the requirement that the

resulting topology has to maintain connectivity. In addition
to connectivity it is often desired that the resulting topol-
ogy should be a spanner of the given network. A formal
definition of a t-spanner follows:

Definition 2. [t-Spanner] A t-spanner of a graph
G = (V, E) is a subgraph G′ = (V, E′) such that for each pair
(u, v) of nodes |p∗

G′(u, v)| ≤ t · |p∗
G(u, v)|, where |p∗

G′(u, v)|
and |p∗

G(u, v)| denote the length of the shortest path between
u and v in G′ and G, respectively.

V

9

4 nodes

3 nodes

4

8

5

3

2

d

b

c u

9

8
a

W

Figure 9: Node set whose interference-optimal
topology is not planar.

In this paper we consider Euclidean spanners, that is, the
length of a path is defined as the sum of the Euclidean
lengths of all its edges. With slight modifications our re-
sults are however also extendable to hop spanners, where
the length of a path corresponds to the number of its edges.
Algorithm LISE is a topology control algorithm that con-

structs a t-spanner with optimum interference. LISE starts
with a graph GLISE = (V, ELISE) where ELISE is initially
the empty set. It processes all eligible edges of the given net-
work G = (V, E) in descending order of their coverage. For
each edge (u, v) ∈ E not already in ELISE, LISE computes
a shortest path from u to v in GLISE provided that the Eu-
clidean length of this path is less than or equal to t |u, v|.
As long as no such path exists, the algorithm keeps inserting
all unprocessed eligible edges with minimum coverage into
ELISE.
To prove the interference optimality of GLISE, we intro-

duce an additional lemma, which shows thatGLISE contains
all eligible edges whose coverage is less than I(GLISE).

Lemma 5. The graph GLISE = (V, ELISE) constructed
by LISE from a given network G = (V, E) contains all edges
e in E whose coverage Cov(e) is less than I(GLISE).

Low Interference Spanner Establisher (LISE)

Input: a set of nodes V , each v ∈ V having attributed a
maximum transmission radius rmax

v

1: E = all eligible edges (u, v) (rmax
u ≥ |u, v| and rmax

v ≥
|u, v|) (� unprocessed edges �)

2: ELISE = ∅
3: GLISE = (V, ELISE)
4: while E �= ∅ do
5: e = (u, v) ∈ E with maximum coverage
6: while |p∗(u, v) in GLISE| > t |u, v| do
7: f = edge ∈ E with minimum coverage
8: move all edges ∈ E with coverage Cov(f) to ELISE

9: end while
10: E = E \ {e}
11: end while
Output: Graph GLISE
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Proof. We assume for the sake of contradiction that
there exists an edge e in E with Cov(e) < I(GLISE) which
is not contained in ELISE. Consequently, LISE never takes
an edge with coverage Cov(e) in line 7 since the algorithm
would insert all edges with Cov(e) into ELISE in line 8 in-
stantly (thus also e). There exists however an edge f in
ELISE with Cov(f) = I(GLISE) eventually taken in line 7.
Therefore the inequality Cov(e) < Cov(f) holds. At the
time the algorithm takes f in line 7, all edges taken in line
5 must have had coverage greater than or equal to Cov(f)
since the maximum of an ordered set can only be greater
than or equal to the minimum of the same set. Hence e has
never been taken in line 5 and therefore has never been re-
moved from E in line 10. Consequently, e is still in E when
f is taken as the edge with minimum coverage in E. Thus
it holds that Cov(f) ≤ Cov(e) which leads to a contradic-
tion.

With Lemma 5 we are ready to prove that the resulting
topology constructed by LISE is an interference-optimal t-
spanner.

Theorem 6. The graph GLISE = (V, ELISE) constructed
by LISE from a given network G = (V, E) is an interference-
optimal t-spanner of G.

Proof. To show that GLISE meets the spanner property,
it is sufficient to prove that for each edge (u, v) ∈ E there
exists a path in GLISE with length not greater than t |u, v|.
This holds since for a shortest path p∗(u, v) in G a path
p′(u, v) in GLISE with |p′| ≤ t |p| can be constructed by
substituting for each edge on p the corresponding spanner
path in GLISE. For edges in E which also occur in ELISE

the spanner property is trivially true. On the other hand an
edge (u, v) can only be in E but not in ELISE if a path from
u to v in GLISE with length not greater than t |u, v| exists
(see if-condition in line 6). Thus GLISE is a t-spanner of G.
Interference optimality of LISE can be proved by contra-

diction. We therefor assume, that GLISE is not an interfer-
ence-optimal t-spanner. Let G∗ = (V, E∗) be an interfer-
ence-optimal t-spanner for G. Since GLISE is not optimal,
it follows that I(GLISE) > I(G∗). Thus all edges in E∗ have
coverage strictly less than I(GLISE). From Lemma 5 follows
that E∗ is a nontrivial subset of ELISE. Let T be the set of
edges in ELISE with coverage I(GLISE) and G̃ = (V, Ẽ) the

graph with Ẽ = ELISE \T . G̃ is a t-spanner since E∗ is still
a subset of Ẽ, and I(G̃) ≤ I(GLISE)−1 holds. Because T is
eventually inserted into ELISE in line 8, there exists an edge
(u, v) ∈ E that was taken in line 5 and for which no path

p(u, v) exists in G̃ with |p| ≤ t |u, v|. Thus G̃ is no t-spanner
(and therefore also G∗), which contradicts the assumption
that G∗ is an interference-optimal t-spanner.

As regards the running time of LISE, it computes for each
edge at most one shortest path. This holds since multiple
shortest path computations for the same edge in line 6 cause
at least as many edges to be inserted into ELISE in line 8
without computing shortest paths for them. Since finding a
shortest alternative path for an edge requiresO(n2) time and
as the network contains at most the same amount of edges,
the overall running time of LISE is as well polynomial in the
number of network nodes.
In contrast to the problem of finding a connected topol-

ogy with optimum interference, the problem of finding an

LLISE

1: collect ( t
2
)-neighborhood GN = (VN , EN) of G = (V, E)

2: E = ∅
3: G′ = (VN , E′)
4: repeat
5: f = edge ∈ EN with minimum coverage
6: move all edges ∈ EN with coverage Cov(f) to E′

7: p = shortestPath(u − v) in G′

8: until |p| ≤ t |u, v|
9: inform all edges on p to remain in the resulting topology.

Note: GLL = (V, ELL) consists of all edges eventually
informed to remain in the resulting topology.

interference-optimal t-spanner is locally solvable. The rea-
son for this is that finding an interference-optimal path
p(u, v) for an edge (u, v) with |p| ≤ t |u, v| can be restricted
to a certain neighborhood of (u, v).
In the following we describe a local algorithm similar to

LISE that is executed at all eligible edges of the given net-
work. In reality, algorithm LLISE (Local LISE) is executed
for each edge by one of its incident nodes (for instance the
one with the higher identifier). The description of LLISE as-
sumes the point of view of an edge e = (u, v). The algorithm
consists of three main steps:

1) Collect ( t
2
)-neighborhood,

2) compute minimum interference path for e, and

3) inform all edges on that path to remain in the resulting
topology.

In the first step, e gains knowledge of its ( t
2
)-neighborhood.

For a Euclidean spanner, the k-neighborhood of e is de-
fined as all edges that can be reached (or more precisely at
least one of their incident nodes) over a path p starting at
u or v, respectively, with |p| ≤ k |e|. Knowledge of the ( t

2
)-

neighborhood at all edges can be achieved by local flooding.

Theorem 7. The graph GLL = (V, ELL) constructed by
LLISE from a given network G = (V, E) is an interference-
optimal t-spanner of G.

During the second step a minimum-interference path p
from u to v with |p| ≤ t |e| is computed. LLISE starts with
a graph GLL = (V, ELL) consisting of all nodes in the (

t
2
)-

neighborhood and an initially empty edge set. It inserts
edges consecutively into ELL—in ascending order according
to their coverage—, until a shortest path p∗(u, v) is found
in GLL with |p∗| ≤ t |e|.
In the third step, e informs all edges on the path found

in the second step to remain in the resulting topology. The
resulting topology then consists of all edges receiving a cor-
responding message. In the following we show that it is suf-
ficient for e to limit the search for an interference-optimal
path p(u, v) meeting the spanner property to the ( t

2
)-neigh-

borhood of e.

Lemma 8. Given an edge e = (u, v), no path p from u
to v with |p| ≤ t |e| contains an edge which is not in the
( t
2
)-neighborhood of e.
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Proof. For the sake of contradiction we assume that a
path p from u to v with |p| ≤ t |e| containing at least one
edge (w, x) not in the ( t

2
)-neighborhood of e. Without loss

of generality we further assume that, traversing p from u
to v, we visit w before x. Since (w, x) is not in the ( t

2
)-

neighborhood, by definition, no path from u to w with length
less than or equal to ( t

2
)|e| exists (the same holds for any

path from v to x). Consequently, the inequality |p| > t |e|+
|(w, x)| holds, which contradicts the assumption that |p| ≤
t |e|.

With Lemma 8 we are now able to prove that the topology
constructed by LLISE is a t-spanner with optimum interfer-
ence.

Proof. The spanner property of LLISE can be proven
similar to the first part of the proof of Theorem 6, where
LISE is shown to be a t-spanner.
To show interference optimality, it is sufficient to prove

that the spanner path constructed for any edge e = (u, v) ∈
G by LLISE is interference-optimal, where interference of a
path is defined as the maximum interference of an edge on
that path. The reason for this is that only edges that lie
on one of these paths remain in the resulting topology; non-
optimality of GLL would therefore imply non-optimality of
at least one of these spanner paths. In the following we look
at the algorithm executed by e = (u, v). In line 6 edges in
E are consecutively inserted into E′, starting with E′ = ∅,
until a spanner path p from u to v is found in line 8. Since
LLISE inserts the edges into E′ in ascending order according
to their coverage and p is the first path meeting the spanner
property, p is an interference-optimal t-spanner path from
u to v in the ( t

2
)-neighborhood. From Lemma 8 we know

that the ( t
2
)-neighborhood of e contains all spanner paths

from u to v and therefore also the interference-optimal one.
Thus it is not possible that LLISE does not see the global
interference-optimal t-spanner path due to its local knowl-
edge about G. Consequently, p is the global interference-
optimal t-spanner path of e.

6. AVERAGE-CASE INTERFERENCE
In this section we consider interference of topology control

algorithms on average-case graphs, that is on graphs with
randomly placed nodes.
In particular networks were constructed by placing nodes

randomly and uniformly on a square field of size 20 by 20
units and subsequently computing for each node set the Unit
Disk Graph—defined such that an edge exists if and only
if its Euclidean length is at most one unit. The resulting
Unit Disk Graphs were then employed as input networks for
topology control. Since node density is a fundamental prop-
erty of networks with randomly placed nodes, the networks
were generated over a spectrum of node densities.

6.1 Connectivity-Preserving Topologies
To evaluate connectivity-preserving topologies on average-

case graphs, two well-known topology control algorithms are
considered, in particular the Gabriel Graph [6] and the Rel-
ative Neighborhood Graph [22]. The interference-reducing
effect of these two constructions is considered by compari-
son with the interference value of the given Unit Disk Graph
network on the one hand and with the interference-optimal
connectivity-preserving topology on the other hand. The
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Figure 10: Interference values of the Unit Disk
Graph without topology control (dotted), the
Gabriel Graph (dash-dotted), the Relative Neigh-
borhood Graph (dashed), and the interference-
optimal connectivity-preserving topology (solid).

interference-optimal topology was constructed by means of
the LIFE algorithm presented in Section 5.
Figure 10 shows the interference mean values over 1000

networks for each simulated network density. While the re-
sulting interference curves behave similarly for very low net-
work densities, they fall into three groups with increasing
density: At a density of roughly 5 network nodes per unit
disk the interference-optimal curve stagnates and remains
at a value of approximately 11.5. On the other hand the
interference curve of the Unit Disk Graph without topology
control rises almost linearly. Between these two extremes the
Gabriel Graph and Relative Neighborhood Graph values in-
crease clearly more slowly than the Unit Disk Graph curve,
but show significantly higher values than the interference-
optimal topology.
The simulation results show that the edge reduction per-

formed by the Gabriel Graph and Relative Neighborhood
Graph constructions reduce interference of the given net-
work; this effect is clearer with the Relative Neighborhood
Graph due to its stricter edge inclusion criterion and conse-
quently its being a subgraph of the Gabriel Graph. However,
the interference values of these two constructions are con-
siderably higher than the results of the interference-optimal
connectivity-preserving topology. Furthermore, although
(unless in special cases) the Relative Neighborhood Graph
has degree at most 6, it is not even clear whether with in-
creasing network density the respective interference curve
remains around the maximum value found so far or whether
it would increase further for densities beyond the simulated
spectrum. It can therefore be concluded that also for aver-
age-case graphs sparseness does not imply low interference.

6.2 Low Interference Spanners
Going beyond connectivity-preserving topologies, we con-

sider in this section spanners, that is topologies guaranteeing
that the shortest paths on the resulting topology are only
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Figure 11: Interference values of LISE for stretch
factors 2 (dotted), 4 (dash-dot-dotted), 6 (dash-
dotted), 8 (dashed), and 10 (solid). Interference
values of the Relative Neighborhood Graph (up-
per gray) and interference-optimal connectivity-
preserving topology (lower gray) are plotted for ref-
erence.

by a constant factor longer than on the given network (cf.
Section 5.2).
Figure 11 depicts simulation results—in particular the

mean interference values over 100 networks at each simu-
lated network density—of the topology constructed by the
LISE algorithm introduced in Section 5 for different stretch
factors t. The simulation results show that by increasing the
requested stretch factor it is possible to achieve interference
values close to the optimum interference values caused by
connectivity-preserving topologies as described in the pre-
vious section. Moreover, even with a low stretch factor of
2, LISE does not perform worse than the Relative Neigh-
borhood Graph, which is not a spanner. In summary, the
simulation results show that the LLISE algorithm performs
well with respect to interference also on average-case graphs.
An illustration of the simulation graphs is provided in Fig-
ure 12.

7. CONCLUSION
In this paper we disprove the widely advocated assump-

tion that sparse topologies automatically imply low inter-
ference. In contrast to most of the related work we provide
an intuitive definition of interference. With this interfer-
ence model we show that currently proposed topology con-
trol constructions—although claiming so—do not in the first
place focus on reducing interference.
In addition we propose provenly interference-minimal con-

nectivity-preserving and spanner constructions. A locally
computable version of the interference-minimal spanner con-
struction can even be considered practicable since it is shown
to significantly outperform previously suggested topology
control algorithms also on average-case graphs.
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