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I. Introduction 

Do firm boundary decisions affect firm performance?  Although theoretical work 

predicts that one should find performance implications of vertical integration decisions, 

there is little direct evidence on this question (see, for example, Williamson, 1975 and 

1985, Grossman and Hart, 1986 and Hart and Moore, 1990 for theoretical work).  Such 

empirical evidence has been hard to establish for two reasons.  First, it is difficult to 

obtain data on outcome measures for similar transactions that are organized differently.  

Second, firm boundary decisions will typically be endogenous (Masten, 1993).  In this 

article, we overcome these difficulties and document the existence and magnitude of 

performance differences between integrated and non-integrated firms carrying out 

virtually identical transactions.  Our results indicate that, operationally, there is a 

performance advantage to vertical integration.1

Our setting is the U.S. airline industry.  All of the large U.S. network carriers, 

often called “majors”, employ regional airlines to operate a subset of their routes.  

Regional airlines may be owned by the major for which they operate or they may be 

independent and contract with one or more major carriers.  To the extent that contracts do 

not fully align an independent regional’s incentives with those of its major, vertically 

integrated airlines may perform systematically differently that vertically separated ones.  

In particular, if independent regionals are less willing than owned regionals to carry out 

non-contractible adaptation decisions, then ownership may affect the efficiency with 

  Moreover, we find that this performance 

advantage increases when the need for adaptation decisions is greater. We believe that 

this article is one of the first to both measure the performance implications of integration 

decisions as well as provide empirical evidence on a possible underlying cause.    
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which majors can respond to schedule disruptions (which arise frequently in this 

industry).  Moreover, because a regional’s flights and a major’s own flights compete for 

potentially scarce airline and airport resources, this may impact not only the performance 

of the regional’s flights but the performance of the major’s as well.  

We estimate whether use of an owned – rather than independent – regional at a 

particular airport affects a major’s performance on the flights that it itself operates out of 

that airport.  We measure performance using flight-level data on delays and cancellations.  

Our empirical approach exploits three important features of our setting.  First, because we 

observe many airports at which some majors use owned regionals while others use 

independent regionals, we are able to include fixed effects for each origin airport-day 

combination in our regressions, in addition to a rich set of control variables.  Thus, we 

identify the effects of integration by comparing the performance metrics of integrated and 

non-integrated majors at the same airport on the same day.  Second, because we are 

estimating the impact of ownership of a regional on the performance of the major, 

characteristics that affect the returns to integration on regional routes but which do not 

directly affect performance on the major’s routes can serve as instruments for airlines’ 

ownership decisions.  Finally, weather conditions provide an observable and exogenous 

source of variation in the likelihood that adaptation decisions will be needed.  Because 

weather changes on a daily basis while ownership decisions are fixed at least in the 

medium term, we are able to trace out the relationship between integration and 

performance as the need for adaptation decisions increases but organizational forms 

remain fixed.   
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Our empirical analysis finds that - in the absence of adverse weather and at 

average levels of airport congestion - majors using only integrated regionals at an airport 

experience average departure delays that are about 2.3 minutes shorter than those 

experienced by majors using only independent regionals.  This performance advantage 

increases to about 5.6 minutes on days with “heavy” rain.  It also increases with airport 

congestion.  These results emerge in both ordinary least squares (OLS) and instrumental 

variables (IV) models and are robust across alternative measures of on-time performance.  

When we try to capture adverse weather using measures of snowfall, the results are 

somewhat weaker.  OLS specifications find that the performance advantage of integrated 

majors decreases on days with “heavy” snow.2

 In addition to being one of the only articles to provide evidence on the effects of 

vertical integration on operational performance, we believe this article is also one of the 

few empirical contributions that focus explicitly on the relationship between integration 

and adaptation decisions and the first that does so without relying on survey measures.

  IV specifications find a negative point 

estimate, indicating an increase in the performance advantage, but in most specifications 

it is imprecisely estimated.  However, when we examine cancellation rates and very long 

delays, we find that – for these particular margins – the performance advantage of 

integrated majors does increase on days with snow.  Overall, our results indicate that 

integrated majors have systematically better operational performance than non-integrated 

majors and this that performance difference grows larger on days and at times when real-

time adaptation decisions are likely to be needed. 

3  

Williamson (1975, 1985) first developed the hypothesis that integration facilitates 

adaptation decisions.  Bajari and Tadelis (2001) and Tadelis (2002) further develop the 



 5 

idea that the need for ex post adaptation decisions can be a source of transaction costs and 

can therefore influence both contract design and integration decisions.  In our previous 

work, Forbes and Lederman (2009), we investigate the determinants of vertical 

integration between major and regional airlines. Our focus there is also on the need for ex 

post adaptation and we show that majors are more likely to use owned regionals on routes 

on which they expect to have to make more adaptation decisions and on routes on which 

having adaptation decisions resolved sub-optimally is more costly.  This article builds on 

our earlier work by focusing explicitly on identifying the causal effect of integration on 

an important performance metric in this industry and providing evidence that sheds light 

on the underlying mechanism.   

There is an existing set of articles that focuses on the consequences of vertical 

integration.  Lafontaine and Slade (2007) provide a survey of this literature.  Within this 

literature, one can distinguish between those that test market power based theories of 

integration (such as Hortacsu and Syverson, 2007) and those that – like us - test 

incomplete contracting based theories.  The latter category includes articles such as 

Mullainathan and Scharfstein (2003) and Ciliberto (2006) both of which investigate the 

effects of organizational form on investment decisions as well as Baker and Hubbard 

(2004) and Gil (2007) which, respectively, explore the implications of organizational 

form decisions in the trucking and movie industries.  Our article is perhaps most closely 

related to Novak and Stern (2008) which also examines the relationship between vertical 

integration and a specific performance measure – in their case, Consumer Reports ratings 

of automobile systems.  They find that integrated firms have lower initial ratings, but 
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greater improvements in ratings over time, which can be interpreted as evidence that 

integration facilitates adaptation when changes become necessary.4

This article is organized as follows.  In Section II, we explain why ownership of a 

regional may lead to operational efficiencies, particularly when non-contractible schedule 

adjustments are needed.  Section III describes our empirical approach and Section IV 

addresses data and measurement issues.  We present our results in Section V.  In Section 

VI, we provide some additional discussion.  A final section concludes.   

   

 

II. Vertical Integration in the Airline Industry 

 The Role of Regional Airlines5

Regional airline service represents a large and growing fraction of U.S. domestic 

air travel.  In our sample period, about one out of every seven domestic passengers was 

traveling on a regional carrier.  Regionals operate as “subcontractors” for large network 

carriers on low-density short and medium-haul routes.  These are routes which are most 

efficiently served with small aircraft.

 

6  Majors subcontract these routes because regionals 

have a cost advantage in operating small aircraft resulting from the substantially lower 

compensation that regional airline employees receive.7

Regionals operating as subcontractors for majors do so under codeshare 

agreements.  Under these agreements, the regional operates flights on behalf of the major.  

These flights are operated under the major’s flight designator code and are marketed 

under the major’s brand.  For example, the regional Comair operates flights for Delta 

  Majors do not typically operate 

any small aircraft themselves; thus, the decision whether to use a regional to serve a route 

is effectively a decision about plane size.   



 7 

under the name Delta Connection.  Many regional flights operating under codeshare 

agreements connect small airports to one of the major’s hubs and many of the passengers 

travelling on the regional connect to or from flights operated by the major.  The major is 

responsible for the scheduling, marketing and ticketing of the regional’s flights, even 

those that do not connect to one of its hubs.  Thus, regionals are providing an input – 

specifically, the operation of the aircraft - into a final product that is sold by the major.  

This is the sense in which majors and regionals are involved in a vertical relationship. 

 

Organizational Forms 

Relationships between majors and regionals are governed by one of two 

organizational forms – (1) a regional may be independently owned and contract with one 

or more major carriers; or (2) a regional may be wholly-owned by the major with which it 

partners.8

In the case of an owned regional, the major carrier owns the assets of the regional 

but the regional and the major technically maintain separate operations.  The main reason 

they separate their operations is so that they can maintain distinct labor contracts (one for 

the major’s own employees and one for each of its regional’s employees) and thereby 

preserve the cost advantages that regionals provide.

  Table 1 lists the major-regional partnerships that were in place in 2000 for the 

carriers in our sample.  Regional carriers that appear in bold were fully owned by their 

major partner.  The table shows that there is substantial heterogeneity both across and 

within majors in the extent to which regional partners are owned.  

9  We use the term “vertical 

integration” to refer to this relationship between a major and an owned regional. 
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The relationship between majors and independent regionals is governed by 

contracts.  In general, these contracts specify which routes the regional will serve for the 

major, the planes that the regional will use and the schedule of flights.  Contracts between 

majors and independent regionals take one of two forms.  Historically, most were 

revenue-sharing agreements under which the major and the regional shared the revenue 

from passengers whose itineraries involved travel on both airlines.  Beginning in the late 

1990s, majors and regionals have increasingly used what are known as “capacity 

purchase agreements”.10

 

  Under these agreements, the major retains all ticket revenue and 

pays the regional a fixed amount on a block-hour or flight-hour basis.  The payment is 

structured to cover the regional’s costs and provide it with a reasonable rate of return.  

Capacity purchase agreements insulate a regional from revenue risk but leave it the 

residual claimant on profit increases that result from effective management of costs such 

as crew wages and lodging expenses.  Relevant to our analysis here is the fact that, under 

both contract types, independent regionals face financial incentives that are based only on 

the routes that they serve and not on the remainder of the major’s network.   

Vertical Integration and Operational Performance  

We hypothesize that performance benefits to ownership might arise in this setting 

because contracts between majors and independent regionals are incomplete on at least 

one important dimension – real-time schedule adjustments.  Schedule disruptions are 

common in the airline industry, resulting from a variety of factors such as adverse 

weather or mechanical problems.  When they arise, majors may have to reschedule their 

own flights as well as the flights operated by their regional partners.  Inclusion of these 
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types of schedule adjustments in a contract is unlikely to be feasible because the contract 

would have to specify ex ante the full set of changes that would be made under every 

possible contingency and the precise manner in which the regional would carry out these 

changes.11  Moreover, because the contracts used in this industry do not tie the regional’s 

compensation to the performance of the major’s network, an independent regional has no 

financial incentives to comply with schedule changes that may not be in its own 

interest.12

Why would this impact the operational performance of the major?  At a given 

airport, an airline’s own flights and its regional flights are integrated into a common 

network and compete for access to potentially scarce airport and airline resources.  

Takeoff and landing slots, ground crew, equipment like de-icing machines and sometimes 

gates can be shared across majors and regionals.  When schedule adjustments become 

necessary, a major trying to optimize its network may ask its regional to take certain 

actions that give the major’s flights preferential access to these resources. Whether and 

how these actions are carried out by the regional can impact the performance of the 

major’s flights.  Consider the following examples: (1) When an airport is affected by 

adverse weather, airport activity will be reduced because more time is required between 

  Schedule changes that the major requests may even impose costs on the 

regional.  For example, schedule changes may require a regional to pay overtime to its 

crew and independent regionals are responsible for their labor costs.  Schedule changes 

ordered by the major may also negatively impact the regional’s own performance 

statistics which could be important in seeking new business from other major carriers.  

For these reasons, independent regionals may have limited incentives to execute the real-

time schedule changes that their majors request  
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takeoffs and landings.  Airlines will likely need to delay a large fraction of their flights.  

A major may choose to delay its regional flights so that larger, fuller mainline flights can 

depart and may ask a regional to move its aircraft from its gates.  The willingness and 

speed with which the regional does this will impact the major’s ability to avoid further 

delays on its own flights.  (2) When a flight lands later than scheduled, the gate and/or 

ground crew scheduled for this flight may no longer be available.  To avoid a lengthy 

arrival delay as well as a lengthy departure delay on the aircraft’s next leg, a major may 

try to “turn the plane around” more quickly than usual.  The major may ask the regional’s 

employees to help unload and load baggage from the plane.  The willingness and speed 

with which the regional does this will clearly affect delays experienced on this flight. 

More generally, if airport or airline resources are scarce, then any time flight departures 

or arrivals deviate from their set schedule, integration may allow a major to more 

efficiently respond to the schedule disruption by improving its access to resources that 

had been allocated to the regional. It is worth emphasizing that although access to a 

certain set of shared resources may give rise to performance implications for the major’s 

flights, aircraft and crew are not shared across majors and regionals.  Thus, they are not 

the source of the externalities that we are trying to measure.  

Why would employees at owned regionals have better incentives to comply with 

the major’s requests?  Owned regionals are likely to be less concerned with their financial 

and operational performance metrics.  Furthermore, owned regionals should be more 

concerned about the profits and overall financial health of their major.  Because they fly 

only for the major that owns them, if that major were in financial difficulty and had to 

divest itself of its regional unit, this could impose costs on the regional’s employees who, 
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after divestiture, might have to accept the lower salaries that prevail at independent 

regionals.  In addition, career paths between owned regionals and majors are better 

established.   

 In Table 2, we investigate whether the raw data show any indication of a 

performance difference between majors using owned and majors using independent 

regionals.  For the purposes of this simple table, we divide majors into two groups – those 

that have fewer than or exactly 50% of their regional flights at an airport operated by an 

owned regional and those that have more than 50% of their regional flights at an airport 

operated by an owned regional.  We compare the mean departure delay, the 25th, 50th and 

75th percentile departure delay and the cancellation rates of these two groups.  The table 

shows that the mean departure delay on majors’ flights departing from airports at which 

they use owned regionals is about 3 minutes shorter than the mean delay on flights 

operated by majors using independent regionals.  Interestingly, there appears to be no 

difference in the 25th and 50th percentiles of their delay distributions but a four minute 

difference in the 75th percentile.  Cancellation rates also appear to be lower for flights 

operated by majors using owned regionals. Although this is, of course, very preliminary 

evidence, it does suggest that there may be systematic performance differences across 

integrated and non-integrated firms in this setting.  We now turn to a more formal 

empirical analysis. 

 

III. Empirical Approach 

 Ideally, we would like to investigate whether ownership of a regional allows a 

major to come closer to its profit-maximizing departure schedule, given the realized 
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values of all relevant variables (for example, weather and air traffic control problems).  

Clearly we cannot calculate what an airline’s ideal departure schedule would be in every 

state of the world.  We can, however, measure a major’s delays and cancellations on each 

flight that it operates.  Therefore, for our empirical analysis, we assume that fewer delays 

on average (relative to the major’s original departure schedule) indicate that a major is 

coming closer to achieving its optimal departure schedule. We also explore whether there 

is evidence of differences in very long delays and cancellation rates.  Although we would 

also like to explore the impact of ownership on the regional’s performance, data 

limitations prevent us from doing so because most regionals are too small to meet the 

reporting requirements of the Bureau of Transportation Statistics.  Our results with 

respect to the major’s own flights should therefore be considered only a partial estimate 

of the effects of integration in this setting.  However, given the substantially larger size of 

majors compared to regionals (majors carried six times as many passengers as regionals 

in 2000), our estimates should reflect a large portion of the total effect.   

 

Empirical Specification  

 Our empirical specification regresses a major’s performance on a particular flight 

on its extent of integration with the regional carrier(s) that it uses at the origin airport of 

that flight.  We exploit the fact that there are many airports at which some majors use 

owned regionals while others use independent regionals and include fixed effects for each 

origin airport-day combination in our model.  Thus, we are able to test whether – at a 

given airport, on a given day - the operational performance of majors using owned 

regionals differs from that of majors using independent regionals.   
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 As described in the previous section, we hypothesize that ownership may mitigate 

an incentive problem that is particularly likely to arise when majors need to make non-

contractible changes to a regional’s schedule.  To investigate whether the performance 

effects of ownership may result from the fact that ownership of a regional facilitates real-

time schedule adjustments, we identify situations in which a major is more likely to have 

to make unanticipated changes to its set schedule of flights.  We do this in two ways.  

First, we exploit the fact that adverse weather is one of the leading causes of schedule 

changes and use measures of the daily weather at an airport as proxies for the likelihood 

that flights departing from that airport will be affected by non-contracted schedule 

adjustments.  Second, we construct a measure for airport capacity utilization to identify 

times of day during which airport congestion may cause an airline to have to make 

schedule changes.13

Specifically, we estimate the following equation: 

  We interact our integration measure with measures of daily weather 

and hourly congestion to test whether ownership has a different effect on operational 

performance on days with particularly adverse weather conditions or at congested times 

of day.  

t
ifr

t
fir

t
fririr

t
o

t
fir XADAPTOWNEDOWNEDPERF εβδδα ++++= *21    (1) 

where t
firPERF  is a measure of airline i’s operational performance on flight f on route r 

on day t, t
oα  is an origin airport-date fixed effect, irOWNED  measures the extent of 

airline i’s ownership of its regionals serving the origin airport of route r, t
frADAPT  is a 

vector of variables that measure the extent of adverse weather at the origin airport of 

route r on day t or the level of congestion at the origin airport of route r around flight f’s 

scheduled departure, 
t
firX  is a vector of control variables (including flight, airline and 
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airport level variables), and t
ifrε  is an error term.  If there are performance benefits to 

ownership and if these are greater on days with adverse weather or during more 

congested times of day, then we would find both 1δ <0 and 2δ <0. 

  

Endogeneity  

Because ownership decisions are made by optimizing firms, measures of 

integration will typically be endogenous in a performance equation (see Masten, 1993, 

and Gibbons, 2005).  A valid instrument must be correlated with the firm’s ownership 

decision but uncorrelated with the error term in the performance equation.  However, 

because the same variables determining the ownership decision will also appear in the 

performance equation, instruments for organizational form decisions are difficult to find.  

Although this is true in our setting as well, the fact that we are measuring the impact of 

ownership on a specific performance margin rather than the overall performance of the 

firm gives rise to a potential source of instruments which will valid under certain 

conditions.   

Based on Forbes and Lederman (2009), one can think of a major’s decision 

whether to use an owned regional on a particular route as depending on: (1) the returns to 

integration on the regional route; (2) the returns to integration on other routes in the 

major’s network (especially those that share an endpoint with the regional route); and (3) 

the returns to integration that accrue systemwide (for example, through higher labor 

costs).  Our performance equation measures whether a major’s ownership of the 

regional(s) that it uses at a particular airport affect the performance of its flights that 

depart from that airport.  Variables that influence the returns to integration elsewhere in 
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the major’s network - for example, on the regional routes themselves - but do not directly 

influence the major’s performance on the flight in question will be valid instruments for 

the major’s integration decision at the origin airport of that flight.     

The logic of this instrumental variables approach is best illustrated with an 

example (see Figure 1 for a representation of this example).  Consider a particular Delta 

Air Lines flight from Boston to Atlanta one day in 2000.  This represents a single 

observation in our data.  For this observation, our ownership variable measures the extent 

to which Delta uses an owned regional to serve its regional routes into and out of the 

Boston airport, routes such as Boston-Albany or Boston-Burlington. Delta’s decision 

whether to use an owned or independent regional on, say, the Boston-Burlington route 

will depend on the returns to ownership on the Boston-Burlington route, on Delta’s other 

routes out of Burlington and on Delta’s other routes out of Boston, with the latter being 

precisely what our performance equation is trying to measure.  Characteristics of the 

Burlington airport will affect the returns to integration on the Boston-Burlington route as 

well as other routes out of Burlington and, as we show in our earlier work, are strongly 

correlated with Delta’s ownership decision on this regional route. Assuming 

characteristics of the Burlington airport do not directly affect Delta’s performance on the 

Boston-Atlanta route, they can serve as valid instruments for the ownership variable.  The 

same is true for the characteristics of the other regional endpoints that Delta connects to 

Boston with a regional partner.  Based on this logic, we instrument for major’s ownership 

decision at a particular airport with the characteristics of the endpoint airports that its 

regional(s) connect to that airport.  In particular, we use the characteristics that our earlier 

work found to predict owned regional use.  These characteristics are the long-run average 
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precipitation and snowfall at the airport and whether the airport is a hub for the major.14

Continuing with our example, the validity of our instruments depends on the 

assumption that the long-run weather conditions at Burlington and its hub status are 

uncorrelated with the error term in the performance equation for Delta’s Boston-Atlanta 

flight.  In order to assess the reasonableness of this assumption, it is helpful to think 

through what might be contained in the error term of our performance equation.  Even 

though our models include a full set of departure airport-date fixed effects and a large 

number of control variables, we only explain about 16 percent of the variation in 

departure delays.  The remaining variation must be due to airport-specific factors that 

vary within the day (and so are not captured by our airport-date fixed effects), airline-

airport specific factors that vary over the course of the year and idiosyncratic flight-level 

unobservables.  Such factors can include the actual timing of bad weather, air traffic 

control problems that occur at a specific time of day, mechanical or crew problems that 

affect a specific flight, or problems that occur elsewhere in the airline’s network that lead 

to propagating delays.   

  

Even though the returns to integration might vary with short-run fluctuations in weather, 

our earlier work and hence our instruments here use the long-run average weather at an 

airport because we assume adjustment costs prevent firms from changing their integration 

status in the short-run.   

Because our instruments measure characteristics of other airports in the major’s 

network, the risk of propagating delays could result in correlation between our 

instruments and the error in the performance equation.  For example, one might be 

concerned that long-run weather conditions at the Burlington airport are correlated with 
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realized weather conditions at Burlington and that realized weather at Burlington on a 

given day is correlated with Delta’s delays on flights from Boston that day.  For a number 

of reasons, we believe that long-run average weather conditions at the regional endpoints 

are unlikely to be correlated with the error terms in the performance equation.  First, we 

estimate specifications in which we add explicit controls for the realized weather at the 

regional’s endpoint airports on the same day and find that doing so has no effect on our 

two-stage least squared estimates.  Second, the correlation between average historical 

weather and the amount of rain or snow on a given day is very low.15

One could also raise a concern about correlation between the hub instrument and 

the error term in the performance equation.  Specifically, one could argue that whether or 

not Burlington is a hub for Delta provides information about the role of Boston in Delta’s 

network.  For example, regionals do not typically fly interhub routes.  So, if Burlington 

were a hub for Delta that would indicate that Boston was not.  If we could not perfectly 

control for the relationship between an airport’s role in an airline’s network and its 

delays, this could lead to correlation between the hub instrument and the error term in the 

performance equation.  However, as we explain in Section IV, we include a number of 

  Third, although 

delays certainly propagate within the major’s network, delays are much less likely to 

propagate from the regional’s network to the major’s network because aircraft and crew 

are not shared across majors and regionals (i.e. the primary mechanism through which 

delays cascade from one flight to another does not operate here).   Although passengers 

may connect between regional and major flights, airlines typically do not “hold” outgoing 

flights for late incoming passengers unless it is the last flight of the day which is 

something we can directly control for and find that doing so does not change the results.   
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airline-airport level control variables in the model, among them controls for whether 

either endpoint of the route is a hub for the major.  As well, we also estimate 

specifications with airline-airport fixed effects.  These will explicitly capture any 

relationship between the major’s network configuration and its departure delays.  These 

specifications do not allow us to estimate the direct effect of integration on performance; 

however, we can still estimate the interaction terms with weather and congestion, and we 

find that the results on these terms are highly robust to including the airline-airport fixed 

effects.   

Finally, to the extent that there is any residual correlation between average 

characteristics of the endpoints served by a regional and the performance of a major on 

its own flights on a given day, it should bias our two-stage least squares results towards 

finding that majors using owned regionals perform worse because our previous work 

shows that that airlines vertically integrate on routes that are more likely to experience 

schedule disruptions.   

 

IV. Data and Measurement 

Data Sources 

Our primary source of data is flight-level on-time statistics from the U.S. Bureau 

of Transportation Statistics.  This database contains every flight operated by all major 

U.S. carriers.16  We augment these data with information from several other sources.  

Data from the Official Airline Guide (OAG) provide the complete flight schedules of all 

domestic airlines, regionals as well as majors.17   Data from the Regional Airline 

Association (RAA) indicates which regional airlines are owned by a particular major.  



 19 

Together, the OAG and RAA data allow us to calculate an airline’s extent of vertical 

integration with its regionals at each airport at which it operates.  Data on the daily 

weather at each airport are taken from the National Oceanographic and Atmospheric 

Administration (NOAA).   

 

Construction of the Sample 

 Our sample includes domestic flights operated by the seven largest network 

carriers (American, Continental, Delta, Northwest, TWA, United and US Airways) in the 

year 2000.18,19  We begin with their flights that depart from the largest 100 U.S. airports 

and then impose the following restrictions.20  First, we exclude flights that depart from or 

arrive at airports in Alaska, Hawaii, Puerto Rico, Guam or the U.S. Virgin Islands 

because the nature of routes to these states and territories is quite different from travel 

within the contiguous 48 states.  Second, because our empirical approach exploits 

variation across airlines at an airport, we exclude departure airports at which we do not 

observe at least two majors using a regional.  Third, we exclude routes to or from New 

York’s LaGuardia airport because LaGuardia changed its slot control rules during 2000, 

resulting in a large increase in delays (see Forbes, 2008, for details).   Fourth, we drop 

observations with missing daily weather data.  Fifth, because we are relating a major’s 

departure delay on a route to its vertical integration with a regional at the departure 

airport, we exclude a major’s flights from airports at which it does not use a regional at 

all.  Finally, we exclude flights on Saturdays and Sundays so that our within-airport 

variation in an airline’s extent of vertical integration is not driven by within-week 

fluctuations in regional use on the same route.  Our final dataset includes 1,981,807 
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flights departing from 72 departure airports and arriving at 159 arrival airports on 260 

days.    

 

Variables  

 Variable names and definitions appear in Table 3.  Summary statistics are in 

Table 4.   

 

Performance Measures 

 Our main dependent variable is Departure Delay which measures the time 

between the scheduled departure and the actual departure of an aircraft from the gate.  

This is our preferred measure of performance because – compared to delays incurred on 

the runway or in the air - delays incurred at the gate are more likely to be under the 

airline’s control.  Note that the departure delay will be negative if the aircraft pushes back 

early from the gate.  Short negative delays of a few minutes are quite common.  

However, we exclude flights that leave more than 15 minutes early, as we suspect that 

they may represent a rescheduled flight.  We also exclude very long delays that appear to 

be flights that have been delayed and rescheduled for departure on the following day.  To 

do this, we identify flights for which the actual departure time recorded is earlier than the 

scheduled departure time and the minutes of delay recorded are consistent with the flight 

departing at the earlier departure time on the subsequent day.21  We exclude these flights 

because part of the delay incurred in these cases would be attributable to the fact that 

airports do not operate overnight, as opposed to the airline’s poor performance.22  As 

reported in Table 4, the average departure delay in our sample is just over 11 minutes.   
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The empirical analysis also uses several alternative dependent variables.  

Cancelled is a dummy variable that equals one if the flight is cancelled.  Arrival Delay 

measures the difference between a flight’s actual arrival time and its scheduled arrival 

time.  Cancelled or Arrival Delay > 30 minutes is a dummy variable that equals one if a 

flight is more than 30 minutes late on arrival or cancelled.  We construct an analogous 

variable using a 60 minute arrival delay.  The summary statistics in Table 4 indicate that 

about 4% of flights in our sample are cancelled, 18% are delayed over 30 minutes or 

cancelled and 11% are delayed over 60 minutes or cancelled.   

 

Ownership Measures 

To measure the extent of a major’s vertical integration with its regionals at an 

airport, we measure the fraction of all regional flights that a major has departing from an 

airport on a day that are operated by a regional that is owned.23  We call this variable 

Fraction Owned.  As Table 4 indicates, the mean of Fraction Owned is 0.56.  During our 

sample period, there are no changes in the ownership of any regional carriers.  Almost all 

of the variation in Fraction Owned therefore comes from differences across the 282 

carrier-airport combinations in our data.24  The small amount of variation in Fraction 

Owned within carrier-airport over time arises from two sources.  First, there are some 

changes in the number of regional flights by majors who use two regionals of different 

ownership types at the same airport.  Second, there are four instances in which a carrier 

switches from using one type of regional at an airport to using a different type of regional 

at that airport.  These are all cases in which the major had an existing relationship with 



 22 

the new regional at other airports prior to the switch.  Our results are robust to excluding 

these carrier-airport combinations from the estimation.   

As an alternate measure of integration, we also construct Owned Regional Flights 

which measures the number - rather than fraction - of all regional flights that a major has 

departing from an airport on a day that are operated by a regional that is owned.  

Although this measure has the advantage of capturing the scale of the regional’s 

operations, a drawback of this measure is that our instruments are only able to predict the 

decision to vertically integrate, not the scale of regional operations. As a result, we only 

use this variable in OLS specifications.  In our sample, the average number of owned 

regional flights that a major has operating at an airport on a day is 65. 

 

Proxies for the Likelihood of Adaptation (Weather and Congestion Measures) 

 The NOAA data contain daily observations from airport weather stations on the 

minimum, average and maximum temperature, and the total accumulated precipitation 

(measured in inches).  Based on these data, we construct Rain which measures 

precipitation on days on which the average temperature is above 32 degrees Fahrenheit 

and Snow which measures precipitation on days on which the average temperature is 32 

degrees Fahrenheit or less.25

 Our empirical approach requires us to measure “adverse” weather – i.e.: weather 

conditions that are likely to necessitate schedule adjustments.  To construct our main 

measure of adverse weather, we first calculate the 95th percentile of the daily rain 

  The average daily rainfall in our sample is 0.11 inches and 

the average daily snowfall is 0.08 inches.  Of course, there are many days on which there 

is no snow and many airports for which there is never any snow. 
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distribution for each airport in our sample.  We then construct the dummy variable 

Rain>95th Percentile which equals one on days on which the observed rainfall at the 

airport exceeds the 95th percentile of that airport’s rain distribution.  Thus, roughly 

speaking, Rain>95th Percentile captures an airport’s 18 rainiest days of the year.  We 

construct Snow>95th Percentile analogously.  The average amount of rain on days with 

Rain>95th Percentile equal to one is 1.29 inches and the average amount of snow on days 

with Snow>95th Percentile equal to one is 3.11 inches.  We construct all of the weather 

variables for the both the departure and arrival airport of a flight. 

 Using the within-airport rain distribution to identify days with “extreme weather” 

has two benefits.  First, it accounts for the fact that the same weather occurrence may 

have a different impact at different airports, depending on that airport’s regular weather 

patterns.  This is particularly important for the snow measure because a small amount of 

snow will generally be a much bigger disruption in a city that does not usually experience 

much snow than in a city with regular snowfall.  Second, this approach ensures that – at 

least for the rain variable - bad weather events are observed at all airports in our sample.  

Offsetting these benefits is the drawback that these measures do not capture the severity 

of the weather in any absolute sense.  Therefore, we also present specifications where we 

use the linear Rain and Snow variables and specifications where we use dummy variables 

that indicate the presence of any rain (Rain>0) or any snow (Snow>0). 

In addition to adverse weather, the likelihood of needing to make adaptation 

decisions may be greater during more congested time periods.  To capture this, we 

construct a measure of airport congestion that varies over the course of a day.  We do this 

by first calculating the maximum number of flights that we observe arriving at or 
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departing from an airport in an hour at any point in our sample.  We take this as a 

measure of the airport’s capacity.  Then, we calculate the number of flights arriving at or 

departing from an airport during any given hour and divide that by our capacity measure.  

The resulting ratio is called Congestion and it is matched to the flight-level delay data at 

the level of the departure airport-hour.26

 

  The mean of this variable in our sample is 0.66.  

Note that in our regressions, we measure this variable relative to its sample mean so that 

the coefficient on the uninteracted Fraction Owned variable can be interpreted as the 

effect of integration at the average level of congestion as opposed to at zero congestion.     

Flight Level Control Variables 

Because delays are generally thought to worsen over the course of a day, we 

control for the departure time of a flight.  To do this, we divide the day into seven three-

hour blocks and construct a dummy variable for each of these blocks.  We use the 5-8am 

block as the excluded time block.   

 

Airline-Airport Control Variables 

We control for whether a major’s flight departs from one of its hub airports 

(Departs from Hub) or arrives at one if its hub airports (Arrives at Hub).  We construct 

Regional Flights which equals the total number of daily regional flights that a major has 

departing from an airport and use this to control for an airline’s scale of regional 

operations (of either type) at an airport.  We also interact these controls with the weather 

measures to ensure that our interactions between the ownership and weather measures are 
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not capturing the fact that adverse weather may differentially affect airlines with a larger 

scale of operations (or a hub) at a particular airport. 

 

Airport Control Variables 

We construct Airport Flights which measures the total number of domestic flights 

scheduled to depart from (arrive at) an airport on a given day.  We also construct Slot 

which is a dummy for whether the airport is slot-controlled.27

 

  We construct these for 

both the departure and arrival airports of a flight. However, in most specifications, the 

departure airport variables will not be separately identified from the fixed effects.  Note 

that conditions at the arrival airport can affect departure delays, especially if the arrival 

airport has issued a so-called ground stop, which orders all flights that are scheduled for 

landing to remain at their departure airport until the ground stop is lifted 

V. Results 

 Our presentation of the results proceeds in several stages.  We begin by briefly 

describing the first stage regression for Fraction Owned.  We then describe a series of 

OLS regressions that are presented in Table 5.  These regressions present the basic 

relationships in the data, gradually incorporating additional fixed effects.  After that, we 

discuss the results of estimating our model using the instrumental variables approach 

described above.  We then present several extensions using alternate performance metrics 

and weather measures.  We conclude with some back-of-the-envelope calculations.   

 

First Stage Regression 
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 Appendix B presents the results of the first stage regression of Fraction Owned on 

the excluded instruments and the exogenous variables.  All of the instruments have highly 

significant effects and the signs of the effects are consistent with the findings in Forbes 

and Lederman (2009).  Owned regionals are more likely to be used when a greater 

fraction of the regional’s routes connect to the major’s hubs and when the endpoints 

served by the regional experience greater annual rain and snowfall.  Endpoints with more 

months with below freezing temperatures are less likely to be served by owned 

regionals.28

 

  Joint significance of the instruments is confirmed by the F-statistic presented 

at the bottom of the table.  The overall R-squared of the regression is 0.58.  The within R-

squared is 0.13.   

Ordinary Least Squares Results 

Table 5 presents a series of OLS regressions.  In the first column, we regress 

Departure Delay on Fraction Owned and our control variables.  We do not include fixed 

effects in this specification so that we can show the coefficients on all of the control 

variables. Consistent with the raw data in Table 2, we find that vertical integration 

between a major and regional is associated with shorter delays on the major’s flights.  

The point estimate implies that a major using only integrated regionals at an airport has 

departure delays that are, on average, three minutes shorter than a major using only 

independent regionals.  This compares to a mean delay in the sample of about 11 

minutes.  Thus, this initial finding is both statistically and economically significant. 

In the second column of the table, we add fixed effects for each airport-date 

combination and include these fixed effects in all subsequent specifications.  The 
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estimate on Fraction Owned is virtually unchanged.   The third column of the table adds 

interactions of Fraction Owned with the variables that proxy for the likelihood of having 

to make adaptation decisions (Rain>95th Percentile, Snow>95th Percentile and 

Congestion).  Consistent with the discussion in above, the results indicate that the 

performance advantage of vertically integrated majors increases on days with “heavy” 

rain and during congested periods of the day.  However, we find that the performance 

advantage actually decreases on days with “heavy” snow.  The magnitudes of the 

estimates suggest that – on days with “good” weather and during times with average 

levels of congestion – majors using only owned regionals at an airport have departure 

delays that are about 3 minutes shorter than majors using only independent regionals.  On 

days with rain above the airport’s 95th percentile, this advantage increases to about 7 

minutes.  As airport congestion increases, the performance advantage also increases, by 

about 0.4 of a minute for every 10 percentage point increase in congestion.  The 

coefficient on the snow interaction suggests that the performance advantage of integrated 

majors is entirely eliminated on days with snowfall above the airport’s 95th percentile.   

The next two columns of the table add additional fixed effects.  In (5-4), we add 

airline fixed effects to control for systematic differences in delays across the seven 

airlines in our sample.  Once we include these fixed effects, the coefficient on Fraction 

Owned becomes harder to identify because only four of our seven airlines use both 

owned and independent regionals.  We do not estimate a significant coefficient on 

Fraction Owned in this specification but all of the interaction terms have the same signs 

as before and are still significant.  In (5-5), we replace the airline fixed effects with 

airline-airport fixed effects.  These fixed effects completely absorb the uninteracted 
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ownership measure but still allow the interaction terms to be identified.  The results on 

these interaction terms are again consistent with those in the previous columns.   

In the final column of Table 5, we re-estimate (5-3) using Owned Regional 

Flights. Because we already include the number of regional flights of any type as a 

control, this variable measures the impact of increasing the number of flights by an 

owned regional carrier by one, while holding the major’s overall number of regional 

flights constant.  This variable has the advantage that it allows for the scale of integrated 

regional operations to matter.  We find that the OLS results are robust to this alternative 

way of measuring integration.  Carriers with a greater number of flights operated by an 

owned regional have a performance advantage which increases on days with heavy rain 

and at congested times of the day.  The interaction with extreme snow is positive, as we 

find in all previous columns.  A comparison of the estimates on Fraction Owned and 

Owned Regional Flights in (5-3) and (5-6) shows that the magnitudes of the estimated 

effects are quite similar.  The average number of owned regional flights that a major has 

an airport at which it uses an owned regional at all is about 100.  The coefficient on 

Owned Regional Flights (which is measured in hundreds) is -3.55 which indicates that, at 

the mean, the performance advantage is about three and a half minutes.  This is very 

similar to the coefficient of -2.935 estimated on Fraction Owned in (5-3).  

With respect to the coefficients on the control variables, we find that delays are 

longer for flights departing during congested times and for flights that depart later in the 

day.  We find that delays are generally longer for flights that depart from or arrive at the 

airline’s own hub and for flights that depart from or arrive at larger airports or slot-

controlled airports.  Delays are also longer on days with rain or snow above the 95th 
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percentile of the airport’s distribution (with weather conditions at both the departure and 

arrival airport having an effect a flight’s departure delay).  We also find that coefficients 

on the interaction effects of the airport size variables and the weather variables are 

positive indicating that adverse weather leads to even longer delays at busier airports. The 

effects of most of the control variables are consistent across specifications although, not 

surprisingly, some decrease in magnitude or even change signs once we include the 

airport-date fixed effects or the additional airline or airline-airport fixed effects.   

Our results on the control variables are consistent with previous work on the 

determinants of flight delays, such as Mayer and Sinai (2003), Mazzeo (2003), Rupp et 

al. (2006), Ater (2009) and Rupp (2009).  This work has largely focused on two empirical 

questions: (1) the relationship between hubs and delays; and (2) the relationship between 

route-level competition and delays. In perhaps the most well known empirical piece on 

delays, Mayer and Sinai find that hub airports have longer delays than non-hub airports 

and that, at hub airports, the hub carrier has disproportionately longer delays than non-

hub carriers.  This latter finding is consistent with our finding of a positive coefficient on 

the Departs from Hub variable in regressions that include airport-date fixed effects.  

Rupp et al. and Rupp also find longer delays for flights to or from hubs whereas Mazzeo 

finds that delays for such flights are shorter.  With respect to congestion, like us, Mazzeo 

and Ater find that delays increase with congestion. Like us, Mazzeo also finds that delays 

increase with the time of day.  Finally, with respect to weather, Mazzeo, Rupp et al. and 

Ater include weather controls in their regressions and find, as expected, that delays are 

longer in worse weather conditions.29
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Instrumental Variables Results  

Table 6 presents the results using the instrumental variables strategy described 

above.  All specifications include airport-date fixed effects and all of the control variables 

from Table 5; however, for the sake of space, the coefficients on some of these variables 

are not reported.  The first column includes Fraction Owned but not its interactions with 

the weather and congestion variables.  The IV results in (6-1) indicate a 2.8 minute 

performance advantage to integrated majors, virtually identical to the OLS finding in (5-

2).  Using the results from Forbes (2008) on the effect of flight delays on ticket prices, we 

calculate that these longer delays would translate into an average reduction in the price of 

a roundtrip ticket of $4.00 for direct passengers and $2.17 for connecting passengers.30

The second column adds the interaction terms. The coefficient on the direct effect 

of Fraction Owned in this specification is again negative and implies that - on days with 

rain and snow below the 95th percentile of the airport’s weather distribution and at the 

mean level of congestion - carriers that are fully integrated with their regionals at an 

airport have delays that are 2.4 minutes shorter than those that are not integrated.  This 

performance advantage increases to about 5.6 minutes on days with rain above the 95th 

percentile of the airport’s distribution.  In addition, an increase in congestion of ten 

percentage points increases the performance advantage of integrated carriers by about 

one minute.  It is interesting to note that although the estimates on Fraction Owned and 

its interaction with the rain measure are very similar to the OLS estimates, the coefficient 

on the congestion interaction doubles in magnitude.  This suggests an upward bias of the 

OLS estimate which is consistent with the expectation that vertical integration is 

(optimally) used to govern more difficult transactions.   
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In contrast to the OLS results, in the IV specifications, the coefficients on the 

snow interactions are never significant and the point estimates are negative though very 

small in magnitude.  This is again consistent with an upward bias in the OLS.  Although 

it may seem surprising that we do not estimate an additional performance advantage on 

snowy days, estimating the relationship with snow is difficult for several reasons. First, 

we have a large number of airports that never experience any snow and we have many 

airports that experience only small amounts of snow so that the 95th percentile of their 

snow distribution is either zero or a very small number.  Second, it may be difficult to 

detect differences in how well different airlines at an airport deal with extreme snow 

conditions because these may simply shut down airports for periods of time.  Finally, it 

may be the case that snow has more of an effect on long delays and/or cancellations.  We 

explore these issues further when we investigate alternate measures of delay and alternate 

weather measures in Sections V.D and V.E below.   

The remainder of Table 6 explores our IV results further.  In column (6-3), we 

add controls for realized weather at other airports in the carrier’s network on the same 

day.  For example, for a major’s flight between Boston and Atlanta on a particular day, 

we calculate the mean of Rain>95th Percentile and Snow>95th Percentile across the other 

airports that the major serves from Boston that day.  We do the same thing for the 

endpoints served by the major’s regional(s) from Boston that day.  Controlling directly 

for realized weather at the endpoints that the major’s regionals serve allows us to address 

the concern that the historical weather patterns at these airports – which we use as 

instruments – could be correlated with a source of error in the performance equation.  The 

results in (6-3) show that the coefficients on the ownership variables are virtually 
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unchanged when we add these controls.  Furthermore, realized weather at the regional’s 

endpoints has no effect on the delays experienced on the major’s flights.  In contrast, 

realized weather at the major’s other endpoints has positive and relatively large effects.  

Consistent with the discussion in Section III, this suggests that delays are likely to 

propagate through the major’s own network but less likely to propagate from regional’s 

network to the major’s because the major and regional do not share aircraft or crew.  

In the final column of the table, we include airline-airport fixed effects.  As 

described above, these additional fixed effects address the concern that there may be 

some residual correlation between our instruments and unobservable airline-airport 

characteristics.  The results are again very consistent with what we have found earlier.  

Overall, the results in Table 6 clearly suggest that use of an owned - rather than 

independent – regional at an airport improves a major’s operational performance at that 

airport, and that this performance advantage increases with extreme rain and with 

congestion.   

 

Alternative Performance Measures 

Table 7 investigates the effects integration on four alternative measures of 

operational performance: Cancelled, Arrival Delay, Arrival Delay>30 or Cancelled and 

Arrival Delay>60 or Cancelled (see Table 3 for definitions).  We use these additional 

performance measures for several reasons.  First, we want to make sure that our baseline 

results are robust to different ways of measuring flight delays.  Second, we want to check 

that the shorter delays that majors using owned regionals experience on average are not 

coming at the cost of higher cancellation rates or an increase in very long delays.  Third, 
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we want to investigate whether integrated airlines have an advantage in terms of arrival 

delays, especially long arrival delays, which is presumably what consumers care most 

about.  

In all four specifications in Table 7, we find that the direct effect of Fraction 

Owned is negative and highly significant and the coefficient estimates imply 

economically meaningful effects.  From (7-1), we estimate that, on days without heavy 

rain or snow and at the mean level of congestion, integrated majors experience 

cancellation rates that are 1.7 percentage points lower than those of non-integrated 

carriers (the mean cancellation rate in our sample is about 4 percent).  (7-2) indicates that 

integrated majors have arrival delays that are about 5 minutes shorter than non-integrated 

ones.  (7-3) and (7-4) indicate that their likelihood of having a flight cancelled or delayed 

by more than 30 (60) minutes is 4.2 (2.1) percentage points lower.   

The coefficients on the rain interactions are negative throughout the table, but are 

imprecisely estimated in (7-1) and (7-2).  We also find negative coefficients on the snow 

interactions in all specifications except (7-2), and they are statistically significant in (7-1) 

and (7-4).  These results suggest that the way in which integrated majors can affect their 

performance on days with extreme snow may be to reduce cancellations and long delays, 

even though the results in the previous table and in (7-2) show no statistically significant 

effects on mean departure and arrival delays.  The congestion interactions are negative 

and highly significant throughout this table and their effects are large.   

Besides providing a valuable robustness check, specifications (7-3) and (7-4) also 

allow us to explore whether our results might be driven by majors trying to “hide” delays 

by shifting them to their regionals, most of which are too small to meet government 
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reporting requirements.  Although some shifting of delays to regionals is probably 

optimal (because regionals carry fewer passengers per departure and/or because they 

have lower labor costs), if all integration did was allow majors to shift delays to 

unobservable margins, it would not reflect a true efficiency.  To investigate this, we 

exploit the fact that the statistic typically reported by the Department of Transportation 

and the media is the proportion of a carrier’s flights that are delayed more than 15 

minutes.  Therefore, if integrated majors were better able to shift delays to their regional 

partners, we expect that they would focus on flights with delays around 15 minutes and 

try to reduce these delays to just less than 15 minutes.  We expect they would focus to a 

much lesser extent on flights with much longer delays.  Our findings in Table 7 that 

integration also affects long delays and cancellations suggest that the benefits of 

integration are not merely due to the majors’ efforts to manipulate on-time statistics.   

 

Alternative Weather Measures  

Our final table explores alternative ways of measuring adverse weather, especially 

snowfall.  In Table 8, we present one specification that replaces our previous weather 

measures with linear measures Rain and Snow and another one with dummy variables 

that equal one if the airport experienced any rain or snow on that day.31  Our dependent 

variable in this table is Arrival Delay>60 or Cancelled which is one of the performance 

measures that, in Table 7, revealed a potential performance advantage of integration on 

days with snow.  We find again that the negative direct effect of Fraction Owned is very 

robust.  For these specifications, we also find negative effects on all the interactions of 

Fraction Owned with rain, snow and congestion, although the rain effect is insignificant 
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in (8-2).  The negative coefficients on the snow interactions suggest that – at least for 

some performance metrics – the advantage of integrated regionals may increase on days 

with snowfall.  However, we interpret even these results cautiously because these 

alternative snow measures still have insignificant effects on most of the other 

performance measures that we have used.   

 

Back of the Envelope Calculations 

We conclude this section with simple back-of-the-envelope calculations that 

relate the performance advantage of integration that we find to a rough estimate of the 

costs of integration.  We find that integrated carriers have departure delays that are on 

average 2.8 minutes shorter than those of independent carriers and arrival delays that are 

on average 5.2 minutes shorter.  Longer delays impose costs on airlines and reduce 

demand for their flights.  Although we do not have an estimate of how delays translate 

into higher costs, we can use Forbes’ results on the relationship between arrival delays 

and ticket prices, and combine them with data on direct and connecting passengers on the 

routes in our sample32 to estimate the demand-side benefit from integration for the 

average regional in our sample.  We find this benefit to be about $28 million a year.  

Because Forbes’ results are for passengers traveling to and from LaGuardia Airport in 

New York City, who may have a higher value of time than the average U.S. airline 

traveler, this number is likely an upper bound.  If we instead use the “[value] for aviation 

passenger travel time” of $0.55 per minute (in 2000 dollars) that Federal Aviation 

Administration (1997) recommends based on a survey of travelers nationwide, we find a 

lower benefit of $15 million a year.33   
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How does this compare to the costs of integration?  As Forbes and Lederman 

(2009) explain in detail, the most important component of these is the higher labor costs 

that result from vertical integration.  Although we do not have comprehensive data on 

differences in labor costs across regionals, we were able to get aggregate payroll data on 

five of the regionals in our sample for the year 2000 from the Bureau of Transportation 

Statistics.  The total annual payroll for these regionals ranges from $56 million to $326 

million, with an average value of $157 million.  We can only speculate on the actual 

differences in salaries between owned and independent regionals, but given these 

numbers those differences could certainly be of a similar order of magnitude as the 

benefits to integration that we compute.   

 

VI. Discussion  

 Consistent with our discussion in Section II, our empirical results indicate that 

ownership may allow majors to more efficiently re-optimize their networks when 

schedule adjustments become necessary and airport or airline resources are scarce.  

Although it is clear why the contracts used in this industry could lead to incentive 

problems between majors and independent regionals, one might question why either more 

sophisticated contracts or informal contracts cannot be used to better align incentives.  

We believe that neither formal nor informal contracts are likely to resolve the incentive 

problem in this setting.  First, consider a contract that compensates the regional based on 

the performance of the major’s entire network.  Although this more closely aligns the 

regional’s incentives with the major, the performance of the major’s overall network 

depends on the major’s effort as well as on the regional’s effort and both efforts are likely 
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unobservable to the other party.  As a result, this contract would give rise to moral hazard 

problems and be unable to achieve the first-best outcome (see Holmström, 1982).  

Furthermore, such a contract would expose the regional carrier to a great deal of risk.  

Recent changes in the industry – in particular, a greater reliance on the capacity purchase 

agreements described in Section II - suggest that regional carriers should be regarded as 

risk-averse.   

Second, consider a contractual arrangement that simply allocates to the major the 

rights to make any ex post adjustments to the regional’s schedule.  Our understanding is 

that this is occurs, at least under capacity purchase agreements.  However, having the 

rights to order specific schedule changes is not equivalent to having the rights to 

implement those schedule changes.34

Finally, consider the role that relational contracts may play.  Within its 

relationship with a particular major, an independent regional may have an incentive to 

develop a reputation for cooperation if there is value in continuing the relationship with 

the major.  However, cooperating with the major may lead to worse performance metrics 

for the regional.  Although the major it is working for will know whether the poor metrics 

reflect cooperation or poor performance, other majors that the regional may try to work 

for will likely not be able to distinguish the two.  Cooperation may therefore have the 

effect of reducing the regional’s ability to attract outside business which, in turn, will 

  At the time that schedule changes need to be 

executed, a major cannot simply replace its regional’s labor and execute these changes 

itself.  Because schedule changes ordered by the major must still be carried out by the 

regional, we expect that even with a contractual allocation of decision rights, incentive 

problems will remain. 
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weaken its bargaining position vis-à-vis its current major.  More generally, reputations 

for cooperation in this setting may be difficult to establish because the same observable 

metrics that are consistent with cooperation are also consistent with poor operational 

performance.   

Although we attribute the performance differences that we measure to differences 

in the incentives of owned and independent regionals, one might question whether our 

results would not also be explained by differences in the skill levels of owned and 

independent regionals.  Given that owned regionals tend to have higher labor costs, could 

they be employing more skilled employees – in particular, more skilled pilots?  We 

believe that differences in skills are unlikely to be responsible for the performance effects 

that we find. It is hard to imagine how differences in the skill levels of pilots at owned 

and independent regionals would lead to differences in the performance of the majors 

using those regionals.35

 

  Specifically, even if owned regionals did have more skilled 

pilots, this might affect the frequency and/or severity of incidents and accidents at the 

regional but this is unlikely to affect departure delays at the major.  One might 

hypothesize that pilot skill would affect arrival delays at the regional and, in turn, 

departure delays at the major.  However, given that flight speed is determined by the 

airline (not the pilot) and the precise timing of a flight’s arrival is determined by air 

traffic control (not the pilot), any possible relationship would seem to be quite weak. 

VII. Conclusion 

 This article has investigated whether – at a given airport, on a given day - the 

operational performance of majors using owned regionals differs from that of majors 
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using independent regionals.  Our results indicate that it does.  We find that majors using 

only owned regionals at an airport experience delays that are about 3 minutes shorter, on 

average, than the delays experienced by majors using only independent regionals.  This 

performance advantage increases on days with extreme rain and at congested times of 

day.  We also find that integrated majors experience long delays and cancellations less 

frequently.  These results are both statistically and economically significant.  We find 

much weaker evidence for an increase in the performance advantage of integrated airlines 

in snowy weather, but the two-staged least squares results on snow are at least broadly in 

line with those on rain and congestion.  Overall, our findings are consistent with the view 

that integration improves a firm’s ability to manage adaptation decisions.   

We believe that this article contributes to the existing literature in several ways.  

First, this article is the first to show that, for similar transactions, the operational 

performance of integrated firms differs from the performance of non-integrated firms, 

and to measure the size of these performance differences.  Second, we do this while 

attempting to control for the potential endogeneity of integration decisions both with 

numerous fixed effects and by instrumenting for the choice to vertically integrate.  Third, 

our setting allows us to not only estimate performance differences but also shed light on 

their cause.  In particular, the fact that airlines’ ownership decisions are fixed in the short-

run while the likelihood of adaptation decisions change on a daily basis provides us with 

a rich source of identification that is unavailable in many other settings.   
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 Figure 1 
Illustration of Identification Strategy 
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Table 1 
Majors and Regional Partners in 2000 

Regional carriers in bold are fully owned by the major 
 

MAJOR REGIONAL PARTNER 
American Airlines American Eagle Airlines 
 Business Express 
Continental Airlines  Continental Express 
 Gulfstream International Airlines 
Delta Air Lines Atlantic Coast Airlines/ACJet 
 Atlantic Southeast Airlines 
 Comair 
 SkyWest Airlines 
 Trans States Airlines 
Northwest Airlines Express Airlines, I 
 Mesaba Aviation 
Trans World Airlines Chautauqua Airlines 
 Trans States Airlines 
United Airlines Air Wisconsin 
 Atlantic Coast Airlines 
 Great Lakes Aviation 
 Gulfstream International Airlines 
 SkyWest Airlines 
US Airways Mesa Air Group/Air Midwest 
 Allegheny Airlines 
 Mesa Air Group/CCAir 
 Chautauqua Airlines 
 Colgan Airways 
 Commutair 
 Mesa Air Group/Mesa Airlines 
 Piedmont Airlines 
 PSA Airlines 

 
Source: Regional Airline Association (www.raa.org) 

  

http://www.raa.org/�
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Table 2 
Summary of Delay Distribution, by Organizational Form 

 
 Mean Delay p25 Delay p50 Delay p75 Delay Cancellations N 

<50% of Regional Flights at Airport 
are by Regional that is Owned  13.04 -3 0 12 0.05 790,749 

(88% equal 0) 

>50% of Regional Flights at Airport 
are by Regional that is Owned 9.88 -3 0 8 0.03 1,191,058 

(71% equal 1) 
Data is at the flight level.  Table shows differences in delays and cancellations across flights operated by majors with more than/less 
than 50% of their regional flights at the departure airport of the flight operated by a regional that is owned.   
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Table 3 

Variable Names and Definitions 
 

Variable Definition Source 

Dependent Variables   

Departure Delay Difference between scheduled departure and actual departure of aircraft 
from the gate. BTS On-time data 

Arrival Delay Difference between scheduled arrival and actual arrival of aircraft at the 
gate. BTS On-time data 

Cancelled =1 if flight is cancelled BTS On-time data 

Arrival Delay > 30 minutes or 
Cancelled =1 if arrival delay is more than 30 minutes or flight is cancelled BTS On-time data 

Arrival Delay > 60 minutes or 
Cancelled =1 if arrival delay is more than 60 minutes or flight is cancelled BTS On-time data 

   

Ownership Variables 

Fraction  Owned Regional Fraction of major’s regional flights at the departure airport that are 
operated by an owned regional partner OAG & RAA data 

Owned Regional Flights Number of major’s regional flights at the departure airport that are 
operated by an owned regional partner, in hundreds OAG & RAA data 

   

Weather and Congestion Variables  

Rain Daily precipitation, on days with average temperature >32 degrees 
Fahrenheit (inches) NOAA data 

Rain>95th Percentile =1 if rain at an airport on a day is greater than the 95th percentile rain 
observed at that airport  NOAA data 

Snow Daily precipitation, on days with average temperature <=32 degrees 
Fahrenheit (inches) NOAA data 

Snow>95th Percentile =1 if snow at an airport on a day is greater than the 95th percentile snow 
observed at that airport  NOAA data 

Congestion 
Number of flights departing/arriving from/at an airport in an hour divided 
by maximum number of flights observed departing/arriving from/at that 
airport at any point in our sample 

OAG data and 
Authors’ construction 

   

Airport Variables (defined for both departure and arrival airports) 

Total Airport Flights Total number of domestic flights scheduled to depart from (arrive at) the 
airport on a day, in hundreds OAG data 

Slot =1 if the airport is a slot-controlled airport (ORD, JFK, DCA); LGA is 
excluded, as described in text Authors’ construction 

   

Airline-Airport Variables 

Departs from Hub =1 if flight departs from an airport that is the operating airline’s hub Authors’ construction 

Arrives at Hub =1 if flight arrives at an airport that is the operating airline’s hub Authors’ construction 

Regional Flights A carrier’s total number of regional flights at an airport on a day, in 
hundreds OAG data 
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Table 4 
Means of Selected Variables 

 
 Mean St Dev Min Max 

Dependent Variables     
Departure Delay (min) 11.13 32.20 -15 1,076 
Arrival Delay (min) 11.05 36.43 -1,298 1,076 
Cancelled 0.04 0.19 0 1 
Arrival Delay > 30 minutes or Cancelled 0.18 0.39 0 1 
Arrival Delay > 60 minutes or Cancelled 0.11 0.31 0 1 
     
Ownership Variables 
Fraction Owned Regional 0.56 0.45 0 1 
Owned Regional Flights (in hundreds) 0.65 0.85 0 2.66 
     
Weather and Congestion Variables (departure airports) 
Rain (inches) 0.11 0.35 0 12.56 
Rain | Rain>95th Percentile=1 1.29 0.79 0.02 12.56 
Rain>0 0.27 0.44 0 1 
Snow (inches) 0.08 0.78 0 28.88 
Snow| Snow>95th Percentile=1 3.11 3.82 0.13 28.88 
Snow>0 0.03 0.18 0 1 
Congestion 0.66 0.19 0 1 
     
Airline-Airport Variables 
Departs from Hub 0.63 0.48 0 1 
Arrives at Hub 0.36 0.48 0 1 
Regional Flights (in hundreds) 1.03 0.79 0.01 2.98 
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Table 5 
Impact of Ownership on Delays 

OLS Estimates 
 

Dependent Variable Departure Delay (min) 
  (5-1) (5-2) (5-3) (5-4) (5-5) (5-6) 

 Ownership Variables 
Fraction Owned  -3.095** -3.108** -2.935** 0.137 

 
 

 
(0.213) (0.153) (0.151) (0.172) 

 
 

Fraction Owned*Rain>95th Percentile 
  

-4.239** -4.091** -4.128**  

   
(0.879) (0.816) (0.830)  

Fraction Owned*Snow>95th Percentile 
  

3.207** 3.204** 2.543*  

   
(1.147) (1.219) (1.183)  

Fraction Owned*Congestion 
  

-4.366** -1.944** -2.862**  

   
(0.458) (0.437) (0.437)  

Owned Regional Flights  
     

-3.255** 

      
(0.208) 

Owned Regional Flights*Rain>95th Percentile 
     

-5.258** 

      
(1.172) 

Owned Regional Flights*Snow>95th Percentile 
     

4.835** 

      
(1.488) 

Owned Regional Flights*Congestion 
     

-1.941** 

      
(0.250) 

 Flight Level Controls 
Congestion 4.295** 2.516** 5.085** 3.566** 4.034** 3.799** 

 
(0.416) (0.204) (0.340) (0.328) (0.331) (0.244) 

Departs 8am-11am 2.714** 3.289** 3.324** 3.260** 3.228** 3.339** 

 
(0.118) (0.102) (0.102) (0.102) (0.103) (0.102) 

Departs 11am-2pm 5.727** 6.316** 6.302** 6.358** 6.368** 6.277** 

 
(0.128) (0.129) (0.129) (0.129) (0.130) (0.129) 

Departs 2pm-5pm 9.880** 10.760** 10.798** 10.818** 10.802** 10.798** 

 
(0.163) (0.178) (0.178) (0.179) (0.179) (0.178) 

Departs 5pm-8pm 13.539** 14.583** 14.578** 14.569** 14.577** 14.555** 

 
(0.222) (0.241) (0.241) (0.241) (0.243) (0.241) 

Departs 8pm-11pm 12.733** 13.643** 13.687** 13.663** 13.627** 13.607** 

 
(0.263) (0.284) (0.285) (0.285) (0.286) (0.283) 

Departs 11pm-2am 9.135** 8.021** 7.850** 8.356** 8.707** 7.594** 

 
(0.558) (0.497) (0.489) (0.487) (0.486) (0.470) 

      Airline-Airport Controls 
   Departs from Hub 1.656** 0.696** 0.660* 0.791** 

 
-0.550* 

 
(0.387) (0.265) (0.261) (0.263) 

 
(0.263) 

Regional Flights -0.857** 0.755** 0.660** 0.030 
 

3.369** 

 
(0.250) (0.157) (0.154) (0.161) 

 
(0.229) 

Arrives at Hub 0.778** 0.098 0.004 -0.480** -0.671** 0.074 

 
(0.132) (0.093) (0.093) (0.095) (0.093) (0.092) 

Rain>95th Percentile*Departs from Hub 
  

-0.838 -0.830 -0.747 -2.537 

   
(1.759) (1.729) (1.706) (1.770) 
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Snow>95th Percentile*Departs from Hub  
  

-1.594 -0.866 -1.055 0.960 

   
(2.944) (2.979) (2.841) (3.180) 

Rain>95th Percentile*Regional Flights  
  

2.230* 2.298* 2.227* 6.488** 

   
(1.132) (1.118) (1.121) (1.506) 

Snow>95th Percentile*Regional Flights 
  

2.140 2.396 2.399 -2.397 

   
(1.672) (1.747) (1.672) (2.333) 

Rain>95th Percentile*Arrives at Hub 
  

2.421** 2.479** 2.489** 2.458** 

   
(0.450) (0.447) (0.443) (0.450) 

Snow>95th Percentile*Arrives at Hub  
  

0.390 0.790 0.727 0.478 

   
(0.550) (0.552) (0.549) (0.549) 

      
 

Departure Airport Controls 
Total Airport Flights 0.445** 

    
 

 
(0.052) 

    
 

Slot Constrained 1.802** 
    

 

 
(0.663) 

    
 

Rain>95th Percentile 4.021** 
    

 

 
(1.509) 

    
 

Snow>95th Percentile 4.938* 
    

 

 
(2.453) 

    
 

Rain>95th Percentile*Total Airport Flights 0.856** 
    

 

 
(0.290) 

    
 

Snow>95th Percentile*Total Airport Flights 0.754 
    

 

 
(0.503) 

    
 

      
 

Arrival Airport Controls 
Total Airport Flights 0.293** 0.275** 0.281** 0.271** 0.284** 0.266** 

 
(0.012) (0.010) (0.010) (0.011) (0.011) (0.010) 

Slot Constrained 0.896** 0.787** 0.842** -0.072 -0.350** 1.044** 

 
(0.127) (0.123) (0.122) (0.124) (0.126) (0.123) 

Rain>95th Percentile 1.792** 0.288 0.352 0.377 0.408+ 0.351 

 
(0.355) (0.243) (0.244) (0.243) (0.242) (0.244) 

Snow>95th Percentile 3.533** -0.541 -0.517 -0.439 -0.367 -0.502 

 
(0.778) (0.383) (0.381) (0.380) (0.377) (0.381) 

Rain>95th Percentile*Total Airport Flights 0.731** 0.585** 0.407** 0.401** 0.393** 0.407** 

 
(0.061) (0.047) (0.055) (0.055) (0.055) (0.055) 

Snow>95th Percentile*Total Airport Flights 0.585** 0.477** 0.450** 0.420** 0.404** 0.450** 

 
(0.092) (0.069) (0.078) (0.078) (0.077) (0.078) 

      
 

Departure Airport-Date Fixed Effects 
 

X X X X X 
Airline Fixed Effects 

   
X 

 
X 

Airline-Departure Airport Fixed Effects 
    

X  
Observations 1,904,623 1,904,623 1,904,623 1,904,623 1,904,623 1,904,623 
R Squared 0.04 0.16 0.16 0.17 0.17 0.16 
Standard errors are clustered on airport-date. + significant at 10%; * significant at 5%; ** significant at 1%.    
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 Table 6 
Impact of Ownership on Delays 

Instrumental Variables Estimates 
 

Dependent Variable Departure Delay (min) 
  (6-1) (6-2) (6-3) (6-4) 

 Ownership Variables 

Fraction Owned  -2.812** -2.361** -2.391** 
 

 
(0.296) (0.306) (0.309) 

 Fraction Owned*Rain>95th Percentile 
 

-3.248* -3.202* -3.264* 

  
(1.555) (1.569) (1.454) 

Fraction Owned*Snow>95th Percentile 
 

-0.715 -0.381 -1.655 

  
(2.009) (2.044) (2.018) 

Fraction Owned*Congestion 
 

-10.033** -10.114** -9.864** 

  
(0.960) (0.963) (0.986) 

 Flight Level Controls 
Congestion 2.526** 8.433** 8.483** 8.129** 

 
(0.203) (0.629) (0.630) (0.642) 

 Airline-Airport Controls 
Departs from Hub 0.724** 0.592* 0.611* 

 
 

(0.261) (0.260) (0.260) 
 Regional Flights 0.626** 0.666** 0.666** 
 

 
(0.154) (0.155) (0.155) 

 Arrives at Hub -0.004 0.106 0.155 -0.610** 

 
(0.097) (0.098) (0.098) (0.093) 

Mean ( Rain>95th Percentile) across Major’s Other Endpoints 
  

2.616** 2.163* 

   
(0.887) (0.873) 

Mean (Snow>95th Percentile) across Major’s Other Endpoints 
  

3.645** 3.393** 

   
(0.580) (0.561) 

Mean (Rain>95th Percentile) across Regional’s Endpoints 
  

-0.119 0.970 

   
(0.837) (0.843) 

Mean (Snow>95th Percentile) across Regional’s Endpoints 
  

-0.577 -0.418 

   
(0.548) (0.524) 

      Departure Airport-Date Fixed Effects X X X X 
Airline-Departure Airport Fixed Effects 

   
X 

Observations 1,904,623 1,904,623 1,902,866 1,902,866 
Standard errors are clustered on airport-date. + significant at 10%; * significant at 5%; ** significant at 1%.   All specifications estimated 
by two-stage least squares treating Fraction Owned and all of its interactions as endogenous.  All specifications include departure time 
dummy variables.  All specifications also include the additional airline-airport control variables that appear in Table 5 as well the arrival-
airport control variables that appear in Table 5. The coefficients on these variables are not reported but are available upon request.   
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Table 7 
Alternate Measure of Operational Performance 

 

Dependent Variable =1 if Cancelled Arrival Delay (min) =1 if Cancelled or 
Arrival Delay>30min 

=1 if Cancelled or 
Arrival Delay>60 min 

  (7-1) (7-2) (7-3) (7-4) 

     Ownership Variables 
    Fraction Owned -0.017** -5.203** -0.042** -0.021** 

 
(0.002) (0.355) (0.003) (0.003) 

Fraction Owned*Rain>95th Percentile -0.006 -2.676 -0.042** -0.030* 

 
(0.008) (1.705) (0.015) (0.013) 

 Fraction Owned *Snow>95th Percentile -0.019+ 1.968 -0.009 -0.030+ 

 
(0.012) (2.229) (0.019) (0.017) 

Fraction Owned*Congestion -0.019** -14.368** -0.134** -0.077** 

 
(0.005) (1.124) (0.011) (0.008) 

     Departure Airport-Date Fixed Effects X X X X 
Observations 1,981,807 1,904,204 1,981,807 1,981,807 
Standard errors are clustered on airport-date. + significant at 10%; * significant at 5%; ** significant at 1%.   All specifications estimated by 
two-stage least squares treating Fraction Owned and all of its interactions as endogenous.  All specifications include departure time dummy 
variables.  All specifications also include the additional airline-airport control variables that appear in Table 5 as well the arrival-airport 
control variables that appear in Table 5. The coefficients on these variables are not reported but are available upon request. (7-2) has fewer 
observations because the delay variable is missing for flights that are cancelled. 
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Table 8 
 Alternate Weather Measures 

 

Dependent Variable =1 if Cancelled or Arrival Delay>60min 

  (8-1) (8-2) 

  
 

Ownership Variables 
 

 
Fraction Owned  -0.023** -0.020** 

 
(0.003) (0.003) 

Fraction Owned*Rain -0.017*  

 
(0.008)  

Fraction Owned*Snow -0.008+  

 
(0.005)  

Fraction Owned*Rain>0 
 

-0.007 

  
(0.006) 

Fraction Owned*Snow>0 
 

-0.031* 

  
(0.014) 

Fraction Owned*Congestion -0.077** -0.078** 

 
(0.008) (0.008) 

  
 

Departure Airport-Date Fixed Effects X X 
Observations 1,981,807 1,981,807 
Standard errors are clustered on airport-date. + significant at 10%; * significant at 5%; ** significant at 1%.  All 
specifications estimated by two-stage least squares treating Fraction Owned and all of its interactions as 
endogenous.  All specifications also include the additional airline-airport control variables that appear in Table 5 
as well the arrival-airport control variables that appear in Table 5. The coefficients on these variables are not 
reported but are available upon request. The coefficients on these variables are not reported.   
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Appendix A -Construction of Instruments 
 
Fraction Owned measures the fraction of an airline’s regional flights departing from a 
given airport that are operated by a regional that is owned.  Our instruments for this 
variable are measures of the characteristics of the endpoint airports that are served from 
that airport by the regional carrier(s). For example, we instrument for Delta’s value of 
Fraction Owned at the Boston airport with the characteristics of the endpoint airports 
that Delta’s regionals serve from Boston.  Our choice of instruments is motivated by the 
analysis in Forbes and Lederman (2009).   
 
Specifically, for each flight that a major’s regional operates from a particular airport, we 
calculate the following four characteristics of the arrival airport of that flight: 
  

1. Hub: A dummy variable that equals one if the airport is a hub to the major. 
 
2. Precipitation: The average annual precipitation at the airport.  This average is 

taken over 25 years (1971-1995) of monthly weather data taken from the National 
Oceanic and Atmospheric Administration (NOAA).  When precipitation is frozen 
(i.e. snow, hail, or freezing rain), this variable measures the water equivalent of 
the precipitation. Note that this is different from the depth of snowfall.  The 
density of new snow is typically between 5% and 12% of water.   

 
3. Snowfall: The average annual snowfall at the airport.  This average is taken over 

30 years (1971-2000) of annual snow data and reported by NOAA.   
 
4. # of Freezing Months: The average number of months per year in which the 

average daily minimum temperature at the airport is below 32 degrees Fahrenheit.  
This average is taken over the25 years of monthly weather data from NOAA.   

 
After constructing these four measures for each regional flight from a particular airport, 
we calculate the average of these four variables over all of the flights that a particular 
major’s regional(s) operate from a given airport during our sample period.  For example, 
we would calculate the average of these four measures over all of the flights that Delta’s 
regionals operate from Boston in the year 2000.  This provides us four airline-airport 
level variables that we use as instruments for Fraction Owned (which is also an airline-
airport level variable).  We call these four variables Fraction of Regional’s Routes 
Arriving at Hub, Average Annual Precipitation at Endpoints Served by Regional, 
Average Annual Snowfall at Endpoints Served by Regional, and Average # of Months 
with Below Freezing Temperature at Endpoints Served by Regional.  The results of the 
first-stage regression of Fraction Owned on these variables, as well as the exogenous 
variables from the second-stage equation, are presented in Table 3. 
 
In our sample, the correlation between average annual precipitation and daily rain is 
0.022.  The correlation between average annual precipitation and daily snow is 0.005.  
The correlation between average annual snowfall and daily snow is 0.004.   
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Appendix B – First Stage Regression 

 
Dependent Variable Fraction Owned Regional 
  

Excluded Instruments  
  
Fraction of Regional’s Routes Arriving at Hub 0.391** 
 (0.005) 
Average Annual Precipitation at Endpoints Served by Regional 0.007** 
 (0.000) 
Average Annual Snowfall at Endpoints Served by Regional 0.014** 
 (0.000) 
Average # of Months with Below Freezing Temperature at Endpoints Served by Regional  -0.286** 
 (0.005) 
  
Flight Level Control Variables  
Congestion -0.049** 
 (0.002) 
  
Airline Controls  
Departs from Hub 0.214** 
 (0.013) 
Regional Flights 0.027** 
 (0.009) 
Arrives at Hub -0.115** 
 (0.002) 
  
Departure Airport-Date Fixed Effects X 
Observations 1,904,621 
F-statistic on Excluded Instruments 3080.85 
Prob>F 0.000 
Total R-squared  0.5755 
“Within” R-squared 0.1324 
Standard errors are clustered on airline-airport-date. + significant at 10%; * significant at 5%; ** significant at 1%.  All 
specifications include departure time dummy variables.  All specifications also include the additional airline control variables 
that appear in Table 5 as well the arrival-airport control variables that appear in Table 4.  The coefficients on these variables 
are not reported but are available upon request. 
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1 We use the term “operational performance” to distinguish what we measure from measures of overall 
performance such as profits.   
2 As we explain below, we expect the OLS estimate to be biased upwards due to the endogeneity of 
integration decisions. 
3 There are studies which test whether complexity or asset specificity affects the likelihood of vertical 
integration.  See Monteverde and Teece (1982), Anderson and Schmittlein (1984), Masten (1984), Masten 
and Crocker (1985), Joskow (1985), Hubbard (2001) and Levin and Tadelis (2010).  See Lafontaine and 
Slade (2007) for a review. 
4 There are also articles which look at the performance consequences of choosing an organizational form 
that is inconsistent with the transaction environment.  This literature on “transactional misalignment” 
originates with Masten et al. (1991) and includes contributions mostly from the strategy field.   
5 For a detailed description of the role of regionals in the U.S. airline industry, see Forbes and Lederman 
(2007). 
6 Examples of such routes include Boston to Burlington, VT, or New York City to Albany, NY.   
7 See Forbes and Lederman (2009) for a discussion of the source of lower labor costs among regional 
airline employees. In addition, Hirsch (2007) contains a comparison of pay rates at majors and regionals. 
8 In which case, we do not observe that regional operate flights for competitors of its parent company.   
9 If two airlines are effectively being operated as a single entity, the unions representing employees at those 
airlines may file an application with the National Mediation Board (NMB) seeking to have them declared a 
“single transportation system”.  If granted, the unions of the carriers will operate as a single entity.  
10 This discussion draws on American Institute of Certified Public Accountants (2007).  See also Forbes 
and Lederman (2010) for a more detailed discussion of the change in contractual form and an analysis of 
the incentive properties of the two contract types. 
11 Even if it were feasible to specify these contracts, the fact that such contracts are not written suggests 
that it would be prohibitively costly to do so.  Carlton (1979) shows theoretically that reducing uncertainty 
over the availability of inputs can be a motivation for vertical integration.   
12 Even capacity purchase agreements are unlikely to fully align the regional’s incentives for those of the 
major.  In Section VI, we discuss why majors and regionals are unlikely to be able to write contracts that 
would address this incentive problem. 
13 We thank an anonymous referee for this suggestion.  Because expected airport capacity utilization is 
known ex ante, one could worry that the decision whether to schedule during a congested time is 
endogenous.  However, the mean value of our congestion variable is quite similar across integrated and 
non-integrated carriers.  
14 The precise construction of the instruments is described in Appendix A.  One might believe that it is the 
variance of weather conditions, not their mean, which predicts integration.  We have explored this and 
found that the mean and the variance are highly correlated and we cannot separately identify their effects.   
15 We list these correlations in Appendix A. 
16 Carriers are required to report these data if they account for at least one percent of domestic passenger 
revenues in the prior year.   
17 Our data provide a representative week for each quarter. 
18 TWA went through financial difficulties during this period and was acquired by American Airlines in 
April, 2001.  We have checked that our results are robust to excluding TWA. 
19 All of the traditional network carriers employ regionals to some extent.  The so-called “low-cost 
carriers”, such as Southwest Airlines, do not subcontract flights to regional carriers. 
20 Airport rankings are based on year 2000 enplanements, compiled by the Federal Aviation Administration 
(FAA). 
21 This drops 495 observations. 
22 We do not drop flights that depart on the subsequent day if they depart during the few hours after 
midnight during which most airports are still open. 
23 Note that some majors use owned as well as independent regionals at the same airport.  Fraction Owned 
can therefore take on other values than 0 and 1. 
24 An analysis of variance shows that these differences explain 99% of the variation in Fraction Owned.   
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25 We assume an average water equivalent for snow of 8%, i.e. we convert 0.01 inch of accumulated 
precipitation on days with below freezing temperatures into 0.125 inches of accumulated snow. 
26 For 31 airports, we have capacity estimates from the FAA.  We have calculated an alternative congestion 
variable using this as the denominator.  The two measures have a correlation of 0.82 and give very similar 
results.  We prefer to use the one described above as it allows us to measure congestion for our full sample.    
27 In our sample, the slot-controlled airports are Chicago O’Hare, John F. Kennedy in New York, and 
Reagan National in Washington, DC.  We have excluded LaGuardia Airport in New York (see above).   
28 In the earlier article, we explain that this result is consistent with the observation that those airports have 
shorter delays on average.   
29 Besides rain and snow, Mazzeo and Ater also include dummies for particular weather events, such as fog.  
We have investigated these data, but found a very large number of missing values for our sample.  Because 
the missing values did not appear to be random, we decided not to include these variables.   
30 Note that Forbes’ results are for arrival delays.  To the extent that the equivalent arrival delays are longer 
than the departure delays – as our results below suggest – we would predict a larger effect on prices. 
31 We have also estimated a robustness check where we redefine Rain>95th Percentile and Snow>95th 
Percentile to equal zero on days with very small amounts of rain or snow and the results are very similar. 
32 These data come from the Department of Transportation’s Databank 1B. 
33 Morrison and Whinston (1989) find that an increase of one percentage point in the share of flights 
delayed more than 15 minutes reduces passengers’ willingness-to-pay by $0.61, measured in 1983 dollars.  
Their estimates are not directly comparable to the delay measures we use here.  
34 This is in contrast to the standard Grossman-Hart depiction of control rights which confer the right to 
determine precisely how an asset is used. 
35 This is in contrast to willful actions of the pilots that can lead to longer flight delays, as evidenced by Lee 
and Rupp’s (2007) finding that flight delays temporarily increased after airline pay cuts were announced.   


