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Abstract

Background: The transcription factor DOF AFFECTING GERMINATION1 (DAG1) is a repressor of the light-mediated

seed germination process. DAG1 acts downstream PHYTOCHROME INTERACTING FACTOR3-LIKE 5 (PIL5), the master

repressor, and negatively regulates gibberellin biosynthesis by directly repressing the biosynthetic gene AtGA3ox1.

The Dof protein DOF AFFECTING GERMINATION (DAG2) shares a high degree of aminoacidic identity with DAG1.

While DAG1 inactivation considerably increases the germination capability of seeds, the dag2 mutant has seeds with

a germination potential substantially lower than the wild-type, indicating that these factors may play opposite roles

in seed germination.

Results: We show here that DAG2 expression is positively regulated by environmental factors triggering

germination, whereas its expression is repressed by PIL5 and DAG1; by Chromatin Immuno Precipitation (ChIP)

analysis we prove that DAG1 directly regulates DAG2. In addition, we show that Red light significantly reduces

germination of dag2 mutant seeds.

Conclusions: In agreement with the seed germination phenotype of the dag2 mutant previously published, the

present data prove that DAG2 is a positive regulator of the light-mediated seed germination process, and

particularly reveal that this protein plays its main role downstream of PIL5 and DAG1 in the phytochrome B

(phyB)-mediated pathway.
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Background

The DNA BINDING WITH ONE FINGER (Dof) proteins

are a family of plant-specific transcription factors charac-

terised by a single zinc-finger DNA-binding domain. So

far Dof proteins have been identified in Chlamydomonas

reinharditii, where only one Dof gene is present, in ferns,

mosses and in higher plants [1-3].

The number of Dof genes varies depending on the spe-

cies; bioinformatic analysis of the Arabidopsis and rice

genome predicts 36 and 30 Dof genes, respectively [1],

while 26 are present in barley [2], 31 in wheat [4], and

28 in sorghum [5]. Members of this family have been

found to be involved in the regulation of diverse plant-

specific processes. Although the biological role of many

Dof proteins has not been clarified yet, a number of

them has been shown to be involved in responses to

light and phytohormones, as well as in seed develop-

ment and germination [6-15].

Seed germination is regulated by environmental fac-

tors such as light, temperature and nutrients, and by

phytohormones, particularly gibberellins (GA) and

abscissic acid (ABA) [16]. The effect of light is mediated

mainly by the photoreceptor phytochrome B (phyB) [17],

and light modulates in opposite ways the levels of GA and

ABA, as it induces GA biosynthesis and causes a reduction

in ABA levels [18,19]. Among the factors involved in

phyB-mediated GA-induced seed germination, the bHLH
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transcription factor PHYTOCHROME INTERACTING

FACTOR 3-LIKE 5 (PIL5) represents the master repressor

of this process in Arabidopsis [20].

We have previously shown that inactivation of the Dof

proteins DAG1 and DAG2 affects in opposite ways seed

germination: dag2 mutant seeds required more light and

GA than wild-type seeds to germinate, whereas germin-

ation of dag1 seeds was less dependent on these factors

[7,8,21].

Recently, we have also pointed out that DAG1 acts as

a negative regulator in the phyB-mediated pathway:

DAG1 gene expression is reduced in seeds irradiated for

24 hours with Red light, and this reduction is dependent

on PIL5; in pil5 mutant seeds DAG1 expression is re-

duced irrespective of light conditions, indicating that

DAG1 acts downstream of PIL5. Moreover, DAG1 nega-

tively regulates GA biosynthesis by directly repressing

the GA biosynthetic gene AtGA3ox1 [22]. Very recently

we showed that in repressing AtGA3ox1 DAG1 directly

interacts with the GA INSENSITIVE (GAI) DELLA pro-

tein [23]. Furthermore, we pointed out that DAG1 plays

a role also in embryo development, as inactivation of

DAG1 results in a significant number of embryo abnor-

malities [7,24], and simultaneous inactivation of both

DAG1 and GAI results in an embryo-lethal phenotype.

Here, we provide evidence suggesting that DAG2, op-

posite to DAG1, functions as a positive regulator in the

molecular pathway controlling seed germination, and

that it is negatively regulated by DAG1.

Differently from DAG1, DAG2, although it is expressed

during embryo development, is not likely to play a role in

this process, as dag2 mutant embryos develop similarly to

wild-type embryos.

Results

DAG2 inactivation affects phyB-dependent seed

germination

We have previously demonstrated that dag2 mutant

seeds have a reduced germination potential, as they are

substantially more dependent than the wild-type on the

stimuli that promote germination [8]. This germination

phenotype is opposite to that of dag1 mutant seeds. As

we have recently shown that DAG1 is a component of

the phyB-mediated pathway controlling seed germin-

ation in Arabidopsis [22,23], we set up to verify whether

DAG2 is also a component of this regulatory network.

Since seed germination, although promoted mainly by

phyB, may be induced also by phyA under very low light

fluences [17], we checked whether Red (R) or Far Red

(FR) light may control expression of the DAG2 gene.

Analysis of wild-type seeds exposed to phyB- or phyA-

dependent conditions, according to Oh et al. 2006 [25],

revealed that the DAG2 gene is induced by exposure to

R light (Figure 1A), whereas DAG2 expression in seeds

exposed to FR light was not significantly different than

in seeds kept in the dark (Figure 1B). To assess whether

DAG2 plays its role under R light, we analysed seed ger-

mination under phyB-dependent conditions [22] using

the dag2 mutant previously characterised [8], compared

to the corresponding wild-type (Ws-4). Germination of

dag2 mutant seeds was significantly lower than that of

wild-type seeds (30% and 90%, respectively - Figure 1C),

thus confirming that DAG2 plays a positive role in seed

germination and showing that it acts in the phyB-

mediated pathway.

Since water uptake is a fundamental requirement for

seed germination, we verified whether expression of

DAG2 was regulated during imbibition. We performed

RT-qPCR assays on wild-type (Ws-4) dry seeds, and on

seeds imbibed under White (W) and R light or in the

dark for 12 and 24 hrs. Figure 2A shows that, compared

to the low amount present in dry seeds, DAG2 expres-

sion in seeds was much increased following water uptake

in the dark (2 and 4 fold, respectively, at 12 and 24 hrs).

Interestingly, the increase in DAG2 mRNA level in seeds

exposed to W or R light was even higher, probably due

to the effect of both light and imbibition (3.7 and 7.8

fold in W light and 4 and 7-fold in R light, at 12 and

24 hrs, respectively - Figure 2A). GUS histological as-

says, performed on seeds of the DAG2:GUS transgenic

line [8], dry or imbibed 12 hours under W light or in the

dark respectively, showed that the DAG2 promoter was

active only in the vascular tissue (Figure 2B).

DAG2 is directly regulated by DAG1

We have previously investigated the genetic interactions

between the DAG2 and DAG1 genes by isolating the

dag2dag1 double mutant, and showed that DAG1 is epi-

static over DAG2 [8]. Since the function of DAG2 appears

to be opposite to that of DAG1, we verified whether

DAG1 and DAG2 would mutually affect their expression,

by performing an RT- qPCR analysis in dag1 and dag2

mutant seeds imbibed for 12 hours in the dark or under R

light. As shown in Figure 3A, expression of DAG2 is sig-

nificantly (approximately 3-fold) increased by lack of

DAG1, irrespective of light conditions. Conversely, DAG1

expression level in wild-type and dag2 mutant seeds

was comparable, both in the dark and under R light

(Figure 3B).

To assess whether DAG1 regulates DAG2 by directly

binding to the DAG2 promoter in vivo, we performed

chromatin immunoprecipitation (ChIP) assays, utilizing

the dag1DAG1-HA line previously reported [22,23]. A

scheme of the DAG2 promoter is reported in Figure 3C,

showing the positions of the PCR fragments amplified for

the ChIP assays, each containing different numbers of Dof

binding sites: 0 (a, b), 4 (c) and 7 sites (d). Consistently,

anti-HA antibodies revealed that the amplification of
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fragments c and d were the most efficient, compared to

the positive control, the fragment B3 of the AtGA3ox1

promoter bound by DAG1-HA, as previously reported

[23]. On the contrary, the signal for fragments a and b was

quite faint. No PCR product was present for any of the

fragments in the sample precipitated without antibodies as

Figure 2 DAG2 expression is induced by imbibition. Relative

expression level of DAG2 in wild-type dry seeds (0 h), or imbibed 12

(12 h) or 24 hours (24 h) in the dark (D) or under White (W) or Red

(R) light (A). Relative expression levels were normalized with that of

the ACTIN2 (At3g18780) gene, and are presented by the ratio of the

corresponding mRNA level in dry seeds, which was set to 1. Similar

results were obtained from three independent experiments, and a

typical result is presented with SD values. Significative differences

were analyzed by t-test (*P ≤ 0,05). Histochemical staining of DAG2:

GUS dry seeds, or imbibibed 12 hours under W light (W) or in the

dark (D) (B).

Figure 1 Mutation of DAG2 affects seed germination under R light.

Relative expression level of DAG2 in wild-type seeds imbibed 24 hours in

the dark (D), or under phyB-dependent conditions, (A), and in the dark

or under phyA-dependent conditions (B). Relative expression levels were

normalized with that of the UBQ10 (At4g05320) gene, and are presented

by the ratio of the corresponding mRNA level in Dark, which was set to

1. Similar results were obtained from three independent experiments,

and a typical result is presented with SD values.Germination rates of

wild-type and dag2 mutant seeds, grown 5 days under phyB-dependent

germination conditions (C). Error bars = SEM. The diagram at top depicts

the light treatment scheme for the experiment. FRp, Far Red pulse (40

μmol m−2 s−1); Rp, Red pulse (90 μmol m−2 s−1). Significative differences

were analyzed by t-test (*P ≤ 0,05).
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a negative control, and not even for the negative control

on wild-type seeds (Figure 3D; Additional file 1: Figure S1).

These results indicate that DAG1 negatively regulates

DAG2 by directly binding the DAG2 promoter.

PIL5 negatively regulates DAG2 in the Dark

Since DAG1 and DAG2 seem to have opposite roles in

the phyB-mediated seed germination pathway, we won-

dered whether PIL5, which positively regulates DAG1,

might negatively control the expression of DAG2. To

verify this hypothesis, we analysed the expression of the

DAG2 gene in wild-type and pil5 mutant seeds after

12 hours imbibition in the dark or under R light. Inter-

estingly, as shown in Figure 4, the relative amount of

DAG2 in pil5 mutant seeds in the dark was significantly

higher than in the wild-type, suggesting that PIL5

negatively regulates the expression of DAG2 in the dark.

On the other hand, DAG2 expression level in R light

does not depend on PIL5, as it is degraded following

interaction with phyB.

The DELLA proteins GAI and RGA are negative regu-

lators of seed germination, acting downstream of PIL5

[26]. In particular, we have recently shown that GAI and

DAG1 mutually regulate their expression level and dir-

ectly interact with each other [23]. Thus, we set to assess

whether GAI and/or RGA might control the expression

level of DAG2. Analysis of DAG2 expression on gai-t6

and rga28 mutant seeds and on the corresponding Col-0

wild-type seeds, imbibed 12 hours in the dark or under

R light, revealed that neither GAI nor RGA control DAG2

expression, as the relative amount of DAG2 mRNA was

similar in the gai-t6 and rga28 single mutants compared

Figure 3 DAG2 is directly regulated by DAG1. Relative expression level of: DAG2 in dag1 mutant and wild-type (WT) seeds (A), and of DAG1 in

dag2 mutant and wild-type seeds (B). Seeds were imbibed 12 hours in the dark (D), or under R light (R). Relative expression levels were normalized

with that of the UBQ10 gene and are presented by the ratio of the corresponding wild-type mRNA level in D, which was set to 1. Similar results were

obtained from three independent experiments, and a typical result is presented with SD values. Significative differences were analyzed by t-test (*P ≤

0,05). (C) Graphic representation of the DAG2 promoter. Underlying thick lines marked by letters (a, b, c, d) are referred to different promoter fragments

used for qPCR, containing 0 (a, b), 4 and 7 Dof sites respectively (c,d). (D) Chromatin from dag1DAG1-HA seeds was immunoprecipitated with anti-HA

or without antibody, and the amount of DNA was measured by qPCR. B3 is referred to the positive control, fragment B3 of the AtGA3ox1 promoter

bound by DAG1-HA The values of fold enrichment are the average of three independent experiments presented with SD values. Significative fold

enrichment was analyzed by t-test (*P ≤ 0,05).
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to the wild-type, under both light conditions (Figure 5A,

B). To verify whether DAG2 might regulate expression of

these DELLA proteins, we analysed the expression of GAI

and RGA in dag2 mutant seeds compared to the wild-

type. As shown in Figure 5C, the expression of the RGA

gene was significantly increased in dag2 mutant seeds,

whereas GAI expression in wild-type and dag2 mutant

seeds was not significantly different, both in the dark and

under R light (Figure 5D).

These results point to DAG2 as a positive component

of light-mediated signalling pathway, downstream of

PIL5 and in turn controlling the DELLA protein RGA in

the phyB signalling pathway.

We then verified whether expression of some factors

known to be involved in the phyA-signalling pathway

[27] may be affected in dag2 mutant seeds. In particular,

we analysed expression of the FR light-regulated ARABI-

DOPSIS THALIANA HOMEOBOX PROTEIN 2 (ATHB2)

and PHYTOCHROME INTERACTING FACTOR 3-LIKE

2 (PIL2) genes, of the GA-regulated GA-STIMULATED

ARABIDOPSIS 4 and 6 (GASA4 and GASA6), and of the

ABA signalling gene ABA INSENSITIVE 4 (ABI4). Our

data revealed that under phyA-dependent conditions

neither expression of ATHB2 and PIL2, nor that of

ABI4 were affected in the dag2 mutant (Additional file

2: Figure S2) whereas expression of both GASA4 and

GASA6 was downregulated, thus opening the possibility

that DAG2 may also play a role in phyA signalling.

The dag2 mutation alters GA metabolism

It has been shown that phyB controls the ratio of GA

and ABA levels during seed germination by altering the

expression of different GA and ABA metabolic genes

through PIL5 [18,26]. In particular, DAG1 directly re-

presses the GA biosynthetic gene AtGA3ox1 in cooper-

ation with GAI [22,23], and its inactivation affects

expression of the ABA metabolic genes ABA1, ABA2

and CYP707A2 [22].

As DAG2 seems to have a role opposite to DAG1 in

seed germination, we investigated whether DAG2 would

regulate the expression of GA and ABA metabolic genes

in germinating seeds. We performed a RT-qPCR analysis

of the expression of the GA biosynthetic genes AtGA3ox1,

AtGA3ox2 and of the catabolic gene AtGA2ox2 in dag2

and wild-type seeds imbibed 12 hours in the dark or under

R light. As shown in Figure 6A, the expression of both

GA biosynthetic genes was significantly reduced in dag2

mutant seeds irrespective of light conditions, whereas the

catabolic gene AtGA2ox2 was expressed similarly in dag2

and wild-type seeds (Figure 6A).

As for ABA metabolism, we analysed the expression

level of the biosynthetic genes ABA1, ABA2, NCED6

and NCED9, and of the catabolic gene CYP707A2, on

dag2 and wild-type seeds imbibed 12 hours in the dark

or under R light. The expression profile of the biosyn-

thetic genes, as well as of the catabolic gene CYP707A2

did not show significant differences in dag2 and wild-

type seeds (Figure 6B).

We have previously shown that the sensitivity of seeds

to GA is affected by mutation of the DAG2 gene: a con-

centration of GA 10-fold higher than for wild-type seeds

was needed for dag2 mutant seeds to attain 50% germin-

ation [8]. To verify whether GA affect DAG2 expression,

we carried out an RT-qPCR analysis on wild-type seeds

imbibed 24 hours in the presence of GA or of paclobu-

trazol, an inhibitor of GA biosynthesis. Since GA metab-

olism is controlled by the ABA level [18], we also

checked DAG2 expression on wild-type seeds imbibed

24 hours in the presence of ABA. The results of this

analysis did not show any significant difference in DAG2

transcript levels in all conditions tested, clearly showing

that the DAG2 gene is not regulated by GA nor by ABA

irrespective of light conditions (Figure 7).

Inactivation of the DAG2 gene does not affect embryo

development

We have recently shown that DAG1 is expressed during

embryo development, and that lack of DAG1 affects this

process [24]. Thus, we set to assess whether also DAG2

is required for embryo development. We first analyzed

the expression of DAG2 during embryo development by

histochemical GUS analysis of seeds of the DAG2:GUS

transgenic line. GUS activity was observed in embryos at

Figure 4 DAG2 expression is repressed by PIL5. Relative

expression level of DAG2 in pil5 mutant and wild-type seeds. Seeds

were imbibed 12 hours in the dark (D), or under R light (R). Relative

expression levels were normalized with that of the UBQ10 gene, and

are presented by the ratio of the corresponding wild-type mRNA

level in D, which was set to 1. Similar results were obtained from

three independent experiments, and a typical result is presented

with SD values. Significative differences were analyzed by

t-test (*P ≤ 0,05).
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the heart, torpedo, and bent-cotyledon stages. Interest-

ingly, GUS staining was extended to all cells at the heart

stage, whereas from the torpedo stage on it was re-

stricted to the procambium (Figure 8A). These results

were confirmed and extended to later seed development

stages by a RT-qPCR analysis on wild-type embryos at

13, 16 and 19 Days After Pollination (DAP), compared

to mature seeds, to verify whether the DAG2 gene was

expressed also during seed maturation.

Expression of DAG2, at 13 and 16 DAP was extremely

high (63- and 57-fold the basal level, respectively), and

gradually decreased at 19 DAP (24-fold) compared to

mature seeds (Figure 8B).

Despite the high expression level of the DAG2 gene

during embryo and seed development, microscopic ana-

lysis of dag2 mutant embryos did not reveal any notice-

able phenotypical alteration (Figure 8C).

Discussion
We had previously shown that the dag2 mutant has

seeds which require higher light fluences and higher GA

levels than wild-type ones to germinate [8], suggesting a

positive role of the Dof transcription factor DAG2 in the

regulation of seed germination.

Here, we have expanded our analysis of the function of

DAG2 and we confirm the positive role of DAG2 in seed

germination and provide molecular and genetic evidences

that assign this protein to the phyB/PIL5 pathway.

To date the molecular pathway controlling seed ger-

mination has been partially elucidated. In this model

PIL5 acts as the master repressor, which inhibits seed

germination in the dark partly by activating the expres-

sion of the genes encoding the DELLA proteins RGA

and GAI - which repress germination acting as negative

GA signaling components - and of the transcription fac-

tors ABA INSENSITIVE 3 and 5 (ABI3 and ABI5) - which

function as positive ABA signaling molecules [26,28].

Other transcription factors acting as repressors have been

added in this pathway: the bHLH transcription factor

SPATULA (SPT) [29], the C3H-type zinc finger protein

SOMNUS (SOM) [30], and the Dof transcription factor

DAG1, which we have shown to directly regulate the GA

Figure 5 DAG2 expression is regulated by RGA and GAI. Relative expression level of: DAG2 in rga28 (A), and gai-t6 mutant seeds (B), and of RGA

(C) or GAI (D) in dag2 mutant seeds, compared to wild-type seeds. Seeds were imbibed 12 hours in the dark (D), or under R light (R). Relative expression

levels were normalized with that of PP2A (At1g13320) (A, B), or of UBQ10 (C, D), and are presented by the ratio of the corresponding wild-type mRNA

level in D, which was set to 1. Similar results were obtained from three independent experiments, and a typical result is presented with SD values.

Significative differences were analyzed by t-test (*P≤ 0,05).
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biosynthetic gene AtGA3ox1, with the cooperation of GAI

[22,23].

DAG1 and DAG2 share 77% overall aminoacidic iden-

tity, with 100% identity in the Dof domain and, based on

the opposite germination properties of dag1 and dag2 mu-

tant seeds, we had assumed that the function of these two

Dof proteins was opposite. This was also supported by

DAG1 overexpression, which caused phenotypes similar

to mutation of DAG2 [8]. Consistently, germination of

dag2 mutant seeds in phyB-dependent conditions (i.e.

under R light) was significantly reduced compared to

wild-type seeds, whereas dag1 seeds showed a higher ger-

mination frequency [21,22]. In addition, DAG2 expression

is induced by exposure to R light, as opposed to DAG1,

whose transcript level is lower in R light than in the

dark [22].

Analysis of the germination properties of dag2dag1

double mutant seeds revealed that the dag1 mutation is

epistatic over the dag2 one [8]. Consistent with these

previous reports, here we showed that DAG2 expression

Figure 6 Mutation of the DAG2 gene affects GA biosynthesis. Relative expression level of AtGA3ox1, AtGA3ox2 and AtGA2ox2 (A), and of ABA1,

ABA2, NCED6, NCED9 and CYP707A2 (B) in dag2 mutant seeds compared to wild-type seeds. Seeds were imbibed 12 hours in the dark (D), or under R

light (R). Relative expression levels were normalized with that of the UBQ10 gene, and are presented by the ratio of the corresponding wild-type mRNA

level in D, which was set to 1. Similar results were obtained from three independent experiments, and a typical result is presented with SD values.

Significative differences were analyzed by t-test (*P≤ 0,05).

Figure 7 DAG2 expression is not altered by ABA or GA. Relative expression level of DAG2 in wild-type seeds imbibed 24 hours in the presence of

GA, of Paclobutrazol, an inhibitor of GA biosynthesis, or of ABA in the dark (D), or under R light (R), compared to seeds imbibed in water as a control

(H2O). Relative expression levels were normalized with that of the UBQ10 gene, and are presented by the ratio of the corresponding mRNA level in

seeds imbibed in water, which was set to 1. Similar results were obtained from three independent experiments, and a typical result is presented with

SD values.
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is negatively controlled by DAG1, and that DAG1 dir-

ectly binds the DAG2 promoter as demonstrated by

ChIP assay.

This provides molecular support to the genetic evi-

dence of the epistatic relationship between these two

Dof proteins shown in previous work [8]. We show here

that DAG2 is also repressed by PIL5, since the DAG2

mRNA level is significantly increased in pil5 mutant

seeds in the dark but not under R light, where PIL5 is

degraded following interaction with phyB in its activated

form (Pfr).

Since DAG1 directly interacts with GAI, and cooper-

ates with this DELLA protein in repressing the GA bio-

synthetic gene AtGA3ox1 [23], and in the light of the

opposite role of DAG2 in this molecular pathway, one

could hypotesize a relationship of DAG2 with RGA or

GAI. Interestingly, our results revealed that expression

of RGA, but not of GAI, is significantly affected in dag2

mutant seeds exposed to R light, suggesting that DAG2

may negatively regulate this DELLA gene, whereas ex-

pression of DAG2 is not likely to be controlled by both

RGA and GAI, as DAG2 transcript levels are similar in

rga28 and in gai-t6 mutant seeds compared to wild-type

seeds, in both light conditions.

Our expression analysis under phyA-dependent condi-

tions further supports the notion that DAG2 acts in the

phytochrome-mediated seed germination. In fact, of the

marker genes of the phyA-dependent germination path-

way we analyzed, PIL2, ATHB2, and ABI4 remained un-

affected in the dag2 mutant, while GASA4 and GASA6

were severely downregulated - consistent with the role

of DAG2 in the positive control of GA biosynthesis -

opening the interesting possibility that DAG2 partici-

pates also in phyA signalling.

It should be noted that GASA4 has been previously

characterised as a regulatory protein, induced by GA

and involved in seed development and germination, in-

dependently of light conditions [31,32].

Phytochromes promote seed germination partly through

GA. Red light induces the expression of the two GA ana-

bolic genes GA3-oxidase genes GA3ox1 and GA3ox2,

Figure 8 DAG2 inactivation does not affect embryo

development. Histochemical staining of DAG2:GUS during

embryogenesis, in early globular, globular, heart, late heart, torpedo

and mature embryo (A).Relative expression level of DAG2 in wild-type

seeds at 13, 16 and 19 Days After Pollination (DAP), and in mature

seeds (28 DAR). Relative expression levels were normalized with that of

the UBQ10 gene, and are presented by the ratio of the corresponding

mRNA level in mature seeds, which was set to 1. Similar results were

obtained from three independent experiments, and a typical result is

presented with SD values. Significative differences were analyzed by

t-test (*P≤ 0,05) (B). Phenotypes of wild-type (a, c) and dag2 mutant

(b, d) embryos, at globular (a, b) and heart stage (c, d) (C).

Santopolo et al. BMC Plant Biology  (2015) 15:72 Page 8 of 11



whereas it represses the GA catabolic gene GA2ox2

[33,34]. Consistent with a positive role of DAG2 in seed

germination, mutation of the DAG2 gene severely affects

expression of both AtGA3ox1 and AtGA3ox2, although it

does not alter the expression level of AtGA2ox2. Unlike

DAG1, DAG2 does not seem to play its function through

regulation of ABA metabolism, as the expression profile

of the ABA metabolic genes tested is quite similar in dag2

and wild-type seeds [22].

In recent years, the molecular mechanisms under-

lying light-mediated seed germination has been partly

elucidated; however, it still remains an open question

which are the positive regulators of this process. In fact,

so far only LONG HYPOCOTYL IN FAR RED1 (HFR1)

has been identified as a positive regulator of seed ger-

mination: HFR1 acts upstream of PIL5 and interacts

directly with PIL5 thus sequestering it to prevent it

from binding to its target genes [35]. Interestingly, ger-

mination of hfr1 mutant seeds under phyB-dependent

germination conditions is very similar to that of dag2

mutant seeds, strengthening the notion that DAG2 is

also a positive regulator in the phyB-dependent seed

germination pathway.

As previously reported, DAG2 and DAG1 show a very

similar expression profile, restricted to the vascular tis-

sue [8], and we showed that during embryo develop-

ment, DAG1 is expressed from late globular stage

[22,24]. We also showed that dag1 mutant embryos dis-

played abnormal cell divisions at globular stage, altering

the radial symmetry of the embryo axis [24].

Here we showed that, in contrast with DAG1, al-

though also DAG2 is expressed during embryo develop-

ment, its absence does not produce obvious embryo

phenotypes.

Conclusions

Our genetic and molecular data indicate that DAG2 is a

new positive factor of the phyB/PIL5-mediated seed ger-

mination pathway. DAG2 is located downstream PIL5

and DAG1, which directly represses DAG2 expression.

Consistent with previous genetic data, DAG2 plays an

opposite role to DAG1, although our results indicate

that DAG2 acts on GA, but not on ABA, metabolism.

Methods
Plant material and growth conditions

dag2 is the allele described in Gualberti et al. [8] in Ws-

4 ecotype.

All Arabidopsis thaliana lines used in this work were

grown in a growth chamber at 24/21°C with 16/8-h day/

night cycles and light intensity of 300 μmol/m−2 s−1 as

previously described [7,22].

Seed germination assays

All seeds used for germination tests were harvested from

mature plants grown at the same time, in the same con-

ditions, and stored for the same time (28 Days After Rip-

ening, DAR) under the same conditions. Germination

assays were performed according to Gabriele et al. [22].

For phyB-dependent germination experiments, seeds

were exposed to a pulse of FR light (40 μmol m−2 s−1),

then a pulse of R light (90 μmol m−2 s−1) and subse-

quently kept in the dark for 5 days. Germination assays

were repeated with three seed batches, and one repre-

sentative experiment is shown. Bars represent the

mean ± SEM of three biological repeats (25 seeds per

biological repeat). P values were obtained from a Stu-

dent’s unpaired two-tail t test comparing the mutant

with its control (* = p ≤ 0,05).

Expression analysis

For expression analysis, seeds were imbibed for 12 or

24 hours, on five layers of filter paper, soaked with 5 ml

water, exposed to a pulse of FR (40 μmol m−2 s−1), then

incubated in the dark or under R light (90 μmol m−2 s−1),

in the presence of PAC (100 μM) to prevent de-novo

GA biosynthesis in response to light [26]. For phyA-

dependent conditions, seeds were treated according to Oh

et al., 2006 [25]. RNA extraction and RT-qPCR were per-

formed according to Gabriele et al. [22]. Quantification of

gene expression was expressed in comparison to the refer-

ence gene (See legends of figures), and relative expression

ratio was calculated based on the qRT-PCR efficiency (E)

for each gene and the crossing point (CP) deviation of our

target genes versus a control [36]. The expression analyses

were repeated in comparison with a second reference gene

(Additional file 3: Figure S3).

Three independent biological replicates were performed,

and one representative experiment is reported. Significa-

tive differences were analyzed by t-test (*P ≤ 0,05). The

primers used for the assays are listed in Additional file 4:

Table S1.

ChIP analysis

The dag1DAG1-HA line is the one previously described

in Gabriele et al. [22]. ChIP was performed as previously

described [22], with 12 hours imbibed seeds. Antibodies

against HA tag (Santa Cruz, CA, USA) were used for

immunoprecipitation. Equal amounts of starting material

and ChIP products were used for qPCR reaction. The

primers used are listed in Table S1. Three independent

biological replicates were performed. Significative differ-

ences were analyzed by t-test (*P ≤ 0,05).

Microscopy and GUS analysis

Analysis of dag2 and wild-type embryos was performed

under an Axioskop 2 plus microscope (Zeiss).
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The DAG2:GUS line is the one described in Gualberti

et al. [8]. Histochemical staining and microscopic ana-

lysis were carried out according to Blazquez et al. [37].

Stained embryos (after washing in 70% ethanol) were

analysed and photographed under an Axioskop 2 plus

microscope (Zeiss).

Availability of supporting data

All the supporting data of this article are included as

additional files (Additional files 1, 2 and 3: Figures S1-

S3; Additional file 4: Table S1).

Additional files

Additional file 1: ChIP analysis of wild-type (WS) seeds

immunoprecipitated with anti-HA antibody or without antibody.

Additional file 2: Relative expression levels of ATHB2, PIL2, GASA4,

GASA6 and ABI4 in wild-type (WT) and dag2 mutant seeds. Relative

expression levels were normalized with that of the UBQ10 gene.

Additional file 3: Expression analysis with a second reference gene.

Relative expression levels of DAG2 in wild-type seeds in the dark (D), Red (R)

(A), or Far Red (FR) (B) light, in dry seeds (0h), or imbibed 12 (12h), 24 hours

(24h) in the dark, under White (W) or Red light (C), normalized with the

PP2A gene. Relative expression levels of DAG2 in dag1 (D), pil5 (F), rga28 (G),

gai-t6 (H) seeds compared to WT. Relative expression levels of DAG1 (E), RGA

(I), GAI (L), in dag2 seeds compared to WT. The expression levels were

normalized with PP2A (D, F, E, I, L), or with eIF1α (At5g60390) (G, H). Relative

expression levels of GA (M) or ABA (N) metabolic genes in dag2 seeds

compared to WT, normalized with PP2A gene. Relative expression levels of

DAG2 in WT seeds imbibed in the presence of ABA, or GA, or PAC (O), in WT

embryos at 13, 16, 19 DAP (P), normalized with PP2A gene. Relative

expression levels of ATHB2, PIL2, GASA4, GASA6 and ABI4 in dag2 seeds

compared to WT (Q), normalized with PP2A.

Additional file 4: Table S1: List of the primers used for expression

analyses and for the ChIP assays.
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