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ABSTRACT Good nutrition is an important part of leading a healthy lifestyle. This has brought into stark

focus the need for efficient and low-cost methods for large scale food quality assessment. This article

proposes a non-invasive and non-destructive system for estimating the freshness of apples using polarization

images from a Division-of-Focal-Plane (DoFP) polarization camera. The proposed system uses Machine

Learning Systems namely, Support Vector Regression (SVR) and Gaussian Process Regression (GPR),

to estimate the age of apples and determine if they are fit for consumption even before the external rot

appears on the fruit. Initially, the reconstructed images namely, Degree of Linear Polarization (DoLP) and

Angle of Polarization (AoP), are generated from the polarization image and their respective correlations

with the actual age of apples (in days) are established. These reconstructed images are then fed as input

features to the Machine Learning Systems to ultimately estimate the age of the apples. Experiments on real

data obtained from the DoFP camera show that the proposed system is non-destructive and capable of non-

invasively estimating the age of the apple with an average accuracy of up to 92.57%.

INDEX TERMS Division of focal plane, food quality monitoring, machine learning, polarization image.

I. INTRODUCTION

Food quality and freshness assessment is increasingly becom-

ing an area of interest for both the consumers and the

food processing industries. Food quality plays a vital role

in decision making regarding the storage and processing

requirements. The periodic chemical and biological analysis

using techniques such as chromatography, spectrophotom-

etry, and electrophoresis among others, are conventionally

used in evaluating the food quality. These methods, however,

are costly, time-consuming and require a trained operator.

The conventional methods are also destructive in the sense

that they destroy the tested sample, resulting in financial

losses, when performed at a large scale. Some nondestructive

The associate editor coordinating the review of this manuscript and

approving it for publication was Ting Wang .

monitoring techniques such as optical spectroscopy, acoustic

measurements, and chemical profile monitoring using elec-

tronic noses, have already been used for affordable and rapid

monitoring [1]. Acoustic methods are capable of measuring

the elasticity of tissues and can therefore be used to measure

softening of apples with increased storage time. Optical tech-

niques are the most popular of the non-destructive techniques

because of their simplicity in implementation. They involve

successive measurements of a sample without causing dam-

age to the sample. These optical techniques are often based

on a specific property of light [2].

One such property of light is polarization. This property,

although imperceptible to the human eye, has attracted sig-

nificant attention as it is shown to provide very useful infor-

mation unavailable in intensity/wavelength imaging domains

[3]. This is why polarization imaging systems have been
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employed in various applications including biomedical imag-

ing [4], [5], material classification [6], [7], and 3D shape

reconstruction [8].

In [9], the polarization property of light was used to study

food properties. The paper introduced an experimental setup

based on Division-of-Time (DoT) polarization architecture

that comprises a standard CMOS camera and a pair of polar-

ization filters to take polarization images of apples over a

period of time. A polarized light, generated using a linear

polarizer in front of a white light source, was incident on

the fruit and the phase information of the reflected light was

recorded by the standard CMOS camera, which has a linear

polarizer placed in front of it. The Freshness of fruits was

thereafter correlated with the changes in the phase informa-

tion of the reflected light. To monitor the changes, Stokes’

Degree of Polarization (DoP) and Degree of Linear Polariza-

tion (DoLP) were utilized. This technique was complex in

terms of hardware as two polarization filters and a standard

CMOS camera were required. Furthermore, a perfectly lin-

early polarized light was assumedwhichmade the subsequent

determination of DoLP incomplete.

In [10], polarization was also used for quality monitoring

of apples. While the setup was somewhat similar to [9],

the paper showed that by eliminating the linear polarizer in

front of the light source, better results could be achieved. The

method to determine the DoLP was also easier to compute.

While this method had less hardware complexity, the DoLP

calculations were less accurate than the calculations in [9].

The recent advances in solid state technology has spewed

out a special class of polarization sensors known as Division-

of-Focal-Plane (DoFP) polarization image sensors. These

highly compact sensors have the micro-polarizer array fabri-

cated directly on top of the image sensor. The micro-polarizer

filter array contains linear polarizers offset by 45➦ arranged in

a 2×2 periodic pixel pattern, called a ‘‘super-pixel’’, as shown

in Figure 1. This periodic structural pattern of the super-pixel

resembles the Bayer Color Filter Array (CFA) pattern in color

image sensors [11]. A huge advantage of the DoFP archi-

tecture over the Division-of-Time (DoT) architecture is the

ability to capture the full polarization information of a target

object in a single frame. This in turn makes the determined

DoLP more complete and therefore, more accurate.

FIGURE 1. Micro-polarizer array pattern in DoFP polarimeters.

In this work, we present a non-destructive and non-invasive

automated system (DoFP-ML) for estimating the freshness

and quality of apples in terms of age. Unlike the tech-

niques in [9] and [10], the proposed DoFP-ML system uses a

Division-of-Focal-Plane (DoFP) polarization camera to cap-

ture the change in polarization property of apples over time.

The contribution of this work is twofold: Firstly, through the

use of a DoFP polarization camera, the full polarization infor-

mation of the apple is recorded in a single frame and thus, sub-

sequent determination of DoLP is shown to be more accurate.

Secondly, we introduce machine learning for automated pre-

diction of the age of apples. While the systems presented in

[9] and [10] correlated DoP and DoLP to ripening and decay

of apples, the exact age of the apple was not demonstrated.

Our proposed method, on the other hand, is able to estimate

the age of the apple, with acceptable accuracy, by using DoLP

and AoP as input features to a machine learning system.

The rest of the paper is organized as follows: Section II

presents the proposed DoFP-ML system. Experiments’

results are discussed in section III while conclusions are

drawn in section IV.

II. DoFP-ML SYSTEM

The DoFP-ML system aims to predict the freshness of apples

in terms of age (number of days) at room temperature. The

block diagram of the proposed DoFP-ML system is presented

in Figure 2 while the description of the building blocks is as

follows:

A. IMAGE ACQUISITION

The polarization images were captured using the ‘‘4D Polar-

Cam snapshot micro-polarizer camera’’, which is a DoFP

polarization camera. As illustrated in Figure 3, a white light

from a LED array is incident on the apple and the reflected

rays are recorded by the DoFP camera. The proposed system

takes full advantage of the micro-polarizer array structure to

record the full polarization information of the reflected light

in a single frame. The captured polarization image of the

apple is shown in Figure 4(a).

B. FRAME REMOVAL

In order to obtain a standard size image and to facilitate the

segmentation process, the black frame around the image is

removed, as shown in Figure 4(b), while ensuring that the

polarization pattern remains undisturbed.

C. DEMOSAICKING

The image obtained using a DoFP camera is a mosaic image

composite of four low-resolution sub-images (I0➦, I45➦, I90➦,

and I135➦). These low-resolution sub-images are extracted,

and their respective full-resolution images are generated

using Interpolation algorithms, as shown in Figure 5. Inter-

polation algorithms are to DoFP images what demosaicking

algorithms are to images from color imagers based on Bayer

CFA. This is why they are sometimes referred to as ‘‘polar-

ization demosaicking algorithms’’. In this work, the selected

interpolation algorithm is the nearest neighbor interpolation

algorithm because of its simplicity. The nearest neighbor

interpolation technique involves replacing the missing pixel

value by its nearest neighbor within a 3 × 3 block [12].
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FIGURE 2. The DoFP-ML system block diagram.

FIGURE 3. Imaging setup.

FIGURE 4. DoFP-ML image preprocessing: (a) Image Acquisition;
(b) Frame Removal.

FIGURE 5. Demosaicking in DoFP images.

A recursive application of this technique will ultimately gen-

erate the respective four full-resolution images.

D. SEGMENTATION

Segmentation is the process of dividing a digital image into

multiple segments (sets of pixels). It can also be thought

of as the process of assigning a label to every pixel in an

image such that pixels with the same label share certain visual

characteristics [13]. In this work, segmentation using Otsu’s

method [14] is applied on one of the full resolution sub-

images. This results in a binary image (Mask), with white

color (digital 1’s) corresponding to the apple and black color

FIGURE 6. DoFP-ML image segmentation stage: (a) Mask preparation;
(b) Image after Segmentation.

corresponding to the background as shown in Figure 6(a).

Each of the full resolution images is then multiplied (pixel

by pixel) with the mask resulting in zeroing of all pixels in

each image except those corresponding to the apple. One of

the resulting images after the segmentation stage is presented

in Figure 6(b).

E. FEATURES EXTRACTION

The polarimetric property of light are represented using

Stokes parameters (S0, S1, S2, and S3). The Stokes parameters

are derived mathematically using the four full resolution

intensity images as follows:

Intensity/S0 = I0 + I90 (1)

S1 = I0 − I90 (2)

S2 = I45 − I135 (3)

S3 = IRCP − ILCP (4)

As the DoFP imager inherently captures linear polariza-

tion, the S3 term, which is the difference between the Right

Circular Polarization (RCP) component and the Left Circular

Polarization (LCP) component, is hereby ignored.

From the Stokes parameters, other images that have more

physical meanings can be reconstructed [15]. These are

Degree of Linear Polarization (DoLP) and Angle of Polar-

ization (AoP) images, which are derived as:

DoLP =

√

S21 + S22

S20
(5)

AoP =
1

2
atan(

S2

S1
) (6)

These reconstructed images will serve as input features to

the Machine Learning Block.

F. MACHINE LEARNING

Our intention is to learn a model function f (.) that can be

used for estimating the age of apples using machine learning

based regression. This is implemented in two phases, namely,
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FIGURE 7. Machine Learning System: (a) Training Phase; (b) Testing Phase.

the training phase and the testing phase. During the training

phase, apple features (DoLP and/or AoP) collected in the past

(from training data set) along with the associated apple age,

are fed to the machine learning block to model the function

f (.). During the testing phase (running phase), the trained

model f (.) which takes the features of new apples (DoLP

and/or AoP) as input, is used to predict the age of these new

apples. Figure 7 shows the block diagram of operation of the

two phases. In this work, two machine learning algorithms,

namely, Support Vector Machine (SVM) and Gaussian Pro-

cess (GP) method, are implemented. Since the objective is to

predict the age of an apple to check whether it is still valid

for consumption, both algorithms are used in the regression

mode.

Support Vector Regression (SVR) is a regression method

that is quite convenient for this application. It is a supervised

machine learning method that fits a model for the data in the

feature space within ǫ deviations from the target values. For

complex models, it uses kernel functions to map the problem

in the input space to a higher dimensional feature space

where regression problems that are highly nonlinear in the

input space become linear in the higher dimensional space.

To reach the desired model, it implements the structural

risk minimization principle [16] to minimize the risk within

Vapnik’s ǫ -intensive loss function. A detailed formulation of

the SVR method can be found in [17].

Gaussian Process Regression (GPR) is a non-parametric

Bayesian approach used in regression problems [18]. It is

a kernel-based supervised machine learning method that

assumes a prior probability distribution of the data under

consideration. The prior is updated based on the training

data to generate a posterior probability distribution that is

completely described by its covariance and mean value. It is

this mean value of the posterior function that can be used

for prediction [19], [20]. GP defines a probability distribution

over possible functions [21].

A key assumption in GP modelling is that our data can be

represented as a sample from a multivariate Gaussian distri-

bution [22]. An important property of Gaussian distributions

is that conditioning and marginalization operations result in

normal distribution functions. Initially, the regression func-

tion Y = f (X ) is defined as a multivariate Gaussian distri-

bution function representing the prior distribution. Based on

the Bayesian inference approach, the prior is updated using

the training data to produce the posterior distribution which

will be Gaussian as well. The mean of the posterior represent

our regression result. In order to account for noise and errors

inherent in the training data, a noise term is added to f (X )

leading to Y = f (X ) + ω, where ω → N (0, σ 2). A detailed

mathematical formulation of GPR can be found in [18].

In both machine learning systems, the kernel function is

‘‘RBF kernel’’. 80% of the data is used to train the system

with 5-fold cross validation implemented to optimize the

kernel parameters. The remaining 20% of the data is used to

test the system performance. In order to judge the system’s

ability to correctly estimate the age of apples from polariza-

tion images, the estimated ages are compared with the real

ages using Mean Absolute Error (MAE). The output of the

algorithm is passed through a floor function which yields

integer values corresponding to age estimations in days.

III. EXPERIMENTAL RESULTS AND DISCUSSION

To validate the proposed DoFP-ML system, an experiment

was conducted on five ‘‘Royal Gala’’ apples. Under room

temperature, these apples were observed until the exterior

rot became visible to the naked eye. The DoFP camera was

used to capture the images of the apples every other day for

a period of 16 days (first day is day 0). This amounts to

nine ‘‘shooting’’ days where images were captured. On each

of the 9 days, each apple has its polarization image taken

5 times, making a total of 25 images per day and a cumulative

total of 225 images at day 16. The five images recorded on

each day for the respective apples went through pixel-wise

averaging to remove the effect of inherent random noise.

The respective Stokes parameters as well as the reconstructed

images for each apple were then determined after undergoing

the processes outlined in section II. The first study will be

determining the best features to be fed into the machine

learning systems.

A. FEATURES DETERMINATION

The matrices of the reconstructed images (DoLP and AoP)

are available at this stage. For analysis, the respective mean

values of these matrices are considered to ascertain their

relationship with the freshness of the apples. While all the

apples showed a similar trend, only the variation of average

DoLP of ‘‘Apple 5’’ with increasing storage time is demon-

strated in Figure 8(a). As can be observed from the data
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FIGURE 8. Relationship of Reconstructed images of ‘‘Apple 5’’ with time: (a) Average DoLP Apple 5; (b) Average AoP Apple 5.

FIGURE 9. Visual changes in reconstructed images of Apple 5: (a) Day 0; (b) Day 4; (c) Day 10; (d) Day 16.

points, an inverse or negative relationship exists. Further-

more, the data points are seen to reside very close to the

best fit line, which is indicative of a strong negative linear

relationship. This is contrary to the relationship established in

[9] where the DoLP is shown to rise with increasing storage

time. This discrepancy stems from the calculation of DoLP

from Stokes parameters. In [9], a perfectly linearly polarized

light was assumed and therefore, only the horizontal and

vertical components of polarization were considered. There-

fore, the S2 term in Equation 5 was ignored when calculating

DoLP. However, in reality, light is never perfectly linearly

polarized [15]. By using the DoFP imager, the polarization

information of the reflected light through the 45➦ and 135➦

directions are also recorded. This is due to the inherent abil-

ity of DoFP polarimeters to record polarization information

along the four directions (0➦ 45➦, 90➦ and 135➦) in a single

frame. With this additional polarization information, the cal-

culated DoLP is more complete and hence, more accurate.

To accentuate the reliability of the negative trend of DoLP,

visual results are presented in Figure 9. The background is

made to be uniformly red so that only the DoLP results of the

actual apple can be analyzed using the colorbar on the side.

The visual results show that with increasing storage time,

areas of high DoLP values (blue and green) diminish, while

areas of low DoLP values (yellow and red) start to become

prominent. This decrease in visual DoLP values is therefore

consistent with the analytical results shown in Figure 8(a) to

affirm an inverse or negative relationship between the average

DoLP and age of apples, making it a suitable parameter to

monitor and predict the age of apples.

The relationship between the second reconstructed

image (AoP) and the age of apples is then studied. The

average AoP is plotted against time (days) in Figure 8(b),

where the data points are observed to exhibit no discernible

pattern. The data points highly fluctuate around the best fit

line, which points to a very weak linear relationship between
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the average AoP and the age. Also, the visual results of

the average AoP in Figure 9 do not show any definitive

pattern which is in agreement with the analytical results

in Figure 8(b). Therefore the average AoP appears not to be

a reliable parameter to monitor and predict the age of apples.

B. MACHINE LEARNING

So far, two parameters, the average DoLP and the average

AoP, have been studied and related to the age (freshness)

of the apple. In the training phase, one or both of these two

parameters are fed into the system along with the actual age

of the apple. The training phase aims to find a function f (.)

that models the relationship of Average DoLP and/or Average

AoP with the age of the apple. The modeled function f is

then used in the testing phase to estimate the age of the

test apple.

The dataset used in this work consist of 225 DoFP

images for 5 five apples. 80% of the dataset (180 images

corresponding to four apples) is utilized to train and val-

idate the system using 5-fold cross validation method.

The remaining 20% (45 images corresponding to the fifth

apple) is used test the performance of the system. This

was repeated 5 times so each apple gets a turn to be the

test apple. The features ‘average DoLP’ and ‘average AoP’

take turns in being the input features, with a final round

having both features as input-pair fed into the system. The

machine learning systems to be used will be Support Vector

Regression (SVR) and Gaussian Process Regression (GPR).

Performance of the systems is verified by calculating the

overall Mean Absolute Error (MAE) as well as the estimation

accuracy.

1) SUPPORT VECTOR REGRESSION (SVR)

In this experiment, the machine learning system used is SVR.

A floor function employed after the regression block results

in discretization of the output into integer days and thus,

the system becomes a multiclass classifier.

In Table 1, the results of the experiment by varying the

input features are presented. In addition to the overall MAE,

the accuracy of the classifier within a 2-day and 4-day error

tolerance is presented.

TABLE 1. SVR Results.

From Table 1, it can be seen that using the two features as

an input-pair, instead of either of them, resulted in lower over-

all MAE and a higher classification accuracy. Interestingly,

the system when AoP was used as a single input feature per-

formed better than when DoLP was the single input feature.

This inconsistency with the results in Figure 8 is justified by

the kernel trick [23], [24]. A kernel-based machine learning

FIGURE 10. SVR Average Classification Error.

algorithm uses a kernel function to map the problem in the

input space to a higher dimensional space where compli-

cated classification problems become linearly separable, and

regression problems that are highly nonlinear in the input

space become linear in the higher dimensional space. There-

fore, SVR becomes capable of fitting a nonlinear regression

function in the input space, which resulted in a superior

performance of the system when AoP was the input feature,

as opposed to when DoLP was used alone.

For a more detailed illustration of the SVR system results,

Figure 10 presents the relationship between the actual age

of the apples and the Mean Absolute Error in estimating the

apple’s age. For the case of the input-pair features (DoLP and

AoP), the error is seen not to exceed 2.1 days until day 12. The

error slightly exceeds 3 at day 14 and reaches 4.5 at day 16,

the day when the exterior rot became visible. Within the first

12 days, the maximum error is 2.1 days which corresponds

to a maximum percentage error of 13.125% or minimum age

estimation accuracy of 86.875%. During this period, the aver-

age error is 1.41 days which represents a percentage error

of 8.86% or an average age estimation accuracy of 91.14%.

Considering the minimum accuracy case (i.e maximum error

of 2 days), and taking day 11 as the threshold above which

an apple is considered to be unhealthy for consumption,

the apples that are actually older than 12 days will still clas-

sify above the day 11 threshold and consequently, be deemed

unhealthy for consumption. Therefore, it can be said that

during the first 10 days, the system is capable of accurately

estimating the apple’s age, within a 2-day error tolerance.

After this period, the system labels the apple as unhealthy for

consumption.

For the DoLP case in Figure 10, it is seen that the error

fluctuates between 1.3 and 3 until day 12, and then increases

sharply to 5 days at day 14, which is worse than the perfor-

mance of the input-pair features. On the other hand, the AoP

case shows continuous fluctuation between 0.5 and 3.5 for the

whole range of the experiment, which makes it unreliable for

estimating the age of the apples.

Overall, it can be stated that the proposed method when

DoLP and AoP are used as input-pair features, can non-

invasively estimate the age of the apple and detect freshness

with acceptable accuracy, before external rot appears.
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TABLE 2. GPR Results.

2) GAUSSIAN PROCESS REGRESSION (GPR)

In this study, the machine learning system is switched to GPR

while all other factors remain unchanged. The results from the

GPR system are shown in Table 2.

From Table 2, it can be seen that using both DoLP and

AoP as input-pair features to the GPR system resulted in an

overall accuracy of 79.6% within a 2-day error tolerance, and

92.9% within a 4-day error tolerance. Similar to the SVR

system, the accuracy of the GPR system was higher when

the input-pair features (DoLP and AoP) were used than when

either of them was used as a single input feature. Once again,

the performance of the system being higher when AoP was

used as a single input feature than when DoLP was used,

is justified by the kernel trick [23], [24].

In Figure 11, the relationship between the actual age of the

apples and the mean absolute error in estimating the apple’s

age is illustrated. It can be clearly seen that for the case of the

input-pair features (DoLP and AoP), the error in estimating

the age of the apples remains below 2 days until day 13.

It reaches 2.5 at day 14 and 3.7 at day 16, the day when

the exterior rot starts to appear. The maximum error within

the first 12 days of the experiment is 2 days which corre-

sponds to a maximum percentage error of 12.5% or minimum

age estimation accuracy of 87.5%. The average error within

this period is 1.19 days which represents a percentage error

of 7.43% or an average age estimation accuracy of 92.57%.

Considering the minimum accuracy case (i.e maximum error

of 2 days) and taking day 11 as the threshold beyond which

an apple is considered to be unhealthy to eat, the apples that

are actually older than 12 days (with the inherent classifica-

tion error included) will still classify of age above the day

11 threshold, and will therefore be deemed as unhealthy for

consumption. Accordingly, the system is said to be capable

of correctly estimating the age of the apple (within a 2-day

tolerance) during the first 10 days, while after this period,

it labels the apple as unhealthy for consumption.

Referring back to Figure 11, it can be seen that for the

DoLP case, the error fluctuates between 1.3 and 3 until

day 12, and then increases sharply to 5 at day 14, which

is worse than the performance of the input-pair features.

On the other hand, the AoP case shows continuous fluctuation

between 0.2 and 3.4 for the whole range of the experiment

which, as in the case of SVR, makes it unreliable for esti-

mating the age of apples. As a result, it can be said that the

proposed method with DoLP and AoP taken as input-pair

features can non-invasively estimate the age of apples with

acceptable accuracy, to determine if it is fit for consump-

tion before the rot and damage signs become visible to the

human eye.

FIGURE 11. GPR Average Classification Error.

TABLE 3. A comparison within the first 12 days for DoLP and AoP feature
input-pair.

A performance comparison of the two Machine Learning

systems is presented in Table 3, which shows GPR hav-

ing a slightly higher average apple age estimation accuracy

within the first 12 days. This is in agreement with the results

in Table 1 and Table 2 as well as Figure 10 and Figure 11,

in showing how the performance of the GPR system exceeds

that of the SVR system. Beyond the threshold of day 11,

both Machine Learning Systems performed well in labeling

an apple as unhealthy for consumption.

C. PERFORMANCE COMPARISON

A comparison of the proposed DoFP-ML method and other

noninvasive polarization-based methods reported in [9] and

[10] is presented in Table 4.

The first comparison metric is the polarization imaging

architecture itself. The methods in [9] and [10] both used

the Division-of-Time (DoT) architecture while the proposed

DoFP-ML method is based on the DoFP architecture. The

advantage of the DoFP architecture is that only one image

needs to be recorded for all the analysis. This single image

contains the polarization information across all the four

polarization directions, because of the micro-polarizer array

structure in DoFP imagers. By having a more complete

polarization information, the accuracy of DoLP calculation

is enhanced, and ultimately a more accurate relationship

between the change of DoLP and time (days) is established.

Conversely, the systems in [9] and [10] need at least two

images for analysis. Moreover, the calculation of DoLP pre-

sented is less accurate because some of the polarization com-

ponents were ignored.

In terms of hardware complexity, the proposed DoFP-ML

system is the least complex. The proposed DoFP-ML system

requires only a DoFP camera. The system in [9] needs two

polarization filters and a CMOS camera. While in [10], their

least complex setup still required one linear polarizer and a

CCD camera.
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TABLE 4. Comparison of Polarization-based Techniques for Food Quality Monitoring.

The hardware complexity is also related to calibration

requirement. Intuitively, a very complex system is expected

to require a high amount of calibration. The DoFP-ML sys-

tem with a DoFP camera has low calibration requirement

because the micro-polarizer array is fabricated directly on the

imaging sensor. This enables the sensor to accurately record

polarization information along the four polarization angles.

However, in the other systems, the polarization filters need

to be rotated after each image is captured. Therefore, very

careful calibration is required to ensure the filter is rotated to

the desired polarization angle.

Last but not least, the DoFP-ML system introduces

Machine Learning to predict the actual age of apples. While

the other systems can detect freshness, the actual age of the

fruit is not specified. The machine learning block in DoFP-

ML however, makes that possible.

IV. CONCLUSION

In this article, we have proposed a non-invasive and non-

destructive DoFP-ML system for estimating the freshness

of apples using polarization imaging and machine learning.

To capture the polarization images of apples, a Division-

of-Focal-Plane (DoFP) polarization camera is utilized. From

the captured polarization images, Degree of Linear Polar-

ization (DoLP) and Angle of Polarization (AoP) images are

reconstructed. These reconstructed images are then fed into

a machine learning block to estimate the age of apples in

terms of days. Experiments on real data showed that the

proposed DoFP-ML system is capable of estimating the age

of apples with an accuracy of up to 92.57%. The proposed

DoFP-ML system can help to detect apples that are unhealthy

for consumption even before the external rot appears. In

the future, we intend to study the possibility of using the

proposed system on other fruits and vegetables, with the aim

of generalizing it into a comprehensive non-invasive and non-

destructive solution for determining the shelf life of food

items. This will help big stores to properly manage their

stored food items.
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