
DOGMA: A Disk-Oriented Graph Matching Algorithm

for RDF Databases

Matthias Bröcheler1, Andrea Pugliese2, and V.S. Subrahmanian1

1 University of Maryland, USA
2 Università della Calabria, Italy

Abstract. RDF is an increasingly important paradigm for the representation of

information on the Web. As RDF databases increase in size to approach tens of

millions of triples, and as sophisticated graph matching queries expressible in

languages like SPARQL become increasingly important, scalability becomes an

issue. To date, there is no graph-based indexing method for RDF data where the

index was designed in a way that makes it disk-resident. There is therefore a

growing need for indexes that can operate efficiently when the index itself re-

sides on disk. In this paper, we first propose the DOGMA index for fast subgraph

matching on disk and then develop a basic algorithm to answer queries over this

index. This algorithm is then significantly sped up via an optimized algorithm that

uses efficient (but correct) pruning strategies when combined with two different

extensions of the index. We have implemented a preliminary system and tested

it against four existing RDF database systems developed by others. Our exper-

iments show that our algorithm performs very well compared to these systems,

with orders of magnitude improvements for complex graph queries.

1 Introduction

RDF is becoming an increasingly important paradigm for Web knowledge representa-

tion. As more and more RDF database systems come “online” and as RDF gets increas-

ing emphasis from both established companies like HP and Oracle, as well as from a

slew of startups, the need to store and efficiently query massive RDF datasets is be-

coming increasingly important. Moreover, large parts of query languages like SPARQL

increasingly require that queries (which may be viewed as graphs) be matched against

databases (which may also be viewed as graphs) – the set of all possible “matches” is

returned as the answer.

For example, the GovTrack database [1] tracks events in the US Congress and stores

the data in RDF. RDF triple stores primarily store triples (s, p, v) where s is a subject, p

is a property, and v is a value. Fig. 1(a) shows a small portion of the GovTrack dataset

(we have changed the names of individuals identified in that dataset). The reader can

readily see that the RDF data forms a graph where the nodes correspond to subjects

and values, and the edges linking them are labeled with a property. For instance, in

Fig. 1(a), we see that Jeff Ryster sponsored Bill B0045 whose subject is Health Care.

This corresponds to two triples (Jeff Ryster, sponsor, Bill B0045) and (Bill B0045,

subject, Health Care). A user who is using such a database might wish to ask queries

A. Bernstein et al. (Eds.): ISWC 2009, LNCS 5823, pp. 97–113, 2009.

c© Springer-Verlag Berlin Heidelberg 2009

98 M. Bröcheler, A. Pugliese, and V.S. Subrahmanian

Carla

Bunes

?v1

?v2

?v3

Male

Health

Care

sponsor

sponsor

gender

amendmentTo

subject

(a) (b)

Fig. 1. Example RDF graph (a) and query (b)

such as that shown in Fig. 1(b). This query asks for all amendments (?v1) sponsored by

Carla Bunes to bill (?v2) on the subject of health care that were originally sponsored

by a male person (?v3). The reader can readily see that when answering this query, we

want to find all matches for this query graph in the original database. The reader who

tries to answer this very simple query against this very tiny database will see that it

takes time to do so, even for a human being!

In this paper, we propose a graph-based index for RDF databases called DOGMA,

that employs concepts from graph theory to efficiently answer queries such as that

shown above. DOGMA is tuned for scalability in several ways. First, the index itself

can be stored on disk. This is very important. From experiences in relational database

indexing, it is clear that when the data is large enough to require disk space, the index

will be quite large and needs to be disk resident as well. DOGMA, defined in Section 3,

is the first graph-based index for RDF that we are aware of that is specifically designed

to reside on disk. We define the DOGMA data structure and develop an algorithm to

take an existing RDF database and create the DOGMA index for it. In Section 4, we

develop algorithms to answer graph matching queries expressible in SPARQL [2] (we

emphasize that we do not claim DOGMA supports all SPARQL queries yet). Our first

algorithm, called DOGMA basic, uses the index in a simple manner. Subsequently, we

provide the improved algorithm DOGMA adv and two extensions of the index called

DOGMA ipd and DOGMA epd, that use sophisticated pruning methods to make the

search more efficient without compromising correctness. Third, in Section 5, we show

the results of an experimental assessment of our techniques against four competing RDF

database systems (JenaTDB, Jena2, Sesame2, and OWLIM). We show that DOGMA

performs very well compared to these systems.

DOGMA: A Disk-Oriented Graph Matching Algorithm for RDF Databases 99

2 Preliminaries

In this section, we briefly explain our notation. We assume the existence of a set S
whose elements are called subjects, a set P whose elements are called properties and a

set V whose elements are called values. Throughout this paper, we assume that S,P ,V
are all arbitrary, but fixed sets. If s ∈ S, p ∈ P and v ∈ V , then (s, p, v) is called an

RDF triple. Note that V and S are not required to be disjoint. An RDF database is a

finite set of RDF triples. For example, as mentioned earlier, (Jeff Ryster, sponsor, Bill

B0045) and (Bill B0045, subject, Health Care) are RDF triples. Every RDF database R
has an associated RDF graph GR = (VR, ER, λR) where VR = S ∪ V , ER ⊆ S×V ,

and λR : ER → P is a mapping such that for all (s, p, v) ∈ R, λR(s, v) = p. 1 As

there is a one-one correspondence between RDF graphs and RDF databases, we will

often use the terms synonymously.

In this paper, we only focus on graph matching queries. In order to define such

queries, we assume the existence of some set VAR of variable symbols. In this paper, all

variable symbols will start with a “?”. A graph query is any graph Q = (VQ, EQ, λQ)
where VQ ⊆ VAR ∪ S ∪ V , EQ ⊆ VQ×VQ, and λQ : EQ → P is a mapping. Suppose

Q is a query. A substitution for query Q is a mapping VQ ∩ VAR → S ∪ V . In other

words, a substitution maps all variable vertices in query Q to either a subject or a value.

For instance, in Fig. 1, the mapping θ which assigns B0744 to ?v1, B0744 to ?v2 and

Jeff Ryster to ?v3 is a substitution. If θ is a substitution for query Q, then Qθ denotes

the replacement of all variables ?v in VQ by θ(?v). In other words, the graph structure

of Qθ is exactly like that of Q except that nodes labeled with ?v are replaced by θ(?v).
A substitution θ is an answer for query Q w.r.t. database R iff Qθ is a subgraph of GR.

The answer set for query Q w.r.t. an RDF database R is the set {θ | Qθ is a subgraph

of GR}.

Example 1. Consider the example query and RDF database in Fig. 1. In this case, the

substitution θ such that θ(?v1) = Amendment A0056, θ(?v2) = Bill B1432, and

θ(?v3) = Pierce Dickes is the only answer substitution for this query. �

3 The DOGMA Index

In this section, we develop the DOGMA index to efficiently answer graph queries in

situations where the index itself must be very big (which occurs when R is very big).

Before we define DOGMA indexes, we first define what it means to merge two graphs.

Suppose G is an RDF graph, and G1 and G2 are two RDF graphs such that V1, V2 ⊆
VR and k is an integer such that k ≤ max(|V1|, |V2|). Graph Gm is said to be a k-merge

of graphs G1, G2 w.r.t. G iff: (i)|Vm| = k ; (ii) there is a surjective (i.e. onto) mapping

µ : V1 ∪ V2 → Vm called the merge mapping such that ∀v ∈ Vm, rep(v) = {v′ ∈
V1 ∪ V2 | µ(v′) = v}, and (v1, v2) ∈ E iff there exist v′1 ∈ rep(v1), v

′
2 ∈ rep(v2) such

that (v′1, v
′
2) ∈ E. The basic idea tying k-merges to the DOGMA index is that we want

1 For the sake of simplicity, we ignore many features in RDF such as reification, containers,

blank nodes, etc. Moreover, we define ER ⊆ S × V for notational convenience; our imple-

mentation allows for multiple edges between vertices.

100 M. Bröcheler, A. Pugliese, and V.S. Subrahmanian

DOGMA to be a binary tree each of whose nodes occupies a disk page. Each node is

labeled by a graph that “captures” its two children in some way. As each page has a

fixed size, the number k limits the size of the graph so that it fits on one page. The idea

is that if a node N has two children, N1 and N2, then the graph labeling node N should

be a k-merge of the graphs labeling its children.

A DOGMA index for an RDF database R is a generalization of the well known

binary-tree specialized to represent RDF graph data in a novel manner.

Definition 1. A DOGMA index of order k (k ≥ 2) is a binary tree DR with the follow-

ing properties:

1. Each node in DR equals the size of a disk page and is labeled by a graph.

2. DR is balanced.

3. The labels of the set of leaf nodes of DR constitute a partition of GR.

4. If node N is the parent of nodes N1, N2, then the graph GN labeling node N is a

k-merge of the graphs GN1 , GN2 labeling its children.

Note that a single RDF database can have many DOGMA indexes.

Example 2. Suppose k = 4. A DOGMA index for the RDF graph of Fig. 1(a) might

split the graph into the 8 components indicated by dashed lines in Fig. 1(a) that become

the leaf nodes of the index (Fig. 2). Consider the two left-most leaf nodes. They can be

4-merged together to form a parent node. Other leaf nodes can also be merged together

(due to space constraints, the results of k-merging are not shown in the inner nodes). �

Even though many different DOGMA indexes can be constructed for the same RDF

database, we want to find a DOGMA index with as few “cross” edges between sub-

graphs stored on different pages as possible. In other words, if node N is the parent

of nodes N1, N2, then we would like relatively fewer edges in R between some node

1

3

2
4

Alice

Nimber

Senate

MD

Term
10/12/94

Has Role

For Office

Carla

Bunes

Female

A0056

Term
11/06/90

gender

hasRoleTax

Code

A2187

B0744

A0342

subject

amendmentTo

1

3

2
4

1

3

2
4

1

3

2
4

B1432

John

McRie

A0772

Term
10/02/94

hasRole

sponsor

IL

forOffice

Jeff

Ryser

Male

Bill

B0045

US

Senate

Term
10/21/94

gender

hasRole

sponsor

Keith

Farmer

A1232

Term
10/02/94

Has Role

sponsor
Peter

Traves

Bill

B0532

Senate

NY

A1589

Term
11/10/90

For Office

sponsor

amendmentTo

1

3

2
4

1

3

2
4

1

3

2
4

Pierce

Dickes

Health

Care

A0467

Term
10/12/94

sponsor

subject

Has Role

N1 N2

Fig. 2. A DOGMA index for the RDF database of Fig. 1(a)

DOGMA: A Disk-Oriented Graph Matching Algorithm for RDF Databases 101

in GN1 and some node in GN2 . The smaller this number of edges, the more “self-

contained” nodes N1, N2 are, and the less likely that a query will require looking at

both nodes N1 and N2. In the description of our proposed algorithms, we employ an

external graph partitioning algorithm (many of which have been proposed in the liter-

ature) that, given a weighted graph, partitions its vertex set in such a way that (i) the

total weight of all edges crossing the partition is minimized and (ii) the accumulated

vertex weights are (approximately) equal for both partitions. In our implementation, we

employ the GGGP graph partitioning algorithm proposed in [3].

Fig. 3 provides an algorithm to build a DOGMA index for an RDF graph GR. The

BuildDOGMAIndex algorithm starts with the input RDF graph, which is set to G0.

It assigns an arbitrary weight of 1 to each vertex and each edge in G0. It iteratively

coarsens G0 into a graph G1 that has about half the vertices in G0, then coarsens G1

into a graph G2 that has about half the vertices as G1, and so forth until it reaches a Gj

that has k vertices or less.

Algorithm BuildDOGMAIndex
Input: RDF graph GR, page size k

(level L, colors C)
Output: DOGMA index DR

1 G0 ← GR

2 for all v ∈ VR

3 weight(v) ← 1
4 for all e ∈ ER

5 weight(e) ← 1
6 i ← 0
7 while |Gi| > k
8 i ← i + 1
9 Gi, µi ← CoarsenGraph(Gi−1)
10 root(DR) ← a new “empty” node R
11 BuildTree(R, i, Gi)
12 ColorRegions(L, DR, C) /∗ Only required for the DOGMA epd index discussed later ∗/
13 return DR

Algorithm CoarsenGraph
Input: RDF graph GR

Output: Coarsened graph G′
R, merge mapping µ

1 G′
R ← GR

2 µ ← (VR → V ′
R) /∗ identity map ∗/

3 while 2 × |V ′
R| > |VR|

4 v ← uniformly random chosen vertex from V ′
R

5 Nv ← {u | (u, v) ∈ E′
R}

6 m ← x ∈ Nv s.t. x � y ∀y ∈ Nv

7 weight(m) ← weight(m) + weight(v)
8 for all (v, u) ∈ E′

R
9 if (m, u) ∈ ER

10 weight((m, u)) ← weight((m, u))
11 +weight((v, u))
12 else
13 E′

R ← E′
R ∪ {(m, u)}

14 weight((m, u)) ← weight((v, u))
15 V ′

R ← V ′
R \ {v}

16 µ(µ−1(v)) ← m
17 E′

R ← E′
R \ {(v, u) ∈ E′

R}
18 return G′

R, µ

Algorithm BuildTree
Input: Binary tree node N , level i,

subgraph S at level i
Output: Graph merge hierarchy {Gj}j≥0

and merge mappings {µj}j≥0

1 label(N) ← S
2 if |S| > k
3 S1, S2 ← GraphPartition(S)
4 L ← leftChild(N)
5 R ← rightChild(N)
6 SL ← induced subgraph in Gi−1

7 by vertex set {v | µi(v) ∈ VS1}
8 SR ← induced subgraph in Gi−1

9 by vertex set {v | µi(v) ∈ VS2}
10 BuildTree(L, i − 1, SL)
11 BuildTree(r, i − 1, SR)
12 PN ← {v | µi(µi−1(. . . µ1(v))) ∈ VS}
13 for all v ∈ PN /∗ Only for DOGMA ipd ∗/
14 ipd(v, N) ← minu∈V0\PN

dG0(u, v)

Fig. 3. BuildDOGMAIndex, CoarsenGraph, and BuildTree algorithms

102 M. Bröcheler, A. Pugliese, and V.S. Subrahmanian

The coarsening is done by invoking a CoarsenGraph algorithm that randomly

chooses a vertex v in the input graph, then it finds the immediate neighbors Nv of v,

and then finds those nodes in Nv that are best according to a total ordering
. There are

many ways to define
; we experimented with different orderings and chose to order by

increasing edge weight, then decreasing vertex weight. The CoarsenGraph algorithm

appropriately updates node and edge weights and then selects a maximally weighted

node, denoted m, to focus the coarsening on. The coarsening associated with the node

v merges neighbors of the node m and m itself into one node, updates weights, and

removes v. Edges from m to its neighbors are removed. This process is repeated till we

obtain a graph which has half as many vertices (or less) than the graph being coarsened.

The result of CoarsenGraph is a k-merge where we have merged adjacent vertices.

The BuildDOGMAIndex algorithm then uses the sequence G0, G1, . . . , Gj denoting

these coarsened graphs to build the DOGMA index using the BuildTree subroutine.

Note that Line 12 in the BuildDOGMAIndex algorithm (where L denotes the level at

which to color the subgraphs and C is a list of unique colors) is only needed for the

DOGMA epd index introduced later, as well as lines 12–14 in BuildTree are for the

DOGMA ipd index. They are included here to save space.

Proposition 1. Algorithm BuildDOGMAIndex correctly builds a DOGMA index for

an RDF graph GR. Moreover, the worst-case time complexity of Algorithm BuildDOG-

MAIndex is O(|ER| + Λ(k) |VR|
k) where Λ(k) is the worst-case time complexity of

Algorithm GraphPartition over a graph with k vertices and O(k) edges.

4 Algorithms for Processing Graph Queries

In this section, we first present the DOGMA basic algorithm for answering queries

against a DOGMA index stored on external memory. We then present various exten-

sions that improve query answering performance on complex graph queries.

4.1 The DOGMA basic Query Processing Algorithm

Fig. 4 shows our basic algorithm for answering graph matching queries using the

DOGMA index. In the description of the algorithm, we assume the existence of two

index retrieval functions: retrieveNeighbors(DR, v, l) that retrieves from DOGMA in-

dex DR the unique identifiers for all vertices v′ that are connected to vertex v by an

edge labeled l, i.e., the neighbors of v restricted to label l, and retrieveVertex(DR, v)

that retrieves from DR a complete description of vertex v, i.e., its unique identifier and

its associated metadata. Note that retrieveVertex implicitly exploits locality, since af-

ter looking up neighboring vertices, the probability is high that the page containing the

current vertex’s description is already in memory.

DOGMA basic is a recursive, depth-first algorithm which searches the space of all

substitutions for the answer set to a given query Q w.r.t an RDF database R. For each

variable vertex v in Q, the algorithm maintains a set of constant vertices Rv ⊆ VR

(called result candidates) to prune the search space; for each answer substitution θ for

Q, we have θ(v) ∈ Rv. In other words, the result candidates must be a superset of the

set of all matches for v. Hence, we can prune the search space by only considering those

DOGMA: A Disk-Oriented Graph Matching Algorithm for RDF Databases 103

Algorithm DOGMA basic
Input: Graph query Q, DOGMA index DR, partial substitution θ, candidate sets {Rz}
Output: Answer set A, i.e. set of substitutions θ s.t. Qθ is a subgraph of GR

1 if ∀z ∈ VQ ∩ VAR : ∃c : (z → c) ∈ θ
2 A ← A ∪ {θ}
3 return /∗ done - a correct answer substitution has been found ∗/
4 if θ = ∅
5 for all z ∈ VQ ∩ VAR

6 Rz ← null /∗ no candidate substitutions for any vars in the query initially ∗/
7 for all c ∈ VQ ∩ (S ∪ V)
8 for all edges e = (c, v) incident on c and some v ∈ VQ ∩ VAR

9 if Rv = null
10 Rv ← retrieveNeighbors(DR, c, λQ(e)) /∗ use index to retrieve all nbrs of c with same label as e ∗ /
11 else
12 Rv ← Rv∩ retrieveNeighbors(DR, c, λQ(e)) /∗ restrict space of possible subst. for z ∗/
13 Rw ← argminRz �=null,s.t. z∈VQ∩V\dom(θ) |Rz|

14 if Rw = ∅
15 return “NO”
16 else
17 for all m ∈ Rw

18 retrieveVertex(DR, m)
19 θ′ ← θ ∪ {w → m}
20 for all z ∈ VQ ∩ VAR

21 R′
z ← Rz

22 for all edges e = (w, v) incident on w and some v ∈ VQ ∩ VAR \ dom(θ)
23 if Rv = null
24 R′

v ← retrieveNeighbors(DR, m, λQ(e))
25 else
26 R′

v ← Rv∩ retrieveNeighbors(DR, m, λQ(e))
27 DOGMA basic(θ′(Q), DR, θ′, {R′

z})

Fig. 4. DOGMA basic algorithm

substitutions θ for which θ(v) ∈ Rv for all variable vertices v in Q. DOGMA basic
is called initially with an empty substitution and uninitialized result candidates (lines

4-6). We use uninitialized result candidates Rv = null to efficiently denote Rv = VR,

i.e., the fact that there are no constraints on the result candidates yet. The algorithm then

initializes the result candidates for all variable vertices v in Q which are connected to

a constant vertex c in Q through an edge labeled by l (lines 7-12). Here we employ the

fact that any answer substitution θ must be such that θ(v) is a neighbor of c, and thus

the set of all neighbors of c in GR reachable by an edge labeled l are result candidates

for v. We use the DOGMA index DR to efficiently retrieve the neighborhood of c. If

v is connected to multiple constant vertices, we take the intersection of the respective

constraints on the result candidates.

At each recursive invocation, the algorithm extends the given substitution and

narrows down the result candidates for all remaining variable vertices correspondingly.

To extend the given substitution θ, we greedily choose the variable vertex w with the

smallest set of result candidates (line 13). This yields a locally optimal branching factor

of the search tree since it provides the smallest number of extensions to the current

substitution. In fact, if the set of result candidates is empty, then we know that θ cannot

be extended to an answer substitution, and we thus directly prune the search (lines

14-15). Otherwise, we consider all the possible result candidates m ∈ Rw for w by

deriving extended substitutions θ′ from θ which assign m to w (lines 17-19) and then

calling DOGMA basic recursively on θ′ (line 27). Prior to this, we update the result

104 M. Bröcheler, A. Pugliese, and V.S. Subrahmanian

candidates for all remaining variable vertices (lines 20-26). By assigning the constant

vertex m to w we can constrain the result candidates for all neighboring variable vertices

as discussed above.

Note that our description of the algorithm assumes that edges are undirected, to sim-

plify the presentation. Obviously, our implementation takes directionality into account

and thus distinguishes between outgoing and incoming edges when determining vertex

neighborhoods.

Example 3. Consider the example query and RDF database in Fig. 1. Fig. 5(a) shows

the initial result candidates for each of the variable vertices ?v1, ?v2, ?v3 in boxes. After

initialization, DOGMA basic chooses the smallest set of result candidates to extend

the currently empty substitution θ = ∅. We have that |Rv1 | = |Rv2 | = 3; suppose

Rv2 is chosen. We can now extend θ by assigning each of the result candidates (Bill

B0045, Bill B0532, Bill B1432) to ?v2. Hence, we first set θ′(?v2) = Bill B0045.

This introduces a new constant vertex into the query and we thus constrain the result

candidates of the two neighbor variable vertices v1, v3 by the “amendmentTo” and

“sponsor” neighborhood of Bill B0045 respectively. The result is shown in Fig. 5(b);

here we call DOGMA basic recursively to encounter the empty result candidates for

v1. Hence we reached a dead end in our search for an answer substitution and the

algorithm backtracks to try the remaining extensions for θ. Eventually, DOGMA basic

considers the extension v2 → Bill B1432 which leads to the query answer. �

Carla

Bunes
?v1

?v2

?v3Male

Health

Care

sponsor

sponsor

gender

amendmentTo

subject

Jeff Ryser

John McRie

Keith Farmer

Peter Traves

Pierce Dickes

Bill B0744

Amendment A0342

Amendment A0056

Bill B0045

Bill B0532

Bill B1432

Carla

Bunes
?v1

Bill

B0045

?v3Male

Health

Care

sponsor

sponsor

gender

amendmentTo

subject

Jeff Ryser

(a) (b)

Fig. 5. Execution of DOGMA basic on the example of Fig. 1

Proposition 2. Suppose DR is a DOGMA index for an RDF database R and Q is

a graph query. Then: DOGMA basic(Q, DR, {}, null) returns the set of all correct

answer substitutions for query Q w.r.t. R. Moreover, the worst-case complexity of the

DOGMA basic algorithm is O(|VR||VQ ∩V AR|).

The algorithm is therefore exponential in the number of variables in the query in

the worst case. However, the algorithm is efficient in practice as we will show in

Section 5. Furthermore, we propose two extensions of the DOGMA index that improve

its performance.

DOGMA: A Disk-Oriented Graph Matching Algorithm for RDF Databases 105

4.2 The DOGMA adv Algorithm

The basic query answering algorithm presented in the previous section only uses “short

range” dependencies, i.e., the immediate vertex neighborhood of variable vertices, to

constrain their result candidates. While this suffices for most simple queries, consider-

ing “long range” dependencies can yield additional constraints on the result candidates

and thus improve query performance. For instance, the result candidates for v1 in our

example query not only must be immediate neighbors of “Carla Bunes”: in addition,

they must be at most at a distance of 2 from “Health Care”. More formally, let dR(u, v)
denote the length of the shortest path between two vertices u, v ∈ VR in the undirected

counterpart of a RDF graph GR, and let dQ(u, v) denote the distance between two ver-

tices in the undirected counterpart of a query Q; a long range dependency on a variable

vertex v ∈ VQ is introduced by any constant vertex c ∈ VQ with dQ(v, c) > 1.

We can exploit long range dependencies to further constrain result candidates. Let

v be a variable vertex in Q and c a constant vertex with a long range dependency on

v. Then any answer substitution θ must satisfy dQ(v, c) ≥ dR(θ(v), c) which, in turn,

means that {m | dR(m, c) ≤ dQ(v, c)} are result candidates for v. This is the core

idea of the DOGMA adv algorithm shown in Fig. 6, which improves over and extends

DOGMA basic. In addition to the result candidates sets Rv , the algorithm maintains

sets of distance constraints Cv on them. As long as a result candidates set Rv remains

uninitialized, we collect all distance constraints that arise from long range dependencies

on the variable vertex v in the constraints set Cv (lines 15-16 and 34-35). After the

result candidates are initialized, we ensure that all elements in Rv satisfy the distance

constraints in Cv (lines 17-18 and 37-38). Maintaining additional constraints therefore

reduces the size of Rv and hence the number of extensions to θ we have to consider

(line 23 onward).

DOGMA adv assumes the existence of a distance index to efficiently look up

dR(u, v) for any pair of vertices u, v ∈ VR (through function retrieveDistance), since

computing graph distances at query time is clearly inefficient. But how can we build

such an index? Computing all-pairs-shortest-path has a worst-case time complexity

O(|VR|3) and space complexity O(|VR|2), both of which are clearly infeasible for large

RDF databases. However, we do not need to know the exact distance between two ver-

tices for DOGMA adv to be correct. Since all the distance constraints in DOGMA adv

are upper bounds (lines 18, 31, and 38), all we need is to ensure that ∀u, v ∈ VR, re-

trieveDistance(DR, u, v) ≤ dR(u, v).
Thus, we can extend the DOGMA index to include distance information and build

two “lower bound” distance indexes, DOGMA ipd and DOGMA epd, that use approx-

imation techniques to achieve acceptable time and space complexity.

4.3 DOGMA ipd

For building the DOGMA index, we employed a graph partitioner which minimizes

cross edges, to ensure that strongly connected vertices are stored in close proximity on

disk; this implies that distant vertices are likely to be assigned to distinct sets in the

partition. We exploit this to extend DOGMA to a distance index.

As seen before, the leaf nodes of the DOGMA index DR are labeled by subgraphs

which constitute a partition of GR. For any node N ∈ DR, let PN denote the union

106 M. Bröcheler, A. Pugliese, and V.S. Subrahmanian

Algorithm DOGMA adv
Input: Graph query Q, DOGMA Index DR, partial substitution θ, candidate sets {Rz}, constraint sets {Cz}
Output: Answer set A, i.e. set of substitutions θ s.t. θ(Q)⊂̃G

1 if ∀z ∈ VQ ∩ VAR : ∃c : (z → c) ∈ θ
2 A ← A ∪ {θ}
3 return
4 if θ = ∅
5 for all z ∈ VQ ∩ VAR

6 Rz ← null
7 for all c ∈ VQ ∩ (S ∪ V)
8 for all edges e = (c, v) incident on c and some v ∈ VQ ∩ VAR

9 if Rv = null
10 Rv ← retrieveNeighbors(DR, c, λQ(e))
11 else
12 Rv ← Rv∩ retrieveNeighbors(DR, c, λQ(e))
13 for all c ∈ VQ ∩ (S ∪ V)
14 for all variable vertices v ∈ VQ ∩ VAR s.t. dQ(c, v) > 1
15 if Rv = null
16 Cv ← Cv ∪ {(c, dQ(c, v))}
17 else
18 Rv ← {u ∈ Rv | retrieveDistance(DR, c, u) ≤ dQ(c, v)}
19 Rw ← argminRz �=null,s.t. z∈VQ∩VAR\dom(θ) |Rz|

20 if Rw = ∅
21 return
22 else
23 for all m ∈ Rw

24 retrieveVertex(DR, m)
25 θ′ ← θ ∪ {w → m}
26 for all z ∈ VQ ∩ VAR

27 R′
z ← Rz

28 C′
z ← Cz

29 for all edges e = (w, v) incident on w and some v ∈ VQ ∩ VAR \ dom(θ)
30 if Rv = null
31 R′

v ← {u ∈ retrieveNeighbors(DR, m, λQ(e)) | ∀(c, d) ∈ Cv : retrieveDistance(DR, c, u) ≤ d}
32 else
33 R′

v ← Rv∩ retrieveNeighbors(DR, m, λQ(e))
34 for all variable vertices v ∈ VQ ∩ VAR \ dom(θ) s.t. dQ(w, v) > 1
35 if Rv = null
36 Cv ← Cv ∪ {(m, dQ(w, z))}
37 else
38 Rv ← {w ∈ Rv | retrieveDistance(DR, m, v) ≤ dQ(w, v)}
39 DOGMA basic(θ′(Q), DR, θ′, {R′

z}, {C′
z})

Fig. 6. DOGMA adv algorithm

of the graphs labeling all leaf nodes reachable from N . Hence, PN is the union of

all subgraphs in GR that were eventually merged into the graph labeling N during

index construction and therefore corresponds to a larger subset of GR. For example,

the dashed lines in Fig 1(a) mark the subgraphs PN for all index tree nodes N of the

DOGMA index shown in Fig. 2 where bolder lines indicate boundaries corresponding

to nodes of lower depth in the tree.

The DOGMA internal partition distance (DOGMA ipd) index stores, for each index

node N and vertex v ∈ PN , the distance to the outside of the subgraph corresponding

to PN . We call this the internal partition distance of v, N , denoted ipd(v, N), which

is thus defined as ipd(v, N) = minu∈VR\PN
dR(v, u). We compute these distances

during index construction as shown in Fig. 3 (BuildTree algorithm at lines 12-14). At

query time, for any two vertices v, u ∈ VR we first use the DOGMA tree index to

identify those distinct nodes N �= M in DR such that v ∈ PN and u ∈ PM , which

are at the same level of the tree and closest to the root. If such nodes do not exist

(because v, u are associated with the same leaf node in DR), then we set dipd(u, v) = 0.

Otherwise we set dipd(u, v) = max(ipd(v, N), ipd(u, M)). It is easy to see that dipd

DOGMA: A Disk-Oriented Graph Matching Algorithm for RDF Databases 107

is an admissible lower bound distance, since PN ∩PM = ∅. By choosing those distinct

nodes which are closest to the root, we ensure that the considered subgraphs are as large

as possible and hence dipd(u, v) is the closest approximation to the actual distance.

Proposition 3. Building the DOGMA ipd index has a worst-case time complexity

O(log |VR|
k (|ER| + |VR| log |VR|)) and space complexity O(|VR| log |VR|

k).

Example 4. Consider the example of Fig. 1. As shown in Fig. 7(a), there is a long range

dependency between “Carla Bunes” and variable vertex v2 at distance 2. The boldest

dashed line in Fig. 1(a) marks the top level partition and separates the sets PN1 , PN2 ,

where N1, N2 are the two nodes directly below the root in the DOGMA index in Fig. 2.

We can determine that ipd(Carla Bunes, N2) = 3 and since Bill B0045 and B0532 lie in

the other subgraph, it follows that dipd(Carla Bunes, B0045/B0532) = 3 and therefore

we can prune both result candidates. �

(a) (b)

Fig. 7. Using DOGMA ipd and DOGMA epd for query answering

4.4 DOGMA epd

The DOGMA external partition distance (DOGMA epd) index also uses the partitions

in the index tree to compute a lower bound distance. However, it considers the distance

to other subgraphs rather than the distance within the same one. For some fixed level

L, let NL denote the set of all nodes in DR at distance L from the root. As discussed

above, P = {PN}N∈NL
is a partition of GR. The idea behind DOGMA epd is to

assign a color from a fixed list of colors C to each subgraph PN ∈ P and to store,

for each vertex v ∈ VR and color c ∈ C, the shortest distance from v to a subgraph

colored by c. We call this the external partition distance, denoted epd(v, c), which is

thus defined as epd(v, c) = minu∈PN ,φ(PN)=c dR(v, u) where φ : P → C is the color

assignment function. We store the color of PN with its index node N so that for a given

pair of vertices u, v we can quickly retrieve the colors cu, cv of the subgraphs to which

u and v belong. We then compute depd(v, u) = max(epd(v, cu), epd(u, cv)). It is easy

to see that depd is an admissible lower bound distance.

Ideally, we want to assign each partition a distinct color but this exceeds our

storage capabilities for large database sizes. Our problem is thus to assign a limited

108 M. Bröcheler, A. Pugliese, and V.S. Subrahmanian

number of colors to the subgraphs in such a way as to maximize the dis-

tance between subgraphs of the same color. Formally, we want to minimize the

objective function
∑

PN∈P

∑
PM∈P,φ(PN)=φ(PM)

1
d(PN ,PM) where d(PN , PM) =

minu∈PN ,v∈PM
dR(u, v). Inspired by the work of Ko and Rubenstein on peer-to-peer

networks [4], we designed a probabilistic, locally greedy optimization algorithm for the

maximum distance coloring problem named ColorRegions, that we do not report here

for reasons of space. The algorithm starts with a random color assignment and then iter-

atively updates the colors of individual partitions to be locally optimal. A propagation

radius determines the neighborhood that is analyzed in determining the locally optimal

color. The algorithm terminates if the cost improvement falls below a certain threshold

or if a maximum number of iterations is exceeded.

Proposition 4. Computing the external partition distance has a worst-case time com-

plexity O(|C| (|ER| + |VR| log |VR|)) and space complexity O(|VR| |C|).

Example 5. Consider the example of Fig. 1(a) and assume each set in the lowest level

of the DOGMA index in Fig. 2 is colored with a different color. Figure 7(b) indicates

some long range dependencies and shows how the external partition distance can lead

to additional prunings in the three result candidates sets which can be verified against

Fig. 1(a). �

5 Experimental Results

In this section we present the results of the experimental assessment we performed of

the DOGMA adv algorithm combined with DOGMA ipd and DOGMA epd indexes.

We compared the performance of our algorithm and indexes with 4 leading RDF

database systems developed in the Semantic Web community that are most widely used

and have demonstrated superior performance in previous evaluations [5]. Sesame2 [6] is

an open source RDF framework for storage, inferencing and querying of RDF data, that

includes its own RDF indexing and I/O model and also supports a relational database

as its storage backend. We compare against Sesame2 using its native storage model

since initial experiments have shown that Sesame2’s performance drops substantially

when backed by a relational database system. Jena2 [7] is a popular Java RDF frame-

work that supports persistent RDF storage backed by a relational database system (we

used PostgreSQL [8]). SPARQL queries are processed by the ARQ query engine which

also supports query optimization [9]. JenaTDB [10] is a component of the Jena frame-

work providing persistent storage and query optimization for large scale RDF datasets

based on a native indexing and I/O model. Finally, OWLIM [11] is a high performance

semantic repository based on the Sesame RDF database. In the experiments, we com-

pared against the internal memory version of OWLIM which is called SwiftOWLIM

and is freely available. SwiftOWLIM loads the entire dataset into main memory prior

to query answering and therefore must be considered to have an advantage over the

other systems.

Moreover, we used 3 different RDF datasets. GovTrack [1] consists of more than 14.5

million triples describing data about the U.S. Congress. The Lehigh University Bench-

mark (LUBM) [12] is frequently used within the Semantic Web community as the basis

DOGMA: A Disk-Oriented Graph Matching Algorithm for RDF Databases 109

Fig. 8. Query times (ms) for graph queries of low complexity

for evaluation of RDF and ontology storage systems. The benchmark’s RDF genera-

tor employs a schema which describes the university domain. We generated a dataset

of more than 13.5 million triples. Finally, a fragment of the Flickr social network [13]

dataset was collected by researchers of the MPI Saarbrücken to analyze online social

networks [14] and was generously made available to us. The dataset contains infor-

mation on the relationships between individuals and their memberships in groups. The

fragment we used for the experiments was anonymized and contains approximately 16

million triples. The GovTrack and social network datasets are well connected (with

the latter being denser than the former), whereas the dataset generated by the LUBM

benchmark is a sparse and almost degenerate RDF graph containing a set of small and

loosely connected subgraphs.

In order to allow for a meaningful comparison of query times across the different

systems, we designed a set of graph queries with varying complexity, where constant

vertices were chosen randomly and queries with an empty result set were filtered out.

Queries were grouped into classes based on the number of edges and variable vertices.

110 M. Bröcheler, A. Pugliese, and V.S. Subrahmanian

Fig. 9. Query times (ms) for graph queries of high complexity

We repeated the query time measurements multiple times for each query, eliminated

outliers, and averaged the results. Finally, we averaged the query times of all queries

in each class. All experiments were executed on a machine with a 2.4Ghz Intel Core 2

processor and 3GB of RAM.

In a first round of experiments, we designed several relatively simple graph queries

for each dataset, containing no more than 6 edges, and grouped them into 8 classes.The

results of these experiments are shown in Fig. 8 which reports the query times for each

query class on each of the three datasets. Missing values in the figure indicate that

the system did not terminate on the query within a reasonable amount of time (around

20 mins). Note that the query times are plotted in logarithmic scale to accommodate

the large discrepancies between systems. The results show that OWLIM has low query

times on low complexity queries across all datasets. This result is not surprising, as

OWLIM loads all data into main memory prior to query execution. The performance

advantage of DOGMA ipd and DOGMA epd over the other systems increases with

query complexity on the GovTrack and social network dataset, where our proposed

DOGMA: A Disk-Oriented Graph Matching Algorithm for RDF Databases 111

Fig. 10. Index size (MB) for different datasets

techniques are orders of magnitude faster on the most complex queries. On the LUBM

dataset, however, Sesame2 performs almost equally for the more complex queries. Fi-

nally, DOGMA epd is slightly faster on the LUBM and social network dataset, whereas

DOGMA ipd has better performance on the Govtrack dataset.

In a second round of experiments, we significantly increased the complexity of the

queries, which now contained up to 24 edges. Unfortunately, the OWLIM, JenaTDB,

and Jena2 systems did not manage to complete the evaluation of these queries in reason-

able time, so we exclusively compared with Sesame2. The results are shown in Fig. 9.

On the GovTrack and social network dataset, DOGMA ipd and DOGMA epd con-

tinue to have a substantial performance advantage over Sesame2 on all complex graph

queries of up to 40000%. For the LUBM benchmark, the picture is less clear due to the

particular structure of the generated dataset explained before.

Finally, Fig. 10 compares the storage requirements of the systems under comparison

for all three datasets. The results show that DOGMA ipd,DOGMA epd and Sesame2

are the most memory efficient.

To wrap up the results of our experimental evaluation, we can observe that both

DOGMA ipd and DOGMA epd are significantly faster than all other RDF database

systems under comparison on complex graph queries over non-degenerate graph

datasets. Moreover, they can efficiently answer complex queries on which most of the

other systems do not terminate or take up to 400 times longer, while maintaining a sat-

isfactory storage footprint. DOGMA ipd and DOGMA epd have similar performance,

yet differences exist which suggest that each index has unique advantages for particular

queries and RDF datasets. Investigating these is subject of future research.

6 Related Work

Many approaches to RDF storage have been proposed in the literature and through

commercial systems. In Section 5 we briefly reviewed four such systems that we used in

the performance comparison. Discussing all prior work on RDF storage and retrieval in

detail is beyond the scope of this paper. Approaches differ with respect to their storage

112 M. Bröcheler, A. Pugliese, and V.S. Subrahmanian

regime, index structures, and query answering strategies. Some systems use relational

databases as their back-end [15]; for instance by inferring the relational schema of the

given RDF data [16,17], or using a triple based denormalized relational schema [7],

whereas others propose native storage formats for RDF [11]. To efficiently retrieve

triples, RDF databases typically rely on index structures, such as the popular B-tree and

its generalizations, over subjects, predicates, objects or any combination thereof [18].

Query answering is either handled by the relational database back-end after a SPARQL

query is translated into its SQL equivalent or employs existing index structures to re-

trieve stored triples that match the query. [19] does some additional tuning through

B+-tree page compression and optimized join processing. Recent work on query opti-

mization for RDF uses triple selectivity estimation techniques similar to those used in

relational database systems [9].

Despite these differences, the great majority of RDF databases are triple oriented

in the sense that they focus on the storage and retrieval of individual triples. In con-

trast, our work is graph oriented because we analyze the graph spanned by RDF data

and exploit graph properties, such as connectedness and shortest path lengths, for ef-

ficient storage and, more importantly, retrieval. This explains DOGMA’s performance

advantage on complex queries. GRIN [20] was the first RDF indexing system to use

graph partitioning and distances in the graphs as a basis for indexing for SPARQL-

like queries. However, GRIN did not operate on disk and the authors subsequently

found errors in the experimental results reported in that paper. There is also some re-

lated work in other communities. LORE [21], a database system for semi-structured

data, proposed path indexes based on the assumption that the input data can be ac-

curately represented as a tree. This assumption clearly does not hold for RDF data.

Furthermore, there is a lot work on approximate query answering over graph datasets in

the bioinformatics community [22]. However, the biological datasets are small enough

to fit into main memory and hence storage and retrieval are not being addressed. Fi-

nally, [19,23] focus on the physical data structures to optimally store RDF triples. Their

work is thus orthogonal to ours, since a DOGMA index could be built on the physical

data structures proposed in these papers in order to additionally exploit graph distance

locality.

7 Conclusions and Future Work

In this paper, we proposed the DOGMA index for fast subgraph matching on disk and

developed algorithms to answer queries over this index. The algorithms use efficient

(but correct) pruning strategies and can be combined with two different extensions of

the index. We tested a preliminary implementation of the proposed techniques against

four existing RDF database systems, showing very good query answering performance.

Future work will be devoted to an in-depth study of the advantages and disadvantages

of each of the proposed indexes when dealing with particular queries and RDF datasets.

Moreover, we plan to extend our indexes to support efficient updates, also trying to

improve over usual index maintenance schemes such as those based on a partial use of

the space in index nodes.

DOGMA: A Disk-Oriented Graph Matching Algorithm for RDF Databases 113

References

1. GovTrack dataset: http://www.govtrack.us

2. Seaborne, A., Prud’hommeaux, E.: SPARQL query language for RDF. W3C recommenda-

tion (January 2008)

3. Karypis, G., Kumar, V.: A fast and high quality multilevel scheme for partitioning irregular

graphs. SIAM Journal on Scientific Computing 20, 359–392 (1999)

4. Ko, B., Rubenstein, D.: Distributed self-stabilizing placement of replicated resources in

emerging networks. Networking, IEEE/ACM Transactions on 13(3), 476–487 (2005)

5. Lee, C., Park, S., Lee, D., Lee, J., Jeong, O., Lee, S.: A comparison of ontology reasoning

systems using query sequences. In: Proceedings of the 2nd international conference on Ubiq-

uitous information management and communication, Suwon, Korea, pp. 543–546. ACM,

New York (2008)

6. Sesame2: http://www.openrdf.org

7. Wilkinson, K., Sayers, C., Kuno, H., Reynolds, D.: Efficient RDF storage and retrieval in

Jena2. In: Proceedings of SWDB, vol. 3, pp. 7–8 (2003)

8. PostgreSQL: http://www.postgresql.org

9. Stocker, M., Seaborne, A., Bernstein, A., Kiefer, C., Reynolds, D.: SPARQL basic graph

pattern optimization using selectivity estimation. In: Proceeding of the 17th international

conference on World Wide Web, Beijing, China, pp. 595–604. ACM, New York (2008)

10. JenaTDB: http://jena.hpl.hp.com/wiki/TDB

11. Kiryakov, A., Ognyanov, D., Manov, D.: OWLIM - a pragmatic semantic repository for

OWL. In: WISE Workshops, pp. 182–192 (2005)

12. The Lehigh University Benchmark:

http://swat.cse.lehigh.edu/projects/lubm

13. Flickr: http://www.flickr.com

14. Mislove, A., Marcon, M., Gummadi, K.P., Druschel, P., Bhattacharjee, B.: Measurement and

analysis of online social networks. In: Proceedings of the 7th ACM SIGCOMM conference

on Internet measurement, pp. 29–42. ACM, New York (2007)

15. Theoharis, Y., Christophides, V., Karvounarakis, G.: Benchmarking database representations

of RDF/S Stores, pp. 685–701 (2005)

16. Broekstra, J., Kampman, A., van Harmelen, F.: Sesame: An architecture for storing and

querying RDF data and schema information. In: Spinning the Semantic Web, pp. 197–222

(2003)

17. Sintek, M., Kiesel, M.: RDFBroker: A signature-based high-performance RDF store. In:

Sure, Y., Domingue, J. (eds.) ESWC 2006. LNCS, vol. 4011, pp. 363–377. Springer,

Heidelberg (2006)

18. Harth, A., Decker, S.: Optimized index structures for querying RDF from the Web. In: Pro-

ceedings of the 3rd Latin American Web Congress, pp. 71–80 (2005)

19. Neumann, T., Weikum, G.: RDF-3X: a RISC-style engine for RDF. PVLDB 1(1), 647–659

(2008)

20. Udrea, O., Pugliese, A., Subrahmanian, V.S.: GRIN: A graph based RDF index. In: AAAI,

pp. 1465–1470 (2007)

21. Goldman, R., McHugh, J., Widom, J.: From semistructured data to XML: migrating the Lore

data model and query language. In: Proceedings of the 2nd International Workshop on the

Web and Databases (WebDB 1999), pp. 25–30 (1999)

22. Tian, Y., McEachin, R.C., Santos, C.: SAGA: a subgraph matching tool for biological graphs.

Bioinformatics 23(2), 232 (2007)

23. Neumann, T., Weikum, G.: Scalable join processing on very large RDF graphs. In: SIGMOD

Conference, pp. 627–640 (2009)

http://www.govtrack.us
http://www.openrdf.org
http://www.postgresql.org
http://jena.hpl.hp.com/wiki/TDB
http://swat.cse.lehigh.edu/projects/lubm
http://www.flickr.com

	DOGMA: A Disk-Oriented Graph Matching Algorithm for RDF Databases
	Introduction
	Preliminaries
	The DOGMA Index
	Algorithms for Processing Graph Queries
	The DOGMA_basic Query Processing Algorithm
	The DOGMA_adv Algorithm
	DOGMA_ipd
	DOGMA_epd

	Experimental Results
	Related Work
	Conclusions and Future Work

