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ABSTRACT 

machine environment for-IU systems to use in model 
driven pattern matching for object recognition. 
This paper presents a technique for autonomous 
machine description of objects presented as spatial 
data, i.e., data presented as point sets in 
Euclidean n-space. This general definition of 
objects as spatial data encompasses the cases of 
explicit listings of points, lines or other spatial 
features, objects defined by light pen in a CAD 
system, generalized cone representations, polygonal 
boundary representations, quad-trees, etc. The 
description technique decomposes an object into 
component sub-parts which are meaningful to a human 
being. It is based upon a measure of symmetry of 
point sets. Most spatial data has no global sym- 
metry. In order to arrive at a reasonable descrip- 
tion of a point set, we attempt to decompose the 
data into the fewest subsets each of which is as 
symmetric as possible. The technique is based upon 
statistics which capture the opposing goals of 
fewest pieces and most symmetry. An algorithm is 
proposed which operates sequentially in polynomial 
time to reach an optimal (but not necessarily 
unique) decomposition. The semantic content of the 
descriptions which the technique produces agrees 
with results of experiments on qualitative human 
perception of spatial data. In particular, the 
technique provides a step toward a quantitative 
measure of the old perceptual Gestalt school of 
psychology's concept of "goodness of figure". 

1. I.HTRODlJCTION 

A significant problem in image understanding 
(IU) is to represent objects as models stored in a 

machine environment for IU systems to use in model 
driven pattern matching for object recognition. 
This paper presents a technique for autonomous 
machine description of objects presented as spatial 
data, i.e., data presented as point sets in 
Euclidean n-space, En. This general definition of 
objects as spatial data encompasses the cases of 
explicit listings of points, lines or other spatial 
features, objects defined by light pen in a CAD 
system, generalized cone representations (Brooks, 
19811, polygonal boundary representations, quad- 
trees (Samet and Webber, 19831, etc. 

The description technique decomposes an object 
into component sub-parts which are meaningful to a 
human being. It is based upon a measure of sym- 
metry of point sets in En. Symmetry is quantified 
as the reciprocal of the number of reflections and 
rotations under which the point set is invariant 
relative to some fixed point (the center of reflec- 
tion or rotation). 2 For instance, the regular k- 
sided polygon in E remains invariant under k rota- 
tions and k reflections relative to its center for 
a total of 2k invariant transformations. Thus2 the 
s mmetry measure of the regular k polygon in E is 
9 -. Note that the identity transformation (the 

%ll rotation) leaves any point set fixed so that 
the symmetry value of any point set is always 
defined and bounded above by one. A circle, rela- 
tive to its center, has infinitely many invariant 
transformations, resulting in a minimum possible 
symmetry measure of zero. 

Most spatial data has no global symmetry. In 
order to arrive at a reasonable description of a 
point set, we attempt to decompose the data into 
the fewest subsets each of which is as symmetric as 
possible. The technique is based upon statistics 
which capture the opposing goals of fewest pieces 
and most symmetry. An algorithm is proposed which 
operates sequentially in polynomial time to reach 
an optimal (but not necessarily unique) decomposi- 
tion. 

Standard applications of the technique are in 
E2 for 2D images and E for 3D object modeling. 
The technique allows a machine to provide a more 
meaningful description of spatial data than a sim- 
ple list of points. This description can be 
represented as a model and may subsequently be used 
to match the model to observed instances of the 
object in imagery. The technique could potentially 
relieve humans of the need to manually indicate 
sub-parts of objects which we want the machine to 
model. Its effectiveness depends upon the semantic 
reality of the decomposition, and the relationship 
of that decomposition to autonomous image segmenta- 
tion techniques. That is, the machine should pro- 
duce descriptions of objects which indicate much 
the same "parts" decomposition which a human would 
provide, and, if matching objects in imagery is 
desired, the spatial data output from segmentation 
must lead to a decomposition which is capable of 
being matched to the stored model. 
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The semantic content of the descriptions which 
the technique produces agrees with the results of 
experiments on qualitative human perception of spa- 
tial data. In particular, the technique provides a 
step toward a quantitative measure of the old per- 
ceptual Gestalt school of psychology’s concept of 
“goodness of figure” (Allport, 1955). In a machine 
environment , we can combine this technique for 
quantifying the qualitative aspects of perception 
with the physiologically based structuralist 
approach to image segmentation by utilizing points 
of greatest change (i.e. most information) 
extracted during segmentation as the input to the 
description and matching process. This differs 
from the wholly structuralist approach to IU, as 
typified by Mar-r and his associates (Marr, 19791, 
which uses the principle of minimum energy to 
obtain object descriptions from high information 
point sets. The (mathematical) relationship 
between the symmetry-based and information-based 
approaches is an open question, although Hoffman’s 
work (Hoffman, 19661, provides an excellent first 
step. 

The second section of this paper presents the 
definition of quantization of symmetry of a single 
point set along with some mathematical prelim- 
inaries. In Section 3, the notion of symmetry is 
extended to multiple point sets, and2we show condi- 
tions for spatial data imbedded in E under which 
decompositions into regular-polygonal subsets are 
optimal . We use the optimality criterion of 
regular-polygonal decompositions to derive an algo- 
rithm in Section 4 for con tructing decompositions 
in finite points sets in E 2 . 

2. SYMMETRY OF SINGLE POINT SETS 

Many techniques exist to quantify various 
aspects of regularity in spatial data including 
texture measures (Wechsler, 19801, analysis in the 
frequency domain (Crowley , 1984) and information 
theoretic approaches (Green and Courtis, 1966). 
Symmetry is one of the most striking forms of regu- 
larity in human perception, yet it is not well 
quantified by any of the methods mentioned above. 
Most previous attempts (Birkoff, 1932, Eysenck, 
19681, to quantify symmetry focused on brute-force 
delineation of point, side and angle relationships 
in polygons. Weyl (Weyl, 1952) provided a 
mathematical description of symmetry of a point 
set, but even this was not a general enough frame- 
work for machine description (nor was that the 
intention of the work), and his research did not 
attempt to define symmetry in multiple point sets. 

Symmetry may be defined in terms of three 
types of linear transformations in En: ref lec- 
tions, rotations and translations. A point set in 
En is symmetric with respect to a linear transfor- 
mation if it remains invariantn unde; that transfor- 
mation. That is, if T maps E to E , and S is a 
subset of En, S C En, then we say S is symmetric 
with respect to T if T(S) = S. For brevity we will 
use “wrt” to mean “with respect to”. 

Rotations leave only the point in En which is 
the center of rotation fixed, and reflections have 

only the line or (hyper) plane of reflection fixed. 
Note that the line or plane of reflection uniquely 
determines the corresponding transformation. 

En, 
Non-null translations have no fixed points in 

and it can be shown that no finite point set in 
En is symmetric wrt a translation. 
other than En, 

(Some spaces 
such as a torus obtained by identi- 

fying opposite sides of a rectangle as in CRT 
screen wrap-around, admit finite symmetric subsets 
wrt translation, but we do not address those issues 
here. > Finally, by allowing centers of rotation to 
be translated about, we may also subsume any need 
for separate translation transformation in defining 
symmetry. For these reasons we do not explicitly 
consider translations further in the quantification 
of symmetry. 

We denote the set of reflections and rotations 
of En relative to some fixed point, c, by O(n, c>. 
When c is the origin this is more commonly denoted 
by O(n) for the orthogonal group of (rigid) linear 
transformations in En. Stretching and contract ion 
are not permitted in this subset of the larger set 
of all linear transformations which map En onto En. 
Note that O(n,c> is just another copy of O(n) with 
the origin translated to c, so arguments regarding 
O(n) apply to O(n,c>. 

Possession of the properties of closure, iden- 
tity , inverse, and associativity defines O(n) to be 
a group in the mathematical sense. The order of a 
group is the number of distinct elements it con- 
tains. If G is a group, then we write o(G) for the 
order of G. (See (Weyl, 1939)) or other standard 
texts for detail on O(n) and groups.) The struc- 
ture of the group O(n) and its subgroups is well- 
understood. If a connection between the descrip- 
tion of spatial data and O(n) is made, then the 
structure of O(n) may provide additional insight 
into the description. This is precisely our pro- 
gram in the following. 

Let S be a point set in En, and c E En. Let 
sym(S,c) = {T c O(n,c>lT(S> = S), then sym(S,c) is 
the set of orthogonal transformations under which S 
is invariant relative to the point c. It is not 
hard to show that sym(S,c) is a subgroup of O(n,c>. 
.(See (Weyl, 1939, 19521.) 

We define the symmetry measure of S wrt a 
point c c En, m(S,c> , to be the reciprocal of the 
order of the group of invariant orthogonal 
transformations of S. 

-1 hat is 
m(S,c) = [o(sym(S,c>>l . The purpose of the 
reciprocal is to obtain a bounded measure. Since 
we always have I c sym(S,c > , we know 
o(sym(S,c>> L 1. If o(sym(S,c)) is not finite then 
we define m(S,c> = 0. It follows that for any S 
and c, 0 5 m(S,c> ( 1. 

To see the usefulness of quantifying symmetry 
within a well-known mathematical qbject, consider 
the case where S is a square in E and c is its 
center. There are four reflections which leave S 
invariant, one each across the vertical and hor- 
izontal bisectors of the sides, and one across each 
diagonal. There are also four 90’ rotations 
(including the identity) which leave 

7 invariant. 
Thus, o(sym(S,c>> = 8, and m(S,c> = s. 
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For the case of a square, sym(S) is a (Other criterion such as relative size and cluster- 
mathematical object well studied in the nineteenth ing of subsets could also be considered, but are 
century, called the dihedral group and denoted beyond the scope of this paper.) 
D(8). As in all groups, the subgroups of D(8) form 
a partially ordered hierarchy. For D(8) this This approach suggests that we search for a 
hierarchy is pictured in Figure 2-1. The point is decomposition of S into k subsets each with associ- 
that subgroups correspond to different ways to ated point c.: {(S., c.) 1 i=l to k} which minimizes 
decompose S into parts. The vertical and horizon- the evaluatihn funktioh: 
tal reflections together imply quartering the 
square, while each alone implies halving it into E({(Si,ci)l i=l to k)) = 
rectangles. The diagonal reflections similarly 
give rise to spatial partitions of the square into k k -= 
two or four triangles. Thus, we can map the struc- 
ture of D(8) back to S to extract the structure k [m(Si,ci)l-l 

k 
C o(sym(Si,ci)) 

inherent in the square. i=l i=l 

. 
Note that since [m(Si,ci)]-' = o(sym(S., 

1 'i)) 1. ', 

I 

/ \ 

we have g [m(Si,ci)]-1 1. k so that, 
- I * i=l 

Figure 2-l: Hierarchical Decomposition Example 

In fact, if we consider, rather than the whole 
square, just the corner points (which have high 
information content) and then include all midpoints 
between pairs of corner points in order to encode 
reflectively information, we obtain the dot diagram 
in Figure 2-l. The decompositions which humans 
tend to make of this diagram (Zusne, 1970) 
correspond nicely to those predicted by the 
subgroup structure of D(8). However, regardless of 
the nature of human perception, this technique pro- 
vides an approach to more semantically based 
machine perception of objects. 

3. DECOHPOSITION OF SPATIAL DATA 

Most point sets in En have no global symmetry. 
The technique outlined in Section 2 is therefore 
not sufficient by itself to allow a machine to 
derive a meaningful description of complex spatial 
data. Our objective is to decompose the spatial 
data into subsets which are inherently more iden- 
tifiable than the object represented by the total 
data. For instance, the side view of a car might 
be roughly described as a smaller rectangle, (the 
roof and windows), over a larger rectangle (the car 
body), over two circles (the wheels). The tech- 
nique presented here allows a machine to generate 
this description for itself. 

Following guidelines suggested by research in 
qualitative visual perception, we seek a decomposi- 
tion of a set S C E into as few subsets as possi- 
ble, each of which is as symmetric as possible. 

E({(Si,ci)l i=l to k)) = k k _ L " 
C m(Si,ci) 

-1 

i=l 

Since k and m(S.,c.) are always positive, we have 
O< E({(S.,c.)l i=lito k))Ll. Thus, E is a bounded 
evaluati& t unction. E is not the only function we 
might choose. E is in fact a mean statistic satis- 
fying the properties of means as defined, for 
instance, in (Mays, 1983). Any mean of the set 
{m(Si,ci)l i=l to k), such as the standard 

arithmetic mean, would serve as well, although 
results will differ. The mean E, as defined above, 
however, is particularly tractable because of its 
linearity in the o(sym(Si,ci)). We take advantage 
of this in the following p5oposition. Recall that 
the regular n polygon in E is the polygon which 
has n equal sides. 

Proposition: Let SC E2 be a finite set and let 
D = {(S.,c.)l i=l to k) be a decomposition of S 
with no:e if the S. being a regular polygon. If 
P = {(P.,d.) 1 i-l to m) is another decomposition of 
S whereiali the Pi are regular polygons, then 

E(P) < E(D) 

Furthermore, if P = {(P.,d.)l i=l to m} and 
Q = {(Q-, e.)l i=l to nf a:e two different regular 
polygon& dkcompositions, then the one with fewer 
subsets will have the smaller evaluation function. 
The proof of this proposition is omitted due to 
lack of space. 

This proposition shows that any regular polyg- 
onal decomposition of a set is better than any 
decomposition which has no regular polygons, and 
that the regular polygonal decomposition with 
fewest polygons is superior to other regular polyg- 
onal decompositions. Figure 3-l shows the value of 
the symmetry measure, E, for several possible 
decompositions of the point set S pictured in Fig- 
ure 3-la. Notice that E is minimized by the regu- 
lar polygonal decomposition into two squares. 

However, the case of decompositions with some, 
but not all, regular polygons is subtler. The 
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measure captures a trade-off between number of 
objects and relative symmetry of objects. It 
favors more objects with higher individual sym- 
metry, if their symmetries are close to the same 
value, but favors few objects if there must be a 
great disparity in their relative symmetry. 

/ / 

. 

I , i , d’ , 
cl 

/ 
/ , , / / / , 

a) original point set 
I 

b)E=$ 

c) E=3 d) E -1 
11 r 

r-7 
L 1 

e,E=; 

Figure 3-l: Evaluation of Point Set Decompositions 

These statements can be explicitly quantized 
by observing the value of E on decompositions of a 
set S of N points. Suppose S has a regular polygo- 
nal decomposition into m polygzns. Then this 
decomposition has E equal to 2~. If we lump m-k of 
the polygons into a single set (which is not a reg- 
ular polygv) then the new decomposition has E 
equal to 2n+x where n is the number of points left 
in regular polygons, and x is between 1 and 4. 
(This-fact is e by-pgoduct 
We see that 2n+x 

of them omittgd groofs.) 
- < 2~ when N - <,)n < (C)(T). 

Notice that m_ measures how many more objects 
there are in the kegular polygonal decomposition, 
while n (n(N) is the number of points left in regu- 
lar polygons. So, for instance, if it is possible 
to lump together at least half the regular polygons 
using no more than half the total points, it always 
pays to do so, according to the measure E. 

4. ALGORITHM FOR DECOMPOSITIONS 
OF 2D FINITE POINT SETS 

In this section, the evaluation function, E, 
is as defined in Section 2. We also assume fami- 
liarity with the Hough transform method of line 
finding in spatial data (Duda and Hart, 1972). 

The decomposition algorithm presented here 
depends upon the proposition in Section 3, and 
also on the following observation. If S is sym- 
metric with respect to a reflection, then the mid- 
points of the pairs of points in S which are 

reflected onto each other will lie on the line of 
reflection. Furthermore, the line joining any two 
reflection-related points will be perpendicular to 
the line of reflection. 

These observations motivate the following out- 
line of the algtirithm. We take the set of mid- 
points of all (,I pairs of points in S, and associ- 
ated with each midpoint the orientation of the line 
of reflection it would lie on if the pair of points 
associated to the midpoint were in a subset of 
decomposition induced by a reflection. Two coin- 
cidental midpoints, as illustrated in Figure 4-1, 
where points A and B have the same midpoint and 
orientation as points C and D, must also be dis- 
tinguished by an appropriate data handling mechan- 
ism. To points already in S we associate all pos- 
sible (quantized, therefore, finitely many) orien- 
tations. We then apply the Hough tranfiform line 
finding algorithm to this set of N + (,I points 
from the original N points and their midpoints with 
their associated (possibly multiple) orientations. 
Lines found by the Hough algorithm are candidates 
for axes of reflection. Error can be adjusted here 
in the quantization cells of the Hough transform to 
allow detection of reflectional symmetry to be as 
loose or tight as desired. Lines with high Hough 
transform values are good candidates for axis of 
reflectional symmetry because many midpoints lie on 
them. 

A MIDPOINT B 

K 

C A MIDPOINT B D 
Y 

a) Coincidental mldpoints of single orientation. 

b) Coincidental midpoints of multiple orientations. 

Figure 4-l: Coincidental Midpoints Must 
Be Distinguished 

To each line found by the Hough technique, a 
subset of the points of S can be uniquely associ- 
ated which have reflectional symmetry with respect 
to that line, namely the points which lie on the 
line or those pairs of points whose associated 
midpoint(s) lie on the axis of reflection. We now 
cluster lines of reflection by grouping lines asso- 
ciated to midpoints which appear with multiple 
orientations. 

In each line group we compute the pairwise 
composition of the reflections across each pair of 
lines. Since the composition of two reflections is 
a rotation, this gives a set of angles of rotation 
associated to each line group. These angles are 
searched to determine sequences of multiples, i.e., 
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sequences of angles (8, 28, 38,..., k@=n). The 
intersection of the subsets of the points associ- 
ated to the lines associated to the angles, yield 
either regular k-polygons or lines of points in the 
original set S, (if k=l). 

Sort the subsets of S by their symmetry meas- 
ures. We now choose a decomposition of S by begin- 
ning with the subset of smallest measure, and 
adding them in order of increasing measure as long 
as at least one point not already included is added 
in. 

When all points are in at least one chosen 
subset, we have, say, m subsets which together con- 
tain N points. We now sequentially remove the sub- 
sets of largest measure until the function 
N - (&)(n+l) > 0 where k is the number of subsets 
removed and n is the number of points left. (This 
is an application of the "lumping together" cri- 
teria from section 3.) An optimal decomposition is 
given by the remaining regular polygons and lines, 
and the single subset obtained by lumping together 
all the removed subsets. $he worst case step in 
this procedure is order ((2)>4, so &he algorithm 
can be completed in polynomial (o(N >> time. 

5. S-Y 

We have developed a mathematical model of the 
concept of the symmetry of objects presented as 
spatial data. This model provides a domain 
independent approach to autonomous machine decompo- 
sition of objects into component parts. A polyno- 
mial time algorithm for perform'ng such decomposi- 
tions on finite point sets in E ii was presented. 
Furthermore, there is reason to believe, based on 
simple examples and studies in qualitative percep- 
tion by experimental psychologists, that these 
decompositions are similar to those which humans 
would choose. 
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