
UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)

UvA-DARE (Digital Academic Repository)

Doing it Wrong: A Systematic Review on Electrocortical and Behavioral
Correlates of Error Monitoring in Patients with Neurological Disorders

Pezzetta, R.; Wokke, M.E.; Aglioti, S.M.; Ridderinkhof, K.R.
DOI
10.1016/j.neuroscience.2021.01.027
Publication date
2022
Document Version
Final published version
Published in
Neuroscience
License
Article 25fa Dutch Copyright Act (https://www.openaccess.nl/en/in-the-netherlands/you-share-
we-take-care)
Link to publication

Citation for published version (APA):
Pezzetta, R., Wokke, M. E., Aglioti, S. M., & Ridderinkhof, K. R. (2022). Doing it Wrong: A
Systematic Review on Electrocortical and Behavioral Correlates of Error Monitoring in
Patients with Neurological Disorders. Neuroscience, 486, 103-125.
https://doi.org/10.1016/j.neuroscience.2021.01.027

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s)
and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open
content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please
let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material
inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter
to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You
will be contacted as soon as possible.

Download date:18 Sep 2023

https://doi.org/10.1016/j.neuroscience.2021.01.027
https://dare.uva.nl/personal/pure/en/publications/doing-it-wrong-a-systematic-review-on-electrocortical-and-behavioral-correlates-of-error-monitoring-in-patients-with-neurological-disorders(8a98de86-2771-4428-989a-dc68b481e650).html
https://doi.org/10.1016/j.neuroscience.2021.01.027


NEUROSCIENCE

REVIEW
R. Pezzetta et al. / Neuroscience 486 (2022) 103–125
Doing it Wrong: A Systematic Review on Electrocortical and

Behavioral Correlates of Error Monitoring in Patients with Neurological
Disorders

R. Pezzetta, a* M. E. Wokke, b,c S. M. Aglioti d,e and K. R. Ridderinkhof f,g

a IRCCS San Camillo Hospital, Venice, Italy

bPrograms in Psychology and Biology, The Graduate Center of the City University of New York, New York, NY, USA

cDepartment of Psychology, The University of Cambridge, Cambridge, UK

dSapienza University of Rome and CNLS@Sapienza at Istituto Italiano di Tecnologia, Via Regina Elena 295, 00161 Rome, Italy

eFondazione Santa Lucia, IRCCS, Rome, Italy

fDepartment of Psychology, University of Amsterdam, Nieuwe Achtergracht 129B, 1018, WS, Amsterdam, The Netherlands
gAmsterdam Brain & Cognition (ABC), University of Amsterdam, Amsterdam, The Netherlands

Abstract—Detecting errors in one’s own and other’s actions is a crucial ability for learning and adapting behavior
to everchanging, highly volatile environments. Studies in healthy people demonstrate that monitoring errors in
one’s own and others’ actions are underpinned by specific neural systems that are dysfunctional in a variety
of neurological disorders. In this review, we first briefly discuss the main findings concerning error detection
and error awareness in healthy subjects, the current theoretical models, and the tasks usually applied to inves-
tigate these processes. Then, we report a systematic search for evidence of dysfunctional error monitoring
among neurological populations (basal ganglia, neurodegenerative, white-matter diseases and acquired brain
injury). In particular, we examine electrophysiological and behavioral evidence for specific alterations of error
processing in neurological disorders. Error-related negativity (ERN) amplitude were reduced in most (although
not all) neurological patient groups, whereas Positivity Error (Pe) amplitude appeared not to be affected in most
patient groups. Also theta activity was reduced in some neurological groups, but consistent evidence on the
oscillatory activity has not been provided thus far. Behaviorally, we did not observe relevant patterns of pro-
nounced dysfunctional (post-) error processing. Finally, we discuss limitations of the existing literature, conclu-
sive points, open questions and new possible methodological approaches for clinical studies.
This article is part of a Special Issue entitled: Error Processing � 2021 IBRO. Published by Elsevier Ltd. All rights reserved.
Key words: neurological disorders, error processing, EEG, behavior, systematic review.
INTRODUCTION

The ability to detect errors in one’s own as well as in

others’ actions is central for flexible behavioral

interactions with objects and people (Maier et al., 2011;

Cavanagh and Frank, 2014; Ullsperger et al., 2014a).

Mounting evidence suggests specific ways in which the

brain signals the occurrence of an error and the need to

monitor performance and adjust it to the environment.

However, error monitoring and cognitive control may be

dysfunctional in neurological disorders, in which deviant

brain reaction to errors, and great difficulty to inhibit intru-

sive and conflicting responses may occur (Ullsperger and

von Cramon, 2006). Exploring the functioning of the error
https://doi.org/10.1016/j.neuroscience.2021.01.027
0306-4522/� 2021 IBRO. Published by Elsevier Ltd. All rights reserved.
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monitoring system in patients with neurological disorders

may complement studies in healthy populations and pro-

vide fundamental contributions to elucidate the complexity

of the system itself.

In this vein, in the present review we discuss error

processing in patients with neurological diseases,

focusing mainly on EEG and behavioral performance

alterations. For studies based on techniques other than

EEG, which fall beyond the scope and space of the

present review, the reader is referred to discussions

elsewhere (for reviews see Koban and Pourtois, 2014;

Gratton et al., 2018a, 2018b).

We performed a systematic search of the existing

literature by following the Preferred Reporting Items for

Systematic reviews and Meta-Analyses (PRISMA;

Moher et al., 2009). In the introductory part, we will briefly

overview the current state of psychophysiology of error

https://doi.org/10.1016/j.neuroscience.2021.01.027
mailto:rachele.pezzetta@ospedalesancamillo.net
https://doi.org/10.1016/j.neuroscience.2021.01.027
https://doi.org/10.1016/j.neuroscience.2021.01.027
https://doi.org/10.1016/j.neuroscience.2021.01.027
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monitoring in healthy participants and animals, and of the

main tasks employed in this very active research domain.

In the core part of the paper, we will describe the main

results of the systematic search of data from neurological

populations, by focusing on dysfunctional performance

monitoring depending on a given pathological state.

Finally, conclusive points, open questions and new possi-

ble methodological approaches of relevance for clinical

studies will be discussed.
WHAT IS AN ‘ERROR’?

In the context of this review, the term error refers to an

event in which action performance fails, and the

outcome is worse than expected. Based on this

definition, the interpretation of an event can change

according to task instructions or fluctuations in

expectations (Shadmehr, 2017). The capacity to quickly

detect a wrong output in an action and to plan future

strategies (i.e. by selecting contextually relevant informa-

tion for preventing further errors) is a fundamental ability

in everyday life (Clark, 2013; Kilner et al., 2007). This type

of skill is particularly relevant in specific domains that

require online detection of relevant information, such as

in sport (Aglioti et al., 2008; Proverbio et al., 2012;

Ridderinkhof and Brass, 2015; Özkan et al., 2019), music

(Panasiti et al., 2016) or rehabilitation trainings (Bettcher

et al., 2008; Klein et al., 2013).

Over the years, the concept of error assumed slightly

different connotations. An early hypothesis suggested

that the error signal reflects a process that compares

the output of the motor system with the original planning

of an action (efference copy) (Falkenstein et al., 1991).

Later studies suggested that the error monitoring system

serves to detect conflicts in information processing when

two or more options emerge, a perspective that has been

called conflict processing (Botvinick et al., 2001; Yeung

et al., 2004). The reinforcement learning hypothesis
(RFL, Holroyd and Coles, 2002) suggested instead that

when performance is worse than expected, errors in

reward prediction are coded by phasic decreases in the

activity of mesencephalic dopamine-generating neurons,

serving as signals that help optimize task performance

in accordance with the principles of reinforcement learn-

ing. The RFL model can be also integrated in turn with

the conflict processing perspective, supporting the notion

that error-related EEG signatures predict reinforcement

learning and conflict biases (Frank et al., 2005). A more

recent model of error monitoring is the predicted-

response outcome (PRO, Alexander and Brown, 2011)

that assumes that the frontal regions of the brain react

to prediction-errors and generate standard learning rules

of probability. This model builds on Brown and Braver’s

(2005) suggestion that the brain predicts error likelihood

rather than response conflict. More generally, the

accounts that consider error as a prediction deviation

share some similarities with the predictive coding frame-
work, according to which prediction error depends and

is modulated by the incongruence between predicted

and actual outcomes (Friston, 2010; Clark, 2013;

Ridderinkhof, 2014).
ELECTROPHYSIOLOGICAL SIGNATURES OF
ERROR-MONITORING

Studies in humans (Luu et al., 2004; Hajcak et al., 2005),

nonhuman primates (Tsujimoto et al. 2006) and rodents

(Narayanan et al., 2013) have shown that the monitoring

for erroneous outcomes is associated with specific corti-

cal responses. As widely investigated with fMRI studies,

the processes of error monitoring trigger the activity in a

network centered on the middle-frontal regions of the

brain (Luu et al., 2004; Ridderinkhof et al., 2004; Cohen,

2011; Hoffman & Beste, 2015), with a fundamental role

of the anterior cingulate cortex (ACC), the medial and lat-

eral prefrontal areas, encompassing also limbic and motor

regions (Carter et al., 1998; Wang et al., 2005; Ullsperger

et al., 2014a; Ullsperger et al., 2004b). However, electro-

physiological studies provide an important methodological

approach to the investigation of action monitoring. First,

event-related potentials (ERPs) and changes in oscilla-

tory activity provide a more direct measure of neural activ-

ity compared to MRI methods; second, error-related EEG

signatures have revealed temporal and topographical

properties which have been associated with specific

aspects of performance monitoring; third, techniques

such as EEG, magnetoencephalography (MEG) and

intracranial electrophysiological recordings (iEEG or

ECoG) allow inferences about the time course and the

temporal sequence of the neurophysiological processes,

with millisecond temporal resolution (Cohen, 2014).

Psychophysiological studies of error processing have

highlighted a negative potential that appears when an

error is committed, originally called ‘Error Negativity’ (Ne;

Falkenstein et al., 1991), and later identified also with the

term ‘Error-relatednegativity’ (ERN). Early studies explored

the brain mechanisms related to a correct or incorrect

choice (Rabbitt et al., 1977; Renault et al., 1980), but inter-

est in this topic was boosted in the early 19900s by the stud-

ies of Falkenstein et al. (1991) and Gehring et al. (1993).

The ERN develops at the time of the first incorrect muscle

activity and peaks about 100 ms later. It is triggered by

errors elicited under speeded response conditions indepen-

dently from the response effector (such as hands, feet,

eyes, or voice), and increases in amplitude with the size

or degree of error (Falkenstein et al., 2000). The main-

stream interpretation of the functional significance of the

ERN appears to be that is signifies the activity in posterior

ACC in translating conflict signals and/or reward prediction

errors into signaling the need for behavioral adaptation.

Another ERP component that has been extensively

linked to error monitoring is the Error Positivity (Pe).

The Pe is a sustained positivity, with a diffuse

topography and maximal amplitude in correspondence

of the posterior electrodes. The Pe is considered an

ERP component that shares many similarities with the

P300 (Polich, 2007; Ridderinkhof et al., 2009). In addition

to a shared scalp distribution and ERP morphology, the

P300 and Pe are elicited by task-salient stimuli (e.g.

low-probability events). The Pe may consist of at least

two distinct components with dissociable features; an

early frontocentral component associated with the

orientation of attention (Ruchsow et al., 2005) and a later
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centroparietal component linked with the conscious

recognition and the motivational significance of the erro-

neous event (Overbeek et al., 2005; Ridderinkhof et al.,

2009). Other scholars suggested that the Pe might reflect

the evaluation of evidence in working memory, thus repre-

senting a gradual constant updating and accumulation of

evidence (Donchin and Coles, 1988; Dehaene and

Changeux, 2003; Steinhauser and Yeung, 2012;

Wessel, 2012; Di Gregorio et al., 2016). More recently,

post-decisional evidence accumulation (thought to con-

tinue after an incorrect decision and response have been

made) has been proposed to provide a fruitful, mechanis-

tically explicit framework for understanding the functional

significance of the Pe, accounting not only for its associ-

ation with error detection, but also for specific aspects

of its morphology (Murphy et al., 2015) and more recent

links with graded confidence judgments (Boldt and

Yeung, 2015) and future behavioural adjustments (e.g.

Desender et al., 2019).

The literature also documents a series of additional

conflict-related ERPs. First, the N2 is a component

elicited by a mismatch condition, that has been often

studied in combination with the following P3 component,

generating the N2-P3 complex; the N2 has been taken

to stem from ACC and to reflect conflict arising from

competition between response alternatives

(Nieuwenhuis et al., 2003). Second, a cluster of Stroop-

related later potentials (referred to as the N450, the con-

flict slow potential (SP) also called negative slow wave

(NSW)) have been linked to slower aspects of conflict pro-

cessing. The N450 is an index of conflict that is elicited

during the Stroop task and likely represents activity of

neural generators localized in the ACC after incongruent

trials (Perlstein et al., 2006); the SP or NSW is a slow

wave which appears to covary with processes important

for adaptive task performance and has been associated

to conflict resolution (for a detailed review on conflict-

related ERPs see Larson et al., 2014). The feedback-

related negativity (FRN) is a potential sensitive to nega-

tive feedbacks as well as negative prediction errors and

has been also related to corrective actions or perfor-

mance adjustments (Nieuwenhuis et al., 2004). As

responses to feedbacks might or might not rely on pro-

cesses different than the ones implicated in response to

errors, in this review we only included studies that had

also direct implications for error-rather than only

feedback-responses. In the time–frequency domain, error

monitoring has been primarily found in relation to mid-

frontal theta oscillations (4–8 Hz) that increase when an

error is committed (Cohen, 2011; Cavanagh and Frank,

2014; Wokke et al., 2017). Theta oscillations and ERN

generation are functionally linked, and studies suggest

that the latter may originate – at least partially – from

the phase-locking of the former (Luu et al., 2004;

Pezzetta et al., 2018). Theta enhancement has been

observed not only in mid-frontal regions, but also in

fronto-occipital regions when processing of bodily stimuli

is involved (Arrighi et al., 2016; Moreau et al., 2020a;

Fusco et al., 2020). Beta oscillations (12–30 Hz) appear

also to be enhanced when an error is committed or

observed (Koelewijn et al., 2008; Torrecillos et al.,
2015). However, while mid-frontal theta oscillations have

been observed frequently in response to errors, consis-

tent evidence on the beta activity has not been provided

thus far.

Interestingly, studies on healthy populations have

found dissociations between the occurrence of an ERN

(or increased theta activity) and the occurrence of the

Pe (Di Gregorio et al., 2016, 2018; Hughes & Yeung,

2011). These data might indicate that the error monitoring

system is characterized by at least two processes that are

independent of one another and rely on different neural

networks (Nieuwenhuis et al., 2001; Overbeek et al.,

2005; Endrass et al., 2007). This view is supported by

source analyses and dipole fitting indicating that the origin

of the ERN/theta activity and the Pe might rely on different

neural regions. While the ERN seems to be generated by

posterior areas of the medial prefrontal cortex (Herrmann

et al., 2004; Ullsperger and von Cramon, 2006; Ullsperger

et al., 2014a), the generator of the Pe seems to be situ-

ated in the rostral (Bush et al., 2000) or caudal ACC

(Herrmann et al., 2004). Interesting findings are also

obtained by combined EEG/fMRI studies (Debener

et al., 2005; Iannaccone et al., 2015). However, the

debate on the generators of the ERN/theta and Pe is still

ongoing, and studies on patients might help clarify the

dispute.
HOW DO WE INVESTIGATE ERROR
PROCESSES IN COGNITIVE NEUROSCIENCE?

In experimental psychology, in order to investigate theerror

processes, researchers have been using tasks in which

they could control confounding variables and isolate

those of interest. In most of these tasks, errors are

defined as incorrect responses in relation to specific task

instruction (i.e. press a certain button when a stimulus

appears on the screen), stressing the speed as well as

accuracy of the response. In this sense, most of the

times, the committed erroneous action is a wrong action

compared to an external request. In some conditions,

also external feedback is provided so that participants

learn whether the performance generated a positive or

negative feedback (Cohen et al., 2007; Holroyd and

Coles, 2002). Themost common computerized tasks used

to investigate conflict and error monitoring using EEG are:

(i) the Eriksen Flanker task (in the original or modified ver-

sions), in which responses to irrelevant (spatial) stimuli

have to be inhibited in favor of responses to a target stimu-

lus (Eriksen andEriksen, 1974). This task usually elicits the

ERN/mid-frontal theta and the Pe component in response

to errors. The N2 and the N2P3 complex are also seen

on incompatible trials; (ii) the Stroop task in which partici-

pants have to name the colour of the ink of coloured words,

inhibiting to pronounce the name of the colour instead

(Stroop, 1935). The Stroop (as well as modified versions

of it) has been associated with the observation of the

N450, the SP (or NSW) in association to slower aspects

of conflict processing, as well as the ERN and the Pe in

response to errors; (iii) the go/no-go task in which individu-

als have to press a button when a certain stimulus appear
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(go) andwithhold a response to a proportion of other stimuli

(no-go; Simson et al., 1977). EEG studies with the go-/no-

go have generally found the ERN and Pe in response to

errors. TheN2 is often seen on the appearance of no-go tri-

als; (iv) the antisaccade task, in which the participants is

asked to make a saccade in the opposite direction of the

stimulus (e.g. if the stimulus appear on the right, the sac-

cade has to be made towards the left; Hallett, 1978). This

task has shown to elicit the ERN and Pe; (v) the stop-

signal task in which the participants have to respond as

quicky as possible to a predetermined stimulus (go) and

abort any response when a stop stimulus is displayed

(Logan and Cowan, 1984). At variance with the go/no-go

task, the go stimulus in the stop-signal task (SST) is always

shown first, and is followed by a stop stimulus after a short

delay. The SST is associated with the generation of the

ERN, the Pe and the N2/P3 complex associated to conflict

and inhibition processes. Although not frequently used in

neurological populations, the SST is widely applied to

investigate error processing and response-inhibition effi-

ciency (Verbruggen et al., 2019). Interestingly, employing

tasks in which participants observe someone else commit-

ting an error elicits analogous error-related signatures

(Miltner et al., 2003; van Schie et al., 2004). This parallel

neural response indicates that observational learning relies

on neural processes that are similar to those involved in

action execution and may denote an adaptive mechanism

that allows to learn from other’s behavior and establish

effective social interactions (i.e. synchronous grasping;

Candidi et al., 2017; Era et al., 2020; Moreau et al.,

2020b). In this more naturalistic direction, also tasks that

engage participants during complex motor tasks (i.e.

throwing a ball, moving a lever) require natural behavioral

adaptations after error commission (Maurer et al., 2015;

Joch et al., 2017). In recent years, the advent of immersive

virtual reality has also stimulated studies of error-related

processes in more ecological settings and everyday sce-

narios (Padrao et al., 2016; Pavone et al., 2016; Pezzetta

et al., 2018; Spinelli et al., 2018).

Tasks that require speeded responding are typically

used to examine cognitive efficiency by calculating the

speed of responding (reaction time, RT) and the level of

accuracy (choice errors in choice-RT tasks such as the

Eriksen and Stroop tasks; commission errors in go/no-go

tasks and stop signal tasks). In such tasks, when

participants make a response error, they tend to shift their

speed-accuracy balance to prevent further errors (referred

to as post-error slowing, PES; Notebaert et al., 2009;

Ullsperger et al., 2014a; Ullsperger and Danielmeier,

2016). In conflict tasks suchas theStroopandEriksen tasks,

a similar performance adaptation is seen in the form of post-

error reduction of interference, showing that response con-

flict has less detrimental effect on response speed immedi-

ately after a response error (Ridderinkhof et al., 2003).
THE INTEGRITY (OR DISRUPTION) OF ERROR
PROCESSES IN NEUROLOGICAL

POPULATIONS

Dysfunctional performance monitoring may be tested by

examining the behavioral consequences of errors.
Deficits in the monitoring system can result in

decreased and delayed error correction, absence of

post-error slowing or post-error reduction of interference

(Fusco et al., 2018; Rabbitt et al., 1977). Performance

adjustments in speed-response tasks usually imply an

increase of top-down control and the implementation of

strategies, when needed.

Dysfunctional performance monitoring may be

observed not only at the behavioral level (RT, accuracy,

PES), but also in terms of modulation of error-related

brain responses, such as ERN/Pe or oscillatory activity.

Previous work pointed at impaired performance

monitoring in neurological patients (Ullsperger, 2006).

However, to the best of our knowledge, no recent and

systematic review has been conducted with the aim to

examine psychophysiological evidence of alterations of

the error monitoring system in a wide spectrum of neuro-

logical disorders. Investigating the integrity (or disruption)

of the performance monitoring functions in patients can

help better elucidate the processes implied in the monitor-

ing system, as well as the cognitive symptoms that might

be directly linked with a given disease. Additionally,

understanding which monitoring processes and which

networks are altered by a given pathology, could help cre-

ate better strategies in clinical practice.
EXPERIMENTAL PROCEDURES

Search

We performed a literature search on two databases,

PubMed and PsycInfo, using the search terms

‘‘prediction error”, ‘‘error detection”, ‘‘error processing”,

”cognitive control”, ‘‘error negativity”, ‘‘error positivity”,

‘‘error-correction”, ‘‘error-related negativity”, ‘‘ERN”,

‘‘feedback negativity”, ‘‘FRN”, in combination with

‘‘electroencephalography (MeSh Terms)”,

‘‘magnetoencephalography (MeSh Terms)”, ‘‘event-

related potential/s”, ‘‘EEG”, ‘‘ERP”, ‘‘MEG”, ‘‘electrical”,

or ‘‘oscillations”. Those terms had to co-occur in

combination with one of the following search terms for

the main neurological disorders: ‘‘brain damage”,

‘‘lesion/s”, ‘‘neurological”, ‘‘Parkinson disease”, ‘‘multiple

sclerosis”, ‘‘spinal cord”, ‘‘stroke” (all MeSh terms), ‘‘mild

cognitive impairment”, ‘‘dementia”, ‘‘Alzheimer”,

‘‘Parkinson”, ‘‘Huntington”, or ‘‘multiple sclerosis” (all

keywords). All included articles were required to be

published in peer-reviewed journals and indexed in

PubMed or PsycInfo from 1st 1991 to 8th April 2020.

The search was limited to articles written in English.

Criteria of exclusion were established a priori and were

the following: (i) studies focusing on animals, children,

single-cases or healthy adults only; (ii) studies on sleep,

treatments or invasive interventions; (iii) studies with

techniques which did not include also EEG/MEG; (iv)

studies without empirical data (i.e., reviews or

theoretical models); (v) studies that consider

electrocortical signatures that do not have also direct

implications for error processes (i.e. FRN); (vi) studies

on psychiatric disorders that do not primarily entail some

neurological disorder.
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Risk of bias

To reduce the risk of bias, two reviewers (R.P. and M.W.)

independently screened the articles and decided for

appropriateness. Discrepancies in the evaluation of an

article, were resolved through consensus.

Results of the systematic search

The systematic literature search revealed 249 articles.

The search included also papers that matched the

inclusion criteria and have been found through external

sources (i.e. 5 articles, obtained from hand-search). Out

of these, 98 were rejected because of duplicates. A total

of 73 studies fulfilled our inclusion criteria (details can

be seen in the Fig. 1, Prisma Flow Diagram). After the

screening of each full-text article, a total of 55 articles

were included. Identified studies were categorized into

the following subgroups: basal ganglia diseases

(including Parkinson’s Disease, Huntington Disease),

neurodegenerative disease (including Alzheimer, Mild-

Cognitive Impairment), acquired brain injury (which

included stroke, cerebellar lesion, prefrontal lesion,

thalamic damage, traumatic brain injury, basal ganglia

lesion), and white-matter lesions. A summary with the

main results of the systematic search for each

pathological section can be found in the corresponding

Tables (1–5).

Basal ganglia disease

The basal ganglia are a group of subcortical nuclei

involved in the error monitoring system that comprise

the striatum (caudate nucleus and putamen), the

external and internal pallidal segments, the subthalamic

nucleus, and the substantia nigra. The basal ganglia are

involved in complex non-motor functions (Calabresi

et al., 2006; Klaus et al., 2019; Ponsi and Panasiti,

2020), and can be considered also as a hub largely

involved in information processing, reward and cognition.

These regions are indeed vital nodes in complex cognitive

networks, densely interconnected with parietal and pre-

frontal cortices as well as with the ACC (Alexander

et al., 1986, Ridderinkhof et al., 2003). Numerous studies

showed how dopaminergic neurons in the ventral tegmen-

tal area respond to unexpected reward (Schultz, 1997)

and prediction error (Bayer and Glimcher, 2005), two

key elements in developing appropriate goal-directed

actions (Schultz, 2002). The main pathologies in which

the basal ganglia functions are greatly affected are

Parkinson’s and Huntington’s Disease (see also Table 1

for a summary of results).

Parkinson’s Disease. Parkinson’s Disease (PD;

Parkinson, 1817) is a progressive pathology character-

ized by the degeneration of dopaminergic neurons in

the substantia nigra pars compacta, which results in a

depletion of dopamine that gradually extends to the lim-

bic and neocortical regions (Chaudhuri et al., 2005;

Kendi et al., 2008; Halliday, and McCann, 2010). The

alteration of the functionality of those circuits impairs

motor abilities and leads to the typical motor alterations

associated with PD (i.e. extreme slowness of movements
and reflexes). However, clinical and neuropsychological

studies demonstrated that as the disease progresses,

motor deficits are frequently associated also to cognitive

impairment (i.e. executive dysfunctions; Cools, 2006;

Farooqui et al., 2011; Angelucci et al., 2015) and altered

brain activity (Seer et al., 2016). Studies: ERN/mid-
frontal theta. Several studies found reduced ERN/Ne

amplitude and lower theta power in PD (13 studies). In

an early, influential study, Falkenstein and colleagues

(2001) tested nondemented PD patients in three different

tasks (a modified Eriksen flanker task, Simon-type task

and complex go/no-go) and found smaller ERNs. Simi-

larly, later studies found reduced ERN amplitude in PD

patients, using the Flanker task (Stemmer et al., 2007;

Willemssen et al., 2008, 2009; Seer et al., 2017) or a lex-

ical decision task (Ito & Kitagawa, 2005). In another

study they did not find an ERN in PD, compared to

HCs (Rustamov et al., 2014). Only two studies, namely,

Holroyd et al. (2002) and Verleger et al. (2013), found

no difference in Ne/ERN amplitude when PD and HCs

were compared. Three studies used time–frequency

analyses to investigate the brain reaction to errors and

found reduced theta oscillatory activity in PD (Carriere

et al., 2016; Beste et al., 2017; Singh et al., 2018). Nota-

bly, from the studies found by the systematic search, only

a few tested PD patients both on and off medication (i.e.,

during dopaminergic medication and during a period of

withdrawal) and found no difference in the ERN/theta

amplitude (Stemmer et al., 2007; Willemssen et al.,

2008; Volpato et al., 2016; Singh et al., 2018) or a larger

ERN when the PD were in the off, compared to the on,

state (Seer et al., 2017). Pe. The few studies that inves-

tigated the Pe found mixed results: reduced amplitude

when PD are compared to healthy adults (Ito &

Kitagawa, 2005) or no difference between groups

(Falkenstein et al., 2005). Tellingly, no study with manip-

ulation of the dopaminergic medication (i.e. by testing

medicated versus not medicated patients or PD during

dopaminergic medication versus withdrawal) performed

analysis on the Pe response. Other error signatures.
One study used two versions of the go-nogo task (com-

patible/incompatible) and found greater amplitude and

prolonged latency of the N2, compared to HCs (Beste

et al., 2009a). This was interpreted as an intensification

of premotor inhibition in PD (Beste et al., 2009b). In

another study with a Flanker-switching task, PD did not

show any N2, as compared to HCs (Rustamov et al.,

2014). Studies on dopaminergic medication (patients

under medication or in withdrawal) found no difference

in N2 amplitude (Willemssen et al., 2011). Behavioral
performance: PD patients generally show prolonged

RT during erroneous responses compared to matched

controls; no difference was seen in RTs in PD patients

when measured on and off medication. Results concern-

ing accuracy are inconsistent. One study reported

reduced PES effect compared to controls (Stemmer

et al., 2007), another study reported no pes effect in

the PDs (Rustamov et al., 2014) and one other study

no difference compared to HCs (Singh et al., 2018).

Summary. Error monitoring is supported by a complex

system characterized by multiple high-level processes,



Fig. 1. Prisma Flow Diagram of the retrieved articles evaluated according to the inclusion/exclusion criteria and included in the systematic review.
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and Parkinson’s disease appears to affect one or more of

those processes, while sparing others. From the studies

included in the systematic search, it seems reasonable

to conclude that mesencephalic dopamine functioning,

as expressed in ERN/theta, is altered in PD. Also, the

N2 showed an altered pattern compared to healthy con-

trols. Relevant from a clinical point of view, while some

studies investigate the effects of dopamine on the ERN/-

theta (by manipulating the balance of dopamine), no evi-

dence has been collected on the role of dopaminergic

medication on the Pe component. It is worth noting that

there is no consistent evidence for altered behavioral

expressions of error-related processing in PD patients

compared to HCs, or how this might be linked with the

altered brain activity.
Huntington’s disease. Huntington’s Disease (HD;

Huntington, 1872) is an autosomal dominant neurological

disorder characterized by a reduction in D1 and D2

receptor density (Beste et al., 2006; Walker, 2007). HD

patients are mostly affected by rapid, arrhythmic and

complex involuntary movements, which are supposed

to be an effect of dysfunctional basal ganglia processing

(Thompson et al., 1988). The neuroanatomical pathology

of the HD is characterized by the accumulation of the

protein huntingtin in the striatum, as well as in other

cortico-subcortical regions (Walker, 2007). HD is accom-

panied by cognitive impairment, which comprises also

deficit in error-feedback control (Smith et al., 2000).

Studies: ERN/mid-frontal theta. Most of the studies

on HD found reduced amplitude of the ERN or reduced



Table 1. Basal ganglia disorders

Parkinson’s Disease (PD)

Studies: ERN/mid-frontal theta

Results

(Amplitude)

Participants Task Behavior Reference Extra information

ERN: PD< HC, 17 PD off, 15

PD premed, 17

HC

Eriksen

Flanker

RT: PD = HC Beste et al.,

2009b

UPDRS:

PD OFF: 15.9

(±5.3)PD premed: 12.6

(±5.4)

ERN: PD

off = PD

premed

ERN: PD< HC 21 PD XDP, 21

HC

Eriksen

Flanker

RT: PD > HC Beste et al.,

2017

The PD are patients with XDP

UPDRS:

PD: 15.17 (±10.6)

ERN: PD< HC 13 PD, 13 HC Eriksen

Flanker

RT: PD > HC Falkenstein

et al., 2001

UPDRS:

PD: 25 (range 13-58)

ERN: PD< HC 13 PD, 13 HC Simon-type RT: PD > HC Falkenstein

et al., 2001

UPDRS:

PD: 25 (range 13-58)

ERN: PD< HC 14 PD, 14 HC Go/Nogo RT: PD > HC Falkenstein

et al., 2001

UPDRS:

PD: 25 (range 13-58)

ERN: PD< HC, 9 PD nonmed,

9 PD med, 14

HC

Eriksen

Flanker

RT: PD < HC; acc:

PD< HC; pes: PD < HC

Stemmer

et al., 2007

UPDRS:

nonmed: 22.7

med: 21.3

ERN: PD

med = PD

nonmed

ERN: PD< HC 17 PD, 15 HC Lexical

decision

RT: PD> HC; acc: PD< HC Ito &

Kitagawa,

2006

ERN: PD< HC, 18 PD, 18 HC Eriksen

Flanker

RT: PD = HC; acc:

PD= HC;

Willemssen

et al., 2008

UPDRS:

ON: 10.8

OFF: 14.8

ERN: PD

on = PD off

ERN: PD< HC 14 PD pre-

med, 14 HC

Eriksen

Flanker

RT: PD > HC; acc:

PD= HC;

Willemssen

et al., 2009

UPDRS:

PD: 12.5± 5.6

ERN: PD< HC, 10 PD (on and

off), 10 HC

Probabilistic

learning

acc negative learning: PD

off < HC

Volpato

et al., 2016

UPDRS:

PD: 26.8 ± 15.81ERN: PD

off < HC,

ERN: PD

on = PD off

ERN: PD< HC 20 PD on, 20

HC

Eriksen

Flanker with

switching

RT: PD > HC, PD< HC

(shift trials); acc= PD< HC;

Pes: PD no effect

Rustamov

et al., 2014

UPDRS:

PD on: 15.85 (±6.71)

ERN: PD< HC 13 PD on, 13

PD off,

13 HC

Eriksen

Flanker

RT: PD = HC; acc:

PD> HC, PD on = PD off

Seer et al.,

2017

Greater ERP attenuation when PD

under medication

ERN: PD= HC 9 PD, 9 HC Eriksen

Flanker

RT: PD= HC; acc: PD= HC Holroyd

et al., 2002

UPDRS:

26.9 ± 3.8

ERN: PD= HC 12 PD, 12 HC Eriksen

Flanker

RT: PD = HC Verleger

et al., 2013

UPDRS:

PD: 19.3 (±88.4)

Theta: PD < HC. 28 PD, 28 HC Simon RT: PD = HC; acc:

PD= HC; pes: PD = HC

Singh et al.,

2018

UPDRS:

ON: 22.1

OFF: 23.8

THETA: PD

on = PD off

Studies: Pe

Results

(amplitude)

Participants Task Behavior Reference Extra information

Pe: PD= HC 13 PD, 13 HC Erikesen

Flanker

RT: PD > HC Falkenstein

et al., 2005

UPDRS:

25 (range 13-58)

Pe: PD= HC 13 PD, 13 HC Simon-type RT: PD > HC Falkenstein

et al., 2005

UPDRS:

25 (range 13-58)

Pe: PD= HC 14 PD, 14 HC Go/Nogo RT: PD > HC Falkenstein

et al., 2005

UPDRS:

25 (range 13-58)

Pe: PD= HC 17 PD, 15 HC Lexical

decision

RT: PD> HC; acc: PD< HC Ito &

Kitagawa,

2006

UPDRS:

15.85 (±6.71)

(continued on next page)
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Table 1 (continued)

Studies: other error signatures

Results

(amplitude)

Participants Task Behavior Reference Extra information

N2: PD> HC 15 PD on, 15

HC

Go/Nogo

(compatible;

incompatible)

RT: PD > HC Beste et al.,

2009a

PD: RT (incompatible) > RT

(compatible)

N2: PD< HC 20 PD on, 20

HC

Eriksen

Flanker with

switching

RT: PD > HC, PD< HC

(shift trials); acc= PD< HC;

Pes: PD no effect

Rustamov

et al., 2014

UPDRS:

PD on: 15.85 (±6.71)

N2: PD= HC 20 PD on, 32

HC, 15 PD

premed

Erikesen

Flanker

RT: PD off = PD on Willemssen

et al., 2011

PD were tested on and off. PD

premed were tested before and after

8 weeks after medication onset.

UPDRS:

PD on:10.8 ± 5.6

PD off: 14.8 ± 5.3

N2: PD on = PD

off,

N2: PD

premed = HC

Huntington’s Disease (HD)

Studies: ERN/mid-frontal theta

Results

(amplitude)

Participants Task Behavior Reference Extra information

ERN: HD< HC 11 HD, 12 HC Eriksen

Flanker

RT: HD> HC; acc: HD= HC Beste et al.,

2006

positive correlation between ERN and

CAG-index

UHDRS:

HD: 24.27 ± 12.47

ERN: HD< HC, 15 HD, 15

preHD, 15 HC

Eriksen

Flanker

RT: HD = HC Beste et al.,

2009b

UPHDRS:

HD: 17.1(±7.9)

preHD: /

ERN:

preHD= HC

ERN:

HD< preHD

21 HD, 12

preHD

Eriksen

Flanker

acc: HD= preHD; pes:

HD= preHD

Beste et al.,

2008

No controls but only HD and preHD

are present

UHDRS:

HD:25.44 (± 9.03)

preHD: 0.81(± 1.2)

ERN: HD = HC;

Theta:

HD= HC

11 HD, 9 HC Eriksen

Flanker

RT: HD = HC; pes: HD= HC Beste et al.,

2007

UHDRS:

HD: 0.55 ± 0.52

Studies: Pe

Results

(Amplitude)

Participants Task Behavior Reference Extra information

Pe: HD< preHD 21 HD, 12

preHD

Eriksen

Flanker

acc: HD= preHD; pes:

HD= preHD

Beste et al.,

2008

No controls but only HD and preHD

are present

Abbreviation: PD: Parkinson’s disease; HD: Huntington’s disease; preHD: presymptomatic Huntington Disease; med =medicated with dopaminergic medication; non

medicated or drug-naı̈ve patients; XDP= X-linked dystonia-parkinsonism; Ne: negativity error; ERN: error-related negativity; Pe: positivity error; RT: response time; acc:

accuracy; HC: healthy controls; UPDRS: Unified Parkinson’s Disease Rating Scale (only motor scale is reported); UHDRS: Unified Huntington’s Disease Rating Scale (only

motor scale is reported).
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theta power when patients are compared with HCs

(Beste et al., 2006, 2008, 2009b). One study found no

difference between HD patients and HCs on the ERN

amplitude (Beste et al., 2007). Pe. Concerning the Pe,

only one study has been conducted and no significant

difference was found between HD and patients with

presymptomatic HD (preHD; Beste et al., 2008). Behav-
ioral performance: HD patients show a preserved abil-

ity to correctly execute the task and equal RT compared
to matched controls. One study found no PES difference

between HD and HCs (Beste et al., 2007). Summary.
Similar to the studies on PD patients, most studies on

HD found reduced amplitude of the ERN, which might

be related to the dopaminergic dysfunction. In one study

on HD no difference was found on Pe amplitude when

HD and HCs were compared. Studies of error processing

in HD are still scarce, and thus no clear conclusions can

be drawn.
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Neurodegenerative disease

Neurodegenerative disease is an umbrella term for a

range of debilitating conditions, which are characterized

by the progressive degeneration of nerve cells that

primarily occurs in the later stages of life. The origin of

the neurodegeneration can entail a variety of factors,

including cell atrophy or shrinkage in subcortical and/or

cortical regions. The neurodegenerative diseases are

characterized by cognitive impairment, which can affect

different domains, including performance monitoring and

implementation of cognitive control (Mars et al., 2011).

As the disease progresses, cognitive symptoms are wors-

ened and could be associated with lack of awareness of

the deficits caused by their pathology (Rosen, 2011).

One of the most common neurodegenerative disease is

dementia, the most prominent form of which is the Alzhei-

mer’s disease (AD), which likely develops after a stage of

Mild Cognitive Impairment (MCI). Other important exam-

ples of dementia are the fronto-temporal dementia, vas-

cular dementia or Lewy body dementia (Karantzoulis &

Galvin, 2011). Note that Parkinson’s and Huntington’s dis-

eases can also be categorized as neurodegenerative dis-

orders, but in this review they have been included in a

separate section on ‘‘basal ganglia”.

Mild Cognitive Impairment. MCI is an intermediate

stage in between normal aging and dementia, in which

a gradual impairment of cognitive functions can be

observed (Petersen et al., 2014). There are different

forms of MCI with the amnestic subtype (aMCI) being

the most predictive of progression to AD, in which mem-

ory deficits can occur alone or in combination with deficits

in other cognitive functions, such as executive deficits and

cognitive control. Three studies have been included on

MCI patients. Studies: ERN/mid-frontal theta. One

study analysed the ERN and observed no difference in

amplitude compared to matched controls (Thurm et al.,

2013). Another study used time–frequency analyses and

found reduced theta activity in MCI patients in the Nogo

trials during a Go/NoGo task (Nguyen et al., 2017). Pe.
Concerning the Pe, no study has been collected. Other
error signatures: One study with a semantic go/nogo

found equal amplitude of the N2 when MCI and HCs are

compared (Chiang et al., 2018). Behavioral perfor-
mance: From a behavioral point of view, heterogeneous

findings have been collected as MCI patients showed

reduced or equal performance compared to matched con-

trols. Summary. Individuals with aMCI differed from cog-

nitively normal aging controls on behavior (accuracy rates

and response time; Table 2). Less pronounced results

have been obtained from a neurophysiological point of

view. Discrepancies between studies can be explained

by differences in the operationalization of the MCI criteria.

However, too few studies are available to draw a clear

overview on the EEG response of MCI patients on perfor-

mance and error monitoring tasks.

Alzheimer’s disease. AD is a progressive pathology

in which not only memory deficits, but also impaired

executive function has been described (Perry and

Hodges, 1999). In AD patients, pathological changes

are in fact prominent in the temporal lobes, but also the

frontal and prefrontal areas are affected. Two studies
have been included from the systematic search. Studies:
ERN/mid-frontal theta. In two studies on AD and

response-monitoring dysfunction, AD patients showed

reduced ERN amplitudes (Mathalon et al., 2003; Ito and

Kitagawa, 2005). Pe. The Pe was found to be reduced

in amplitude among AD patients compared to HCs in

one study (Ito & Kitagawa, 2005), but not in another

(Mathalon et al., 2003). Behavioral performance: AD

patients generally show slower RT during erroneous

responses and worse or equal accuracy. Summary.
Results showed that AD patients presented altered error

detection response (ERN or Ne), whereas inconsistent

results have been observed for the Pe response. Matha-

lon and colleague (2003) suggested that the ERN and Pe

might rely on different and independent systems, which

justify the dissociated response to errors. Only two stud-

ies have been done, preventing the possibility to draw firm

conclusions on error monitoring in AD (see Table 2).

Acquired brain injury

With acquired brain injury, we refer to brain damage that

occurs after birth and that can provoke motor or cognitive

deficits, with different degree of impairment. In this

section, we included those studies that were related to

traumatic brain injury (TBI) and brain lesions (prefrontal

lesion, thalamic damage and cerebellar lesion). A brain

injury or lesion may entail many symptoms that can vary

depending on the nature/timing of the injury, the

extension and location of the lesion and the treatment

received (Chen et al., 2010). Interestingly, patients with

neurological disorders are often partially (if not com-

pletely) unaware of their deficits (anosognosia; Moro,

2013; Canzano et al., 2016; Scandola et al., 2020). With

the advent of functional neuroimaging, it was clearer

how the complex system of executive abilities actually

relies on distributed neural networks that engage the pre-

frontal cortex, but also the parietal cortex, the cerebellum

and subcortical areas (i.e. basal ganglia and thalamus).

Traumatic brain injury. The most frequent causes of

traumatic brain injuries (TBI) are falls, motor vehicle

crashes, and sport concussions (Langlois et al., 2006).

Traumatic impacts on the cranium can lead to neu-

ropathological changes in the brain tissue underlying the

skull at the side of the impact or on the opposite side

(due to bouncing), with functional neuronal alterations

manifesting in a myriad of different patterns (Giza and

Hovda, 2001; Aubry et al., 2002). The most common cog-

nitive consequences of TBI (at all levels of severity) are

disturbances of attention, memory, and executive dys-

functions. Indeed, individuals with moderate-to-severe

TBI show impaired cognitive control processes relative

to neurologically healthy controls (HCs; Larson et al.,

2012). Studies: ERN/mid-frontal theta. Six studies

investigated the ERN, observing a reduced amplitude of

the ERN (Larson et al., 2007, 2009a; Pontifex et al.,

2009; De Beaumont et al., 2013), an increased ERN

amplitude (Olson et al., 2018), or no difference (Larson

et al., 2012). Three of those mentioned studies were con-

ducted on athletes with multiple concussions. One study

(Larson & Perlstein, 2009c) investigate the ERN, showing

no difference between correct and incorrect trials in a



Table 2. Neurodegenerative diseases

Mild cognitive impairment (MCI)

Studies: ERN/mid-frontal theta

Results

(amplitude)

Participants Task Behavior Reference Extra

information

ERN: MCI = HC 15 MCI, 14

HC

Erikesen Flanker RT: MCI > HC (incongr.), RT:

MCI = HC (congr.)

Thurm et al.,

2013

Theta: MCI < HC

(nogo)

22 aMCI, 22

HC

Semantic Go/NoGo acc: aMCI < HC Nguyen et al.,

2017

Studies: other error signatures

Results

(amplitude)

Participants Task Behavior Reference Extra

information

N2: aMCI = HC 25 aMCI, 25

HC

Semantic Go/NoGo RT: PD> HC Chiang et al.,

2018

Alzheimer’s Disease (AD)

Studies: ERN/mid-frontal theta

Results

(amplitude)

Participants Task Behavior Reference Extra

information

ERN: AD< HC 16 AD, 14

HC

Picture-Name

verification

RT: AD> HC; acc: AD> HC Mathalon et al.,

2003

ERN: AD< HC 16 AD, 15

HC

Lexical decision

paradigm

RT:AD > HC; acc: AD< HC Ito & Kitagawa,

2005

Studies: Pe

Results

(amplitude)

Participants Task Behavior Reference Extra

information

Pe: AD= HC 16 AD, 14

HC

Picture-Name

verification

RT: AD> HC; Acc: AD > HC Mathalon et al.,

2003

Pe: AD< HC 16 AD, 15

HC

Lexical decision

paradigm

RT:AD > HC; acc: AD< HC Ito & Kitagawa,

2005

Abbrevation: MCI: Mild Cognitive Impairment; aMCI: amnestic Mild Cognitive Impairment; AD: Alzheimer Disease; HC: healthy controls; ERN: error-related negativity; Pe:

error positivity; acc: accuracy; RT: response time.
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Stroop task, however no control group was included. Pe.
The same six studies also performed analyses on the Pe

response. All studies reported equal amplitude in compar-

ison to healthy matched adults. Another study (Larson

et al., 2009c) also investigate the Pe, showing a differ-

ence between correct and incorrect trials in a Stroop task,

with incorrect trials eliciting a stronger positivity; however,

no control group was included in this report. Other error
signatures. Two studies investigated the N450 response

showing mixed results, as they found no amplitude differ-

ence (Larson et al., 2011) or reduced amplitude (Perlstein

et al., 2006). Two studies showed reduced amplitude of

the SP (Larson et al., 2009b, 2011) and reduced NSW

(Perlstein et al., 2006) in TBI, respectively. One study

showed greater N2-P3 amplitude in response to threat-

related stimuli in a NoGo situation in the TBI group

(Maki-Marttunen et al., 2015). Behavioral performance:
Generally, no significant behavioral differences were

reported in comparison to healthy adults, particularly as

concern the accuracy rate. Few studies reported altered

RTs during error responses on speeded tasks (Larson

et al., 2007, 2009a), while others found no RT differences

(Pontifex et al., 2009). When emotional threat related

stimuli were present, TBI showed an altered behavior with
faster RT and worse accuracy (Maki-Marttunen et al.,

2015). No difference was found in the PES between TBI

patients and HCs (Pontifex et al., 2009). Summary.
Behaviorally, TBI patients and healthy controls showed

similar accuracy rates. From a neurophysiological point

of view, EEG studies on error monitoring in TBI focused

on the ERP domain, investigating processes which eli-

cited the most common error-related components as

ERN/Pe but also other conflict-related ERPs as the

N450, NSW and the SP. The included studies consis-

tently reported no differences in the Pe response, but

did in most cases observe reduced ERN response.

Decreased amplitudes were also found in other conflict-

related ERPs (N450, NSW, SP), whereas increased

amplitude has been found in the N2-P3 when related to

emotional stimuli. However too few studies have been

conducted on these potentials (see Table 3).

Prefrontal lesions. Some of the most common

effects of damage to the frontal lobe include decision

making deficits, impairment of insight and judgement,

and executive dysfunction, which can have a profound

effect on many aspects of everyday life. A growing

literature indicates that the activation of the ACC, insula

and surrounding medial prefrontal regions (mPFC) are



Table 3. Acquired brain injury

Traumatic Brain Injury (TBI)

Studies: ERN/mid-frontal theta

Results (amplitude) Participants Task Behavior Reference Extra information

ERN: TBI < HC 14 TBI, 14 HC N2pc Acc: TBI = HC De Beaumont

et al. (2013)

The TBI group comprises

athletes (sport multi-

concussion)

ERN: TBI < HC 18 TBI, 21 HC SPCN Acc: TBI = HC De Beaumont

et al. (2013)

The TBI group comprises

athletes (sport multi-

concussion)

ERN: TBI < HC 19 TBI, 21 HC Modified

Stroop

RT: TBI > HC; acc:

TBI== ACC

Larson et al.,

2007

GCS< 9

ERN: TBI < HC 20 TBI, 20 HC Stroop RT: TBI < HC; acc:

TBI = HC

Larson et al.,

2009a

GCS< 9

ERN: TBI < HC 30 TBI, 36 HC Eriksen

Flanker

RT: TBI = HC, TBI > HC

(interference effect); acc:

TBI < HC; pes: TBI = HC

Pontifex et al.,

2009

ERN: TBI = HC 36 TBI, 46 HC Modified

Stroop

RT: TBI = HC; acc:

TBI = HC

Larson et al.,

2012

GCS range 13-15

ERN: TBI > HC 25 TBI, 22 HC Eriksen

Flanker

Pes: TBI = HC Olson et al.,

2018

The TBI group comprises

athletes (sport concussion)

ERN: TBI: no ern 16 TBI Stroop RT: incongr > congr; acc:

incongr < congr

Larson et al.,

2009c

GCS range 3-8.

There is no control group

Studies: Pe

Results (amplitude) Participants Task Behavior Reference Extra information

Pe: TBI = HC 14 TBI, 14 HC N2pc Acc: TBI = HC De Beaumont

et al. (2013)

The TBI group comprises

athletes (sport multi-

concussion)

Pe: TBI = HC 18 TBI, 21 HC SPCN Acc: TBI = HC De Beaumont

et al. (2013)

The TBI group comprises

athletes (sport multi-

concussion)

Pe: TBI = HC 19 TBI, 21 HC Modified

Stroop

RT: TBI > HC; acc:

TBI = ACC

Larson et al.,

2007

GCS< 9

Pe: TBI = HC 20 TBI, 20 HC Stroop RT: TBI < HC; acc:

TBI = HC

Larson et al.,

2009a

GCS< 9

Pe: TBI = HC 30 TBI, 36 HC Eriksen

Flanker

RT: TBI = HC, TBI >

HC (interference effect); acc:

TBI < HC; pes: TBI = HC

Pontifex et al.,

2009

Pe: TBI = HC 36 TBI, 46 HC Modified

Stroop

RT: TBI = HC; acc:

TBI = HC

Larson et al.,

2012

GCS range 13-15

Pe: TBI = HC 25 TBI, 22 HC Eriksen

Flanker

Pes: TBI = HC Olson et al.,

2018

The TBI group comprises

athletes (sport concussion)

Pe: TBI: Pe effect

(inc > cor)

16 TBI Stroop RT: incongr > congr; acc:

incongr < congr

Larson et al.,

2009c

GCS range 3-8.

There is no control group

Studies: other error signatures

Results (amplitude) Participants Task Behavior Reference Extra information

N450: TBI = HC 29 TBI, 36 HC Modified

Stroop

RT: TBI = HC; acc:

TBI = HC

Larson et al.,

2011

GCS range 13-15

N450: TBI = HC 18 TBI, 21 HC Modified

Stroop

RT: TBI = HC; acc:

TBI = HC

Larson et al.,

2009b

GCS< 9

N450: TBI < HC 11 TBI, 11 HC Cued Stroop

and Reading

Span

RT: TBI = HC (Stroop

interference); acc: TBI < HC

(Read Span)

Perlstein et al.,

2006

GCS< 9

SP: TBI < HC 18 TBI, 21 HC Modified

Stroop

RT: TBI = HC; acc:

TBI = HC

Larson et al.,

2009b

GCS< 9

SP: TBI < HC 29 TBI, 36 HC Modified

Stroop

RT: TBI = HC; acc:

TBI = HC

Larson et al.,

2011

GCS range 13-15

NSW: TBI < HC 11 TBI, 11 HC Cued Stroop

and Reading

Span

RT: TBI = HC (Stroop

interference); acc: TBI < HC

(Read Span)

Perlstein et al.,

2006

GCS< 9

(continued on next page)
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Table 3 (continued)

Studies: other error signatures

Results (amplitude) Participants Task Behavior Reference Extra information

N2-P3: TBI > HC 27 TBI, 17 HC Go/Nogo RT: TBI > HC (emotional

relevant); acc: TBI = HC;

Maki-Marttunen

et al., 2015

GCS range 13-15. The

control group consisted of

patients with previous

ankle injury

Prefrontal lesions

Studies: ERN/mid-frontal theta

Results (amplitude) Participants Task Behavior Reference Extra information

ERN: PFC= HC 6 PFC, 10 HC Letter

discrimination

RT: PFC> HC; acc:

PFC = HC; pes: PFC as HC

Ghering et al.,

2000

The PFC group showed no

difference between correct

and incorrect trials

ERN: PFC inc > Cor

(Naming; no

comparison to HC)

6 PFC, 12 HC Naming

(linguistic)

and Simon

(non-

linguistic)

RT: PFC= HC; acc:

PFC < HC

Riès et al., 2013 HC did not have enough

errors to elicit ERPs, so

there is no comparison

between PFC and HC

ERN: MPFC= HC 2 MPFC, 21 HC Visual Stop-

signal

Acc: MPFC= HC Lovstad et al.,

2012

ERN: LFC< HC; 7 LFC, 6 bOFC,

6 uTC, 9 HC

Eriksen

Flanker

RT: LFC> HC,

bOFC= HC; acc:

LFC= HC, bOFC= HC

Ullsperger et al.,

2002ERN: bOFC= HC;

ERN: uTC= HC

ERN: BDC= HC; 7 rACC, 7 BDC,

7 HC

Eriksen

Flanker

RT: HC< rACC (congr/

incongr); HC= BDC (congr/

incongr); pes: Error

awareness (behavioral):

HC < rACC/BDC;

No pes in rACC

Maier et al.,

2015

rACC: lesions centred on

the rACC and LFC;

BDC: brain damaged

control group of patients

with lesions outside of the

rACC and LFC

ERN: rACC< HC; ERN:

rACC< BDC

ERN: 5 ACC

11 HC

Eriksen

Flanker

RT: ACC> HC; acc:

ACC= HC; pes: 4 ACC had

pes effect (2 for each

paradigm)

Stemmer et al.,

2004

The task was

characterized by letter and

geometric stimuli in two

different paradigms

3 ACC: no ERN,

1 ACC: only in one

paradigm,

1 ACC: only in one

paradigm

ERN: OFC< HC 4 OFC, 8 HC Stroop RT: OFC> HC; acc:

OFC= HC

Turken & Swick,

2008

ERN: LFC< HC, 7 LFC, 7 HC Eriksen

Flanker

RT: LFC> HC, acc:

LFC= HC

Ullsperger et al.,

2006

ERN: BG< HC 9 BG, 9 HC Eriksen

Flanker

RT: BG> HC; acc:

BG= HC

Ullsperger et al.,

2006

ERN: PCMN< HC 8 PCMN, 8 HC Eriksen

Flanker and

novelty

Acc: PCMN< HC; pes:

PCMN< HC

Wessel et al.,

2014

Studies: Pe

Results (amplitude) Participants Task Behavior Reference Extra information

Pe: HC= BDC= rACC 7 rACC, 7 BDC,

7 HC

Eriksen

Flanker

RT: HC< rACC (congr/

incongr), HC= BDC (congr/

incongr); pes: No pes in

rACC

Maier et al.,

2015

Error awareness:

HC< rACC/BDC

Pe: OFC> HC 12 OFC, 14 HC Visual stop

signal

RT: OFC= HC; pes:

OFC= HC

Solbakk et al.,

2014

Pe: ACC? only in one

paradigm

5 ACC, 11 HC Eriksen

Flanker

RT: ACC> HC; acc:

ACC= HC; pes: 4 ACC had

pes effect (2 for each

paradigm)

Stemmer et al.,

2004

The task was

characterized by letter and

geometric stimuli in two

different paradigms

Pe: LFC< HC; 7 LFC, 6 bOFC,

6 uTC, 9 HC

Eriksen

Flanker

RT: LFC> HC,

bOFC= HC; acc:

LFC= HC, bOFC= HC

Ullsperger et al.,

2002Pe: bOFC= HC;

Pe: uTC= HC

Pe: BG< HC 9 BG, 9 HC Eriksen RT: BG> HC; acc: Ullsperger et al.,
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Table 3 (continued)

Studies: Pe

Results (amplitude) Participants Task Behavior Reference Extra information

Flanker BG= HC 2006

Pe: LFC< HC 7 LFC, 7 HC Eriksen

Flanker

RT: LFC> HC; acc:

LFC= HC

Ullsperger et al.,

2006

Studies: other error signatures

Results (amplitude) Participants Task Behavior Reference Extra information

N2: OFC< HC 12 OFC, 14 HC Visual stop

signal

RT: OFC= HC; pes:

OFC= HC

Solbakk et al.,

2014

N2P3: OFC= HC

(nogo);

12 OFC, 12 HC Executive RT RT: OFC= HC; acc:

OFC< HC

Kuusinen et al.,

2018

N2P3: OFC< HC

(threat-related stimuli)

N2P3: OFC= HC (task

irrelevant stimuli);

13 OFC, 11 HC Eriksen

Flanker

RT: OBC= HC; acc:

OFC= HC; OFC> HC

(emotional irrelevant)

Maki-Marttunen

et al., 2017

The control group

consisted of patients with

previous ankle injury, but

no head injury

N2P3: OFC> HC

(threat-related stimuli)

Cerebellar lesion (CL)

Studies: ERN/mid-frontal theta

Results (amplitude) Participants Task Behavior Reference Extra information

ERN: CL < HC 8 CL, 11 HC Antisaccade RT: CL > HC; acc:

CL = HC

Peterburs et al.,

2012

ERN: CL < HC 16 CL, 16 HC Antisaccade Acc: CL < HC Peterburs et al.,

2015

Studies: Pe

Results (amplitude) Participants Task Behavior Reference Extra information

Pe: CL = HC 8 CL, 11 HC Antisaccade RT: CL > HC; acc:

CL = HC

Peterburs et al.,

2012

Pe: CL = HC 16 CL, 16 HC Antisaccade Acc: CL < HC Peterburs et al.,

2015

Thalamic lesion (TL)

Studies: ERN/mid-frontal theta

Results (amplitude) Participants Task Behavior Reference Extra information

ERN: TL < HC 6 TL, 28 HC Antisaccade RT: TL > HC; acc:

TL < HC; pes: TL no effect

Peterburs et al.,

2011

One out of the six patient

had a strong pes effect

ERN: TL < HC 15 TL, 16 HC Eriksen

Flanker

RT: TL = HC; acc:

TL = HC; pes: TL no effect

Seifert et al.,

2011

Studies: Pe

Results (amplitude) Participants Task Behavior Reference Extra information

Pe: TL = HC 15 TL, 16 HC Eriksen

Flanker

RT: TL = HC; acc:

TL = HC; pes: TL no pes

effect

Seifert et al.,

2011

Abbreviation: OFC: orbitofrontal cortex; rACC: rostral anterior cingulate cortex; ACC: anterior cingulate cortex; LFC: lateral prefrontal cortex; bOFC: bilateral orbitofrontal

cortex; BDC: uTC: unilateral temporal cortex, HC: healthy controls; BDC: brain damage control group; BG: basal ganglia; PCMN: prefrontal-cingulate monitoring network;

TBI: traumatic brain injury; ERN: error-related negativity; Pe: error positivity; pes: post-error slowing; GCS: Glasgow Come Scale; CL: cerebellar lesion; TL: thalamic lesion.
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Table 4. White matter diseases

White matter lesions

Studies: ERN/mid-frontal theta

Results

(amplitude)

Participants Task Behavior Reference Extra information

ERN: SCD-

FL < SCD-C,

11 SCD-FL, 11

SCD-C, 11 HC

Fast choice RT: SCD= HC;

acc:

SCD= HC

Hogan et al.,

2006

ERN: SCD-

FL < HC

Studies: other error-signatures

Results

(amplitude)

Participants Task Behavior Reference Extra information

BETA:

FSL < HC

12 FSL, 12 HC Hybrid Eriksen

Flanker-novelty

acc: FSL = HC;

pes:

FSL no effect

Wessel et al.,

2016

Multiple Sclerosis (MS)

Studies: ERN/mid-frontal theta

Results

(Amplitude)

Participants Task Behavior Reference Extra information

ERN: MS> HC 27 MS, 31 HC Stop signal RT: MS= HC; acc:

MS= HC

Lopez-Gongora

et al., 2015

ERN amplitude correlated

positively with scores on the

EDSS and the MSSS

Abbreviation: MS: multiple sclerosis; HC: healthy controls; SCD-FL: frontal lobe sickle cell disease; SCD-C: sickle cell disease without infarcts; ERN: error-related negativity;

pes: post-error slowing; acc: accuracy; RT: response time; FSL: fronto-striatal lesion; EDSS: Expanded Disability Status Scale; MSSS: Multiple Sclerosis Severity Score.
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crucial during performance monitoring and cognitive

control, to internally guide behavior in accordance with

goals, plans and broader contextual knowledge (Van

Noordt et al., 2012; Wessel, 2016). Eleven articles have

been included in this section according to the systematic

search. Studies: ERN/mid-frontal theta. One study

with patients with prefrontal cortex (PFC) lesions

showed no difference on the ERN amplitude compared

to HCs, but they also did not show difference between

correct and incorrect responses, differently than HCs

(Gehring & Knight, 2000). In another study PFC patients

showed preserved ERN in a naming but not in a non-

naming task, when comparing correct versus incorrect tri-

als; however, in this case no comparison with controls

have been done (Riès et al., 2013). Two studies with orbi-

tofrontal cortex (OFC) patients found an alteration of the

ERN response, such that OFC patients had reduced

amplitude (Turken & Swick, 2008; Solbakk et al., 2014).

Previously, Ullsperger and colleagues (2002) performed

a study with three different groups of patients with pre-

frontal lesions: patients with lesions in bilateral OFC

(bOFC), lateral frontal cortex (LFC), and unilateral tempo-

ral cortex (uTC). The bOFC and uTC patients had no dif-

ference in the ERN response as compared to HCs,

whereas LFC patients showed reduced ERN amplitudes.

Similar results on LFC patients, namely reduced ERN

amplitude had been reported also in a later work

(Ullsperger and von Cramon, 2006). In this same study,

also patients with basal ganglia (BG) lesion showed

reduced ERN amplitude (Ullsperger and von Cramon,

2006). A study with 2 patients presenting mPFC lesions

showed preserved ERNs (Lovstad et al., 2012). Patients
with rostral ACC (rACC) lesions showed decreased

ERN amplitudes when compared to HCs and control

patients with brain damage outside the target regions,

whereas the HCs and the control patients did not differ

in ERN amplitude (Maier et al., 2015). Another study with

5 patients with lesions in the rACC showed that 3 of them

did not produce an ERN, while the other 2 patients did

(Stemmer et al., 2004, Table 3). Finally, a study on

patients with lesions in the prefrontal-cingulate monitoring

network (PCMN) showed decreased ERN amplitudes

(Wessel et al., 2014). Pe. The study with OFC patients

found greater Pe amplitudes compared to HCs (Solbakk

et al., 2014). Both bOFC and uTC patients showed no dif-

ference in Pe amplitude compared to HCs, whereas LFC

patients showed reduced Pe amplitude (Ullsperger et al.,

2002). The latter finding was confirmed also in a later

study (Ullsperger and von Cramon, 2006). In this same

study, also patients with basal ganglia (BG) lesion

showed reduced Pe amplitude (Ullsperger and von

Cramon, 2006). Two out of five patients with lesions in

rACC failed to show a Pe response (Stemmer et al.,

2004). Other error signatures. Two studies with OFC

patients used a task that elicited the N2-P3 complex,

and found that patients showed no difference in amplitude

compared to HCs but showed a modulation when

exposed to emotional stimuli (Kuusinen et al., 2018;

Maki-Marttunen et al., 2017). Behavioral performance:
PFC patients showed prolonged RTs during error

responses but no difference in performance accuracy

(Gehring & Knight, 2000). OFC patients did not show sig-

nificant differences with HCs, except for increased RTs

during a stop-signal task (Solbakk et al., 2014). In the
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study by Ullsperger et al. (2002), the bOFC patients had

no difference in behavior, as compared to HCs, whereas

LFC patients showed increased RT, but comparable

accuracy rate. The latter result was later replicated by Ull-

sperger et al. (2006). Patients reporting lesions in the

PCMN showed impaired behavioral performance, and a

reduced PES effect compared to HCs (Wessel et al.,

2014). Summary. Some of the studies that involved

patients with lesion damage in certain regions of the fron-

tal cortex reported the disappearance of the ERN/Pe (i.e.

LFC, bOFC, ACC, BG, PCMN). Differently, studies who

considered patients with brain damage in the mFLC and

uTC showed preserved error-related response. Some

other studies found a dissociated behavior in the ERN

and Pe response (i.e. OFC patients, Solbakk et al.,

2014), resembling the patterns typically observed among

healthy adults (Nieuwenhuis, et al., 2001).

Cerebellar lesion: Cerebellar activity has been linked

to ongoing motor behavior, incoming sensory information

as well as to predictive motor control (Ide & Li, 2011;

Peterbus et al., 2012). The role of the cerebellum there-

fore may have implications for the cognitive aspects of

performance monitoring, including error processing. Pre-

vious studies underlined the close connection of the cere-

bellum with the thalamus and the supplementary motor

area (SMA), in the process of error and post-error pro-

cessing (Ide et al., 2011). Two studies have been included

according to our search algorithm. Studies: ERN/mid-
frontal theta. Two studies using an antisaccade task

found that cerebellar patients showed reduced ERN

amplitudes (Peterburs et al., 2012, 2015). Pe. These

same two studies reported a preserved Pe response

(Peterburs et al., 2012, 2015). Behavioral performance:
cerebellar patients showed either equal or decreased

accuracy compared to HCs in the error-monitoring tasks,

but no other deviant patterns. Summary. Patients with

lesions of different extent in the cerebellum showed

reduced ERNs but preserved Pe’s. However, the avail-

able number of studies is too limited to allow clear

conclusions.

Thalamic lesion: Using diffusion-based tractography,

studies found that among the thalamic nuclei, the ventral

anterior and ventral lateral anterior nuclei have a strong

connectivity with the ACC. Patients with lesions in that

area show impaired error monitoring abilities, suggesting

how the thalamic areas are important constituents of the

performance monitoring network, anatomically and

functionally closely interacting with the ACC (Klein et al.,

2013; Ullsperger et al., 2014a). Two studies have been

included. Studies: ERN/mid-frontal theta: Two studies

with thalamic patients found reduced ERN amplitudes in

the antisaccade task (Peterburs et al., 2011) and the Erik-

sen flanker task (Seifert et al., 2011). Pe. Seifert et al.
(2011) found a preserved Pe among thalamic patients.

Interestingly, the analysis by Klein and colleagues

(2013) of previously unpublished data (Seifert et al.,

2011) found a double dissociation of ERN and Pe

responses. In specific, thalamic lesions affecting the ven-

tral anterior and ventrolateral anterior nuclei abolished the

ERN but only slightly reduced the Pe, whereas lesions

affecting the mediodorsal nucleus led to the opposite pat-
tern (namely reduction of ERN and abolished Pe). Behav-
ioral performance: In the study with the antisaccade

task, thalamic patients showed impaired behavioral per-

formance and no PES effect, beside one patient who

showed strong slowing (Peterburs et al., 2011). In the

study using the flanker task, no differences were

observed in either RT, accuracy, or PES (Seifert et al.,

2011). Summary: patients with lesions of in the thalamic

nuclei suggest an altered error-monitoring processes.

White matter diseases

Beside the crucial role of grey-matter integrity for the

correct functioning of the performance monitoring

processes, white matter may also play a fundamental

role in the short- as well as long-distance

communication between the areas that comprise the

error monitoring system (Laughlin & Sejnowaki, 2003).

Studies on patients with white-matter disruptions can be

helpful in investigating whether structural disconnections

within and across networks impairs the neural processes

involved in error monitoring (Mierzwa et al., 2015). Here

we included studies on white-matter disruption and stud-

ies on multiple sclerosis (MS; see table 4).

White-matter lesions: Disconnections or white

matter changes can lead to impaired long-range neural

communication, with direct consequences also for

performance monitoring abilities. Studies: ERN/mid-
frontal theta. In one study, patients with frontal white-

matter lesions due to sickle cell disease (SCD)

vasculopathy (SCD-FL) showed reduced ERN

amplitudes in comparison to both a group of patients

with SCD but without brain lesion and a group of HCs

(Hogan et al., 2006). Pe: no studies have been perfor-

mend on the Pe. Other error signatures. A study with

patients with fronto-striatal white-matter lesions perform-

ing a flanker-novelty task revealed decreased beta power

following errors compared to HCs (Wessel et al., 2016).

Behavioural performance: The behavioral performance

of the SCD-FL patients showed no difference in RT and

accuracy with HCs (Hogan et al., 2006). Patients with

fronto-striatal white-matter lesions also showed no differ-

ence in performance compared with HCs. However, a

PES effect was found in HC but not in PD (Wessel

et al., 2016). It is also worth noting that Wessel and col-

leagues (2016) found a significant group difference for

the post-novelty slowing (PNS), thus the slowing of reac-

tion times in subsequent trials after novel stimuli that was

found in the HCs in comparison to the patients. Sum-
mary: studies with white-matter disruption suggest alter-

ation in the error-monitoring signatures but no difference

in performance.

Multiple sclerosis: MS is a chronic demyelinating

disease of the central nervous system that produces

cognitive, motor and neuropsychiatric deficits

(Chiaravalloti & De Luca, 2008). Studies suggest that

MS patients might develop compensatory mechanisms

potentially involving enhanced performance monitoring.

Studies: ERN/mid-frontal theta. One study with 27 MS

patients showed increased ERN amplitudes as compared

to HCs during a stop-signal task (Lopez-Gongora et al.

2015). Pe: no studies have been done on the Pe. Beha-



118 R. Pezzetta et al. / Neuroscience 486 (2022) 103–125
vioural performance: MS showed similar accuracy and

response times than HCs (Lopez-Gongora et al. 2015).

Summary: patients with MS showed alteration in error

monitoring system, but only one study has been done

so far on this pathology.
DISCUSSION

The present systematic review aimed at investigating

error processing in a number of neurological alterations.

Results showed several findings that may expand our

current knowledge of error monitoring in neurological

disorders (Klein et al., 2013; Ullsperger, 2006).

First, we found results in support of the notion that

different and likely independent processes are part of

the error monitoring system. In some cases, a

decreased ERN/N2 response is not followed by an

altered Pe response (and vice versa), similar to results

on young adults (Nieuwenhuis et al., 2001; Overbeek

et al., 2005; di Gregorio et al., 2016; Masina et al.,

2019). Also, pharmacological studies in animals and

humans (e.g. affected by Parkinson’s Disease) suggest

that ERN and mid-frontal theta rhythms are influenced

by the balance of dopamine in the system, while the

results concerning the Pe component are less clear-cut

(Falkenstein et al., 2001; Holroyd et al., 2002; Ito &

Kitagawa, 2005; Stemmer et al., 2007; Willemssen

et al., 2008, 2009; Jocham and Ullsperger, 2009; Beste

et al., 2009a, 2009b; Verleger et al., 2013; Cavanagh

and Frank, 2014; Seer et al., 2016, 2017).

Second, we observed that the ERN amplitude was

reduced in patients with PD, HD, AD, TBI, lesions in

LFC, ACC, PCMN, cerebellum, thalamus and in white

matter. The ERN did not appear affected in patients with

MCI, lesions to mFLC or TC. The ERN was found to be

increased in MS, although only a single study was

available here. Pe amplitude appeared reduced in HD

patients, but in no other patient group (note that no

studies on the Pe have been found in MCI or patients

with white matter diseases). Theta activity was found

reduced in basal ganglia (PD and HD) and

neurodegenerative disorders (MCI), but only few studies

have been presented. Only one study investigated error-

related beta oscillations in patients with white matter

lesions, showing reduced power compared to HCs. On

the other error-related signatures we found mixed

results. Behavioral patterns of dysfunctional (post-)error

processing were quite unsystematic, although by and

large no massive deficiencies were observed.

Third, in several studies on patients, particularly

including deficits in the basal ganglia, LFC, as well as

TBI patients, there is an apparent paradox: most of the

patients still had a preserved behavioral ability to detect

errors or to correct them; however, this did not

correspond to the altered brain response found in

several studies. So, what does this tell us? Could it be

that error-related signatures are an epiphenomenon of

the error processing mechanism? The issue of different

results at the behavioral and neural levels was raised

also by Ullsperger, 2006. It is of course possible that the

ERN or mid-frontal activity just are not sensitive enough
to pick up on the processing of prediction errors in these

cases. However, this is not entirely plausible given the

many positive instances of picking up on these signals

and revealing disease-related impairments. Instead, there

may be various roads to post-error adaptation. It is possi-

ble, for instance, that slower and more strategic pro-

cesses take over if the fast error-monitoring route is

compromised. It is worth noting here that the ability of

healthy individuals to correct errors in behaviour do corre-

late with ‘error-related’ brain responses (Gehring et al.,

1993; Ridderinkhof et al., 2003); possibly, this correlation

is weakened in some neurological patients. These consid-

erations notwithstanding, the observed patterns of defi-

ciencies seem to suggest that mid-frontal theta activity

and especially the ERN may constitute highly sensitive

indicators of the integrity of the performance-monitoring

network. Also, different brain processes might be

recruited in people affected by neurological disorders, in

order to perform the task successfully.

A fourth point is that studies on neurological patients

support the idea that the error-monitoring system goes

well beyond the activity of the ACC, and mostly rely on

distributed networks, including regions as PFC, LFC,

OFC, TC, but also the cerebellum and subcortical

regions such as the BG and thalamic regions (Stemmer

et al., 2003; Swick and Turken, 2002; Ullsperger et al.,

2014a, 2014b). Our systematic review also demonstrates

how impairments in short- and long-distance communica-

tion across white-matter connections between the nodes

in the network may produce deficits in the performance

monitoring system (Hogan et al., 2006; Lopez-Gongora

et al., 2015; Wessel et al., 2016). Krigolson and Holroyd

(2006) proposed a hierarchical vision of the error process-

ing in the human brain, according to which different kinds

of errors might activate more frontal or posterior regions

of the network. It should also be noted that different types

of errors are associated with different EEG dynamics

(e.g., Maier et al., 2008), with for instance impulsive errors

being associated with rapid midfrontal theta responses

whereas attentional lapses are associated with slower

parietal alpha responses (van Driel et al., 2012).

Fifth, the lack of consistent findings among patients

affected by the same pathology could be due to a

number of different reasons, including: (i) the variety of

tasks employed across studies and their level of

difficulty (go/nogo, flanker, stroop, error awareness,

antisaccade task etc.); (ii) the low sample size (Wessel,

2012; Brush et al., 2018); (iii) the heterogeneity of the

sample (particularly in studies on brain lesions) and the

severity of the illness; (iv) the study design; (v) the task

instructions (i.e. asking participants to be more accurate

or faster during the task performance). Also, relative to

the first point (i), we should be cautious in comparing

results between studies not only within the same pathol-

ogy but also between different neurological populations.

In fact, while the EEG marker elicited by the task could

be the same (e.g., ERN, N2, Pe), the paradigm behind

it could be characterized by relevant differences (in terms

of context or task difficulty). For example, while studies on

basal ganglia patients mostly used the Flanker tasks to

elicit error monitoring signals, studies on neurodegenera-
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tive disorders preferably used other kind of paradigms

(e.g., go/nogo or lexical decision paradigms).

Sixth, and in relation to the previous point, the fact that

most of the neurological disorders included in the

systematic search count a limited number of studies,

often with only a few patients, limits the conclusions that

can be drawn. The points discussed so far thus have to

be interpreted with some caution; future studies are

needed to characterize in details alterations of error

monitoring systems as consequence of neurological

disorders.
FUTURE DIRECTIONS

Further studies on the complex neurofunctional

architecture of the error monitoring alterations in

neurological disorders have to be performed along

several directions.

First of all, informative data can be collected not only

by traditional tasks on error execution, but also by

studies on error observation, eliminating task

performance differences. Also new technologies like

immersive virtual reality may help to investigate the

error-monitoring processes also in patients with motor

disabilities. Paradigms in which EEG activity is recorded

while patients observe errors performed by their

embodied avatar, seem promising. Immersive virtual

reality scenarios can indeed generate the feeling of

sensory feedback related to an individual’s virtual body

and thus induce effects on the individual’s cognition

(Fusaro et al., 2019). However, to the best of our knowl-

edge, immersive virtual reality studies of error monitoring

have been done only in healthy adults (Padrao et al.,

2016; Pavone et al., 2016; Pezzetta et al., 2018; Spinelli

et al., 2018; Tieri et al., 2018), while patients have been

tested with speed-response tasks. We suggest that

error-related behavioral and brain functions should be

tested in ecological contexts (Ozkan and Pezzetta,

2018). Such an approach is in principle safe as studies

show that older adults accept well immersive virtual real-

ity, exhibit a positive attitude toward virtual reality and do

not experience cybersickness (Huygelier et al., 2019;

Appel et al., 2020). We also note that tasks in which

patients have to execute semi-virtual and goal-oriented

motor tasks in order to probe forward model predictions

during motor learning (e.g. throwing a ball, grasping an

object) can provide more naturalistic environments that

engage different brain regions and require natural behav-

ioral adaptations (Maurer et al., 2015, 2019; Joch et al.,

2017; Era et al., 2020; Moreau et al., 2020b; Villa et al.,

2020). Indeed, patients with parietal damage show that

the ability to understand an observed action is impaired,

as well as the ability to engage in more complex object-

directed actions (Fontana et al., 2012); thus, it would be

interesting to understand whether and how those alter-

ations have an impact on different levels of error process-

ing. Moreover, creating more ecological scenarios could

thus help investigate different kinds of error, which might

require distinct brain networks (Krigolson and Holroyd,

2006; van Driel et al., 2012).
Another direction that can be relevant for clinical

purposes, it is the investigation of the relation between

error awareness and interoceptive system in

neurological disorders, as a proper understanding of

self-monitoring deficits is crucial in rehabilitation

circumstances (see review on the role of insula in error

monitoring; Klein et al., 2013). In this context, metacogni-

tive abilities allow to modify behavioural performance

even in the absence of an external feedback (Wokke

et al., 2020); thus, a deeper understanding of the relation

of error signatures with interoceptive and metacognitive

abilities could highlight deficits in monitoring and decision

confidence (Gleichgerrcht et al., 2010; Hoerold et al.,

2013; Fleming et al., 2014; Boldt and Yeung, 2015; Tan

et al., 2019; Tan et al., 2019; Yeung and Summerfield,

2012; Yeung and Summerfield, 2012). In relation to previ-

ous data on thalamic patients have also shown a double

dissociation for error responses in thalamic subregions

(Klein et al., 2013). It has been suggested that a basal-

ganglia-thalamocingulate circuit could be involved in the

ERN generation, whereas the mediodorsal nuclei are

related to to the Pe generation. Since these findings have

been collected on a small sample, future studies on thala-

mic patients should confirm these results.

Concerning these issues, more data are needed on

the assumption that the Pe might or might not rely on

the dopaminergic system and significant results can be

obtained from pharmacological studies or from patients

with basal ganglia diseases (tested during dopaminergic

medication (on) and dopaminergic withdrawal (off)). As

shown by our systematic review, the evidence collected

so far on the role of dopamine in PD is scarce. The few

studies that focused on the ERN/mid-frontal theta report

no difference between on or off state (Stemmer et al.,

2007; Willemssen et al., 2008; Volpato et al., 2016;

Singh et al., 2018) or enhanced ERN in off compared to

on state (Seer et al., 2017). Also, no evidence about the

influence of dopamine on the Pe component is available.

To explain the results concerning the ERN/theta findings,

we might hypothesize that – in addition to the abovemen-

tioned limits that often characterize patient studies (e.g.,

small sample sizes), residuals dopaminergic effects of

medication could be still present when PD are tested dur-

ing off state, making more difficult to detect differences

between medication states. Also, Seer and colleagues

suggested that their interesting but unexpected results

could have been due to a slightly unbalanced design

(Seer et al., 2017). Indeed, various theories and findings

point in the direction that ERN and mid-frontal theta

depend on dopamine inputs, as dopamine neurons seem

to transmit signals at the occurrence of salient events

(Schultz, 1997; Jocham and Ullsperger, 2009;

Cavanagh and Frank, 2014). In contrast, Pe seems not

to depend on dopaminergic inputs. It is also important to

consider that other neurotransmitters might play a role

in the performance monitoring processes, either through

direct modulation of the ACC or through influence on

the DA system (Jocham & Ullsperger, 2009; Ullsperger

et al., 2014b). Further, a previous study on a single case

showed that if the generator of the error-related potential

(i.e. ERN) was damaged by unilateral lesion, the ampli-
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tude of the ERN was reduced, while the amplitude of the

conflict-related potential (i.e. N450) increased (Swick and

Turken, 2002). Studies on the hemispheric difference of

the error monitoring and on the connectivity between sev-

eral areas in the healthy and lesioned brain (Ambrosini

and Vallesi, 2016; Campanella et al., 2016) will expand

the current knowledge on error- and conflict-related

signatures.

Finally, from a methodological point of view, most of

the EEG analyses on neurological patients have been

limited to the ERPs domain. Important, novel

information can be obtained through analyses of the

oscillatory activity, including that concerning non-phasic

alterations in response to erroneous events. In fact,

potentially task-relevant dynamics may be lost during

ERP averaging. Time-frequency decomposition and

network analysis can instead provide insights into

neurocognitive processes that go beyond what we learn

from the ERPs (Cohen, 2011).

The combination of advanced technological and

methodological approaches, including larger sample

sizes and thus adequate power, could increase the

reliability of the theoretical considerations drawn from

the clinical data (Suresh and Chandrashekara, 2012). In

this direction, several datasets with similar design can

be aggregated applying Bayesian statistics in order to

achieve reliable results.

This review represents a systematic appraisal of error-

monitoring studies in neurological disorders. In particular,

it aims to assess if and how the pathological changes that

characterize these conditions negatively affect

performance monitoring, at both the behavioural and

electrophysiological levels. We observed that the ERN

amplitude was reduced in most neurological patient

groups, with the exception of patients with MCI or with

lesions to mFLC or TC. We also found reduced theta

activity in some populations, but less consistent and

numerous findings are present on this, as well as on

other error-related signatures. Pe amplitude appeared

not to be affected in any patient group except HD.

Consistent behavioral patterns of dysfunctional (post-)

error processing were not observed. Future studies are

needed to expand our current theoretical and

translational knowledge concerning the human

proneness to errors and its adaptive function.
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