
Doing Software Development: Occasions 
for Automation and Formalisation 
Rebecca E. Grinter 
Bell Labs, Lucent Technologies, United States of America 
beki@research.bell-labs.com 

Abstract. The use of workflow technology has created considerable discussion within 
the CSCW community. Although the debates have been grounded in theories of work, 
less has been written about specific organisational and social settings where workflow 
systems have been used. This paper presents findings from an empirical study where a 
workflow-like system was in routine use for some of the work. It draws conclusions about 
the circumstances that made this possible. 

Introduction 

The use of workflow systems to support work has generated much discussion 
within the CSCW community (CSCW, 1995). Workflow technologies aim to 
reduce the complexity of coordination in three steps. First, the work activities are 
categorised; in other words, they are reduced to their basic form. This 
categorisation usually removes details and specifics from the work and reduces the 
actions to objects like artefacts, procedures, and user roles. Second, these 
categorisations are formalised as a language that specifies permitted interactions and 
rules out non-permitted ones. The formalism makes it possible to embed the 
categorisation into a computer system. Finally, some parts of this formalism may 
be entirely automated by the system. 

It is these three steps of categorisation, formalisation and automation that raise 
questions for some researchers. Many of the voices in the debate have asked 
questions about whom workflow systems serve, how well different formalisms 
support work, and how they affect the environment they are used in (CSCW, 

173 

J Hughes et al. (eds), Proceedings of the Fifth European Conference on Computer 
Supported Cooperative Work, 173-188 
© 1997 Kluwer Academic Publishers Printed in the Netherlands. 

mailto:beki@research.bell-labs.com


174 

1995). Although the debate is highly grounded in theories of work, the discussions 
themselves have not focused so much on the empirical details about the companies 
and people using the technology and the kinds of uses these systems are being put 
to. Yet it is these details, as previous studies of groupware successes and failures 
remind us, that are so important to understanding the context in which the 
technology is embedded. 

As the number of workflow systems grows and they are put into use inside 
companies a question arises as to what conditions support the successful adoption 
and on-going use of these kinds of systems. This paper examines three occasions 
when a workflow-like system helped reduce the complexity of work in a way that 
was helpful to those using the system. Specifically, it focuses on software 
development and the role of a workflow-like system — a configuration 
management tool — in supporting that work. 

There is a growing body of literature that has examined the failings of groupware 
systems and as well as their successes. Within the CSCW community though 
empirical studies of workflow have tended to report the difficulties that people had 
working with them (Button and Harper, 1992). Even designers of workflow 
systems have also noted the difficulties of using these technologies (Abbott and 
Sarin, 1994). 

However, despite these concerns workflow systems continue to be developed 
for a number of reasons. First, they continue to be a seductive technology to 
commercial corporations (Abbott and Sarin, 1994). Second, some popular 
management methodologies advocate the use of information technology to support 
work processes. Third, some successes have been achieved with workflow 
systems (Agostini, et al., 1994). Fourth, they present an interesting research 
challenge: to find ways to support the work of individuals in a useful and 
constructive manner (Medina-Mora, et al., 1992; Ellis and Wainer, 1994; Dounsh, 
et al., 1996). 

At the same time that workflow systems are continuing to be built, researchers 
are beginning to ask questions about the role of formalisms in collaborative work. 
For example, Bowers (1992) offers a number of counter-arguments against purely 
theoretical criticisms of formalisms. His counter-arguments also apply to workflow 
systems, and in this paper I shall provide some empirical support for two of them. 

First, he argues that although some aspects of work maybe complex and 
uncertain other parts maybe routine and dull The build process that I shall describe 
was a part of software development work that the developers in this study found 
less interesting than their development work and used the tool to automate the 
process. 

Second, he observes that if there is such contingency in work then why can't 
formalisms be used in contingent ways? This paper describes two occasions when 
the formalisms generated by the system produced outputs that allowed the 
developers to develop an awareness of what their colleagues were doing and 



175 

structure their activities in an uncertain environment. These examples highlight 
some uses of the system that support the contingent work of software development. 

It is not my goal to say that workflow systems should always be used, or that 
they should never be used. Following the example of (Abbott and Sarin, 1994; 
Bowers, et al., 1995; Dounsh, et al., 1996) I want to closely examine the potential 
of workflow systems for supporting work. Following the guidance set by Bowers 
(1996) at CSCW '96, it is time to "just go and see" whether there are occasions 
when workflow systems support work. 

The paper begins with a description the domain of study, software development, 
the workflow tool used, a configuration management (CM) system, and the 
methods used to gather and analyse data. Next I describe the three cases when the 
tool supported and enhanced development work for the people using the system. 
Finally, some conclusions are drawn about why these occasions proved amenable 
to workflow systems. 

Software Development and Configuration 
Management 

In this section I describe the domain of study, commercial software development. I 
also describe one tool used to support software development work, a configuration 
management system. Configuration management systems have similar properties to 
workflow systems. 

The Domain: The Development of Software Products 

Modern software product development is a complex activity for four reasons. 
First, most commercially available software systems contain multiple components: 
pieces of software, libraries, documents, and utilities. These systems are built by a 
number of developers working on the same product simultaneously which creates 
coordination overhead (Brooks Jr., 1995). Moreover, software development is 
coordination-intensive as different parts of the system interact with each other, and 
so those responsible for these related pieces of code must continually align their 
efforts during development (Grinter, 1996). 

Second, development usually consists of managing the development of multiple 
versions of the same product simultaneously. To appeal to enough customers most 
products need to work on a variety of different computer platforms and be 
compatible with different operating systems. While these differences do not require 
that the entire product be rewritten for each platform and operating system, part of 
the development process involves making multiple versions of components that 
interact with these substrate technologies. Each time the product is tested the 
correct version of the system needs to be assembled which requires coordinating 
what goes into the product as well as what stays out 



176 

Third, software is an unusual product to develop because it is very malleable. 
Software can be changed by anyone, with the permission to do so, until the minute 
it is released. However, because of the dependencies between components of the 
system one change can potentially affect the functioning of other parts of the 
system. Developers working on other related parts of the software rely on a 
module of code behaving in the same way that it did before. Therefore developers 
need to coordinate their changes to ensure that they do not affect others' work. 

Finally development times have dropped drastically in many sectors of the 
software industry. An increasing number of software development companies are 
under pressure to develop new releases of their products in much shorter times.1 

This compounds the previous problems by requiring that they all get resolved much 
more quickly. For all of these reasons software companies have looked for 
systems to help them organise their development environments. One class of tools 
that increasing numbers of development companies have turned to are configuration 
management (CM) systems. 

The Tool: Configuration Management Systems 

CM systems were designed to help companies who develop software organise their 
development environments by helping them to track the relationships among 
components, develop multiple versions simultaneously, and control changes made 
to software. The first generation of CM tools focused on controlling developers' 
abilities to make changes, by using a library metaphor of "checking out" software to 
revise it, and "checking in" software to indicate that the changes were complete.2 

When a developer had a piece of code checked out no-one else could make changes 
to it. 

These systems had two disadvantages for commercial software development. 
First, they only worked for modules of code. Software systems contain more than 
just software, including libraries, test suites, and documents. Modern CM systems 
support these different types of components. Second, the check out state turned out 
to be very limiting because it prevented others from changing the same module at 
the same time. This slowed down developer's ability to get their work done 
because they had to wait to make their changes. Modern CM systems allow parallel 
development where two or more developers can check out the same piece of code 
make changes and then merge their versions back into a single integrated module. 

Modern CM tools also address the problems of understanding the relationships 
among code and developing multiple versions by providing three other classes of 
functionality usually called layers (Caballero, 1994). The "configuration control" 

In my contacts with managers at various companies it was not uncommon for them to remark that 
systems development times had been cut in half during the last five years, while the number of 
variants necessary to be compatible with different hardware and software configurations has risen 

Two early systems were Revision Control System (RCS) and Source Code Control System (SCCS) 
(Rochkind, 1975, Tichy, 1985). 



177 

layer maintains information about which components make a software product. 
Specifically it knows which version of each component goes into a certain release 
of the software system. It also maintains information about how those components 
relate to each other. The configuration control level allows developers to find out 
exactly which components belong to a specific hardware configuration. 

The "process management" layer provides a "life cycle" for each type of 
component in the system. The life cycle consists of different states; for example, 
software can be checked-out, checked-in, unit tested, system tested, and released. 
When software is in these different states, certain people — who have 
corresponding roles — are permitted by the system to manipulate the software. For 
example, in the unit tested state only people assigned the testing role can access the 
component. 

The "problem reporting" layer supports bug and enhancement tracking. All 
changes to the system components arise as a result of bugs being reported or 
enhancements being requested. These bugs and enhancements — collectively 
known as problems — follow a life cycle. The problem reporting layer also relates 
the problems with the software components that were changed. 

CM systems are domain-specific workflow systems for the coding and testing 
parts of software development. They allow the formahsation of software 
development by categorising the artefacts and people involved in the work. 
Furthermore they support certain kinds of relationships among people and artefacts 
and only permit the artefacts to follow certain state transition models. Finally CM 
systems automate some elements of the work entirely. 

Sites and Study Methods 

The data reported in this study were gathered in 1994-1995 as part of a series of 
studies about configuration management. In this paper the data are drawn from two 
sites. 

Tool Corp. is the vendor of a CM tool. They use their own CM tool to manage 
the development of the next versions of the tool itself. During the time I spent at 
Tool Corp. the development group varied in size from 14 to 18 people. The 
developers were all co-located working on one floor of one building. The product 
they built consisted of about 1 million lines of code. 

Computer Corp. is the vendor of a computer operating system for specialised 
hardware. At the time of the study they employed 700 people to develop their 
software. Many of the software developers work at the company's headquarters in 
Silicon Valley, but they have developers located in other states, and other countries. 
The software consists of about 10 million lines of code. Computer Corp. had just 
started using Tool Corp.'s product in their software development work. 

At both companies the development of the overall product was broken up into 
development teams that were organised by functional parts of the product. At 



178 

Computer Corp. there were many teams organised around the different operating 
system functions; for example, a kernel team, and an interface team. At Tool Corp. 
the software production effort was much smaller so the developers worked in two 
teams again related to a functional distinction between two parts of the product. 

The data were gathered using a combination of interviewing and observation 
techniques. At Tool Corp. I had full access to the corporation and was given a 
cubicle among the developers which I used for three and a half months. I also had 
access to the tool and the software development environment provided through the 
system. I visited the headquarters of Computer Corp. and was taken to various 
parts of the corporation to meet different development groups. I also sat in on a 
class where developers were learning how to use the CM tool built by Tool Corp. 

At both sites I was able to conduct interviews. At Tool Corp. I used 
unstructured and semi-structured interviewing techniques to gather information 
about the CM challenges that the developers faced (Bernard, 1988). I collected 
approximately 100 interviews of which 20 were taped and transcribed. At 
Computer Corp. 13 semi-structured interviews were conducted, and were taped and 
transcribed. 

The data were analysed using grounded theory techniques (Glaser and Strauss, 
1967; Strauss, 1987; Strauss and Corbin, 1990). Grounded theory consists of 
three stages. The first stage consists of analysing the raw data. The purpose of the 
analysis is to find as many conceptual groups — known as categories — that 
describe the events and phenomena in the data. The second stage focuses on filling 
in the categories; for example, characterising their properties, the events that caused 
them to happen, and any resulting consequences. Finally the third stage puts these 
substantive categories together to form the theory of action itself. Data analysis 
consisting of these three stages happens numerous times over the course of the 
study itself. Intitial gaps and questions surrounding the categories drive further 
periods of data collection. 

In this study the initial cycles of gathering and analysis focused on the 
observational data gathered. As the theory started to form I used interviews to help 
inform and revise the categories developed. In the next three sections I describe the 
examples of the developers' tool usage. Discussion of these cases is deferred until 
the following section. 

Case 1: Automating The Build 

During the course of development, software components need to be gathered into 
the product to see whether they work together and function as intended. The 
process of putting the system together from the components is known as "the 
build." The time between successive builds decreases rapidly as development 
enters the final stages because the closer the product gets to release the more 
everyone wants to be absolutely certain that the software works. 



179 

The actual process of building the system consists of finding the latest changes 

of all the components and then compiling them. At both sites each development 
team had a developer known as a build manager who took responsibility for the job 

of ensuring that the build took place. However, there was a significant difference 

between the work that build managers did dependent on whether they used the tool 
or not. 

The Build Managers 

As Computer Corp. was still in the process of migrating all the teams to the CM 
tool, some groups still used manual build procedures. In these teams the build 
manager would take responsibility for the build as well as their development work. 
That person would visit every developer in the team, get their changes and compile 
them. Among these build managers there was a desire to have some kind of system 
organise this work for them. As one build manager put it, 

It doesn't really track "am I getting the right version of this thing"., and unless you have, um, 
a system for doing that, which people have done in a manual way like writing down on bits of 
paper, talking to 18 different developers that are producers of their dependencies, there is no 
way 

and another described a similar manual procedure 
I make them tell me stuff like what [files] to grab and what's the version number of them, what 
bug are you fixing and how am I supposed to know once I install it if that bug got fixed or 
not What's the behavior I'm supposed to see and then, when it's necessary, I do the 
[recompile] and install and send out mail. . I keep a track of it, and how I track is that every 
time I do an install I send everybody e-mail saying this is what I installed, this what is was 
supposed to fix and it's ready for you to use now or whatever .. 3 

There is some benefit for doing this work. The build managers of the systems 
often end up knowing a lot more about the overall state of the system than the 
developers. Their continuous interactions with all the developers, to gather the 
latest changes of code, mean that the build managers have an up-to-date impression 
of what state the overall system is in. 

Despite this advantage, the build managers do not enjoy the work of build 
management. Although they recognise the advantage of know what's going on, it 
does not compensate for the amount of time that it takes to do the work. This 
becomes especially true when the system enters the final weeks of development and 
builds may take place two or three times a day instead of once every two days or 
once a week. Build managers also dislike doing the job because they do not find it 
as challenging as their software development work. 

Other teams at Computer Corp., and all the teams at Tool Corp. let the CM tool 
do the build. On command, the system would gather the latest code changes from 
everyone in the team and compile them. If the compilation was successful the tool 

Notes in square brackets represent references to artefacts and processes that might identify the 
company, so I have replaced them with more generic terms to maintain confidentiality 



180 

would produce a new version of the product for testing and using in further 
development efforts. Otherwise the system would notify the build manager and 
provide them with information about where the problem occurred. The build 
manager would inform the developer responsible for the build failing. 

The build managers who had worked in a manual mode and then switched to the 
CM tool all preferred the automated process. As one ex-build manager said, 

[The tool] makes it easy for the person in charge of the product to build the latest tested version 
of the product It removes the manual process of the developer saying I've finished with this, 
you can use this now. That's a pretty big advantage, I was a build manager for a part of it, 
[team name], for a couple of months. 

The tool reduced the amount of time it took to gather everything for the build. 
Also, it helped the build managers find the error that broke the build. Both of these 
activities are part of a manual build process but when automated improved the build 
managers' job. 

The Developers 

The developers also liked the automated procedure because of the guarantees it 
provided them. As one developer said, 

I come in in the morning and I [get a system update] I get the latest of everything and I 
generally don't even have to worry about it I just know its going to be there and its going to 
work fine. Then I can just go about my business, having gotten everyone else's changes 
automatically 

Developers using the CM tool enjoyed the fact that the tool gathered their latest 
changes automatically, without them having to stop working. Furthermore it gave 
them everyone else's latest changes. The developers also described two 
weaknesses with the manual methods that affected their work. First, the time taken 
to manually gather the changes invariably meant that some developers had made 
revisions to their code since the build manager visited. This caused time delays in 
testing whether their new code worked, which were especially problematic during 
the final stages of development when teams wanted feedback very quickly. 
Second, changes often need to be tested in groups, as they represent a revision to 
the functionality of the sub-system. When only some of those changes get into the 
build, there's a high probability that the build will fail because the code depends on 
the other changes being there. The CM tool had a mechanism for ensuring that all 
the related changes got into the build or stayed out of it, which was the 
responsibility of the build manager in the manual groups. It was hard for the build 
managers in the manual groups to track the dependencies between changes, but 
failure to do so usually resulted in a failed build slowing down the testing process. 

The build is one example of a case when automation benefits the build managers 
as well as the developers of the software. In this case the automated build 
generated positive reactions from the build managers because it reduced their 
workload and from developers because it supported their work. The trade-off 



181 

between the formahsation of the build versus doing the build manually was 
acceptable to all using the tool. 

Case 2: Awareness Created by the Formalism 

In a paper about ways of creating awareness of others in CSCW systems Dounsh 
and Bellotti (1992) describe an approach to collaboration they call shared feedback. 
Awareness of what others are doing is provided through feedback presented in a 
shared workspace. The CM tool provided this kind of awareness to the developers 
through the formalisms that the tool used to categorise the work of software 
development. 

When the tool starts up the developers see the main view. To visualise the main 
view imagine a typical Mac folder with the files viewed by name. Each file in that 
folder has a name, size, type, and its date of creation. The main view of the CM 
tool has the same visual arrangement with the software component name, latest 
version number, the state of that component and current owner of the file (their e-
mail handle). 

Each team shares a collection of views, which correspond to folders of sub
system components. The main view that the developer sees when she launches the 
tool is the one corresponding to the folder — or as the developers call it the 
directory — of files she is currently working on, but it's very unlikely that she'll be 
working there alone. Other developers will be changing other files — or possibly 
the same file — in that directory, and that information is available to her. 

The states that components move through were known to all the developers 
using the tool at both sites. This allowed the developers to read the information 
from the view and infer that their colleagues were working on certain components 
related to theirs, whether they were developing or testing them. Furthermore this 
view was not static. As developers changed components so their state changed in 
the life cycle and the version number was incremented by the system. 

The CM tool allowed developers to update their main view at any time they 
wanted to, a process they called reconfiguring the view. I was alerted to the 
awareness created by the system when the developers talked about seeing things in 
the system. Two developers described their use of the shared feedback the system 
provided quite explicitly during interviews, 

In your own personal [sub-systems] you can see what the state of the parts of the project you 
are working on are because you get everyone's latest versions that others have checked in 
When you reconfigure your [view of the sub-system] you see what versions you get, the dates 
on them, who owned them, who [changed] them, what changes they include. 

Sometimes I can tell from just reconfiguring my stuff and I can look and see what, who owns 
all the versions that I just got in. I can see that certain things have been changing 

The main view helped to make developers aware of the work going on around 
them. However, they also used the information to direct their own efforts. One 



182 

thing that the developers did not enjoy doing was working on the same piece of 
code at the same time. Merging the two versions made back together turns out to be 
very difficult. However, the main view easily let developers see whether anyone 
else was working on the component that they wanted to change. As one developer 
put it, 

I'll look and see and if someone has it checked out, the module I want to modify and mine's not 
too difficult I did this last night, I sent them mail and asked can you do this for me in your 
version 

The awareness provided by the main view comes from the tool's formalism. It 
would be impossible to display all the details of others work in a view like this, and 
for most of the developers it would not be useful. Often times they want a 
peripheral awareness of what others are working on, and when they need more they 
establish contact with their colleagues. The formalism provides them with a useful 
summary which often meets their needs and when it doesn't gives them a pointer as 
to who to contact. 

Case 3: Tracking Problems 

The CM tool that Tool Corp. and Computer Corp. used had an integrated problem 
reporting facility. Problems also had a life cycle starting from when they were 
entered into the system by managers or customer support. Every few days a team 
of people that consisted of the project manager, a tester and some senior 
developers, would meet and prioritise the problems in the system and assign them 
to developers. Once a developer has been assigned a problem the tool notifies the 
developer who has been assigned the problem. 

Although the problem reporting facility sounds restrictive, the developers relied 
on it to tell them what they were supposed to be working on. The problem 
reporting facility thus became a scheduling system of sorts, 

It's nice, you come in in the morning and get a mail message, these are all the problems 
assigned to you, just look at all of them No-one actually has to come to my office and say 
this is a bug, it has to be worked on, I just know because it's automatically generated and sent 
to me. So I look at that to figure out all the things I have to do 

At Tool Corp. the problem reporting facility was not free of some of the challenges 
of making workflow technologies work. Specifically the facility requires that all 
changes to the code must be associated — via hypertext links — to problems in the 
facility. This created a problem because the people who met to assign problems to 
developers could not meet frequently enough to prevent the developers from 
running out of problems and not being able to get any more work done until the 
next meeting. 

The problem was solved when the managers decided to let the developers have 
the ability to create and assign themselves problems. In terms of the system this 
meant assigning the developers a supervisor role in the facility. This work around 



183 

let the developers carry on using the system. Moreover, it had the unintended 

payoff of enhancing their use the problem reporting facility as a scheduling tool for 
organising their own work. 

I like to use the tool to organize my work. I use the [problem reporting] facility I create 
tasks for just about everything I do. 

With the ability to assign themselves problems, the developers could make notes to 
themselves about problems to be fixed in the future while working on other — 
possibly related — problems. Also the supervisor role now let the developers 
assign their own priorities to problems and make their own estimates about how 
long problems would take to complete. 

So it keeps track of all the problems which I have assigned to me and I can put priorities on 
them, so I know which ones I'm going to do first, also it has a field for estimated duration, so I 
can get an idea how long it will take me to do everything, and I can budget my time. 

The problem reporting facility was used by developers routinely in their work. Its 
primary purpose was to give developers up-to-date information about the work 
assignments. This information was provided daily to them in the form of an e-mail 
message generated by the tool. However, at Tool Corp. the revised role 
assignment that developers took encouraged them into using the problem reporting 
facility as a place to put their notes about future work and a comprehensive 
scheduling system. 

Discussion 

These three cases are occasions when the workflow system — the configuration 
management tool — supported the everyday work of the developers. It is important 
to stress that this is not a recommendation that workflow technologies are 
universally applicable. Specifically, I have written about the limitations and failings 
of the same tool in other places (Grinter, 1995; Grinter, 1996). More generally, 
others have written about the failure of other tools to provide support for software 
development work (Button and Sharrock, 1994). However, in the three cases I 
describe the tool demonstrably supported the work of the developers and provided 
them with new opportunities to organise their actions in a changing environment. 
This section offers four reasons why the tool worked on those occasions: (1) 
understanding and accepting a model of work, (2) providing understandable and 
useful representations, (3) automating the "right" work, and (4) having a 
supporting company. 

Understanding and Accepting the Model of Work 

Like any workflow technology, the CM tool had a model of work embedded in the 
system. The developers had to understand and accept that model to really use the 



184 

tool on these occasions. This became very explicit at Computer Corp. where 
developers were beginning to adopt the tool in their work. 

At Computer Corp. I took part in a class where developers who were new to 
using the tool were learning about how the tool modelled the work of software 
development. During the adoption phase of the tool developers at Computer Corp. 
found that their old models of software development — usually based on other 
tools that they had used for configuration management and other professional 
sources — clashed with the new tool. Computer Corp. designed the class to help 
ease the adoption process by explaining the differences and similarities between the 
new tool and the old ways of work. It was an attempt to get the developers to 
understand and accept the model of work. 

At both companies the developers who used the tool routinely both understood 
and accepted the model of their work. They understood the model well enough to 
know how the tool functioned and how it fit into their work. The developers also 
believed in the model enough to talk about their usage in positive ways as described 
in the three cases. For a workflow system to work, for any groupware system to 
work, both stages must occur. 

Perhaps one reason why developers at both sites found the model acceptable 
enough to use the system stemmed from the fact that the developers had a good user 
model. The developers at Tool Corp. were both designers and users, perhaps the 
ultimate participatory design experience. The developers at Tool Corp. could use 
their own experiences of development to build a system that worked for them and 
their counterparts at Computer Corp.4 

Understandable and Useful Representations 

Developers used the main view and problem reporting facility in part because the 
tool provided an understandable and useful representation of the underlying model 
of work. By representation, I mean: the interface, the presentation of the content 
inside the windows, and way that the system updates that content. The main view 
relies on everyone understanding what they are seeing. As one developer put it, 

In [the tool] the system sets up everything in a standard way It's easy to find out what is 
going on. There's rhyme and reason to it all 

This representation is maintained throughout the tool. Even when the developer 
changes their main view the new view they arrive at contains the same types of 

Although the developers at Tool Corp. contributed their own ideas about how development happens to 
the design of the system, other requirements still shape the development effort The problem 
reporting facility, for example, contained a model of problem assignment that seems more 
appropriate for hierarchically organised software development In my time at Tool Corp I 
observed potential customers being attracted to this hierarchical model 



185 

information and it still means the same thing.5 To be used as a mechanism for 
peripheral awareness the developers had to trust the system to be telling them the 
same thing where ever they were in it. 
However the main view was also useful because of its ability to provide peripheral 
awareness to the developers about the others' actions. The formalism provided that 
shared feedback because it reduced the details of peoples' work to a brief, 
consistent, and above all useful form. In the absence of the formalism it would 
have been very hard for the developers to find out what their colleagues were 
working on in such a concise way. 

The use of the problem reporting facility also relied on it presenting information 
in an understandable and useful way. Beyond that the system was useful enough 
so that when they were given the opportunity to utilise more parts of it they did. 
When the developers had control over the scheduling functions of the problem 
reporting system they found it even more useful. 

Automating The "Right" Work 

The tool automated some aspects of the software development work almost 
completely. The build process was an example of this. It was also an example of 
picking the "right" work to automate because everyone supported the automation 
and some people benefited from it. 

At both sites the build process was of concern to four distinct groups: 
developers, build managers, testers, and managers. The build managers supported 
the automation effort as a way of reducing the amount of time they spent doing that 
work. The testers and developers benefited from the automated build by being 
relieved of their part in the process. Moreover they enjoyed receiving up-to-date 
code from which to begin their own testing and development efforts with minimal 
effort on their part. 

The managers at Tool Corp. and Computer Corp. were invested in getting new 
versions of the software released to the market as quickly as possible. They saw 
the automation of the build process as part of streamlining the development cycle 
and supported it. 

A Supporting Company 

At both Tool Corp. and Computer Corp. developers are viewed by managers as 
professional staff. This was visible in a number of ways. First, I did not see 
anyone keeping time records. At both companies it was assumed that the 
developers were putting in the required time unless they told someone otherwise. 

This is not an argument for making all interfaces consistent and arguments suggest that it can be 
problematic (Grudin, 1989) Instead the observation is similar to (Sommerville, et al , 1993) 
observation about how air traffic controllers look at the screens of their colleagues to understand 
what is about to happen in their own domain In this case the screens are all shared inside the 
development environment 



186 

Second, the developers were treated as professionals by their management. Finally, 
and most significantly, developers' opinions were taken seriously by their 
managers. 

This kind of culture made it relatively easy for the developers at Tool Corp. to 
discuss their initial problems with the problem reporting facility and get permission 
from their management to simply change the role of developer into the role of 
supervisor That change was simple to implement technologically, but in 
environments where users do not have that kind of control or ability to change their 
circumstances, the change is impossible to make. 

Workflow system builders can not pick the companies that they sell their 
systems too. However, we can assume that companies who buy these kinds of 
systems would like them to function as intended, and potentially increase the 
efficiency of the work done. If the users can not use them or end up spending time 
working around the system to accomplish their work then these efficiencies will be 
much harder to attain. 

Conclusions 

Workflow technologies have generated an important series of discussions within 
the CSCW community. While these debates are grounded in theories of work, 
there have been few empirical studies of workflow systems in use. Those studies 
that exist often point to the difficulties of using these systems. This paper has 
reported on three occasions when .the work of software development was supported 
by a workflow system. 

In this paper I have outlined four reasons why this workflow system was used. 
They are: (1) understanding and accepting a model of work, (2) providing 
understandable and useful representations, (3) automating the "right" work, and (4) 
having a supporting company. These reasons highlight the context-dependent 
aspects of the use of workflow technologies in particular settings. 

These empirical results provide a basis for grounding otherwise abstract and 
theoretical discussions about workflow technologies. In addition to talking about 
the theoretical hurdles to implementing workflow it is time to find out when the 
confluence of these positive forces creates opportunities to implement workflow 
rather than watching it happen badly without us. 

Acknowledgements 

I would like to thank the Engineering and Science Research Council for their financial support 
during the time I conducted these field studies. Many people have commented on this paper and I 
would like to thank Jim Whitehead, Jim Herbsleb, Neil Harrison, Jonathan Grudin, Paul Dourish, 
Peter Danielsen, Victoria Bellotti, Al Barshefsky and the anonymous reviewers for their 
suggestions This work was inspired by Gunn, Megson, and Wark 



187 

References 

Abbott, K. and Sarin, S. (1994): "Experiences with Workflow Management: Issues for the Next 
Generation", in Furuta, R and C Neuwirth (eds ) Proceedings of ACM Conference on 

Computer Supported Cooperative Work CSCW '94 , Chapel Hill, NC, October 22-26, 1994, 

ACM Press, pp 113-120. 

Agostini, A , De Michehs, G , Grasso, M A. and Patnarca, S. (1994) "Re-engineering a business 
process with an innovative workflow management system, a case study", Collaborative 

Computing, vol 1, 1994, pp. 163-190. 

Bernard, H R (1988) Research Methods in Cultural Anthropology, Sage, Newbury Park, 
California. 

Bowers, J. (1992) "The Politics of Formalism", in Lea, M (eds.). Contexts of Computer-

Mediated Communication, Harvester Wheatsheaf, New York, 1992, pp. 232-261. 

Bowers, J., Button, G and Sharrock, W. (1995). "Workflow from Within and Without 
Technology and Cooperative Work on the Print Industry Shopfloor", in Marmolin, H , Y. 
Sunblad and K Schmidt (eds.): Proceedings of European Conference on Computer-Supported 

Cooperative Work , Stockholm, Sweden, 10-14 September, 1995, Kluwer Academic 
Publishers Dordrecht, Netherlands, pp 51-66. 

Bowers, J (1996) "PANEL From Retrospective to Prospective: The Next Research Agenda for 
CSCW", in Ackerman, M S (eds.): Proceedings of ACM Conference on Computer Supported 

Cooperative Work CSCW '96 , Cambridge, MA, ACM Press, pp 440 

Brooks Jr., F.P. (1995). The Mythical Man-Month Essays on Software Engineering, Addison-
Wesley Publishing Company Inc., Reading, Massachusetts. 

Button, G and Harper, R H.R. (1992). "Taking Organisation Into Accounts", in Button, G (ed ): 
Technology in Working Order, Routledge Press, United Kingdom, 1992, pp. 98-107 

Button, G. and Sharrock, W (1994): "Occasioned Practices in the Work of Software Engineers", in 

Goguen, J. and M Jirotka (eds )• Requirements Engineering, Academic Press Ltd , London, 

United Kingdom, 1994, pp. 217-240. 

CSCW (1995): "Commentary on Suchman-Winograd Debate", Computer Supported Cooperative 

Work An International Journal, vol. 3, no. 1, 1995, pp. 29-95 

Dounsh, P and Bellotti, V. (1992): "Awareness and Coordination in Shared Workspaces", in 

Turner, J and R. Kraut (eds) Proceedings of ACM CSCW'92 Conference on Computer-

Supported Cooperative Work , Toronto, Canada , October 31 - November 4, 1992 , ACM 

Press, pp 107-114 

Dounsh, P , Holmes, J., MacLean, A., Marqvardsen, P. and Zbyslaw, A (1996) "Freeflow: 

Mediating Between Representation and Action in Workflow Systems", in Ackerman, M. S. 

(eds ). Proceedings of ACM Conference on Computer Supported Cooperative Work CSCW 

'96, Cambridge, MA, November 16-20, 1996, New York, N.Y ACM Press, pp. 190-198. 

Ellis, C A and Wainer, J. (1994). "Goal-based Models of Collaboration", Collaborative 

Computing, vol. 1, no 1, 1994, pp 61-86. 

Glaser, B G and Strauss, A L (1967) The Discovery of Grounded Theory Strategies for 

Qualitative Research, Aldine de Gruyter, Hawthorne, New York. 

Grinter, R (1995) "Using a Configuration Management Tool to Coordinate Software 
Development", in Comstock, N and C. Ellis (eds.) Proceedings of ACM Conference on 
Organizational Computing Systems , Milpitas, CA, August 13-16, 1995, ACM Press, pp 
168-177 

<e 



188 

Gnnter, R.E (1996)' "Supporting Articulation Work Using Configuration Management 
Systems", Computer Supported Cooperative Work The Journal of Collaborative Computing, 
vol 5, no. 4, 1996, pp 447-465 

Grudm, J (1989). "The Case Against User Interface Consistency", Communications of the ACM, 
vol. 32, no 10, 1989, pp 1164-1173 

Medina-Mora, R, Winograd, T., Flores, R. and Flores, F. (1992). "The Action Workflow 
Approach to Workflow Management Technology", in Turner, J. and R Kraut (eds.)' 
Proceedings of Conference on Computer-Supported Cooperative Work CSCW '92 , Toronto, 
Canada, October 31-November 4, 1992, ACM Press, pp. 281 -288. 

Rochkind, M J. (1975) "The Source Code Control System", in (eds.) Proceedings of 1st National 
Conference on Software Engineering , Washington, D C, September 11-12, 1975, IEEE 
Computer Society, pp. 37-43. 

Sommerville, I., Rodden, T., Sawyer, P., Bentley, R. and Twidale, M (1993)- "Integrating 
Ethnography into the Requirements Engineering Process", in Finkelstein, A and S Fickas 
(eds.) Proceedings of Requirements Engineering 1993 , San Diego, California. 4-6 January, 
pp 165-173. 

Strauss, A (1987) Qualitative Analysis for Social Scientists, Cambridge University Press, New 
York, New York. 

Strauss, A andCorbin, J (1990). Basics of Qualitative Research. Grounded Theory Procedures and 
Techniques, Sage Publications, Inc., Newbury Park, California 

Suchman, L. (1995) "Speech Acts and Voices- A Response to Winograd et ai", Computer 
Supported Cooperative, Work. An International Journal, vol. 3, no. 1, 1995, pp. 85-95 

Tichy, W. (1985). "RCS A system for Version Control", Software Practice and Experience, vol 
15, no. 7, 1985, pp. 637-654. 

% 


