
Doing Time: Putting Qualitative Reasoning

on Firmer Ground zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Brian C. Williams zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
MIT Artificial Intelligence Laboratory

545 Technology Square

Gambradge, MA 02139

(wzlliams%mit-ozQmit-mc.arpa) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Abstract (e.g., digital, quantitative, qualitative or symbolic abstrac-

tions). In addition, it provides a framework in which to explore Recent work in qualitative reasoning has focused on predict-

ing the dynamic behavior of continuous physical systems. Signif-

icant headway has been made in identifying the principles nec-

essary to predict this class of behavior. However, the predictive

inference engines based on these principles are limited in their

ability to reason about time.

such tasks as prediction, explanation, diagnosis[4], and design.

I begin with a summary of current qualitative reasoning sys-

terns and their limitations. Based on these limitations, a more

robust language for describing behavior over time is presented.

Next, an inference mechanism, referred to as a Temporal Con-

straint Propagator (TCP), is introduced ; TCP predicts the be-

havior of the desired class of systems in terms of the behavioral

language. Finally, the power of this approach is demonstrated

with an example taken from qualitative reasoning.

2 Qualitative Reasoning In A Nutshell

Given a description of a physical system and its initial conditions,

qualitative analysis typically involves 1) describing the temporal

behavior of the system’s state variables, in terms of a particular

This paper presents a general approach to behavioral pre-

diction which overcomes many of these limitations. Generality

results from a clean separation between principles relating to

time, continuity, and qualitative representations. The resulting

inference mechanism, based on propagation of constraints, is ap-

plicable to a wide class of physical systems exhibiting discrete

or continuous behavior, and can be used with a variety of rep-

resentations (e.g., digital, quantitative, qualitative or symbolic

abstractions). In addition, it provides a framework in which to

explore a broad range of tasks including prediction, explanation,

diagnosis, and design.

1 Introduction

qualitative representation and 2) explaining how this behavior

came about.

The description

The physical world around us is continually changing. Thus in or-

der for an agent to make intelligent decisions about his interaction

with the surrounding environment he needs to be able to predict

the effects of his actions and of changes he observes. Recent work

in qualitative reasoning[9,10,6,5,3] has focused on predicting the

dynamic behavior of continuous physical systems (e.g., predicting

fluid flow, pressure stability or mechanical oscillations). Signif-

icant headway has been made in identifying the principles nec-

essary to predict this class of behavior. However, the predictive

inference mechanisms based on these principles exhibit a number

of severe limitations, such as 1) forcing one to make unnecessary

temporal distinctions, 2) overrestricting the language used for

describing temporal behavior, 3) performing weak temporal in-

ference, 4) constructing incomplete justifications, and 5) making

irrelevant domain restrictions.

of a physical system consists of a set of state

variables (e.g., force and acceleration) and a system of equations,

parameterized by time, which describe the interactions between

these variables (e.g., f(t) = ma(t)). A qualitative representation

divides the range of values a quantity can take into a set of regions

of interest (e.g., positive, negative and zero).

representation selected depends on properties of

the goals of the analysis. The qualitative value

then the region it is in.

The particular

the domain and

of a quantity is

The behavior of the system can be viewed in terms of a qual-

itative state diagram, where each state describes the qualitative

value of every state variable in the system.’ The behavior of the

system over time can be viewed as a particular path through this

state diagram. Each state along this path represents an interval

of time over which the system’s state variables maintain their

values. The duration of this interval is dictated by principles

involving continuity and rates of change. [9]

This paper presents a general approach to behavior predic-

tion which overcomes many of these limitation. Generality results

from a clean separation among principles relating to time, con-

tinuity, and qualitative representations. The resulting inference

mechanism, based on propagation of constraints[8], is applicable

to a wide class of physical systems exhibiting discrete or contin-

uous behavior, and can be used with a variety of representations

This work was supported in part by an Analog Devices Fellowship, and

in part by the Advanced Research Projects Agency of the Department of

Defense under Office of Naval Research contract N00014-80-C-0505.

AAAI-86 National Conference on Artificial Intelligence

We say that the system changes state whenever any state

variable changes its qualitative value. The values in the next

state are then determined by 1) identifying those quantities which

cannot change value (e.g., if Q is positive in a particular state

and its derivative is positive or zero then it will remain positive in

the next state), and 2) propagating the effects of those quantities

that are known to change. The qualitative reasoning system also

keeps track of the reason for every deduction in 1) or Z), using

the record, among other things, to generate explanations (e.g.,

“an increase in force causes the mass to accelerate”).

‘The process of constructing a qualitative state diagram is called

Envisionment [3].

Qualitative Reasoning and Diagnosis: AUTOMATED REASONING / 1 OS

From: AAAI-86 Proceedings. Copyright ©1986, AAAI (www.aaai.org). All rights reserved.

3 Limitations of the Existing Approach “Fred was born in 1910 and raised in Montana, went to school

in Massachusetts from 1928 to 1936, and then spent the remain-

der of his life’in Alaska, where he died in 1980.” In this example

The above approach has been adequate for describing the behav-

ior of a number of simple systems such as pressure regulators,

harmonic oscillators, RC networks and rudimentary plumbing.

However, the approach has a number of limitations which make

“uniform behavior” means Fred’s state of residence

In general, what we mean by “uniform behavior”

is unchanged.

determined 1s

it difficult to use for analyzing

plex behaviors. A few of these

cial difficulties.

large systems and describing com-

limitations will illustrate the cru-

by particular properties of interest based on our analysis goals.

For example, we may be interested in the interval over which a

state variable maintains a particular value, is bounded within a

certain region, or is sinusoidal. One limitation arises from the fact that a state-based ap-

preach imposes a total ordering on events. That is in order to

describe a system’s behavior as a sequence of states, we must

specify the value of every variable at every point in time. The re-

sult is a total ordering on events. This need to specify the value

of every variable in turn forces the inference engine to acquire

and manipulate a significant number of irrelevant relations. For

example, suppose we are interested in studying the behavior of

two bears, a panda bear and a polar bear living oceans apart.

Specifically we are interested in how a bear’s sleep cycle (i.e.,

when they wake and sleep) affects its eating habits. In a state-

based approach we are required to determine the order in which

the bears fall asleep. However, this ordering doesn’t affect either

bear’s eating habits since they will never interact. If instead we

were studying one hundred bears living in separate remote areas

of the globe then the bedtime of every bear would have to be

ordered resulting in 10,000 irrelevent orderings! If a particular

The description of a state variable’s behavior over time is

referred to as a value history, or simply history. A history is

a contiguous, non-overlapping sequence of interval/value pairs,

called episodes. The time interval associated with each episode,

e, is referred to as the episode’s temporal extent, and is bounded

by the end points t-(e) and t+(e). In the above example, the

value history for “Fred’s state of residence” is composed of three

episodes, the first being “Montana from 1910 to 1928.” We say

that histories use a qualitative representation for time because

they break the time line into a set of regions of interest. In this

case a region of interest is an interval of uniform behavior. This

model of behavior is very general, permitting a variety of dis-

Crete and continuous temporal

further in Sections 10 and 11.

representations. This is discussed

To avoid the limitations noted

fail to satisfy this property. For example, instead of saying “Fred

in Section 3, a history must

was in Montana from 1910 to 1928,” we could say, “Fred was

avoid introducing distinctions that are irrelevant

in Montana during 1910,1911, 1912, . . . 1928.” In this case

to the analysis.

the boundaries between the intervening years are irrelevant and

There are many ways of describing a particular behavior which

obscure the description. The case becomes absurd if we enumer-

ate the same description in terms of days, minutes, or seconds.

Nevertheless, incorporating irrelevant temporal distinctions is a

ordering cannot be determined (as it is often the case in quali-

tative reasoning), we must split cases, creating an explosion in

A second limitation is that the lack of an explicit representa-

tion for time restricts the class of analyzable behaviors. Typically

the number of interpretations.

we only specify an initial state of the system. Without an explicit

representation for time, there is no easy way to describe inputs

Even in the above example the

that vary (e.g.,

number of interpretations is clearly unbearable.

an external clock in a digital circuit). Further-

more, the lack of an explicit representation of temporal relations

prevents adequate reasoning about durations, delays and feed-

The additional relations also obscure the resulting behaviors

back. Finally, it is difficult to change the model for time or the

temporal relations allowed without changing the underlying qual-

and dependencies, minimizing their utility for explanation, diag-

itative reasoning mechanism. A solution to the last two problems

is the focus of Sections 10 and 11.

nosis or design. Filtering out irrelevant information at the end

of analysis is difficult and computationally expensive.

real problem encountered in most existing qualitative reasoning

systems.

To achieve the desired descriptions we want every episode in

a history to encompass the largest contiguous interval of time

during which the state variable maintains a single qualitative

value. More precisely, we say that an episode, el, is maximal if

there exists no episode, e2, with the same value such that el’s

temporal extent is a proper sub-interval of e2’s extent. We then

say that a history is concise if every episode is maximal. Thus

every point in a concise history where two episodes meet denotes

a change in value. According to this definition, the example of

Fred’s residence given at the beginning of this section is a concise

history.

Representing behavior in terms of concise histories makes ex-

plicit all events of interest (i.e., the changes in values), while

suppressing “uninteresting” details. These events can be used in

expressing temporal relationships. The set of relevant relations

between events provides the second component of a behavioral

description. Instead of representing all relations, as in a total or-

dering, we are only interested in relations between events whose

interaction can result in the change of other quantities. The in-

teractions of interest are defined by the system’s equations, with

each equation typically specifying a single, local interaction. We

will see that those interactions which affect the system’s behav-

ior can be ident,ified during the analysis process.2 Given this

In the next section we will see that a history-based approach

allows us to separate out the specification of the behavior of each

quantity from the description of the interrelationship between

these behaviors. It is then necessary to specify only the rele-

vant interactions between behaviors. In addition, relations have

become explicit, making it possible for other reasoning mecha-

nisms to use them. This is crucial since it allows us to change

our underlying model for time without modifying the predictive

inference mechanism.

4 Representing Behavior Over Time

To avoid the above limitations we describe a system’s behavior

in terms of 1) the behavior of each state variable over time, and

2) the relevant temporal relations between events. For each vari-

able, we are typically interested in intervals of uniform behavior

and points at which these behaviors change. For example, we

might describe a person’s life history in terms of where he lives:

‘This is one solution to what Forbus refers to as the intersec-

tion/interaction problem: “Which intersections of histories actually corre-

spond to interactions between the objects?“ [5].

106 / SCIENCE

representation, the problem remaining is to efficiently generate for propagation. This differs from traditional constraint propaga-

behavioral descriptions of physical systems.

5 Propagation of Constraints

Most systems performing some type of reasoning about physical

systems have been based on propagation of constraints[8]. These

include a wide variety of applications such as digital, quantita-

tive and qualitative analysis, explanation, synthesis, diagnosis,

and troubleshooting. One reason for the pervasiveness of this

approach is that constraints naturally reflect the structure of the

physical world around us. Because of its generality for physical

problem solving, constraint propagation provides a framework in

which to reason about temporal behavior. The remainder of this

paper incorporates time into constraint propagation, but does

so in a way that avoids the limitations described in Section 3.

We will see that concise histories play a key role in making this

happen. The next section presents a brief overview of traditional

constraint propagation.

6 The Basic Constraint Propagator

Constraint propagation operates on cells, values and constraints.

A cell contains a single value, while a constraint stipulates a con-

dition that a set of cells’ values must satisfy. Cells and constraints

can be used to model state variables and equations respectively

(e.g., f = ma, is represented as a constraint among the three cells

f, m, and u). Values can be anything including real numbers,

ranges, logic levels, signs or symbolic quantities.

A constraint propagator performs two functions. First, given

a set of initial values, constraint propagation tries to assign each

cell a value that satisfies the constraints. Second, it tries to recog-

nize inconsistencies between constraints and values, and identify

the cause of this inconsistency.

The basic inference step during propagation is to select a

constraint that determines a value for a previously unknown cell.

For example, if the propagator has discovered values f = 12

and a = 6, then it can use the constraint f = ma to calculate

the value m = 2. In addition, the propagator records m’s de-

pendency on f, a and the constraint f = ma (typically using a

truth maintenance system (TMS)). The newly recorded value re-

sulting from this inference may cause other constraints to trigger

and more values to be deduced. Thus, constraints may be viewed

as a set of conduits along which values can be propagated. The

dependencies trace out a particular path through the constraints

that the inputs have taken.

Constraints are very general. A constraint is implemented as

a collection of partial functions or &es, each involving a subset

of the cells mentioned in the constraint. For example, f = mu

is implemented as three functions: f (m, u) = mu, m(f, a) = f/u

and a(f,m) = f/m. A function is applied whenever all of its

inputs are known. Since the function may be partial, it may not

deduce an output value for every set of inputs.

7 Temporal Constraint Propagation

Standard constraint propagation is based on little more than

function application. A temporal constraint propagator (TCP)

adds to this knowledge about time, delay and feedback, using

the concise history representation described in Section 4. Sepa-

rating this knowledge from that specific to qualitative reasoning

about continuous systems extends the propagator’s range of ap-

plicability, including for example both quantitative and digital

tion in that the objects being propagated are episodes (i,e., values

over time intervals), rather than values. Section 8 describes how

recording episodes in terms of histories aids in determining the

sets of episodes on which each rule should run. Section 9 de-

scribes how newly deduced episodes are checked for consistency

and then incorporated into a concise history. To manage and

reason about temporal relations, TCP uses a facility referred to

as a time boz. The job of the time box is to answer questions

like: “Which of the following episodes end first?” The expressive

power of the time box determines the way in which delays, du-

rations and temporal relations can be specified, and is discussed

in Sections 10 and 11.

In TCP, values are concise histories, and rules are functions

parameterized by time (e.g., f (m, a(t)) = ma(t)). New episodes

are deduced by applying rules to known episodes. That is, given

a rule and an episode for each of the rule’s inputs, a new episode

is deduced in two parts. First, the extent of the new episode is

the intersection of each input episode’s extent. If this intersection

is empty then no new episode is deduced. Second, the value of

the new episode is deduced by applying the rule to the values of

the episodes corresponding to each of the inputs. For example,

given A = 8 over an interval (30,100) and B = 3 over (50,140),

then the rule C = A - B is used to deduce C = 5 over (50,100).

If the rule is a partial function then it may not return a value; in

this case no episode is deduced.

Next, the new episode is recorded in the cell for the rule’s

result (e.g., the cell for C gets the value 5 with extent (50,100)).

We indicate to the time box that the new episode’s extent is the

intersection of each supporting episode’s extent. This informa-

tion will be used during further propagation to determine the

extent of episodes which depend on this new episode. Finally,

the propagator uses a TMS to record the new episode’s depen-

dence on 1) the applied function, 2) the input episodes, and 3)

the deduction that the new episode’s extent is non-empty. This

dependency information can be used for a variety of tasks, such as

explanation, deduction caching, conjectural reasoning, diagnosis

and guiding search.

Often a time lag is involved when quantities interact. To

model this we can associate a delay with each rule. In the analysis

of many systems, this delay is considered infinitesimal; changes

propagate almost (but not quite) instantaneously. Infinitesimal

delay, along with feedback, is essential for modeling such proper-

ties as stability, inertia, memory and causality, and is discussed

in Section 11.

8 Histories

To produce the desired behavioral descriptions TCP uses the de-

duced episodes to construct a set of value histories. Recording

sets of episodes as histories has a number of computational ad-

vantages. Wh en applying a function to the episodes of a set

of input cells, the constraint propagator must determine which

combination of episodes and rules will result in new episodes. In

a moment we will see that value histories allow us to accomplish

this without having to consider the cross-product between the

episodes of every input cell.

In analyzing a system’s behavior we believe that our models

are (or should be) internally consistent. Thus we are particularly

interested in detecting any inconsistencies. When TCP records

domains.

The next few sections describe the basic components of TCP.

The remainder of this section describes the basic inference step

a new episode it must be checked for consistency with existing

episodes. A cell must be single-valued at any point in time; thus

an inconsistency arises if two episodes with differing values over-

Qualitative Reasoning and Diagnosis: AUTOMATED REASONING / 107

lap in extent. Histories allow this test to be performed without

having to consider every episode already recorded for the cell.

This is discussed in Section 9.

For the moment we assume that every rule is a complete func-

tion (i.e., deduces a value for every set of inputs) and that each

cell has at most one rule mentioning it as an output cell. To per-

form propagation, each rule R “walks” along the histories of its

input cells from start to end, deducing new episodes and adding

them to the end of the output cell’s history. Each propagation

step consists of 1) applying R to a set of input episodes E, 2)

recording the new result at the end of the output cell’s value

history, 3) determining the set C of one or‘more episodes in E

which end first, and 4) constructing the next set of episodes to

be propagated. This is accomplished by modifying E so that ev-

ery episode which appears in C is replaced by its successor. One

episode being the successor of another in a history depends on the

two episodes being adjacent. This dependency is also recorded.

The propagation step is repeated on successive sets of episodes

for R, moving monotonically forward along contiguous episodes

of each of the input histories until the end of one of the input

histories is reached. If that input history is later extended, then

propagation using R continues.

For example, given cells: A

A - B, the following shows how

history for C from A and B:

B, and C and rule Rl: C=

Rl is used to deduce the value

cl 2 I3 I3 12 I >t

A[6 16 1 >t

B 1 3] 4 I' 6 >t

9 Making Histories Concise

It is often the case that a rule deduces the same value for two

successive episodes in its output history; thus, the sequence of

episodes deduced is not necessarily concise. Before being propa-

gated the sequence of deduced episodes is “summarized” by ac-

cumulating each contiguous sequence of episodes with the same

value into a maximal episode. It is this concise history which is

then used for further propagation.

To understand how the concise history of values is constructed

we need to add one more level of detail to the picture above.

Value histories are made concise by constructing them in a two

step process. The product of a rule invocation is actually a ~US-

tification episode and is added to the justification history for the

quantity. A more precise picture is:

>t
where Dl, D2 and D3 are dependencies left behind by previous

invocations of Rl. (Note: the justification history for a quan-

tity is shown directly under the quantity’s value history, and is

labeled by the rule used to construct it.)

A justification episode contains the value computed along

with the input episodes used in computing that value. As sug-

gested above the concise history for C is constructed by sum-

marizing contiguous justification episodes with the same value.

Hence, the first two justification episodes for C are summarized

into the maximal value episode shown.

So in fact the whole process is one in which rules walk along

value histories, producing as output new justification histories,

which are then summarized into concise value histories.

Justification episodes allow us to maintain a complete de-

pendency record of the computation, while still maintaining the

property that every value history is concise. To avoid irrelevant

distinctions in the behavioral description, it is important that

justification histories be concise as well. This property is satis-

fied since each justification episode is concise with respect to the

set of dependencies.

Justification histories are an important component of a sys-

tem’s behavioral description. For tasks like explanation and di-

agnosis, knowing why a quantity has a specific value is at least

as important as knowing what the value is. This is one of the

important ways in which TCP differs from traditional simulators.

Traditional simulators tell you what the values of each quantity

are but not how they came about.

In addition to constructing the justification histories, it is

important to record the dependence of each maximal episode

on the justification episodes used to construct it; that is, both

that the justification episodes have the same value and that their

extents are adjacent or overlapping.

Having the propagator operate directly in terms of concise

histories is essential. Suppose the sequence of deduced episodes

were propagated without summarization. In this case, each suc-

cessive episode with the same value will be propagated forward

separately, rather than propagating forward a single maximal

episode which encompasses them. In Section 11 we see that, in

the worst case, feedback could cause an infinite number of con-

secutive episodes with the same value to be created. In addition,

this propagation will introduce a number of irrelevant tempo-

ral distinctions into the predicted behavior. These result from

the fact that each propagation of a set of non-maximal episodes

requires an ordering between their ends. If the propagator can-

not infer the required ordering, then it must either halt without

predicting the rest of the behavior, or split cases on each of the

orderings possible, as we saw in section 3. The use of maximal

108 / SCIENCE

episodes solves this problem.

Earlier we assumed that a cell is used as an output cell of at

most one rule. In general several rules may deduce values for the

same cell. Thus for a particular cell we must 1) record a justifi-

cation history for every rule which uses it as an output, and 2)

record the dependence of the value history on each of its justi-

fication histories. In addition, we must also make sure that the

values deduced in the different justification histories are consis-

tent. To accomplish this we construct a procedure which walks

forward along the episodes of each justification history, construct-

ing the concise value history by creating successive maximal value

episodes and associating justification episodes with each value

episode. If a justification episode, je, has a value different from

its immediate predecessor, then a maximal episode, we, with this

value is added to the value history such that t-(ve) is constrained

to be equal to t-(je). If ve already exists, then the function checks

that ue’s value and t-(ve) are in agreement with je.

Earlier we also assumed that each function is complete. If a

function is partial then it could produce gaps in its justification

history where a behavior cannot be predicted. During the extent

of this gap the same value may be maintained, or may change

several times. Thus, before incorporating into the value history

any justification episodes following a gap, we must make sure

that 1) the extent of the gap is covered by a combination of

episodes from other justification histories for that cell, and 2)

these episodes are incorporated into the value history. If the

episodes on either side of a gap have different values, then the

maximal episode containing the justification episode immediately

preceding the gap must end somewhere within the gap.

Consider the example consisting of three cells: A,B and C,

and the constraint: C = A OR B. This constraint is modeled

with three rules, each being a partial function:

RI: IfA= 1 thenC= 1

R2: If B = 1 then C = 1

R3: If A = 0 and B = 0 then C = 0

The following shows the values and justification histories deduced

for C, given inputs for A and B. Note that the justification

histories for Rl, R2 and R3 overlap in places, each contains gaps,

and together they cover the two value episodes for C:

C 1 0 ,t

Rl 1 I

R2 1 I
A

R3 0

A

Dl D2 D3

A 1 1 0 \

\

I+

B 1 0 1 0 1st

To review briefly, in general a constraint propagator carries

out four basic operations: 1) select a constraint and set of values,

2) apply the constraint to deduce a new value, 3) record the new

value, and 4) check consistency. Section 8 discussed selecting

constraints, Section 7 discussed applying constraints, and Section

9 discussed recording values and checking consistency. Note also

that the overall goal of a constraint propagator is to tell us what

will happen (i.e., compute values), why it will happen (i.e., record

justifications) and to spot inconsistencies.

10 The Time Box

Whenever TCP has a question about the relationship between

the extents of different episodes it consults the time box. Sepa-

rating inferences about time from behavioral prediction produces

a system which is more easily extensible and conceptually clear.

The demands placed by constraint propagation on the time

box can be characterized in terms of 1) the types of questions

asked, 2) the temporal information available, and 3) the inference

necessary to answer these questions.

TCP asks questions about temporal relations when apply-

ing a constraint, or when incorporating newly deduced episodes

into a value history. Questions asked by the temporal constraint

propagator have been of the form “Does this episode have a non-

empty extent?“, “Which of these episodes begins/ends first?“,

“Are these episodes adjacent or overlapping?“, or “Are these re-

lations consistent?” Each of these questions can be reduced to

a question about the ordering (<, =, >, 5 or 1) between two or

more events. In addition, the events being ordered are either

parts of 1) value histories for cells participating in the same con-

straint, or 2) justification histories for the same cell. Thus no

global ordering is required - all temporal interactions are local to

the constraints.

Information about temporal relations is provided both exter-

nally and by the constraint propagator. Information from the

constraint propagator is of the form: “episode A is the inter-

section of the following episodes”, “A is contained in B” , “these

two episodes begin/end at the same time” or “these two episodes

meet .” Each form, except intersection, can be expressed as a

conjunction of endpoint orderings. Intersection is more complex

and is discussed later in this section.

Information provided externally is problem-dependent. For

many digital and quantitative problems, precise information is

available about the exact times that events occur in the input

histories. This information might be provided in terms of precise

numerical values, upper and lower bounds, algebraic relations

(e.g., A occurs 20 seconds after B), or a total ordering. At the

other extreme, qualitative reasoning makes as little commitment

about temporal relations as possible; i.e., only when they af-

fect the predicted behavior. At this extreme commitments about

temporal relations are required by the propagator only when no

further inferences can otherwise be made.

Finally, the time box must use the temporal information pro-

vided to check consistency and answer queries. Inconsistent in-

formation leads to wasted effort exploring wrong paths; thus new

information should be checked for consistency before it is used.

The number of relations queried is small relative to the number of

relations deducible; thus relations should be deduced on demand.

The inference algorithms used in the time box depend on

the types of temporal information supplied and on properties of

the constraint network. The simplest case occurs when the con-

straint network has no feedback loops, and the end points of the

episodes for each input are specified quantitatively. In this case

Qualitative Reasoning and Diagnosis: AUTOMATED REASONING / 109

the extent of each justification episode can be determined pre-

cisely, as the intersection of its support, using simple arithmetic.

In addition, the extent of each deduced value episode can be de-

termined from its justification episodes before it is propagated.

Thus, answering a query involves a simple arithmetic compari-

son. In this case TCP acts like an event driven simulator which

episode is propagated the time box is told about its relation to

other justification and value episodes. End points of episodes are

represented symbolically and are constrained by specifying rela-

tions with other points. Instead of computing each point’s value

immediately, they are only solved for as needed. Thus constraints

between points can be updated with no cost.4

To see how this is useful, consider a simple feedback example

where a quantity Q is a function of only itself (i.e., Q = f(Q)). In

addition, assume the function is an identity function I and there

is some delay d from input to output. From this mathematical

model the propagator should be able to deduce that, due to the

delay, Q will never change its value (i.e. Q has inertia).

records dependencies.

A second case occurs when the system has no feedback, but

the endpoints are specified qualitatively, through inequalities or

upper and lower bounds. This case is similar to the first except

that, to answer queries the time box must combine inequality rea-

soning (e.g., transitivity of > and =) with reasoning about simple

arithmetic expressions. In addition, the minimum/maximum of Initially we are given that Q = c over an interval (to, tl)

where tl - t0 > d and c is a constant. This fact is recorded by

constructing a value episode Vl for Q with value c and extent

(to, t2). This is supported by justification episode Jl with extent

(to, tl) and value “Given.” VI must at least include the extent

of Jl thus tl < t2. Next I is invoked on Vl, producing J2 with

extent (t3, t4). We know that t0 < t3 and t2 < t4 because I

has delay. Also, 52 overlaps Jl (since the delay through I is

less than the extent of Jl), thus J2 is used to support Vl as

well. This implies that t2 2 t4, because the extent of Vl at

least includes the extent of J2. This however is inconsistent with

t2 < t4. The only explanation consistent with these constraints

is that Vl never changes. This situation is depicted below:

a set of events (used to determine intersection) are determined

by querying the ordering between each of the

systems are available with this capability [7,2].

events. Several

The remaining case to consider involves analyzing systems

with feedback using a qualitative representation for time (i.e.,

specifying only partial orders on events). This is the most inter-

esting class for qualitative reasoning and is the topic of the next

section.

11 Modeling Time for Feedback Systems

Feedback is both pervasive and important. Even trivial systems,

such as two component circuits and simple harmonic oscillators,

exhibit feedback. Without feedback, physical systems would not

have state or memory. Properties such as damped oscillation and

bistability depend critically on feedback.

Reasoning with feedback is more difficult than the two cases

addressed in the previous section. The problem lies in deter-

I C

I >t

I

to c-L+

mining the

feedback, t

a quantity

the extent

extent of a maximal value episode. If a system has

#hen the delay through the feedback loop may cause

to maintain its value (e.g. ,, as in a flip flop). Thus

of the episode will depend on itself. This is the im-

Given
C

portant difficulty. If the constraint propagator waits until the

extent of the value episode is determined before propagating it,

then it cannot determine this cyclic dependency and the extent

will not be determined. This is one of the reasons why tempo-

ral reasoning systems such as the one described in reference [2]

cannot handle feedback.

to Jl t1

Consider what requirements this type of problem places on

the time box. The type of argument given above can only be

made if 1) the constraint propagator generates these relations

for the time box, 2) the time box can recognize inconsistencies,

and 3) the time box is given and can manipulate symbolic end-

points. Consider the relations which TCP must record; there are

two cases. First, when a justification episode, J, is incorporated

into a value episode, V, we use inequalities to record that the

extent of J is a subset of V (i.e., t-(V) 5 t-(J) and t+(V) 2

t+(J)). Second, when a justification episode, J, is deduced from

a set of value episodes, V 1, V2, ..Vn, we record that the extent

of J is equal to the intersection of episodes in the set (i.e., t-

(J) = Max[t-(Vl), t-(V2) , . . . t-(Vn)] and t+(J) = Min[t+(Vl),

t+(V2)) . . . t+(Vn)]). Min and Max, in turn, can be expressed

using inequalities and disjunction. For example, a = Min(b, c)

becomes “a 5 b, a 5 c, and (u = b or a = c)“. Thus, to reason

fully about the temporal relationships deduced during propaga-

tion, the time box must be able to handle both inequalities and

disjunction. Notice, however, that every relation in the disjunc-

tion produced by an expression x = Min [. ..I mentions the point

One solution to this problem is to drop the restriction that

episodes be maximal, and instead construct the value histories

directly from the result of each propagation.3 In this case prop-

*If we are interested in recognizing all inconsistencies immediately then

we must pay the cost of testing a temporal relation for consistency when

recorded.

1 IO / SCIENCE

x.~ Thus the time box need only deal with a limited form of

disjunction, rather than the general case.

As part of this research, a polynomial time algorithm has

been developed which answers questions of validity and consis-

tency about relations involving inequalities, given expressions in-

volving inequalities and the limited form of disjunction described

above. More specifically, given a set of R relations including D

disjuncts, determining whether or not a particular relation log-

ically follows from this set takes worst case time Q(D * R).6 A

number of techniques are used for guiding constraint propagation

which significantly reduces this time in practice, without sacri-

ficing the completeness or soundness of this algorithm. However,

space does not permit a detailed discussion of the algorithm or

these techniques here.

Even with a powerful time box, modeling systems with feed-

back is still a difficult problem. For example, TCP inherits the

well known limitation of local constraint propagators in that it is

not a complete constraint satisfaction system. A number of ex-

isting techniques[10,8] can be used in TCP to solve this problem,

depending on the representation for values being used.

12 Qualitative Reasoning Revisited

Given the framework described above, incorporating qualitative

reasoning about physical systems into TCP involves 1) mapping

time to the reals (e.g., specifying intervals to be open and closed),

2) adding principles of continuity and integration[g], 3) providing

a set of constraints which support a qualitative representation

and algebra, and 4) expressing the laws of physics in terms of

these constraints. Instead of describing each of these steps we

demonstrate the approach with a familiar example. Consider a

harmonic oscillator, consisting of a mass, M, and a spring, S.

Let z denote the position of the mass with respect to its rest

point. The spring is extended from its rest point (z > 0) and

released at time t0 with zero velocity. The position of the mass

then oscillates back and forth, extending and compressing the

spring. The initial part of the oscillation can be explained as

follows:

At time t0 the spring is extended from its rest point

(Z > 0) and its velocity is zero. The positive position

produces a force on the spring and mass, causing an

immediate acceleration. This acceleration causes the

spring to begin to move inward towards its rest point

immediately after to. Because of the increasing veloc-

ity, the spring eventually reaches its rest length (z = 0)

after a finite interval of time.

We would like to use TCP to generate a prediction correspond-

ing to the behavior explained above. To do this the system is

described in terms of the state variables, position (z), velocity

(u), acceleration (u) and force (f). The qualitative representa-

tion used consists of the sign of each quantity (+, 0, or-), and

equations used to describe the system are:

(El) fs(t) = Icz(t) Hooke’s Law

(EZ) fs(t) = -fm(t) Conservation of Force

(E3) fm(t) = ma(t) Newton’s First Law

where the subscripts s and m on force denote mass and spring

respectively. k and m are assumed to be positive and finite. For

5Conceptually, if we view each relation as an edge in a graph, and each

point as a vertex, then all the edges mentioned in a disjunction are connected

to a common vertex.

‘Answering the same question, but disallowing disjunction takes worst

case time O(R).

simplicity of presentation we rewrite El-E3 as:

(E4) a(t) = -s(t)k/m

In addition to these basic constraints we incorporate a few spe-

cial rules. A detailed discussion of the principles underlying these

rules is presented in [9] and [lo]. We know from continuity that

(Cl) a quantity moving through an open/closed interval of space

takes an open/closed interval of time. Thus, a quantity, Q, will

be in the open interval “positive” (0 < Q < ;nf) for an open

interval of time and in the closed interval “zero” for a closed in-

terval (possibly an instant). From principles of rates of change

(integration) we know that: (11) if a quantity, Q, is 0 at some

instant, tq, and dQ/dt is negative over an interval immediately

following tq, then Q will be negative at least over that interval,’

(12) if a quantity, Q, is positive and its derivative is bounded

above by a finite negative value as long as Q is positive, then Q

will become zero in a finite amount of time (although it might

remain so for only an instant), and (13), if a quantity, Q is nega-

tive and its derivative is non-positive over an interval, then Q is

bounded above by a finite negative value over that interval.

The following naming and notational conventions are used. A

pair (v, ;) is used to denote an episode with value u and interval

i. (a, b) denotes the open interval from a to b, and [a, b] denotes a

closed interval. A justification episode’s value is a list consisting

of the rule and value episodes used in the deduction. The nth

value episode for state variable z is named “Zion” and the nth

justification episode is named “zjn”. In the explanation, if two

points are equal then the same name is used for both points. Each

relation between points is labeled “Rn” where n is an integer.

The remainder of this section shows each sentence of the English

explanation given above and the corresponding prediction made

by TCP. While constructing a complete dependency record is

important for many tasks, presenting these details here would

obscure the example, so they are omitted.

The analysis begins with the spring extended but not moving

(z > 0 and u = 0 at to):

xvl: (z = +, [to, t1))

xjl: ((Given), [to, to]) justifying xv1

RI: t0 < tl the extent of xv1 contains xjl

vvl: (u = 0) [to, t2])

vjl: ((Given), [to, to]) justifying vvl

R2: t0 5 t2 the extent of vvl contains vjl

The t- of zvl and wl are both closed because analysis begins at

to. t+ of zul is open by Cl since 2 is positive. Likewise, t+ of

vu1 is closed by Cl since u is zero. Rl holds, since z is positive

at least as long as the extent of the given zjl; likewise for R2. In

addition, Rl is a strict inequality since the end of zul’s extent is

open.

The positive position (zul) produces a force on the spring and

mass, causing an immediate acceleration (uvl). By E4, x being

positive over [to, tl) causes a to be negative over that interval:

avl: (u = -, [to, t3))

ajl: ((E4, xvl), [to, tl)) justifying au1

R3: tl < t3 the extent of au1 contains ujl

This acceleration causes the spring to begin to move inward imme-

diately after tU. Specifically, u is 0 at t0 (uul) and its derivative,

a, is negative immediately following t0 (uvl), so by 11, u becomes

negative immediately following to, and remains so as long as a is

711 is actually a special case of the constraint: [Q(t + epsilon)] = [Q(t)] +

PQ(t + O/4, h w ere E is an infinitesimal delay and the notation [z] denotes

the sign of z.

Qualitative Reasoning and Diagnosis: AUTOMATED REASONING / 111

negative:

vv2: (w = -,(t0,t4))

vj2: ((11, vvl, avl), (to, t3)) justifying vv2

R4: t3 2 t4 the extent of vv2 contains vj2

R5: t2 < to vv2 follows vvl

vvl ends when v is no longer zero and v is negative over (tO,t3)

thus vvl ends at or before t0 (R5).

Because of the increasing velocity, the spring eventually

reaches its rest length (z = 0) after a finite interval of time.

Specifically, 1) z is positive (xvl), 2) v is bounded by a finite

negative value over (to, t3) by 13, since v and its derivative are

negative over this interval (vv2 and avl), and 3) v is bounded as

long as x is positive, since t+(xvl) = tl 5 t3 = t+(vv2). Thus

by 12, 2: = 0 at tl:

xv2: (x = 0, (t1, t5])

xj2: ((12, xvi, vv2, avl), [tl, tl]) justifying xv2

R6: t1 5 t5 extent of xv2 contains xj2

The analysis continues, identifying a deceleration immediately

following t5, and eventually predicting the oscillation.

The deductions made above are summarized in the following

figure:

12

Gvn

V

I1 (
Gvn f

0
a. f- L

I

>t

A causal explanation can be constructed by tracing forward along

the dependencies through each justification episode whose start

coincides with the beginning of the value episode it supports. In

the figure above the chain of dependencies drawn with a thick

line corresponds roughly to the causal explanation printed above

in italics.

While we have used the oscillator for simplicity of presenta-

tion, our system is in fact capable of dealing with considerably

more complex devices involving partially ordered, time varying

inputs. It has, for example, predicted the bistable behavior of an

SR-latch built from cross-coupled NOR gates, accurately model-

ing the positive feedback that is crucial for latching values.

13 Summary and Research Status

Predicting behavior involves describing both what happens and

why. Thus, the propagator must provide a clear description of

both a quantity’s values and their justifications. We have seen

that concise histories are crucial in describing values and their

justifications, as was demonstrated in the issue of feedback. TCP

provides a clear separation between inferences about time and

behavioral prediction, This allows a variety of temporal repre-

sentations to be used without modifying the propagator itself.

Finally, by avoiding unnecessary commitments the resulting pre-

dictions are more broadly applicable.

A prototype of TCP was implemented in the fall of 1984,

using Simmons’ Quantity Lattice[‘l] as the time box. The power

of this approach has been demonstrated on a number of examples

taken from digital electronics and arithmetic with time varying

inputs. A second time box has been developed that incorporates

disjunction. This, along with principles of qualitative reasoning

are currently being incorporated into TCP. Plans for the near

future include: 1) augmenting TCP to perform envisionment as

well as simulation, 2) incorporating techniques for abstracting or

approximating constraints used during analysis, and 3) adding a

more robust control strategy for guiding this process.

14 Acknowledgements

I would especially like to thank Randy Davis for many hours

of help in clarifying these ideas. I would also like to thank the

following people for their advice and support during this research:

Johan de Kleer, Ron Brachman, Walter Hamscher, Mark Shirley,

Reid Simmons, Jeff Van Baalen and Leah Ruby Williams. I

would also like to thank AT&T Bell Labs for support and the

use of their equipment during the writing of this paper.

References

ill

PI

PI

PI

PI

PI

PI

PI

PI

WI

Allen, J., “Maintaining Knowledge About Temporal Inter-

vals,” Comm. ACM, 26 (1983)) 832-843.

Dean, T., “Planning and Temporal Reasoning Under Uncer-

tainty,” IEEE Workshop on Principles of Knowledge-Based

Systems, Denver, CO, (December, 1984).

de Kleer, J., and Brown, J.S., “A Qualitative Physics Based

on Confluences,” Artificial Intelligence, 24 (1984), 7-84.

de Kleer, J., and Williams, B. C., “Reasoning about Mul-

tiple Faults,” Proceedings National Conference on Artificial

Intelligence, Philadelphia, Penn., August, 1986.

Forbus, K., “Qualitative Process Theory,” Artificial Intelli-

gence, 24 (1984)) 85-168.

Kuipers, B., LLCommonsense Reasoning About Causality:

Deriving Behavior From Structure,” Artificial Intelligence,

24 (1984) 169-204.

Simmons, R., “ ‘Commonsense’ Arithmetic Reasoning,”

Proceedings National Conference on Artificial Intelligence,

Philadelphia, Penn., August, 1986.

Sussman, G.J., and Steele, G.L., ‘CONSTRAINTS: A Lan-

guage for Expresssing Almost Hierarchical Descriptions,”

Artificial Intelligence, 14 (1980)) l-40.

Williams, B.C., “The Use of Continuity in a Qualitative

Physics,” Proceedings National Conference on Artificial In-

telligence, Austin, TX, (August, 1984).

Williams, B.C., “Qualitative Analysis of MOS Circuits,” Ar-

tificial Intelligence, 24 (1984), 281-347.

112 I SCIENCE

