
DOITrees Revisited: Scalable, Space-Constrained
Visualization of Hierarchical Data

Jeffrey Heer 1,2
1Group for User Interface Research

University of California, Berkeley
Berkeley, CA 94720-1776 USA

jheer@cs.berkeley.edu

Stuart K. Card 2
2Palo Alto Research Center

3333 Coyote Hill Road
Palo Alto, CA 94301 USA

card@parc.com

ABSTRACT
This paper extends previous work on focus+context visualizations
of tree-structured data, introducing an efficient, space-constrained,
multi-focal tree layout algorithm (“TreeBlock”) and techniques at
both the system and interactive levels for dealing with scale. These
contributions are realized in a new version of the Degree-Of-Interest
Tree browser, supporting real-time interactive visualization and
exploration of data sets containing on the order of a million nodes.
Categories and Subject Descriptors
H.5.2 [Information Interfaces]: Graphical User Interfaces.
I.3.6 [Methodology and Techniques]: Interaction Techniques.

General Terms: Algorithms, Design, Human Factors.

Keywords: visualization, tree, layout, focus+context, scalability

1. INTRODUCTION
The visualization of tree structures has received a great deal of
attention due to their wide applicability and algorithmic tractability.
File systems, organization charts, and taxonomies are just a few
commonly encountered examples. In addition, many other richer
graph structures, such as web sites, family trees, and social
networks, are amenable to tree-based layouts. As a result, the
visualization of trees has been the topic of an immense body of
research work, progressing from static images to dynamic,
interactive visualizations of increasing scale (both [2] and [5]
provide excellent reviews of this topic). Still, exponential increases
in processing power, networking, and data storage have given rise to
increasingly massive data sets. Meanwhile, display size and
resolution have grown at much slower rates and people’s perceptive
capabilities remain more or less constant. Thus improved means for
tree visualization and exploration are still very much desirable.
Recent projects have addressed concerns of scale. Previously, we
have described Degree-Of-Interest Trees (DOITrees): interactive
trees with animated transitions that fit within a bounded region of
space and whose layout depends dynamically on the user’s
estimated degree-of-interest [2]. DOITrees use multiple
focus+context techniques to achieve these goals: logical filtering of

nodes, using the estimated degree-of-interest to determine which
nodes to display; geometric distortion, changing node sizes to match
the estimated interest; semantic zooming of content based on node
size; and aggregate representations of elided subtrees. By
employing scaling and overlapping of nodes, the original DOITrees
ensured that trees stayed within a bounded space, promoting use as a
component of larger applications. Original versions of DOITrees
were limited, however, by a layout algorithm unsuited for handling
multiple foci and by unoptimized DOI calculations, limiting scale.
Similar in spirit to DOITrees is Plaisant et al.’s SpaceTree [6],
which uses logical filtering and aggregation of nodes, combined
with animation and automated camera management, to visualize tree
structures. The SpaceTree supports multiple foci, search, and
filtering, but does not aggressively employ space constraints on the
tree, at times requiring a great deal of manual panning.
In this paper we extend this previous work to create tree
visualizations that better support data sets of increasing magnitude.
The bulk of our contribution lies in an optimized, scalable approach
to degree-of-interest (DOI) calculation, and in TreeBlock, an
efficient, space-constrained multi-focal tree layout technique.
Algorithms for each are presented. These contributions are
instantiated in a new version of the DOITree browser, and leveraged
by search, filtering, and authoring features facilitating the
exploration of large tree structures. These make possible the rapid
exploration of DOITrees perhaps three orders of magnitude larger
than the original DOITrees. We first describe the system in use and
then provide the details of its implementation.

2. DESCRIPTION
Our new variant of Degree-of-Interest Trees presents a top-down
node-link representation of the tree, optimized for the display of
largely textual data. Figure 1 shows a DOITree visualization of the
Open Directory Project (http://dmoz.org), a volunteer-driven
international directory of websites containing over 600,000
categories. Clicking on a node in the visualization causes it to
become the new focus, immediately initiating a smooth, slow-in
slow-out animation between tree configurations. Newly visible
nodes flow out from their parents, while other previously visible
nodes become hidden, returning to their parents and fading out to
transparency, ultimately being replaced by an elision graphic
indicating the size of the unexpanded subtree. To help users track
the appearance of previously unseen information, newly visible
nodes are initially highlighted. After the nodes reach their final
positions this highlighting gently fades out.

The orientation of the tree is not fixed; data can be displayed top-
down, bottom-up, left-to-right, or right-to-left. This orientation can
be changed on-the-fly by a single keystroke, initiating an animated
transition between configurations.

Figure 1 DOITree visualization of the Open Directory Project (http://dmoz.org). The tree contains over 600,000 nodes, laid out in

a right-to-left orientation. Multiple foci have been selected and the various expanded branches are allocated as much space as
possible given the display constraints.

Figure 2 Search and Filtering in DOITrees. As the Filter slider on the bottom right of the display is moved further to the right, the DOI
distribution becomes increasingly constrained, creating more compact views by reducing context. The tree moves from a full fisheye to

just search results and their ancestors, to finally just search results and their least common ancestors.
Figure 3 Block-level representation of a visualized tree. Siblings and lower-interest subtrees are grouped together in rigid
blocks to simplify layout. Additionally, the tree is segregated into varying depth levels (indicated by the markers above the tree)

to facilitate dynamic computation of space requirements.

To support comparison across tree branches, users can select
additional focus nodes. This is currently achieved by right clicking a
node, thereby assigning it maximal user interest. The underlying
TreeBlock layout algorithm responds by expanding multiple tree
branches as necessary, maximizing the allocated space for each
expanded branch, subject to the space constraints of the display.
Deeper tree paths (e.g., those rooted at “Arabic” and “Hebrew” in
Figure 1) expand to use up available space underneath other, shorter
tree paths (e.g., the one rooted at “Farsi”). In our experience the use
of curved edges helps offset the disorientation that can arise
following tree paths through the limited display space.

2.1 Space Constraints
Problems naturally arise, however, when the display space is not
sufficient for displaying the current view of the tree. These
problems can occur along both the breadth and depth dimensions.
When the tree breadth exceeds the display bounds a number of
solutions may be applied. One approach is to use scrolling or
panning. Another technique is to scale the tree, as done by both
zooming interfaces and earlier versions of DOITrees [2]. Nodes can
also be overlapped, as done in [2]. A common organization chart
convention, incorporated by both DOITrees and SpaceTrees, is to
layout nodes along multiple rows. Three-dimensional visualizations
can also apply natural perspective, using rotation to selectively
present sibling nodes as done in Cone Trees [7].
An additional mechanism used by our visualization is to aggregate
nodes of lower interest. When expanded tree branches contain too
many nodes to fit on the screen at once, the nodes of lowest
estimated interest are automatically culled until the tree breadth fits
within the display, replacing these nodes with an aggregate
representation (as in the “World” category in Figure 1). Clicking
this aggregate will redistribute the estimated interest between the
nodes in the branch. This expands the aggregate, revealing hidden
nodes while previously visible nodes are newly aggregated.
Space constraints also pose a problem along the depth dimension.
As increasingly deeper levels of the tree are visualized, the tree may
become too large for the display. Again, scrolling/panning and
scaling techniques can be applied. In addition to tree scaling,
DOITrees now support automatic panning of the tree view, centered
on the most recent user-selected focus node. To provide tree
context, the visualization presents a “bread-crumb” trail of ancestor
nodes along the periphery of the visualization (see Figure 2).
Clicking on such a node causes the view to translate and ancestors
to “fall” from the bread-crumb trail into their proper positions.

2.2 Exploring Large Trees
In addition to the problem of space constraints, the massive scale of
important data sets (e.g., web indices and biological taxonomies)
presents additional challenges to the user. As we describe in the
Method section, we utilize efficient Degree-of-Interest estimation
and tree layout techniques to ensure real-time interaction with trees
on the order of a million nodes. However, this still leaves users with
the challenge of exploring incredibly large information structures.
To help facilitate user interaction with such structures, DOITrees
support search and advanced filtering options, similar to those found
in the SpaceTree [6]. Users can additionally create their own trees
of bookmarked nodes, building spatial indices of large data sets.
Typing a query into the search box causes matching nodes to light
up in the visualization. Subtree aggregates light up to indicate

branches containing search hits. A linear list of search results is
available to the user; double clicking an entry in the results list takes
the user to that section of the tree.
Additionally, users can have search results treated as foci of the
display, causing all branches containing search hits to be expanded
(see Figure 2). For searches with many matches this may result in an
overwhelming tree. Search filtering can be used to prune the
display, controlled by both the mouse scroll wheel and an on-screen
slider. At the lowest pruning level a full fisheye distribution is used,
at the medium level only focal nodes and their ancestors are
visualized, while at the highest level only focal nodes and their least
common ancestors are displayed. This last setting can be especially
useful for collapsing visualizations in which the search results occur
at varying depths of the tree. Using the mouse scroll wheel switches
between filtering levels while staying within the context of
browsing, enabling users to dive in and out of search results on-the-
fly.
Finally, we suspect that many users may want to bookmark areas of
the tree, either for comparison purposes or to facilitate revisiting. To
support this across sessions, we allow users to create index trees,
user-organized subsets of the larger data set. Users can click on a
node in the larger tree and then drag it onto the index tree window,
placing the nodes in the desired location in the tree. The index tree
is a full DOITree visualization in its own right, with the additional
feature that double clicking a node in the index tree causes the
corresponding node in the original data set to become a focus node.
This allows users to build their own task specific indices into larger
data sets, and save them for later use.

3. METHOD
In this section we describe the techniques employed to implement
the visualization just described. We present both a generally
applicable caching approach for efficiently computing Degree-of-
Interest estimates of relevant tree nodes, and TreeBlock, a novel
space-constrained, multi-focal tree layout algorithm.

3.1 Degree-Of-Interest Calculation
At the core of our approach is the use of lightweight modeling of the
user’s interest to inform the layout and presentation of the tree. User
interest is modeled using a Degree-Of-Interest (DOI) function [2, 3],
which assigns a single number representing the estimated relative
interest of the user to each node in the structure. This provides a
simple yet powerful abstraction for determining which nodes will be
visualized and guiding subsequent layout and visual presentation.

For general browsing, we currently employ a multi-focal version of
Furnas’ FISHEYE view [3] to compute the Degree-Of-Interest. This
function assigns a maximal DOI to focus nodes and their parents, up
to the root of the tree. Interest values for the remaining nodes then
decrease linearly as a function of distance from the highest interest
nodes. As nodes below a particular interest threshold will not be
visualized, we exploit the convexity of the FISHEYE distribution
[3] to stop the interest calculation routine at these “disinterest
threshold” boundaries, thus bounding computation time to the
number of visible nodes only. For non-convex DOI distributions
consisting of convex subsets (e.g., the least common ancestors view
above) calculation time is bounded by the number of visible nodes
plus the number of nodes linking visible regions.

We have implemented this technique using a caching scheme that
maintains visual representations only for those tree elements above

the disinterest threshold and thus considered sufficiently interesting
for display. Tree nodes are added to the cache, if not already
present, when their DOI is set. Tree links between cache entries are
maintained separately from the original tree, allowing DOI to vary
discontinuously across the tree. For each cache entry, a counter
keeps track of the number of interaction cycles since the entry was
last visited by a DOI function. When this count surpasses a
threshold value (typically 1), the entry is removed from the cache.
This process preserves the state of nodes that remain visible across
transitions while freeing space as nodes become elided. Thus quite
large trees can be visualized by displaying in full detail only a
limited subset of the total structure at a given time.

-2 -2 -2 -2 0 -1 -2 -2

-2 -2 0 -1

-1

0

0

Disinterest Thresholding: minDOI = -1

-3 -3 -3 -3 0 -1 -2 -2

-2 -2 0 -1

-1

0

0

Fisheye DOI Distribution
Figure 4 Fisheyes with and without optimized DOI calculation.

Nodes with a dotted outline are not visited by the algorithm.
Using this formulation of DOI simplifies other aspects of our
implementation. For instance, to visualize the distribution of search
results in a bounded space, we can simply change the DOI function
so that branches of the tree without any search hits are assigned
interest levels below the visible threshold. Generalizing this
approach, one can use DOI functions to visualize results for a wide
range of dynamic queries. The modularity of the DOI function
allows this to be done without modifying downstream components
such as the layout algorithm.

3.2 Tree Layout
Once the DOI calculation is complete, we can proceed with the
actual layout of the tree. In this section we describe TreeBlock, a
new layout algorithm that achieves space-constrained, multi-focal
layout in time nearly-linear to the number of visible nodes. The
algorithm first makes a preliminary pass through the tree, computing
the space required by an unconstrained layout while also
segmenting the tree into higher-level blocks. This information is
then used to constrain the layout of the tree so that it fits into the
available space. Trees of excessive depth are handled by translating
the view of the tree, while providing a “bread-crumb” trail of any
parent nodes that are no longer visible. Trees of excessive breadth
are handled by aggregating nodes of lower interest. A final pass
through the tree then assigns nodes to their on-screen locations.

3.2.1 Tree Extents and Segmentation
The first phase of our layout algorithm computes the space taken by
the tree in the absence of any display constraints, simultaneously
segmenting the tree into a block structure to simplify subsequent
layout calculation. The output of this phase is the breadth and depth,
in pixels, of the unconstrained tree layout, and an aggregated block
representation of the tree (see Figure 3).

The to-be-visualized subset of the tree is traversed in a depth-first
fashion, and for each group of siblings the breadth and depth

requirements are computed. Node sizes, which may be variable in
both breadth and depth, are computed in constant time by querying
rendering modules. Global data structures monitoring the depth
requirements for each level of the tree are maintained, allowing
depth requirements for particular levels of the tree to be dynamically
computed across different tree branches.

Groups of siblings and subtrees containing only lower-interest nodes
are grouped into blocks, which allow the aggregated nodes to be
subsequently positioned as a single unit. This block structure is
depicted in Figure 3. The blocks are indexed by their depth level in
the tree, while the depths of subtrees are indexed by their sub-level,
as depicted by the markers at the top of the figure. This segregation
allows each depth level of the tree to be separately considered with
respect to space constraints and positioning, in turn enabling a
flexible handling of multiple foci.

3.2.2 Space Constraints
In the second phase of the layout algorithm, the computed tree
breadth and depth values are compared against the bounds of the
available display space. If the breadth and depth values from the
unconstrained layout do not exceed the available space, nothing
extra need be done. However, if the either of these values exceeds
the bounds of the display, the tree size must be reduced.

3.2.2.1 Handling Excessive Breadth
In the case of excessive breadth, aggregation can be applied in
addition to or in lieu of scaling. For a given depth level with
excessive breadth, aggregation removes the nodes of lowest interest
until the depth level fits within the display bounds. Removed nodes
are then represented in aggregate (e.g., the siblings of “Arts” under
“Humanities” in Figure 3). Clicking on one of these aggregates
causes the DOI values of the aggregated nodes to rise, which in turn
causes the aggregate to expand, revealing a subset of elided nodes.
Aggregates are computed by sorting all the items in the given depth
level by their DOI values, then sequentially removing the lowest-
interest nodes and updating size calculations until the blocks will fit
within the display bounds. Since the lowest-interest nodes may be
dispersed throughout the given depth level, this requires some book-
keeping of elided nodes, updating size calculations when adjacent
nodes are marked for aggregation.

3.2.2.2 Handling Excessive Depth
In the case of excessive depth, the tree is too tall for its allotted
space. One solution, applied in the contexts of both geometric
scaling [2] and zooming [6], is to scale the tree to fit. Excessive
scaling, however, eventually destroys the legibility of the tree. As a
result, in some cases (e.g., largely textual data) scaling can be
undesirable. One recourse is to introduce scrolling or panning [6].
The solution implemented in our current work is to automatically
translate the view, centering the visualization on the most recent
user-selected focus node. A bread-crumb trail of elided ancestors is
used to maintain context and provide immediate access to higher
levels of the tree. The translation component is determined by
counting how many depth levels, starting from the root, must be
removed to allow the user-selected focus and its children to fit into
view. In addition, we add some extra logic to prevent the tree from
translating back and forth as the user browses a group of siblings
with descendants of shifting depth requirements. This prevents the
jarring effect of the focus unduly bouncing around.

3.2.3 Position Assignment
In the final phase of the layout algorithm, nodes are assigned their
screen co-ordinates. This pass iterates through each depth level from
the root of the tree down, at each level first determining the position
of the blocks and then laying out the nodes each block contains.
Iterating through depth levels visits nodes in a breadth-first fashion,
ensuring that parent nodes have their positions assigned before
children blocks are considered.
To facilitate users’ visual search, we would like children blocks
centered underneath their parent nodes. Due to screen boundaries
and space constraints, however, this is not always possible, so we
would like to minimize the distance between parents and children.
This could be achieved by minimizing the squared distance between
parent nodes and the centers of their children blocks, subject to the
constraint that all blocks fit within display bounds and do not
overlap. This constitutes a quadratic programming optimization
problem, which, while solvable using various optimization
techniques, we address with an approximation that runs in time
linear to the number of blocks.
We process the blocks within a depth level from the “outside-in,”
beginning with the blocks nearest the edges of the display and
centering them under their parents without exceeding the display
boundaries. We then compute the amount of space needed for the
remaining blocks (which might be zero), and push the current
blocks towards the display boundary as necessary to free the
requisite space and ensure that they do not overlap. The distance
each block is moved is proportional to its size, as larger blocks can
move further and still be directly underneath (though not centered
under) their parent. This process is then repeated recursively for the
pair of blocks adjacent to the previous ones, until either all blocks
have been positioned or there is only a single block left, which we
simply place within the remaining space, aligning its center as close
as possible to its parent.
Once the blocks for a given level have been positioned, the provided
bounds are used to position the nodes and aggregates within the
blocks by a depth-first traversal of the block content.

4. EVALUATION AND ANALYSIS
Both empirical and theoretical analyses confirm the efficiency of
our algorithmic contributions. Figure 5 depicts a comparison of DOI
calculation times for three approaches to the FISHEYE view: a
naïve tree traversal (the typed used by the original DOITrees), a
pruned tree traversal that updates only the tree rooted at the least
common ancestor of current and previous foci [4], and our
disinterest thresholding approach. The plots were generated by
timing DOI calculations of random walks in uniform trees. The tests
were performed on a 1GHz Pentium III IBM ThinkPad T23 with
256MB RAM. As shown by the graph, our approach scales
logarithmically, while the others scale linearly, exceeding a 100ms
threshold [1] around 30,000 nodes.
An informal asymptotic analysis also shows that the proposed
TreeBlock algorithm has a nearly linear running time, bounded from
above by n log n, where n is the number of visible nodes prior to
aggregation. Both the first and third passes made by the algorithm
are clearly linear, as they involve a single walk through the tree and
our node size computation and tree segmentation routines run in
constant time. The only point at which non-linear complexity is
introduced is during the second pass, if and when aggregation
occurs, requiring the n log n operation of sorting the nodes in a
0 .0 0 0

0 .0 2 0

0 .0 4 0

0 .0 6 0

0 .0 8 0

0 .1 0 0

0 .1 2 0

0 .1 4 0

1 1 0 1 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0

N u m b e r o f N o d e s

D
O

I C
al

cu
la

tio
n

Ti
m

e
(s

ec
)

n a ïv e

le a s t c o m m o n a n c e s to r

d is in te re s t

 Figure 5 Comparison of DOI calculation times
given depth level. However, this rarely includes the whole
visualized structure, making the common case less costly than the
upper bound might imply. In actual usage the algorithm has
performed admirably, as rendering bottlenecks will slow
performance long before the time required by the layout algorithm
becomes an issue.

5. CONCLUSION
In this paper we have extended previous work on focus+context
visualizations, describing an optimized approach to DOI calculation
and presenting TreeBlock, a new tree layout algorithm that supports
the display of multi-focal trees within bounded space constraints.
Together, these features allow interactive visualization at animation
rates with tree structures on the order of million nodes while making
the most of the available screen real estate. On top of these system
features we have implemented techniques for supporting the
exploration of large trees, including advanced search and filtering
options and the ability to construct index trees, user-defined spatial
indices into the larger data set. We are currently in the process of
running a controlled user study to understand the impact of these
techniques on user experience. In future work we intend to use the
results of this evaluation to improve our design and visualize ever
larger and varied structures.

6. REFERENCES
[1] Card, S.K., T.P. Moran, and A. Newell, The Psychology of

Human-Computer Interaction. Lawrence Erlbaum, 1983.
[2] Card, S.K. and D. Nation. Degree-of-Interest Trees: A

Component of an Attention-Reactive User Interface. Advanced
Visual Interfaces. July 2002.

[3] Furnas, G.W., The FISHEYE View: A New Look at Structured
Files, in Readings in Information Visualization: Using Vision
to Think, Morgan Kaufmann: San Francisco, 2001.

[4] Furnas, G.W. Generalized Fisheye Views. CHI'86, Human
Factors in Computing Systems 1986.

[5] Herman, I., G. Melancon, and M.S. Marshall, Graph
Visualization and Navigation in Information Visualization: A
Survey. IEEE Transactions on Visualization and Computer
Graphics, 2000. 6: p. 24-43.

[6] Plaisant, C., J. Grosjean, and B. Bederson. Spacetree:
Supporting Exploration in Large Node Link Tree, Design
Evolution and Empirical Evaluation. IEEE Symposium on
Information Visualization. October 2002.

[7] Robertson, G.G., J.D. Mackinlay, and S.K. Card. Cone Trees:
Animated 3d Visualizations of Hierarchical Information.
CHI'91, Human Factors in Computing Systems 1991.

