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ABSTRACT 
This paper extends previous work on focus+context visualizations 
of tree-structured data, introducing an efficient, space-constrained, 
multi-focal tree layout algorithm (“TreeBlock”) and techniques at 
both the system and interactive levels for dealing with scale. These 
contributions are realized in a new version of the Degree-Of-Interest 
Tree browser, supporting real-time interactive visualization and 
exploration of data sets containing on the order of a million nodes. 
Categories and Subject Descriptors 
H.5.2 [Information Interfaces]: Graphical User Interfaces.        
I.3.6 [Methodology and Techniques]: Interaction Techniques. 

General Terms: Algorithms, Design, Human Factors. 

Keywords: visualization, tree, layout, focus+context, scalability 

1. INTRODUCTION 
The visualization of tree structures has received a great deal of 
attention due to their wide applicability and algorithmic tractability. 
File systems, organization charts, and taxonomies are just a few 
commonly encountered examples. In addition, many other richer 
graph structures, such as web sites, family trees, and social 
networks, are amenable to tree-based layouts. As a result, the 
visualization of trees has been the topic of an immense body of 
research work, progressing from static images to dynamic, 
interactive visualizations of increasing scale (both [2] and [5] 
provide excellent reviews of this topic). Still, exponential increases 
in processing power, networking, and data storage have given rise to 
increasingly massive data sets. Meanwhile, display size and 
resolution have grown at much slower rates and people’s perceptive 
capabilities remain more or less constant. Thus improved means for 
tree visualization and exploration are still very much desirable. 
Recent projects have addressed concerns of scale. Previously, we 
have described Degree-Of-Interest Trees (DOITrees): interactive 
trees with animated transitions that fit within a bounded region of 
space and whose layout depends dynamically on the user’s 
estimated degree-of-interest [2]. DOITrees use multiple 
focus+context techniques to achieve these goals: logical filtering of 

nodes, using the estimated degree-of-interest to determine which 
nodes to display; geometric distortion, changing node sizes to match 
the estimated interest; semantic zooming of content based on node 
size; and aggregate representations of elided subtrees. By 
employing scaling and overlapping of nodes, the original DOITrees 
ensured that trees stayed within a bounded space, promoting use as a 
component of larger applications. Original versions of DOITrees 
were limited, however, by a layout algorithm unsuited for handling 
multiple foci and by unoptimized DOI calculations, limiting scale. 
Similar in spirit to DOITrees is Plaisant et al.’s SpaceTree [6], 
which uses logical filtering and aggregation of nodes, combined 
with animation and automated camera management, to visualize tree 
structures. The SpaceTree supports multiple foci, search, and 
filtering, but does not aggressively employ space constraints on the 
tree, at times requiring a great deal of manual panning. 
In this paper we extend this previous work to create tree 
visualizations that better support data sets of increasing magnitude. 
The bulk of our contribution lies in an optimized, scalable approach 
to degree-of-interest (DOI) calculation, and in TreeBlock, an 
efficient, space-constrained multi-focal tree layout technique. 
Algorithms for each are presented. These contributions are 
instantiated in a new version of the DOITree browser, and leveraged 
by search, filtering, and authoring features facilitating the 
exploration of large tree structures. These make possible the rapid 
exploration of DOITrees perhaps three orders of magnitude larger 
than the original DOITrees. We first describe the system in use and 
then provide the details of its implementation. 

2. DESCRIPTION 
Our new variant of Degree-of-Interest Trees presents a top-down 
node-link representation of the tree, optimized for the display of 
largely textual data. Figure 1 shows a DOITree visualization of the 
Open Directory Project (http://dmoz.org), a volunteer-driven 
international directory of websites containing over 600,000 
categories. Clicking on a node in the visualization causes it to 
become the new focus, immediately initiating a smooth, slow-in 
slow-out animation between tree configurations. Newly visible 
nodes flow out from their parents, while other previously visible 
nodes become hidden, returning to their parents and fading out to 
transparency, ultimately being replaced by an elision graphic 
indicating the size of the unexpanded subtree. To help users track 
the appearance of previously unseen information, newly visible 
nodes are initially highlighted. After the nodes reach their final 
positions this highlighting gently fades out. 

 

The orientation of the tree is not fixed; data can be displayed top-
down, bottom-up, left-to-right, or right-to-left. This orientation can 
be changed on-the-fly by a single keystroke, initiating an animated 
transition between configurations. 

 



 

 
Figure 1  DOITree visualization of the Open Directory Project (http://dmoz.org). The tree contains over 600,000 nodes, laid out in 

a right-to-left orientation. Multiple foci have been selected and the various expanded branches are allocated as much space as 
possible given the display constraints. 

         
Figure 2  Search and Filtering in DOITrees. As the Filter slider on the bottom right of the display is moved further to the right, the DOI 
distribution becomes increasingly constrained, creating more compact views by reducing context. The tree moves from a full fisheye to 

just search results and their ancestors, to finally just search results and their least common ancestors. 
Figure 3  Block-level representation of a visualized tree. Siblings and lower-interest subtrees are grouped together in rigid 
blocks to simplify layout. Additionally, the tree is segregated into varying depth levels (indicated by the markers above the tree) 

to facilitate dynamic computation of space requirements. 



To support comparison across tree branches, users can select 
additional focus nodes. This is currently achieved by right clicking a 
node, thereby assigning it maximal user interest. The underlying 
TreeBlock layout algorithm responds by expanding multiple tree 
branches as necessary, maximizing the allocated space for each 
expanded branch, subject to the space constraints of the display. 
Deeper tree paths (e.g., those rooted at “Arabic” and “Hebrew” in 
Figure 1) expand to use up available space underneath other, shorter 
tree paths (e.g., the one rooted at “Farsi”). In our experience the use 
of curved edges helps offset the disorientation that can arise 
following tree paths through the limited display space. 

2.1 Space Constraints 
Problems naturally arise, however, when the display space is not 
sufficient for displaying the current view of the tree. These 
problems can occur along both the breadth and depth dimensions. 
When the tree breadth exceeds the display bounds a number of 
solutions may be applied. One approach is to use scrolling or 
panning. Another technique is to scale the tree, as done by both 
zooming interfaces and earlier versions of DOITrees [2]. Nodes can 
also be overlapped, as done in [2]. A common organization chart 
convention, incorporated by both DOITrees and SpaceTrees, is to 
layout nodes along multiple rows. Three-dimensional visualizations 
can also apply natural perspective, using rotation to selectively 
present sibling nodes as done in Cone Trees [7]. 
An additional mechanism used by our visualization is to aggregate 
nodes of lower interest. When expanded tree branches contain too 
many nodes to fit on the screen at once, the nodes of lowest 
estimated interest are automatically culled until the tree breadth fits 
within the display, replacing these nodes with an aggregate 
representation (as in the “World” category in Figure 1). Clicking 
this aggregate will redistribute the estimated interest between the 
nodes in the branch. This expands the aggregate, revealing hidden 
nodes while previously visible nodes are newly aggregated. 
Space constraints also pose a problem along the depth dimension. 
As increasingly deeper levels of the tree are visualized, the tree may 
become too large for the display. Again, scrolling/panning and 
scaling techniques can be applied. In addition to tree scaling, 
DOITrees now support automatic panning of the tree view, centered 
on the most recent user-selected focus node. To provide tree 
context, the visualization presents a “bread-crumb” trail of ancestor 
nodes along the periphery of the visualization (see Figure 2). 
Clicking on such a node causes the view to translate and ancestors 
to “fall” from the bread-crumb trail into their proper positions. 

2.2 Exploring Large Trees 
In addition to the problem of space constraints, the massive scale of 
important data sets (e.g., web indices and biological taxonomies) 
presents additional challenges to the user. As we describe in the 
Method section, we utilize efficient Degree-of-Interest estimation 
and tree layout techniques to ensure real-time interaction with trees 
on the order of a million nodes. However, this still leaves users with 
the challenge of exploring incredibly large information structures. 
To help facilitate user interaction with such structures, DOITrees 
support search and advanced filtering options, similar to those found 
in the SpaceTree [6]. Users can additionally create their own trees 
of bookmarked nodes, building spatial indices of large data sets. 
Typing a query into the search box causes matching nodes to light 
up in the visualization. Subtree aggregates light up to indicate 

branches containing search hits. A linear list of search results is 
available to the user; double clicking an entry in the results list takes 
the user to that section of the tree. 
Additionally, users can have search results treated as foci of the 
display, causing all branches containing search hits to be expanded 
(see Figure 2). For searches with many matches this may result in an 
overwhelming tree. Search filtering can be used to prune the 
display, controlled by both the mouse scroll wheel and an on-screen 
slider. At the lowest pruning level a full fisheye distribution is used, 
at the medium level only focal nodes and their ancestors are 
visualized, while at the highest level only focal nodes and their least 
common ancestors are displayed. This last setting can be especially 
useful for collapsing visualizations in which the search results occur 
at varying depths of the tree. Using the mouse scroll wheel switches 
between filtering levels while staying within the context of 
browsing, enabling users to dive in and out of search results on-the-
fly. 
Finally, we suspect that many users may want to bookmark areas of 
the tree, either for comparison purposes or to facilitate revisiting. To 
support this across sessions, we allow users to create index trees, 
user-organized subsets of the larger data set. Users can click on a 
node in the larger tree and then drag it onto the index tree window, 
placing the nodes in the desired location in the tree. The index tree 
is a full DOITree visualization in its own right, with the additional 
feature that double clicking a node in the index tree causes the 
corresponding node in the original data set to become a focus node. 
This allows users to build their own task specific indices into larger 
data sets, and save them for later use. 

3. METHOD 
In this section we describe the techniques employed to implement 
the visualization just described. We present both a generally 
applicable caching approach for efficiently computing Degree-of-
Interest estimates of relevant tree nodes, and TreeBlock, a novel 
space-constrained, multi-focal tree layout algorithm.  

3.1 Degree-Of-Interest Calculation 
At the core of our approach is the use of lightweight modeling of the 
user’s interest to inform the layout and presentation of the tree. User 
interest is modeled using a Degree-Of-Interest (DOI) function [2, 3], 
which assigns a single number representing the estimated relative 
interest of the user to each node in the structure. This provides a 
simple yet powerful abstraction for determining which nodes will be 
visualized and guiding subsequent layout and visual presentation. 

For general browsing, we currently employ a multi-focal version of 
Furnas’ FISHEYE view [3] to compute the Degree-Of-Interest. This 
function assigns a maximal DOI to focus nodes and their parents, up 
to the root of the tree. Interest values for the remaining nodes then 
decrease linearly as a function of distance from the highest interest 
nodes. As nodes below a particular interest threshold will not be 
visualized, we exploit the convexity of the FISHEYE distribution 
[3] to stop the interest calculation routine at these “disinterest 
threshold” boundaries, thus bounding computation time to the 
number of visible nodes only. For non-convex DOI distributions 
consisting of convex subsets (e.g., the least common ancestors view 
above) calculation time is bounded by the number of visible nodes 
plus the number of nodes linking visible regions.  

We have implemented this technique using a caching scheme that 
maintains visual representations only for those tree elements above 



the disinterest threshold and thus considered sufficiently interesting 
for display. Tree nodes are added to the cache, if not already 
present, when their DOI is set. Tree links between cache entries are 
maintained separately from the original tree, allowing DOI to vary 
discontinuously across the tree. For each cache entry, a counter 
keeps track of the number of interaction cycles since the entry was 
last visited by a DOI function. When this count surpasses a 
threshold value (typically 1), the entry is removed from the cache. 
This process preserves the state of nodes that remain visible across 
transitions while freeing space as nodes become elided. Thus quite 
large trees can be visualized by displaying in full detail only a 
limited subset of the total structure at a given time. 
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Figure 4 Fisheyes with and without optimized DOI calculation. 

Nodes with a dotted outline are not visited by the algorithm. 
Using this formulation of DOI simplifies other aspects of our 
implementation. For instance, to visualize the distribution of search 
results in a bounded space, we can simply change the DOI function 
so that branches of the tree without any search hits are assigned 
interest levels below the visible threshold. Generalizing this 
approach, one can use DOI functions to visualize results for a wide 
range of dynamic queries. The modularity of the DOI function 
allows this to be done without modifying downstream components 
such as the layout algorithm. 

3.2 Tree Layout 
Once the DOI calculation is complete, we can proceed with the 
actual layout of the tree. In this section we describe TreeBlock, a 
new layout algorithm that achieves space-constrained, multi-focal 
layout in time nearly-linear to the number of visible nodes. The 
algorithm first makes a preliminary pass through the tree, computing 
the space required by an unconstrained layout while also 
segmenting the tree into higher-level blocks. This information is 
then used to constrain the layout of the tree so that it fits into the 
available space. Trees of excessive depth are handled by translating 
the view of the tree, while providing a “bread-crumb” trail of any 
parent nodes that are no longer visible. Trees of excessive breadth 
are handled by aggregating nodes of lower interest. A final pass 
through the tree then assigns nodes to their on-screen locations.  

3.2.1 Tree Extents and Segmentation 
The first phase of our layout algorithm computes the space taken by 
the tree in the absence of any display constraints, simultaneously 
segmenting the tree into a block structure to simplify subsequent 
layout calculation. The output of this phase is the breadth and depth, 
in pixels, of the unconstrained tree layout, and an aggregated block 
representation of the tree (see Figure 3). 

The to-be-visualized subset of the tree is traversed in a depth-first 
fashion, and for each group of siblings the breadth and depth 

requirements are computed. Node sizes, which may be variable in 
both breadth and depth, are computed in constant time by querying 
rendering modules. Global data structures monitoring the depth 
requirements for each level of the tree are maintained, allowing 
depth requirements for particular levels of the tree to be dynamically 
computed across different tree branches.  

Groups of siblings and subtrees containing only lower-interest nodes 
are grouped into blocks, which allow the aggregated nodes to be 
subsequently positioned as a single unit. This block structure is 
depicted in Figure 3. The blocks are indexed by their depth level in 
the tree, while the depths of subtrees are indexed by their sub-level, 
as depicted by the markers at the top of the figure. This segregation 
allows each depth level of the tree to be separately considered with 
respect to space constraints and positioning, in turn enabling a 
flexible handling of multiple foci. 

3.2.2 Space Constraints 
In the second phase of the layout algorithm, the computed tree 
breadth and depth values are compared against the bounds of the 
available display space. If the breadth and depth values from the 
unconstrained layout do not exceed the available space, nothing 
extra need be done. However, if the either of these values exceeds 
the bounds of the display, the tree size must be reduced. 

3.2.2.1 Handling Excessive Breadth 
In the case of excessive breadth, aggregation can be applied in 
addition to or in lieu of scaling. For a given depth level with 
excessive breadth, aggregation removes the nodes of lowest interest 
until the depth level fits within the display bounds. Removed nodes 
are then represented in aggregate (e.g., the siblings of “Arts” under 
“Humanities” in Figure 3). Clicking on one of these aggregates 
causes the DOI values of the aggregated nodes to rise, which in turn 
causes the aggregate to expand, revealing a subset of elided nodes. 
Aggregates are computed by sorting all the items in the given depth 
level by their DOI values, then sequentially removing the lowest-
interest nodes and updating size calculations until the blocks will fit 
within the display bounds. Since the lowest-interest nodes may be 
dispersed throughout the given depth level, this requires some book-
keeping of elided nodes, updating size calculations when adjacent 
nodes are marked for aggregation. 

3.2.2.2 Handling Excessive Depth 
In the case of excessive depth, the tree is too tall for its allotted 
space. One solution, applied in the contexts of both geometric 
scaling [2] and zooming [6], is to scale the tree to fit. Excessive 
scaling, however, eventually destroys the legibility of the tree. As a 
result, in some cases (e.g., largely textual data) scaling can be 
undesirable. One recourse is to introduce scrolling or panning [6].  
The solution implemented in our current work is to automatically 
translate the view, centering the visualization on the most recent 
user-selected focus node. A bread-crumb trail of elided ancestors is 
used to maintain context and provide immediate access to higher 
levels of the tree. The translation component is determined by 
counting how many depth levels, starting from the root, must be 
removed to allow the user-selected focus and its children to fit into 
view. In addition, we add some extra logic to prevent the tree from 
translating back and forth as the user browses a group of siblings 
with descendants of shifting depth requirements. This prevents the 
jarring effect of the focus unduly bouncing around. 



3.2.3 Position Assignment 
In the final phase of the layout algorithm, nodes are assigned their 
screen co-ordinates. This pass iterates through each depth level from 
the root of the tree down, at each level first determining the position 
of the blocks and then laying out the nodes each block contains. 
Iterating through depth levels visits nodes in a breadth-first fashion, 
ensuring that parent nodes have their positions assigned before 
children blocks are considered. 
To facilitate users’ visual search, we would like children blocks 
centered underneath their parent nodes. Due to screen boundaries 
and space constraints, however, this is not always possible, so we 
would like to minimize the distance between parents and children. 
This could be achieved by minimizing the squared distance between 
parent nodes and the centers of their children blocks, subject to the 
constraint that all blocks fit within display bounds and do not 
overlap. This constitutes a quadratic programming optimization 
problem, which, while solvable using various optimization 
techniques, we address with an approximation that runs in time 
linear to the number of blocks. 
We process the blocks within a depth level from the “outside-in,” 
beginning with the blocks nearest the edges of the display and 
centering them under their parents without exceeding the display 
boundaries. We then compute the amount of space needed for the 
remaining blocks (which might be zero), and push the current 
blocks towards the display boundary as necessary to free the 
requisite space and ensure that they do not overlap. The distance 
each block is moved is proportional to its size, as larger blocks can 
move further and still be directly underneath (though not centered 
under) their parent. This process is then repeated recursively for the 
pair of blocks adjacent to the previous ones, until either all blocks 
have been positioned or there is only a single block left, which we 
simply place within the remaining space, aligning its center as close 
as possible to its parent. 
Once the blocks for a given level have been positioned, the provided 
bounds are used to position the nodes and aggregates within the 
blocks by a depth-first traversal of the block content. 

4. EVALUATION AND ANALYSIS 
Both empirical and theoretical analyses confirm the efficiency of 
our algorithmic contributions. Figure 5 depicts a comparison of DOI 
calculation times for three approaches to the FISHEYE view: a 
naïve tree traversal (the typed used by the original DOITrees), a 
pruned tree traversal that updates only the tree rooted at the least 
common ancestor of current and previous foci [4], and our 
disinterest thresholding approach. The plots were generated by 
timing DOI calculations of random walks in uniform trees. The tests 
were performed on a 1GHz Pentium III IBM ThinkPad T23 with 
256MB RAM. As shown by the graph, our approach scales 
logarithmically, while the others scale linearly, exceeding a 100ms 
threshold [1] around 30,000 nodes. 
An informal asymptotic analysis also shows that the proposed 
TreeBlock algorithm has a nearly linear running time, bounded from 
above by n log n, where n is the number of visible nodes prior to 
aggregation. Both the first and third passes made by the algorithm 
are clearly linear, as they involve a single walk through the tree and 
our node size computation and tree segmentation routines run in 
constant time. The only point at which non-linear complexity is 
introduced is during the second pass, if and when aggregation 
occurs, requiring the n log n operation of sorting the nodes in a 
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           Figure 5 Comparison of DOI calculation times 
given depth level. However, this rarely includes the whole 
visualized structure, making the common case less costly than the 
upper bound might imply. In actual usage the algorithm has 
performed admirably, as rendering bottlenecks will slow 
performance long before the time required by the layout algorithm 
becomes an issue. 

5. CONCLUSION 
In this paper we have extended previous work on focus+context 
visualizations, describing an optimized approach to DOI calculation 
and presenting TreeBlock, a new tree layout algorithm that supports 
the display of multi-focal trees within bounded space constraints. 
Together, these features allow interactive visualization at animation 
rates with tree structures on the order of million nodes while making 
the most of the available screen real estate. On top of these system 
features we have implemented techniques for supporting the 
exploration of large trees, including advanced search and filtering 
options and the ability to construct index trees, user-defined spatial 
indices into the larger data set. We are currently in the process of 
running a controlled user study to understand the impact of these 
techniques on user experience. In future work we intend to use the 
results of this evaluation to improve our design and visualize ever 
larger and varied structures. 
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