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DOLBEAULT HARMONIC (1,1)-FORMS ON 4-DIMENSIONAL

COMPACT QUOTIENTS OF LIE GROUPS WITH A LEFT

INVARIANT ALMOST HERMITIAN STRUCTURE

RICCARDO PIOVANI

Abstract. We study Dolbeault harmonic (1,1)-forms on compact quotients
M = Γ/G of 4-dimensional Lie groups G admitting a left invariant almost
Hermitian structure (J,ω). In this case, we prove that the space of Dolbeault
harmonic (1,1)-forms on (M,J,ω) has dimension b− + 1 if and only if there
exists a left invariant anti self dual (1,1)-form γ on (G,J) satisfying idcγ = dω.
Otherwise, its dimension is b−. In this way, we answer to a question by Zhang.

1. Introduction

Let (M,J) be an almost complex manifold of real dimension 2n. Given, on
(M,J), an almost Hermitian metric g, with fundamental form ω, the triple (M,J,ω)
will be called an almost Hermitian manifold. The exterior derivative decomposes
into

d = µ + ∂ + ∂ + µ.
By the map ∗ ∶ Ap,q → An−q,n−p, we denote the C-linear extension of the real Hodge

∗ operator. We set ∂∗ ∶= − ∗ ∂∗ and ∂
∗
∶= − ∗ ∂∗, which are the L2 formal adjoint

operators respectively of ∂ and ∂, i.e., they are L2 adjoint when M is compact.
Recall that

∆
∂
∶= ∂∂

∗
+ ∂
∗
∂

is the Dolbeault Laplacian, which is a formally self adjoint elliptic operator of order
2. We set

Hp,q

∂
∶= ker∆

∂
∩Ap,q

to be the space of Dolbeault harmonic (p, q)-forms. If M is compact, it is well
known that the dimension

h
p,q

∂
∶= dimCHp,q

∂
,

is finite. If the almost complex structure J is integrable, i.e., if (M,J) is a complex
manifold, then the numbers hp,q

∂
depend only on the complex structure and not

on the metric, being the dimensions of the (p, q)-Dolbeault cohomology spaces by
Hodge theory.

Whether or not the numbers hp,q
∂

depend on the choice of the almost Hermitian

metric ω on a given compact almost Hermitian manifold (M,J,ω) is a question by
Kodaira and Spencer, which appeared as Problem 20 in Hirzebruch’s 1954 problem
list [10]. Recently, in [12] (cf. [13]), Holt and Zhang proved that the number h0,1

∂
depends on the choice of the metric on a given compact almost complex 4-manifold,
answering the question of Kodaira and Spencer. They also proved that on a compact
almost Kähler 4-manifold it holds that h1,1

∂
= b−+1, see [12, Proposition 6.1]. Later,
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2 RICCARDO PIOVANI

in [19], Tardini and Tomassini proved that the number h1,1
∂

also depends on the

choice of the metric. In particular, on a compact almost Hermitian 4-manifold
(M,J,ω), they proved that h1,1

∂
= b− if ω is strictly locally conformally almost

Kähler, and h1,1
∂
= b−+1 if ω is globally conformally almost Kähler, see [19, Theorem

3.7]. Moreover, very recently, in [11, Theorem 3.1] Holt proved that h1,1
∂
= b− + 1

and h
1,1

∂
= b− are the only two possible options on a compact almost Hermitian

4-manifold. As a corollary, he obtained the following

Theorem 1.1 ([11, Corollary 3.2]). Let (M,J,ω) be a compact almost Hermitian 4-

manifold. Assume that ω is Gauduchon, i.e., ∂∂ω = 0. Then, h1,1
∂
(M,J,ω) = b− + 1

if and only if there exists an anti self dual (1,1)-form γ ∈ A1,1(M,J) satisfying

idcγ = dω.

Otherwise, h
1,1

∂
(M,J,ω) = b−.

Recall that if ω is Gauduchon, then the space of Dolbeault harmonic (1,1)-forms
is expressed by

H1,1

∂
= {fω + γ ∣f ∈ C, ∗γ = −γ, fdω = idcγ}.

See [16] for a self contained survey of the above results. See [11, 17] for similar results
about Bott-Chern harmonic forms on compact almost Hermitian 4-manifolds. See
also [4, 15, 20] for other interesting results concerning Dolbeault and Bott-Chern
harmonic forms on compact almost Hermitian manifolds of higher dimension.

Note that, in the integrable case, it is well known that a compact complex surface
(M,J) admits a Kähler metric if and only if b1 is even, and b1 is even if and only

if h1,1
∂
= b− + 1, see e.g., [1]. Looking at [12, Proposition 6.1] and [19, Theorem

3.7], on a 4-manifold endowed with a non integrable almost Hermitian structure,

one might expect that h1,1
∂
= b− + 1 if and only if the metric is globally conformally

almost Kähler, see [11, Question 3.3]. However, in the non integrable case, it

might happen that h1,1
∂
= b− + 1 when the almost Hermitian metric is not globally

conformally almost Kähler. Indeed, in [18], Tomassini and the author of the present

paper proved that h1,1
∂
= b− + 1 on an explicit example of a 4-dimensional compact

almost complex manifold endowed with a non globally conformally almost Kähler
metric.

Nonetheless, it is reasonable to expect h1,1
∂

to detect almost Kählerness in some

other sense, as in the integrable case. Indeed, Zhang recently raised the following

Question 1.2 ([22, Section 2.5]). Let (M,J) be a compact almost complex 4-
manifold. Is it true that (M,J) admits an almost Kähler metric if and only if

max
ω almost Hermitian

h
1,1

∂
(M,J,ω) = b− + 1

holds?

In this paper, we show an improvement of Theorem 1.1 in the setting of compact
quotients of Lie groups admitting a left invariant almost Hermitian structure. Our
primary tool is the symmetrization process, following the ideas of [2, 7]. The main
result of this note is the next theorem.

Theorem 3.6. Let G be a 4-dimensional Lie group and let Γ be a discrete subgroup

such that M = Γ/G is compact. Assume that (J,ω) is a left invariant almost

Hermitian structure on G. Then, h
1,1

∂
(M,J,ω) = b− + 1 if and only if there exists a

left invariant anti self dual (1,1)-form γ ∈ A1,1(G,J) satisfying

idcγ = dω.
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Otherwise, h
1,1

∂
(M,J,ω) = b−.

We use an application of Theorem 3.6, i.e., Corollary 3.8, in many successive
examples of left invariant almost Hermitian structures on compact quotients of
solvable Lie groups, namely on the primary and secondary Kodaira surfaces, on the
Inoue surfaces of type SM , on the Hyperelliptic surfaces and on the 4-dimensional
nilmanifold which does not admit complex structures.

We remark that Theorem 3.6 is particularly useful when proving that h1,1
∂
= b−

just having to show that there exist no left invariant anti self dual (1,1)-forms
γ ∈ A1,1(G,J) satisfying idcγ = dω, whereas, if one only uses Theorem 1.1, one
should prove that there exist no anti self dual (1,1)-forms γ ∈ A1,1(M,J) satisfying
idcγ = dω. In short, Theorem 3.6 allows us to just consider left invariant anti self
dual (1,1)-forms when computing h1,1

∂
.

Furthermore, thanks to Corollary 3.8, we are also able to answer Question 1.2
negatively. In fact, both on the secondary Kodaira surface and on the Inoue surface
of type SM , we build a left invariant, non integrable almost complex structure which
admits almost Hermitian metrics with h

1,1

∂
= b− + 1, but does not admit almost

Kähler metrics since b2 = 0; see Propositions 4.1 and 4.2. Here, Corollary 3.8 just
plays the role of helping us to find such almost Hermitian metrics with h1,1

∂
= b−+1.

The paper is organized in the following way. In section 2, we introduce some
standard preliminaries of almost complex and almost Hermitian geometry. In sec-
tion 3, we recall the symmetrization process and prove our main result, Theorem
3.6, and Corollary 3.8. In section 4 we apply Corollary 3.8 to many examples of left
invariant almost Hermitian structures on compact quotients of solvable Lie groups.
In this way, we also answer Question 1.2.

Acknowledgments. The author would like to thank sincerely Tom Holt, Nicoletta
Tardini, Adriano Tomassini and Weiyi Zhang for useful and interesting conversa-
tions, as well as the referee for reading carefully the paper and for many valuable
suggestions.

2. Preliminaries

Throughout this paper, we will only consider connected manifolds without
boundary. Let (M,J) be an almost complex manifold of dimension 2n, i.e., a
2n-differentiable manifold endowed with an almost complex structure J , that is
J ∈ End(TM) and J2 = − id. The complexified tangent bundle TCM = TM ⊗ C

decomposes into the two eigenspaces of J associated to the eigenvalues i,−i, which
we denote respectively by T 1,0M and T 0,1M , giving

TCM = T 1,0M ⊕ T 0,1M.

We denote by Λ1,0M and Λ0,1M the dual vector bundles of T 1,0M and T 0,1M ,
respectively, and set

Λp,qM =
p

⋀Λ1,0M ∧
q

⋀Λ0,1M

to be the vector bundle of (p, q)-forms. Let Ap,q = Ap,q(M,J) = Γ(M,Λp,qM) be
the space of smooth sections of Λp,qM . We denote by Ak = Ak(M) = Γ(M,ΛkM)
the space of k-forms. Note that ΛkM ⊗C =⊕p+q=k Λ

p,qM .
Let f ∈ C∞(M,C) be a smooth function on M with complex values. Its differ-

ential df is contained in A1 ⊗ C = A1,0 ⊕ A0,1. On complex 1-forms, the exterior
derivative acts as

d ∶ A1 ⊗C→ A2 ⊗C = A2,0 ⊕A1,1 ⊕A0,2.
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Therefore, it turns out that the exterior derivative operates on (p, q)-forms as

d ∶ Ap,q → Ap+2,q−1 ⊕Ap+1,q ⊕Ap,q+1 ⊕Ap−1,q+2,

where we denote the four components of d by

d = µ + ∂ + ∂ + µ.

From the relation d2 = 0, we derive

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

µ2 = 0,
µ∂ + ∂µ = 0,
∂2 + µ∂ + ∂µ = 0,
∂∂ + ∂∂ + µµ + µµ = 0,

∂
2
+ µ∂ + ∂µ = 0,

µ∂ + ∂µ = 0,
µ2 = 0.

We also define the operator dc ∶= J−1dJ . It is a straightforward computation to
show that

dc = i(µ − ∂ + ∂ − µ).
Let (M,J) be an almost complex manifold. If the almost complex structure J

is induced from a complex manifold structure on M , then J is called integrable.
Recall that J being integrable is equivalent to the exterior derivative decomposing
into d = ∂ + ∂.

A Riemannian metric onM for which J is an isometry is called almost Hermitian.
Let g be an almost Hermitian metric, the 2-form ω such that

ω(u, v) = g(Ju, v) ∀u, v ∈ Γ(TM)
is called the fundamental form of g. We will call (M,J,ω) an almost Hermitian
manifold. We denote by h the Hermitian extension of g on the complexified tangent
bundle TCM , and by the same symbol g the C-bilinear symmetric extension of
g on TCM . Also denote by the same symbol ω the C-bilinear extension of the
fundamental form ω of g on TCM . Thanks to the elementary properties of the two
extensions h and g, we may want to consider h as a Hermitian operator T 1,0M ×
T 1,0M → C and g as a C-bilinear operator T 1,0M ×T 0,1M → C. Recall that it holds
h(u, v) = g(u, v̄) for all u, v ∈ Γ(T 1,0M).

Let (M,J,ω) be an almost Hermitian manifold of real dimension 2n. Extend h
on (p, q)-forms and denote the Hermitian inner product by ⟨⋅, ⋅⟩. Let ∗ ∶ Ap,q Ð→
An−q,n−p the C-linear extension of the standard Hodge ∗ operator on Riemannian
manifolds with respect to the volume form Vol = ωn

n!
. Then the operators

d∗ = − ∗ d∗, µ∗ = − ∗ µ∗, ∂∗ = − ∗ ∂∗, ∂
∗
= − ∗ ∂∗, µ∗ = − ∗ µ∗,

are the L2 formal adjoint operators respectively of d,µ, ∂, ∂,µ. Recall that

∆d = dd∗ + d∗d

is the Hodge Laplacian, and, as in the integrable case, set

∆
∂
= ∂∂

∗
+ ∂
∗
∂,

as the ∂, or Dolbeault, Laplacian.
If M is compact, then we easily deduce the following relations

⎧⎪⎪
⎨⎪⎪⎩

∆d = 0 ⇐⇒ d = 0, d∗ = 0,
∆

∂
= 0 ⇐⇒ ∂ = 0, ∂∗ = 0,
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which characterize the spaces of harmonic forms

Hk
d , Hp,q

∂
,

defined as the spaces of forms which are in the kernel of the associated Laplacian.
These Laplacians are elliptic operators on the almost Hermitian manifold (M,J,ω),
implying that the spaces of harmonic forms are finite dimensional when the manifold
is compact. Denote by Hp,q

d
the space (Hp+q

d
⊗C) ∩Ap,q, and by

bk, h
p,q
d
, h

p,q

∂

respectively the real dimension of Hk
d , which is a topological invariant, and the

complex dimensions of Hp,q
d

, Hp,q

∂
, which are almost Hermitian invariants.

Let us focus for a moment on real dimension 4. Let (M,g) be a compact oriented
Riemannian manifold of real dimension 4, and set

Λ− = {α ∈ Λ2M ∶ ∗α = −α}

to be the bundle of anti self dual 2-forms. Denote by A− = Γ(M,Λ−) the space of
smooth anti self dual 2-forms, and by

H− = {α ∈ A− ∶ ∆dα = 0},

the subspace of harmonic anti self dual 2-forms. Set b− = dimRH−. Note that b− is
metric independent: see [6, Chapter 1] for its topological meaning.

Let (M,J,ω) be an almost Hermitian manifold of real dimension 4. Note that
the space of anti self dual complex valued 2-forms A− ⊗C is indeed a subspace of
A1,1, which will be denoted by A−

C
. Furthermore, the space H− ⊗ C is indeed a

subspace of H1,1
d , and will be denoted by H−

C
.

Recall that, on a given almost Hermitian manifold (M,J,ω) of dimension 2n,

the almost Hermitian metric is called Gauduchon if ∂∂ωn−1 = 0, or equivalently
if ddcωn−1 = 0, or equivalently if d∗θ = 0, where θ is the Lee form of ω, uniquely
determined by

dωn−1 = θ ∧ ωn−1,

thanks to the Lefschetz isomorphism. Let us recall the following fundamental result
by Gauduchon, [8]: given a compact almost Hermitian 2n-manifold (M,J, ω̃), there
always exists a Gauduchon metric ω = etω̃ in the conformal class of ω̃, with t ∈
C∞(M), which is unique up to homothety for n > 1.

Remark 2.1. We point out that h
1,1

∂
is a conformal invariant of almost Hermitian

metrics on a given almost complex 4-manifold, see [19, Lemma 3.1]. Therefore, on

a given almost Hermitian 4-manifold (M,J,ω), in order to compute h
1,1

∂
(M,J,ω),

we can always choose to work with a Gauduchon metric ω̃ which is conformal to ω

and calculate h
1,1

∂
(M,J, ω̃), which is equal to h

1,1

∂
(M,J,ω).

Finally, we will need a local formula for the Hodge ∗ operator. Let us recall
it. Let (M,J,ω) be an almost Hermitian manifold of real dimension 2n. Choose a
local frame β1, . . . , βn of A1,0. We can write locally

ω = i
n

∑
i,j=1

gijβ
i
∧ β

j
,

where gij = gji. Let ϕ,ψ ∈ A
p,q be locally written as

ϕ =∑ϕ
ApBq

βApBq , ψ =∑ψ
ApBq

βApBq ,

with

Ap = (a1, . . . , ap), Bq = (b1, . . . , bq)
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multi-indices of length p, q respectively, such that 1 ≤ a1 < ⋯ < ap ≤ n and 1 ≤ b1 <
⋯ < bq ≤ n. Given the matrix (gij) = (gij)

−1, we set

ψApBq =∑ga1γ1⋯gapγpgλ1b1⋯gλqbqψ
γ1...γpλ1...λq

,

such that the local formula for the pointwise Hermitian product ⟨⋅, ⋅⟩ defined on
(p, q)-forms is given by

⟨ϕ,ψ⟩ =∑ϕ
ApBq

ψApBq .

We consider the volume form
ωn

n!
= in det(gij)β11...nn = in(−1)n(n−1)

2 det(gij)β1...n1...n.

Recall that ∗ ∶ Ap,q → An−q,n−p is defined by the relation

ϕ ∧ ∗ψ = ⟨ϕ,ψ⟩ω
n

n!
∀ϕ,ψ ∈ Ap,q.

Therefore, the local formula for ∗ψ is

∗ψ = in(−1)n(n−1)
2 det(gij)∑ ǫ

ApBq

ψApBqβAn∖ApBn∖Bq ,

where ǫ
ApBq

is the sign of the permutation sending (1, . . . , n,1, . . . , n) to

(Ap,Bq,An ∖Ap,Bn ∖Bq). Since ∗ωψ = (∗ωψ), it follows
∗ψ = in(−1)n+n(n−1)

2
+(n−p)(n−q) det(gij)∑ ǫ

ApBq

ψApBqβBn∖BqAn∖Ap .

Note that (−1)n+n(n−1)
2
+(n−p)(n−q) = (−1)n(n−1)

2
+pq−n(p+q), therefore

(1) ∗ψ = in(−1)n(n−1)
2
+pq−n(p+q) det(gij)∑ ǫ

ApBq

ψApBqβBn∖BqAn∖Ap .

3. Invariant structures on compact quotients of Lie groups

In this section we study compact quotients of Lie groups admitting a left invari-
ant almost Hermitian structure, and focus on real dimension 4 in order to find a
characterization which describes the dimension of the space of Dolbeault harmonic
(1,1)-forms.

We start by recalling the following fundamental result about compact quotients
of Lie groups due to Milnor.

Lemma 3.1 ([14, Lemma 6.2]). If the Lie group G admits a discrete subgroup Γ
with compact quotient, then G admits a bi-invariant volume form ν.

Now, let us introduce the symmetrization process following [7, Theorem 2.1], [2,
Theorem 7] and [21, p. 192].

Let G be a Lie group and let Γ be a discrete subgroup such that M = Γ/G is
compact. Let ν be a volume form on M induced by a bi-invariant volume form
on G. Denote by g the Lie algebra of G. Given any covariant k-tensor field T ∶

Γ(M,TM)k → C∞(M) on M , we define a covariant k-tensor field Tν ∶ g
k → R on g

by

Tν(X1, . . . ,Xk) = 1

ν(M) ∫M T (X1, . . . ,Xk)ν, ∀X1, . . . ,Xk ∈ g,

where ν(M) = ∫M ν denotes the volume of M with respect to the measure induced
by ν. Note that, if T is left invariant, then Tν = T . The symmetrization operator
has the following fundamental property. We recall the proof here for completeness.

Theorem 3.2 ([7, Theorem 2.1], cf. [2, Theorem 7]). Let G be an n-dimensional

Lie group and let Γ be a discrete subgroup such that M = Γ/G is compact. Let ν be

a volume form on M induced by a bi-invariant volume form on G. If α ∈ Ak(M),
then (dα)ν = d(αν).
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Proof. Without loss of generality we may assume, rescaling the volume form, that
ν(M) = 1. Let us consider first the case of smooth functions. Let f ∈ C∞(M).
Then fν ∈ R and dfν = 0. On the other hand, for any X ∈ g, we have

(df)ν(X) = ∫
M
X(f)ν = ∫

M
LX(f)ν = ∫

M
LX(fν),

where the last equality follows since ν is right invariant and so it is invariant under
the local flow of X ∈ g, which implies LXν = 0. Now, by Cartan’s formula, we
derive

∫
M
LX(fν) = ∫

M
iX(d(fν)) +∫

M
d(iX(fν)) = 0,

where the first term in the above sum vanishes as fν ∈ An(M) and so d(fν) = 0,
and the second term vanishes by the Stoke’s theorem. Thus also (df)ν = 0.

Now, recall the formula for the exterior derivative of α. For any X0, . . . ,Xk ∈ g,
we have

dα(X0, . . . ,Xk) = ∑
1≤i≤n

(−1)iXi(α(X0, . . . , X̂i, . . . ,Xk))+

+ ∑
1≤i<j≤n

(−1)i+jα([Xi,Xj],X0, . . . , X̂i, . . . , X̂j , . . . ,Xk).
Therefore,

dαν(X0, . . . ,Xk) = ∑
1≤i≤n

(−1)iXi(∫
M
α(X0, . . . , X̂i, . . . ,Xk)ν)+

+ ∑
1≤i<j≤n

(−1)i+j ∫
M
α([Xi,Xj],X0, . . . , X̂i, . . . , X̂j , . . . ,Xk)ν

= ∫
M
∑

1≤i<j≤n
(−1)i+jα([Xi,Xj],X0, . . . , X̂i, . . . , X̂j , . . . ,Xk)ν

= ∫
M
dα(X0, . . . ,Xk)ν+

− ∫
M
∑

1≤i≤n
(−1)iXi(α(X0, . . . , X̂i, . . . ,Xk))ν

= ∫
M
dα(X0, . . . ,Xk)ν

= (dα)ν(X0, . . . ,Xk),
where the penultimate equality follows from the case of smooth functions that we
have already treated. �

Now, assume that G admits a left invariant almost complex structure J ,
which descends to the quotient M . We observe that if ψ ∈ Ap,q(M,J), then
ψν ∈ Ap,q(G,J) and it is left invariant. We easily deduce the following lemma.

Lemma 3.3. Let G be a 2n-dimensional Lie group and let Γ be a discrete subgroup

such that M = Γ/G is compact. Let ν be a volume form on M induced by a bi-

invariant volume form on G. Assume that J is a left invariant almost complex

structure on G. Then for any ψ ∈ Ap,q(M,J) we have

(µψ)ν = µψν , (∂ψ)ν = ∂ψν , (∂ψ)ν = ∂ψν , (µψ)ν = µψν .
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Proof. The exterior derivative on (p, q)-forms decomposes into the direct sum d =
µ + ∂ + ∂ + µ, therefore

µψν + ∂ψν + ∂ψν + µψν = dψν

= (dψ)ν
= (µψ + ∂ψ + ∂ψ + µψ)ν
= (µψ)ν + (∂ψ)ν + (∂ψ)ν + (µψ)ν ,

and the thesis follows because the symmetrization process behaves well with respect
to the bidegree decomposition of forms. �

Let us now endow (G,J) with a left invariant almost Hermitian metric ω, which
also descends to the quotient M . It turns out that the symmetrization process
behaves well with the Hodge ∗ operator, here indicated by ∗ω.

Lemma 3.4. Let G be a 2n-dimensional Lie group and let Γ be a discrete sub-

group such that M = Γ/G is compact. Let ν be a volume form on M induced by

a bi-invariant volume form on G. Assume that (J,ω) is a left invariant almost

Hermitian structure on G. Then, for any ψ ∈ Ap,q(M,J), we have

(∗ωψ)ν = ∗ωψν .

Proof. Without loss of generality we may assume, rescaling the volume form, that
ν(M) = 1. Denote by ∗ω ∶ A

p,q(G,J) → An−q,n−p(G,J) the Hodge ∗ operator on(G,J,ω) with respect to the volume form ωn

n!
. Choose β1, . . . , βn to be a global

coframe of left invariant (1,0)-forms on (G,J). With the same notation as Section
2, for any ψ ∈ Ap,q(M,J), recall the formula (1) for ∗ωψ with respect to the global
coframe β1, . . . , βn:

∗ωψ = in(−1)n(n−1)
2
+pq−n(p+q) det(gij)∑ ǫ

ApBq

ψApBqβBn∖BqAn∖Ap .

In this case, since ω is left invariant, note that gij and gij are complex constants.

Therefore,

(∗ωψ)ν = ∫
M
(in(−1)n(n−1)

2
+pq−n(p+q) det(gij)∑ ǫ

ApBq

ψApBqβBn∖BqAn∖Ap)ν
= in(−1)n(n−1)

2
+pq−n(p+q) det(gij)∑ ǫ

ApBq

(∫
M
ψApBqν)βBn∖BqAn∖Ap ,

and since

ψν = ∫
M
(∑ψ

ApBq

βApBq)ν
=∑(∫

M
ψ
ApBq

ν)βApBq ,

it also follows that

∗ωψν = in(−1)n(n−1)
2
+pq−n(p+q) det(gij)∑ ǫ

ApBq

(ψν)ApBqβBn∖BqAn∖Ap

= in(−1)n(n−1)
2
+pq−n(p+q) det(gij)∑ ǫ

ApBq

(∫
M
ψApBqν)βBn∖BqAn∖Ap .

This ends the proof. �

We remark that, in order to prove the relation (∗ωψ)ν = ∗ωψν , it is fundamental
to assume that the almost Hermitian metric ω is left invariant on G, so that gij

and gij are complex constants.
With an analogous proof, we note that Lemma 3.4 can be generalized as follows.
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Proposition 3.5. Let G be a Lie group and let Γ be a discrete subgroup such that

M = Γ/G is compact. Let ν be a volume form on M induced by a bi-invariant

volume form on G. Let g be a left invariant Riemannian metric on G. Then, for

any ψ ∈ Ak(M), we have (∗gψ)ν = ∗gψν .

We are now able to prove the following main theorem.

Theorem 3.6. Let G be a 4-dimensional Lie group and let Γ be a discrete subgroup

such that M = Γ/G is compact. Assume that (J,ω) is a left invariant almost

Hermitian structure on G. Then, h
1,1

∂
(M,J,ω) = b− + 1 if and only if there exists a

left invariant anti self dual (1,1)-form γ ∈ A1,1(G,J) satisfying
idcγ = dω.

Otherwise, h
1,1

∂
(M,J,ω) = b−.

Proof. First of all, recall that any left invariant almost Hermitian metric is Gaudu-
chon. We recall here the proof for completeness. Indeed, if θ is its Lee form, then
d∗ωθ is a left invariant function, i.e., a constant, and

∫
M
d∗ωθ

ωn

n!
= 0

since d∗ω is the L2 formal adjoint of d, impying d∗ωθ = 0.
Therefore, if such a γ exists, then the thesis follows from Theorem 1.1. Con-

versely, if h1,1
∂
(M,J,ω) = b− + 1, then by Theorem 1.1 there exists an anti self dual

(1,1)-form γ ∈ A1,1(M,J) satisfying idcγ = dω. Let ν be a volume form on M

induced by a bi-invariant volume form on G and let us consider the left invariant
form γν ∈ A1,1(G,J). By Lemma 3.3, we derive

idcγν = (idcγ)ν = (dω)ν = dω,
since ω, and thus dω, are left invariant on G. Moreover, by Lemma 3.4,

∗ωγν = (∗ωγ)ν = (−γ)ν = −γν ,
that is, γν is anti self dual. This concludes the proof. �

To apply Theorem 3.6 in explicit examples, we will need the following

Lemma 3.7. Let G be a 4-dimensional Lie group and let Γ be a discrete subgroup

such that M = Γ/G is compact. Assume that (J,ω) is a left invariant almost

Hermitian structure on G. Let ϕ1, ϕ2 be a global coframe of left invariant (1,0)-
forms on (G,J). The fundamental form ω is written as

(2) ω = ir2ϕ11
+ is2ϕ22

+ uϕ12
− uϕ21,

with r, s > 0 and u ∈ C such that rs > ∣u∣. Set τ =
√
r2s2 − ∣u∣2 ≠ 0. Then, γ is a left

invariant anti self dual (1,1)-form on (G,J) iff it can be written as

γ = Ar2ϕ11
+

1

r2
(A(2∣u∣2 − r2s2) + iτ(Bu −Cu))ϕ22

+(3)

+ ( − iAu +Bτ)ϕ12
+ (iAu +Cτ)ϕ21,

for some A,B,C ∈ C.

Proof. If we set

(4) ψ1 = rϕ1
+ i
u

r
ϕ2, ψ2 =

√
r2s2 − ∣u∣2

r
ϕ2,

then the fundamental form ω can be rewritten as

ω = i(ψ11
+ψ22).
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It follows that γ is a left invariant anti self dual (1,1)-form iff it is written as

(5) γ = Aψ11
+Bψ12

+Cψ21
−Aψ22,

with A,B,C ∈ C. Then (3) follows from plugging (4) into (5), since

ψ11 = r2ϕ11
− iuϕ12

+ iuϕ21
+
∣u∣2
r2

ϕ22,

ψ12 =
√
r2s2 − ∣u∣2(ϕ12

+ i
u

r2
ϕ22),

ψ21 =
√
r2s2 − ∣u∣2(ϕ21

− i
u

r2
ϕ22),

ψ22 =
r2s2 − ∣u∣2

r2
ϕ22.

This ends the proof. �

Note that, varying u ∈ C, r, s ∈ R, r, s > 0 and rs > ∣u∣, any given left invariant
almost Hermitian metric on G can be written as

ω = ir2ϕ11
+ is2ϕ22

+ uϕ12
− uϕ21,

if ϕ1, ϕ2 is a global coframe of left invariant (1,0)-forms on G. Combining Theorem
3.6 and Lemma 3.7, we obtain the following operative corollary.

Corollary 3.8. Let G be a 4-dimensional Lie group and let Γ be a discrete subgroup

such that M = Γ/G is compact. Assume that (J,ω) is a left invariant almost

Hermitian structure on G. Let ϕ1, ϕ2 be a global coframe of left invariant (1,0)-
forms on (G,J), and write ω as in (2), with u ∈ C, r, s ∈ R, r, s > 0 and rs > ∣u∣. Set
τ =
√
r2s2 − ∣u∣2 ≠ 0. Then h1,1

∂
(M,J,ω) = b−+1 if and only if there exist A,B,C ∈ C

such that

(ir2 −Ar2)∂ϕ11
+ (is2 − 1

r2
(A(2∣u∣2 − r2s2) + iτ(Bu −Cu)))∂ϕ22

+

+ (u + iAu −Bτ)∂ϕ12
+ ( − u − iAu −Cτ)∂ϕ21 = 0,

and

(ir2 +Ar2)∂ϕ11
+ (is2 + 1

r2
(A(2∣u∣2 − r2s2) + iτ(Bu −Cu)))∂ϕ22

+

+ (u − iAu +Bτ)∂ϕ12
+ ( − u + iAu +Cτ)∂ϕ21 = 0.

Otherwise, h
1,1

∂
(M,J,ω) = b−.

Proof. By Theorem 3.6, h1,1
∂
(M,J,ω) = b− + 1 if and only if there exists a left

invariant anti self dual (1,1)-form γ satisfying idcγ = dω. In general, the left
invariant almost Hermitian metric ω is expressed by (2), and a left invariant anti

self dual (1,1)-form γ on G is written as in (3) by Lemma 3.7. Since dc = i(∂ − ∂)
and d = ∂ + ∂ on (1,1)-forms in real dimension 4, then

idcγ = dω ⇐⇒ ∂(ω − γ) = 0, ∂(ω + γ) = 0.
Combining this together with (2) and (3), we derive the thesis. �

We remark that h1,1
∂
(M,J,ω) = b− + 1 in Corollary 3.8 does not depend on the

choice of the global coframe ϕ1, ϕ2 of left invariant (1,0)-forms on G.
With a similar proof to Theorem 3.6, using Theorem 3.2, we can also prove that

there exists an almost Kähler metric onM if and only if there exists a left invariant
almost Kähler metric on G.
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Proposition 3.9. Let G be a 2n-dimensional Lie group and let Γ be a discrete

subgroup such that M = Γ/G is compact. Assume that J is a left invariant almost

complex structure on G. Then, there exists an almost Kähler metric on (M,J) if
and only if there exists a left invariant almost Kähler metric on (G,J).
Proof. The only thing to prove is that if there exists an almost Kähler metric ω
on M then there exists a left invariant almost Kähler metric ω̃ on G. Let ν be a
volume form on M induced by a bi-invariant volume form on G. Choose ω̃ = ων .
Note that ων is a positive real (1,1)-form and, since dω = 0, then dων = (dω)ν = 0
by Theorem 3.2. �

4. Applications

This section is devoted to the study of the number h1,1
∂

on explicit examples

of almost Hermitian 4-manifolds which are obtained as the compact quotient of
a Lie group by a discrete subgroup, through the systematic use of Corollary 3.8.
Motivated by Question 1.2, we also check if there exist almost Kähler metrics on
such manifolds through the use of Proposition 3.9.

4.1. Secondary Kodaira surface. LetM = Γ/G be a secondary Kodaira surface.
Here G is a solvable Lie group and Γ is a cocompact lattice. We refer to [9, pp.
756, 760] for the construction of M and for the structure equations of the global
coframe {e1, e2, e3, e4} of left invariant 1-forms on G,

de1 = e24, de2 = −e14, de3 = e12, de4 = 0.

Recall that b2 = 0, therefore in particular b− = 0.
We endow G and M with the left invariant almost complex structure J given by

ϕ1 = e1 + ie3, ϕ2 = e2 + ie4

being a global coframe of the vector bundle of (1,0) forms T 1,0G. The associated
structure equations are

dϕ1 =
i

4
(ϕ12

+ ϕ12
−ϕ21

+ 2ϕ22
+ϕ12),

dϕ2 =
i

4
(ϕ12

− ϕ12
−ϕ21

−ϕ12),
therefore the almost complex structure J is non integrable. This is the same almost
complex structure considered in [16, Section 6]. From the structure equations we
derive

4i∂ϕ11 = 2ϕ122, 4i∂ϕ11 = 2ϕ212,

4i∂ϕ12 = −ϕ121
−ϕ122, 4i∂ϕ12 = −ϕ112

+ϕ212,

4i∂ϕ21 = −ϕ121
+ϕ122, 4i∂ϕ21 = −ϕ112

−ϕ212,

4i∂ϕ22 = 0, 4i∂ϕ22 = 0.

Endow (G,J) with a left invariant almost Hermitian metric

ω = ir2ϕ11
+ is2ϕ22

+ uϕ12
− uϕ21,

with u ∈ C, r, s ∈ R, r, s > 0 and rs > ∣u∣. Set τ =√r2s2 − ∣u∣2 ≠ 0.
By Corollary 3.8, we have that h1,1

∂
(M,J,ω) = b− + 1 if and only if there exist

A,B,C ∈ C such that

(ir2 −Ar2)2ϕ122
+(u + iAu −Bτ)( −ϕ121

− ϕ122)+
+(−u − iAu −Cτ)( −ϕ121

+ϕ122) = 0,
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and

(ir2 +Ar2)2ϕ212
+(u − iAu +Bτ)( −ϕ112

+ ϕ212)+
+(−u + iAu +Cτ)( −ϕ112

−ϕ212) = 0,
if and only if there exist A,B,C ∈ C such that⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

−u − iAu +Bτ + u + iAu +Cτ = 0,(6)

−u + iAu −Bτ + u − iAu −Cτ = 0,(7)

2ir2 − 2Ar2 − u − iAu +Bτ − u − iAu −Cτ = 0,(8)

2ir2 + 2Ar2 + u − iAu +Bτ + u − iAu −Cτ = 0.(9)

Summing (6) and (7), subtracting (6) from (7), summing (8) and (9), subtracting
(8) from (9), we obtain ⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

u = u,
B = −C,

C = i(r4+u2)
r2
√
r2s2−u2

,

A = − u
r2
.

Therefore, Im(u) = 0 if and only if h1,1
∂
(M,J,ω) = b− + 1 = 1, and Im(u) ≠ 0 if and

only if h1,1
∂
(M,J,ω) = b− = 0.

Note that, since b2 = 0, then there exist no symplectic forms on M , and thus no
almost Kähler metrics on (M,J). This can be reproved with the help of Proposition
3.9. Indeed, there exists an almost Kähler metric on (M,J) if and only if there

exists a left invariant almost Kähler metric on (G,J). Since dω = ∂ω + ∂ω and

ω = ω, then dω = 0 if and only if ∂ω = 0. We have ∂ω = 0 if and only if⎧⎪⎪⎨⎪⎪⎩
u = u,
u = −ir2,

which implies u = r = 0, but this cannot happen since r > 0.
Summing up, we have just proved the following

Proposition 4.1. Let M = Γ/G, J , ω be as above. We have h
1,1

∂
(M,J,ω) = b−+1 =

1 iff Im(u) = 0, otherwise h1,1
∂
(M,J,ω) = b− = 0. Moreover, there exist no almost

Kähler metrics on (M,J).
This gives a negative answer to Question 1.2.

4.2. Inoue surface SM . Let M = Γ/G be a Inoue surface of type SM . Here G is a
solvable Lie group and Γ is a cocompact lattice. We refer to [9, pp. 755, 760] for its
construction and for the structure equations of the global coframe {e1, e2, e3, e4} of
left invariant 1-forms on G. For any α,β ∈ R, α ≠ 0,

de1 = αe14 + βe24, de2 = −βe14 + αe24, de3 = −2αe34, de4 = 0.

Recall that b2 = 0, therefore in particular b− = 0.
We endow G and M with the left invariant almost complex structure J given by

ϕ1 = e1 + ie3, ϕ2 = e2 + ie4

being a global coframe of the vector bundle of (1,0) forms T 1,0G. The associated
structure equations are

dϕ1 = α
i

4
(ϕ12

−ϕ12
+ 3ϕ21

+ 3ϕ12) + β i
2
ϕ22,

dϕ2 = β
i

4
(ϕ12

−ϕ12
−ϕ21

− ϕ12) + α i
2
ϕ22,
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therefore the almost complex structure J is non integrable. This is the same almost
complex structure considered in [16, Section 6]. From the structure equations we
derive

4i∂ϕ11 = −2αϕ121
+ 2βϕ122, 4i∂ϕ11 = −2αϕ112

+ 2βϕ212,

4i∂ϕ12 = −βϕ121
+ αϕ122, 4i∂ϕ12 = −βϕ112

− 3αϕ212,

4i∂ϕ21 = −βϕ121
− 3αϕ122, 4i∂ϕ21 = −βϕ112

+ αϕ212,

4i∂ϕ22 = 0, 4i∂ϕ22 = 0.

Endow (G,J) with a left invariant almost Hermitian metric

ω = ir2ϕ11
+ is2ϕ22

+ uϕ12
− uϕ21,

with u ∈ C, r, s ∈ R, r, s > 0 and rs > ∣u∣. Here r, s, u may depend on α,β. Set

τ =
√
r2s2 − ∣u∣2 ≠ 0.

By Corollary 3.8, we have that h1,1
∂
(M,J,ω) = b− + 1 if and only if there exist

A,B,C ∈ C such that

(ir2 −Ar2)( − 2αϕ121
+ 2βϕ122)+(u + iAu −Bτ)( − βϕ121

+ αϕ122)+
+(−u − iAu −Cτ)( − βϕ121

− 3αϕ122) = 0,
and

(ir2 +Ar2)( − 2αϕ112
+ 2βϕ212)+(u − iAu +Bτ)( − βϕ112

− 3αϕ212)+
+(−u + iAu +Cτ)( − βϕ112

+ αϕ212) = 0,
if and only if there exist A,B,C ∈ C such that

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

−2α(ir2 −Ar2) − β(u + iAu −Bτ) + β(u + iAu +Cτ) = 0,(10)

−2α(ir2 +Ar2) − β(u − iAu +Bτ) + β(u − iAu −Cτ) = 0,(11)

2β(ir2 −Ar2) + α(u + iAu −Bτ) + 3α(u + iAu +Cτ) = 0,(12)

2β(ir2 +Ar2) − 3α(u − iAu +Bτ) + α(−u + iAu +Cτ) = 0.(13)

Summing (10) and (11), subtracting (10) from (11), summing (12) and (13), sub-
tracting (12) from (13), we obtain

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

β(u − u) = −2iαr2,
B = −C,

C = 3(3u+u)α3−6ir2α2β+(3u+u)αβ2−2ir2β3

4α(α2+β2)
√

r2s2−∣u∣2 ,

A = − 2iα
2

α2+β2 .

Therefore, β Im(u) = −αr2 if and only if h1,1
∂
(M,J,ω) = b− + 1 = 1, and β Im(u) ≠

−αr2 if and only if h1,1
∂
(M,J,ω) = b− = 0.

Note that, since b2 = 0, then there exist no symplectic forms on M , and thus no
almost Kähler metrics on (M,J). Let us also check it explicitly. We have ∂ω = 0 if
and only if ⎧⎪⎪⎨⎪⎪⎩

β(u − u) = −2iαr2,
u(3α2

+ β2) = u(β2
− α2),

which gives a contradiction. Therefore, by Proposition 3.9, there exist no almost
Kähler metrics on (M,J).

Summing up, we have just proved the following
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Proposition 4.2. Let M = Γ/G, J , ω be as above. We have h
1,1

∂
(M,J,ω) = b−+1 =

1 iff β Im(u) = −αr2, otherwise h1,1
∂
(M,J,ω) = b− = 0. In particular, if β = 0, then

h
1,1

∂
(M,J,ω) = b− = 0 for any left invariant almost Hermitian metric ω on G.

Moreover, there exist no almost Kähler metrics on M .

This gives a negative answer to Question 1.2.

4.3. 4-nilmanifold without complex structures, I. Let M = Γ/G be the 4-
dimensional nilmanifold which does not admit integrable almost complex structures.
Here G is a nilpotent Lie group and Γ is a cocompact lattice. We refer to [9, p.
758] for its construction and to [3, p. 7] for the structure equations of the global
coframe {e1, e2, e3, e4} of left invariant 1-forms on G,

de1 = 0, de2 = 0, de3 = −e12, de4 = −e13.

Recall that b2 = 2 and b− = 1.
We endow G and M with the left invariant almost complex structure J given by

ϕ1 = e3 + ie4, ϕ2 = e1 + ie2

being a global coframe of the vector bundle of (1,0) forms T 1,0G. If we switch ϕ1

and ϕ2, then this is the same almost complex structure considered in [18, Section
3] and in [3, p. 20]. The associated structure equations are

dϕ1 =
i

4
(ϕ12

+ ϕ12
−ϕ21

− 2ϕ22
+ϕ12),

dϕ2 = 0.

Note that the almost complex structure J is non integrable. From the structure
equations we derive

4i∂ϕ11 = −2ϕ122, 4i∂ϕ11 = −2ϕ212,

4i∂ϕ12 = −ϕ122, 4i∂ϕ12 = ϕ212,

4i∂ϕ21 = ϕ122, 4i∂ϕ21 = −ϕ212,

4i∂ϕ22 = 0, 4i∂ϕ22 = 0.

Endow (G,J) with a left invariant almost Hermitian metric

ω = ir2ϕ11
+ is2ϕ22

+ uϕ12
− uϕ21,

with u ∈ C, r, s ∈ R, r, s > 0 and rs > ∣u∣. Set τ =√r2s2 − ∣u∣2 ≠ 0.
By Corollary 3.8, we have that h1,1

∂
(M,J,ω) = b− + 1 if and only if there exist

A,B,C ∈ C such that

{ −2ir2 + 2Ar2 − u − iAu +Bτ − u − iAu −Cτ = 0,(14)

−2ir2 − 2Ar2 + u − iAu +Bτ + u − iAu −Cτ = 0.(15)

Summing (14) and (15), subtracting (14) from (15), we obtain

⎧⎪⎪⎨⎪⎪⎩
A = r2Re(u),
B −C = 2ir2(1+Re(u)2r4)√

r2s2−∣u∣2 .

Therefore it always holds that h1,1
∂
(M,J,ω) = b− + 1 = 2.

Note that ω is almost Kähler, i.e., ∂ω = 0, if and only if

Re(u) = ir2.
Summing up, we have just proved the following
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Proposition 4.3. Let M = Γ/G, J , ω be as above. We have h
1,1

∂
(M,J,ω) =

b− + 1 = 2 for every left invariant almost Hermitian metric ω on (G,J). Moreover,

ω is almost Kähler iff Re(u) = ir2.
4.4. 4-nilmanifold without complex structures, II. Let M = Γ/G be the 4-
dimensional nilmanifold which does not admit integrable almost complex structures
as in the previous subsection.

We endow G and M with the left invariant almost complex structure J given by

ϕ1 = e1 + ie4, ϕ2 = e2 + ie3

being a global coframe of the vector bundle of (1,0) forms T 1,0G. The associated
structure equations are

dϕ1 =
1

4
( −ϕ12

+ϕ12
+ ϕ21

+ϕ12),
dϕ2 = −

i

4
(ϕ12

+ ϕ12
−ϕ21

+ϕ12).
Note that the almost complex structure J is non integrable. This is the same almost
complex structure considered in [3, p. 18]. From the structure equations we derive

4i∂ϕ11 = 0, 4i∂ϕ11 = 0,

4i∂ϕ12 = −ϕ121
− iϕ122, 4i∂ϕ12 = ϕ112

+ iϕ212,

4i∂ϕ21 = ϕ121
− iϕ122, 4i∂ϕ21 = −ϕ112

+ iϕ212,

4i∂ϕ22 = 0, 4i∂ϕ22 = 0.

Endow (G,J) with a left invariant almost Hermitian metric

ω = ir2ϕ11
+ is2ϕ22

+ uϕ12
− uϕ21,

with u ∈ C, r, s ∈ R, r, s > 0 and rs > ∣u∣. Set τ =√r2s2 − ∣u∣2 ≠ 0.
By Corollary 3.8, we have that h1,1

∂
(M,J,ω) = b− + 1 if and only if there exist

A,B,C ∈ C such that

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

−u − iAu +Bτ − u − iAu −Cτ = 0,(16)

u + iAu −Bτ − u − iAu −Cτ = 0,(17)

u − iAu +Bτ + u − iAu −Cτ = 0,(18)

u − iAu +Bτ − u + iAu +Cτ = 0.(19)

Summing (16) and (17), subtracting (16) from (17), summing (18) and (19), sub-
tracting (18) from (19), we obtain

B = C = u = 0.

Therefore, u = 0 if and only if h1,1
∂
(M,J,ω) = b− + 1 = 2, and u ≠ 0 if and only if

h
1,1

∂
(M,J,ω) = b− = 1.
Note that ω is almost Kähler, i.e., ∂ω = 0, if and only if

u = 0.

Summing up, we have just proved the following

Proposition 4.4. Let M = Γ/G, J , ω be as above. We have h
1,1

∂
(M,J,ω) = b−+1 =

2 iff u = 0, otherwise h1,1
∂
(M,J,ω) = b− = 1. Moreover, ω is almost Kähler iff u = 0.
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4.5. Hyperelliptic surface, I. Let M = Γ/G be a Hyperelliptic surface. Here G
is a solvable Lie group and Γ is a cocompact lattice. We refer to [9, pp. 754,760] for
its construction and for the structure equations of the global coframe {e1, e2, e3, e4}
of left invariant 1-forms on G,

de1 = −e23, de2 = e13, de3 = 0, de4 = 0.

Recall that b2 = 2 and b− = 1.
We endow G and M with the left invariant almost complex structure J given by

ϕ1 = e1 + ie3, ϕ2 = e2 + ie4

being a global coframe of the vector bundle of (1,0) forms T 1,0G. The associated
structure equations are

dϕ1 = −
i

4
(ϕ12

+ϕ12
+ϕ21

− ϕ12),
dϕ2 =

i

2
ϕ11,

therefore the almost complex structure J is non integrable. This is the same almost
complex structure considered in [17, Section 6]. From the structure equations we
derive

4i∂ϕ11 = 0, 4i∂ϕ11 = 0,

4i∂ϕ12 = ϕ122, 4i∂ϕ12 = ϕ212,

4i∂ϕ21 = ϕ122, 4i∂ϕ21 = ϕ212,

4i∂ϕ22 = −2ϕ121, 4i∂ϕ22 = −2ϕ112.

Endow (G,J) with a left invariant almost Hermitian metric

ω = ir2ϕ11
+ is2ϕ22

+ uϕ12
− uϕ21,

with u ∈ C, r, s ∈ R, r, s > 0 and rs > ∣u∣. Set τ =√r2s2 − ∣u∣2 ≠ 0.
By Corollary 3.8, we have that h1,1

∂
(M,J,ω) = b− + 1 if and only if there exist

A,B,C ∈ C such that⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

is2r2 −A(2∣u∣2 − r2s2) − iτ(Bu −Cu) = 0,(20)

is2r2 +A(2∣u∣2 − r2s2) + iτ(Bu −Cu) = 0,(21)

u + iAu −Bτ − u − iAu −Cτ = 0,(22)

u − iAu +Bτ − u + iAu +Cτ = 0.(23)

Summing (20) and (21), we obtain

is2r2 = 0,

which cannot be since r, s > 0. Therefore it always holds that h1,1
∂
(M,J,ω) = b− = 1.

Let us also check if there exist almost Kähler metrics on (M,J). Note that ω is

almost Kähler, i.e., ∂ω = 0, if and only if⎧⎪⎪⎨⎪⎪⎩
u = u,
is2 = 0,

which cannot be since s > 0. Therefore, by Proposition 3.9, there exist no almost
Kähler metrics on (M,J).

Summing up, we have just proved the following

Proposition 4.5. Let M = Γ/G, J , ω be as above. We have h
1,1

∂
(M,J,ω) = b− = 1

for every left invariant almost Hermitian metric ω on (G,J). Moreover, there exist

no almost Kähler metrics on (M,J).
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4.6. Hyperelliptic surface, II. Let M = Γ/G be a Hyperelliptic surface, as in
the previous subsection.

We endow G and M with the deformed left invariant almost complex structure
Jt given by

ϕ1 = (1 + t)e1 + i(1 − t)e2, ϕ2 = e3 + ie4,
with t ∈ C, 0 < ∣t∣ < 1, being a global coframe of the vector bundle of (1,0) forms
T 1,0G. This is the same deformed almost complex structure considered in [18,
Section 2]. For t = 0, this is the usual Kähler complex structure on Hyperelliptic
surfaces. The associated structure equations are

dϕ1 =
i

2(1 − ∣t∣2)((1 + ∣t∣2)(ϕ12
+ϕ12) + 2t(ϕ21

−ϕ12)),
dϕ2 = 0,

therefore the almost complex structure Jt is non integrable. From the structure
equations we derive

2i(1 − ∣t∣2)∂ϕ11 = 0, 2i(1 − ∣t∣2)∂ϕ11 = 0,

2i(1 − ∣t∣2)∂ϕ12 = −(1 + ∣t∣2)ϕ122, 2i(1 − ∣t∣2)∂ϕ12 = −2tϕ212,

2i(1 − ∣t∣2)∂ϕ21 = −2tϕ122, 2i(1 − ∣t∣2)∂ϕ21 = −(1 + ∣t∣2)ϕ212,

2i(1 − ∣t∣2)∂ϕ22 = 0, 2i(1 − ∣t∣2)∂ϕ22 = 0.

Endow (G,Jt) with a left invariant almost Hermitian metric

ωt = ir2ϕ11
+ is2ϕ22

+ uϕ12
− uϕ21,

with u ∈ C, r, s ∈ R, r, s > 0 and rs > ∣u∣. Here r, s, u may depend on t. Set

τ =
√
r2s2 − ∣u∣2 ≠ 0.

By Corollary 3.8, we have that h1,1
∂
(M,Jt, ωt) = b− + 1 if and only if there exist

A,B,C ∈ C such that⎧⎪⎪⎨⎪⎪⎩
(1 + ∣t∣2)(u + iAu −Bτ) + 2t(−u − iAu −Cτ) = 0,
2t(u − iAu +Bτ) + (1 + ∣t∣2)(−u + iAu +Cτ) = 0.

It is easy to check that the rank of the matrix associated to this system is 2.
Therefore it always holds that h1,1

∂
(M,Jt, ωt) = b− + 1 = 2.

Note that ωt is almost Kähler, i.e., ∂ωt = 0, if and only if

2tu = (1 + ∣t∣2)u,
which is equivalent to u = 0.

Summing up, we have just proved the following

Proposition 4.6. Let M = Γ/G, Jt, ωt be as above. We have h
1,1

∂
(M,Jt, ωt) =

b−+1 = 2 for every left invariant almost Hermitian metric ωt on (G,Jt). Moreover,

ωt is almost Kähler iff u = 0.

4.7. Primary Kodaira surface, I. LetM = Γ/G be the primary Kodaira surface.
Here G is a nilpotent Lie group and Γ is a cocompact lattice. We refer to [9, pp.
755,760] for its construction and for the structure equations of the global coframe{e1, e2, e3, e4} of left invariant 1-forms on G,

de1 = 0, de2 = 0, de3 = −e12, de4 = 0.

Recall that b2 = 2 and b− = 1.
We endow G and M with the left invariant almost complex structure Jα given

by
ϕ1 = (e1 + αe4) + ie3, ϕ2 = e2 + ie4,
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with α ∈ R, being a global coframe of the vector bundle of (1,0) forms T 1,0G. The
associated structure equations are

dϕ1 = −
1

4
(iϕ12

+ iϕ12
− iϕ21

− 2αϕ22
+ iϕ12),

dϕ2 = 0,

therefore the almost complex structure Jα is non integrable. This is the same almost
complex structure considered in [19, Example 4.1]. From the structure equations
we derive

4∂ϕ11 = 2αϕ122, 4∂ϕ11 = −2αϕ212,

4∂ϕ12 = −iϕ122, 4∂ϕ12 = iϕ212,

4∂ϕ21 = iϕ122, 4∂ϕ21 = −iϕ212,

4∂ϕ22 = 0, 4∂ϕ22 = 0.

Endow (G,Jα) with a left invariant almost Hermitian metric

ωα = ir2ϕ11
+ is2ϕ22

+ uϕ12
− uϕ21,

with u ∈ C, r, s ∈ R, r, s > 0 and rs > ∣u∣. Here r, s, u may depend on α. Set

τ =
√
r2s2 − ∣u∣2 ≠ 0.

By Corollary 3.8, we have that h1,1
∂
(M,Jα, ωα) = b− + 1 if and only if there exist

A,B,C ∈ C such that

{ 2iαr2 − 2Aαr2 − iu +Au + iBτ − iu +Au − iCτ = 0,(24)

−2iαr2 − 2Aαr2 + iu +Au + iBτ + iu +Au − iCτ = 0.(25)

Summing (24) and (25), subtracting (24) from (25), we obtain

⎧⎪⎪⎨⎪⎪⎩
u + u = 2αr2,
B = C.

Therefore, Re(u) = αr2 if and only if h1,1
∂
(M,Jα, ωα) = b− + 1 = 2, and Re(u) ≠ αr2

if and only if h1,1
∂
(M,Jα, ωα) = b− = 1.

Note that ωα is almost Kähler, i.e., ∂ωα = 0, if and only if

Re(u) = αr2.
Summing up, we have just proved the following

Proposition 4.7. Let M = Γ/G, Jα, ωα be as above. We have h
1,1

∂
(M,Jα, ωα) =

b− + 1 = 2 iff Re(u) = αr2, otherwise h
1,1

∂
(M,Jα, ωα) = b− = 1. Moreover, ωα is

almost Kähler iff Re(u) = αr2.
4.8. Primary Kodaira surface, II. Let M = Γ/G be the primary Kodaira sur-
face, as in the previous subsection.

We endow G and M with the left invariant almost complex structure Jβ given
by

ϕ1 = e4 + ie1, ϕ2 = e2 − iβe3,
with β ∈ R∖{0}, being a global coframe of the vector bundle of (1,0) forms T 1,0G.
The associated structure equations are

dϕ1 = 0,

dϕ2 =
β

4
(ϕ12

+ϕ12
+ϕ21

− ϕ12),
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therefore the almost complex structure Jβ is non integrable. This is the same almost
complex structure considered in [5, Section 6], [12, Section 2] and [17, Section 5].
From the structure equations we derive

4

β
∂ϕ11 = 0,

4

β
∂ϕ11 = 0,

4

β
∂ϕ12 = ϕ121,

4

β
∂ϕ12 = −ϕ112,

4

β
∂ϕ21 = ϕ121,

4

β
∂ϕ21 = −ϕ112,

4

β
∂ϕ22 = 0,

4

β
∂ϕ22 = 0.

Endow (G,Jβ) with a left invariant almost Hermitian metric

ωβ = ir2ϕ11
+ is2ϕ22

+ uϕ12
− uϕ21,

with u ∈ C, r, s ∈ R, r, s > 0 and rs > ∣u∣. Set τ =√r2s2 − ∣u∣2 ≠ 0.
By Corollary 3.8, we have that h1,1

∂
(M,Jβ , ωβ) = b− + 1 if and only if there exist

A,B,C ∈ C such that

{ u + iAu −Bτ − u − iAu −Cτ = 0,(26)

u − iAu +Bτ − u + iAu +Cτ = 0.(27)

Summing (26) and (27), subtracting (26) from (27), we obtain

⎧⎪⎪⎨⎪⎪⎩
u = u,
B = −C.

Therefore, Im(u) = 0 if and only if h1,1
∂
(M,Jβ , ωβ) = b− + 1 = 2, and Im(u) ≠ 0 if

and only if h1,1
∂
(M,Jβ , ωβ) = b− = 1.

Note that ωβ is almost Kähler, i.e., ∂ωβ = 0, if and only if

Im(u) = 0.
Summing up, we have just proved the following

Proposition 4.8. Let M = Γ/G, Jβ, ωβ be as above. We have h
1,1

∂
(M,Jβ , ωβ) =

b− + 1 = 2 iff Im(u) = 0, otherwise h1,1
∂
(M,Jβ , ωβ) = b− = 1. Moreover, ωβ is almost

Kähler iff Im(u) = 0.
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