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SOFTWARE Open Access

DolphinNext: a distributed data processing
platform for high throughput genomics
Onur Yukselen1, Osman Turkyilmaz2, Ahmet Rasit Ozturk2, Manuel Garber1,3,4* and Alper Kucukural1,3,4*

Abstract

Background: The emergence of high throughput technologies that produce vast amounts of genomic data, such

as next-generation sequencing (NGS) is transforming biological research. The dramatic increase in the volume of

data, the variety and continuous change of data processing tools, algorithms and databases make analysis the main

bottleneck for scientific discovery. The processing of high throughput datasets typically involves many different

computational programs, each of which performs a specific step in a pipeline. Given the wide range of applications

and organizational infrastructures, there is a great need for highly parallel, flexible, portable, and reproducible data

processing frameworks.

Several platforms currently exist for the design and execution of complex pipelines. Unfortunately, current platforms

lack the necessary combination of parallelism, portability, flexibility and/or reproducibility that are required by the

current research environment. To address these shortcomings, workflow frameworks that provide a platform to

develop and share portable pipelines have recently arisen. We complement these new platforms by providing a

graphical user interface to create, maintain, and execute complex pipelines. Such a platform will simplify robust and

reproducible workflow creation for non-technical users as well as provide a robust platform to maintain pipelines

for large organizations.

Results: To simplify development, maintenance, and execution of complex pipelines we created DolphinNext.

DolphinNext facilitates building and deployment of complex pipelines using a modular approach implemented in a

graphical interface that relies on the powerful Nextflow workflow framework by providing 1. A drag and drop user

interface that visualizes pipelines and allows users to create pipelines without familiarity in underlying programming

languages. 2. Modules to execute and monitor pipelines in distributed computing environments such as high-

performance clusters and/or cloud 3. Reproducible pipelines with version tracking and stand-alone versions that

can be run independently. 4. Modular process design with process revisioning support to increase reusability and

pipeline development efficiency. 5. Pipeline sharing with GitHub and automated testing 6. Extensive reports with R-

markdown and shiny support for interactive data visualization and analysis.

Conclusion: DolphinNext is a flexible, intuitive, web-based data processing and analysis platform that enables

creating, deploying, sharing, and executing complex Nextflow pipelines with extensive revisioning and interactive

reporting to enhance reproducible results.
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Background
Analysis of high-throughput data is now widely regarded

as the major bottleneck in modern biology [1]. In re-

sponse, resource allocation has dramatically skewed to-

wards computational power, with significant impacts on

budgetary decisions [2]. One of the complexities of high-

throughput sequencing data analysis is that a large num-

ber of different steps are often implemented with a het-

erogeneous set of programs with vastly different user

interfaces. As a result, even the simplest sequencing ana-

lysis requires the integration of different programs and

familiarity with scripting languages. Programming was

identified early on as a critical impediment to genomics

workflows. Indeed, microarray analysis became widely

accessible only with the availability of several public and

commercial platforms, such as GenePattern [3] and

Affymetrix [4], that provided a user interface to simplify

the application of a diverse set of methods to process

and analyze raw microarray data.

A similar approach to sequencing analysis was later

implemented by Galaxy [5], GenomicScape [6], Terra

(https://terra.bio) and other platforms [3, 7–14]. Each of

these platforms has a similar paradigm: Users upload

data to a central server and apply a diverse, heteroge-

neous set of programs through a standardized user inter-

face. As with microarray data, these platforms allow

users without any programming experience to perform

sophisticated analyses on sequencing data obtained from

different protocols such as RNA Sequencing (RNA-Seq)

and Chromatin Immunoprecipitation followed by Se-

quencing (ChIP-Seq) and carry out sophisticated ana-

lysis. Users are able to align sequencing reads to the

genome, assess differential expression, and perform gene

ontology analysis through a unified point and click user

interface.

While current platforms are a powerful way to inte-

grate existing programs into pipelines that carry end-to-

end data processing, they are limited in their flexibility.

Installing new programs is usually only done by adminis-

trators or advanced users. This limits the ability of less

skilled users to test new programs or simply add add-

itional steps into existing pipelines. This development

flexibility is becoming ever more necessary as genome-

wide assays are becoming more prevalent and data ana-

lysis pipelines becoming increasingly creative [15].

Similarly, computing environments have also grown

increasingly complex. Institutions rely on a diverse set of

computing options ranging from large servers, higher

performance computing clusters, to cloud computing.

Data processing platforms need to be easily portable to

be used in different environments that best suit the

computational needs and budgetary constraints of the

project. Further, with the increased complexity of ana-

lyses, it is important to ensure reproducible analyses by

making analysis pipelines easily portable and less

dependent on the computing environment where they

were developed [16]. Lastly, it is necessary to have a flex-

ible and scalable pipeline platform that can be used both

by individuals with smaller sample sizes as well as by

medium and large laboratories that need to analyze hun-

dreds of samples a month, or centralized informatics

cores that analyze data produced by multiple

laboratories.

Nextflow is a recently developed workflow engine built

to address many of these needs [17]. The Nextflow en-

gine can be configured to use a variety of executors (e.g.

SGE, SLURM, LSF, Ignite) in a variety of computing

environments. A pipeline that leverages the specific

multi-core architecture of a server can be written on a

workstation and easily re-used on a high-performance

cluster environment (e.g. Amazon and Google cloud)

whenever the need for higher parallelization arises. Fur-

ther, Nextflow allows in-line process definition that sim-

plifies the incorporation of small processes that

implement new functionality. Not surprisingly, Nextflow

has quickly gained popularity, as reflected by several ef-

forts to provide curated and revisioned Nextflow-based

pipelines such as nf-core [18], Pipeliner [19] and CHI-

PER [20], which are available from a public repository.

In spite of its simplicity, Nextflow can get unwieldy

when pipelines become complex, and maintaining

them becomes taxing. Here we present DolphinNext,

a user-friendly, highly scalable, and portable platform

that is specifically designed to address current chal-

lenges in large data processing and analysis. Dolphin-

Next builds on Nextflow as shown in Fig. 1. To

simplify pipeline design and maintenance, Dolphin-

Next provides a graphical user interface to create

pipelines. The graphical design of workflows is critical

when dealing with large and complex workflows. Both

advanced Nextflow users as well as users with no

prior experience benefit from the ability to visualize

dependencies, branch points, and parallel processing

opportunities. DolphinNext goes beyond providing a

Nextflow graphical design environment and addresses

many of the needs of high-throughput data process-

ing: First, DolphinNext helps with reproducibility en-

abling the easy distribution and running of pipelines.

In fact, reproducible data analysis requires making

both the code and the parameters used in the analysis

accessible to researchers [21–24]. DolphinNext allows

users to package pipelines into portable containers

[25, 26] that can be run as stand-alone applications

because they include the exact versions of all software

dependencies that were tested and used. The auto-

matic inclusion of all software dependencies vastly

simplifies the effort needed to share, run and repro-

duce the exact results obtained by a pipeline.
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Second, DolphinNext goes beyond existing data pro-

cessing frameworks: Rather than requiring data to be

uploaded to an external server for processing, Dolphin-

Next is easily run across multiple architectures, either

locally or in the cloud. As such it is designed to process

data where the data resides rather than requiring users

to upload data into the application. Further, Dolphin-

Next is designed to work on large datasets, without

needing customization. It can thus support the needs of

large sequencing centers and projects that generate a

vast amount of sequencing data such as ENCODE [27],

GTex [28], and TCGA (The Cancer Genome Atlas) Re-

search Network (https://www.cancer.gov/tcga) that have

had the need to develop custom applications to support

their needs. DolphinNext can also readily support

smaller laboratories that generate large sequencing

datasets.

Third, as with Nextflow, DolphinNext is imple-

mented as a generic workflow design and execution

environment. However, in this report, we showcase its

power by implementing sequencing analysis pipelines

that incorporate best practices derived from our ex-

perience in genomics research. This focus is driven

by our current use of DolphinNext, but its architec-

ture is designed to support any workflow that can be

supported by Nextflow.

In conclusion, DolphinNext provides an intuitive

interface for weaving together processes each of which

have dependent inputs and outputs into complex work-

flows. DolphinNext also allows users to easily reuse

existing components or even full workflows as compo-

nents in new workflows; in this way, it enhances port-

ability and helps to create more reproducible and easily

customizable workflows. Users can monitor job status

and, upon identifying errors, correct parameters or data

files and restart pipelines at the point of failure. These

features save time and decrease costs, especially when

processing large data sets that require the use of cloud-

based services.

The key features of DolphinNext include:

� Simple pipeline design interface

� Powerful job monitoring interface

� User-specific queueing by job submissions tied to

user accounts

� Easy re-execution of pipelines for new sets of sam-

ples by copying previous runs

� Simplified sharing of pipelines using the GitHub

repository hosting system (github.com)

� Portability across computational environments such

as workstations, computing clusters, or cloud-based

servers

� Built-in pipeline and process revision control

� Full access to application run logs

� Parallel execution of non-dependent processes

� Integrated data analysis and reporting interface with

R markdown support

� Launching cloud clusters on Amazon (AWS) and

Google (GCP) with backup options to S3 and google

buckets

Fig. 1 DolphinNext builds on Nextflow and simplifies creating complex workflows
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Implementation
The DolphinNext workflow system, with its intuitive

web interface, was designed for a wide variety of users,

from bench biologists to expert bioinformaticians. Dol-

phinNext is meant to aid in the analysis and manage-

ment of large datasets on High Performance Computing

(HPC) environments (e.g LSF, SGE, Slurm Apache Ig-

nite), cloud services, or personal workstations.

DolphinNext is implemented with PHP, MySQL and

Javascript technologies. At its core, it provides a drag-

and-drop user interface for creating and modifying

Nextflow pipelines. Nextflow [17] is a language to create

scalable and reproducible scientific workflows. In creat-

ing DolphinNext, we aim to simplify Nextflow pipeline

building by shifting the focus from software engineering

to bioinformatics processes using a graphical interface

that requires no programming experience. DolphinNext

supports a wide variety of scripting languages (e.g. Bash,

Perl, Python, Groovy) to create processes. Processes can

be used in multiple pipelines, which increases the reus-

ability of the process and simplifies code sharing. To

that end, DolphinNext supports user and group level

permissions so that processes can be shared among a

small set of users or all users in the system. Users can

repurpose existing processes used in any other pipelines,

which eliminates the need to create the same process

multiple times. These design features allow users to

focus on only their unique needs rather than be con-

cerned with implementation details.

To facilitate the reproducibility of data processing and

the execution of pipelines in any computing environ-

ment, DolphinNext leverages Nextflow’s support for Sin-

gularity and Docker container technologies [25, 26].

This allows the execution of a pipeline created by Dol-

phinNext to require only Nextflow and a container soft-

ware (Singularity or Docker) to be installed in the host

machine. Containerization simplifies complex library,

software and module installation, packaging, distribution

and execution of the pipelines by including all depend-

encies. When distributed with a container, DolphinNext

pipelines can be readily executed in remote machines or

clusters without the need to manually install third-party

software programs. Alternatively, DolphinNext pipelines

can be exported as Nextflow code and distributed in

publications. Exported pipelines can be executed from

the command line upon ensuring that all dependencies

are available in the executing host. Moreover, multiple

executors, clusters, or remote machines can easily be de-

fined in DolphinNext in order to perform computations

in any available Linux-based cluster or workstation.

User errors can cause premature failure of pipelines,

while also consuming large amounts of resources. Add-

itionally, users may want to explore the impact of differ-

ent parameters on the resulting data. To facilitate re-

running of a pipeline, DolphinNext builds on Nextflow’s

ability to record a pipeline execution state, enabling the

ability to re-execute or resume a pipeline from any of its

steps, even after correcting parameters or correcting a

process. Pipelines can also be used as templates to

process new datasets by modifying only the dataset-

specific parameters.

In general, pipelines often require many different pa-

rameters, including the parameters for each individual

program in the pipeline, system parameters (e.g. paths,

commands), memory requirements, and the number of

processors to run each step. To reduce the tedious set-

up of complex pipelines, DolphinNext makes use of ex-

tensive pre-filling options to provide sensible defaults.

For example, physical paths of genomes, their index files,

or any third-party software programs can be defined for

each environment by the administrator. When a pipeline

uses these paths, the form loads pre-filled with these

variables, making it unnecessary to fill them manually.

The users still can change selected parameters as

needed, but the pre-filling of default parameters speeds

up the initialization of a new pipeline. For example, in

an RNA-Seq pipeline, if RefSeq annotations [29] are de-

fined as a default option, the user can change it to

Ensembl annotations [30] both of which may be located

at predefined locations. Alternatively, the user may spe-

cify a custom annotation by supplying a path to the de-

sired annotation file.

Finally, when local computing resources are not suffi-

cient, DolphinNext can also be integrated into cloud-

based environments. DolphinNext readily integrates with

Amazon AWS and Google GCP where, a new, dedicated

computer cluster can easily be set up within Dolphin-

Next with Nextflow’s Amazon and Google cloud sup-

port. On AWS, necessary input files can be entered from

a shared file storage EFS, EBS, or s3, and output files can

also be written on s3 or other mounted drives [31–33].

On GCP, the input files can be selected from a Google

bucket and the output files are exported to another Goo-

gle bucket.

General implementation and structure
DolphinNext has four modules: The profile module is

specifically designed to support a multi-user environ-

ment and allows an administrator to define the specifics

of their institutional computing environment. A pipeline

builder is to create reusable processes and pipelines. A

pipeline executor is created to run pipelines, and lastly

the reports section is to monitor the results.

Profile module

Users may have access to a wide range of different com-

puting environments: A workstation, Cloud Computing,

or a high-performance computing cluster where jobs are
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submitted through a job scheduler such as IBM’s LSF,

SLURM or Apache Ignite. DolphinNext relies on Next-

flow [17] to encapsulate computing environment settings

and allows administrators to rely on a single configur-

ation file that enables users to run the pipelines on di-

verse environments with minimal impact on user

experience. Further, cloud computing and higher per-

formance computing systems keep track of individual

user usage to allocate resources and determine job

scheduling priorities. DolphinNext supports individual

user profiles and can transparently handle user authenti-

cation. As a result, DolphinNext can rely on the under-

lying computing environment to enforce proper

resource allocation and fair sharing policies. By encapsu-

lating the underlying computing platform and user au-

thentication, administrators can provide access to

different computing architectures, and users with limited

computing knowledge can transparently access a vast

range of different computing environments through a

single interface.

Pipeline builder

While Nextflow provides a powerful platform to build

pipelines, it requires advanced programming skills to de-

fine pipelines as it requires users to use a programming

language to specify processes, dependencies, and the

execution order. Even for advanced users, when pipe-

lines are becoming complex, pipeline maintenance can

be a daunting task.

DolphinNext facilitates pipeline building, maintenance,

and execution by providing a graphical user interface to

create and modify Nextflow pipelines. Users choose

from a menu of available processes (Fig. 2a) and use

drag and drop functionality to create new pipelines by

connecting processes through their input and output pa-

rameters (Fig. 2b). Two processes can only be connected

Fig. 2 a A process for building index files b Input and output parameters attached to a process c The STAR alignment module connected

through input/output with matching parameter types. d The RNA-Seq pipeline can be designed using two nested pipelines: the STAR pipeline

and the BAM analysis pipeline
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when the output data type of one is compatible with the

input data type of the second (Fig. 2c). Upon connecting

two compatible processes DolphinNext creates all neces-

sary execution dependencies. Users can readily create

new processes using the process design module (see

below). Processes created in the design module are im-

mediately available to the pipeline designer without any

installation in DolphinNext.

The UI supports auto-saving to avoid loss of work if

users forget to save their work. Once a pipeline is cre-

ated, users can track revisions, edit, delete and share ei-

ther as a stand-alone container Nextflow program, or in

PDF format for documentation purposes.

The components of the pipeline builder are the

process definition module, the pipeline designer user

interface, and the revisioning system:

Process design module

Processes are the core units in a pipeline, they perform

self-contained and well-defined operations. DolphinNext

users designing a pipeline can define processes using a

wide variety of scripting languages (e.g. Shell scripting,

Groovy, Perl, Python, Ruby, R). Once a process is de-

fined, it is available to any pipeline designer. A pipeline

is built from individual processes by connecting outputs

with inputs. Whenever two processes are connected, a

dependency is implicitly defined whereby a process that

consumes the output of another only runs once this out-

put is generated. Since each process may require specific

parameters, DolphinNext provides several features to

simplify the maintenance of processes and input forms

that allow the user to select parameters to run them.

Automated input form generation. Running all pro-

cesses within a pipeline requires users to specify many

different parameters ranging from specifying the input

(e.g. input reads in fastq format, path to reference files)

to process specific parameters (e.g. alignment maximum

mismatches, minimum base quality to keep). To gather

this information, users fill out a form or set of forms to

provide the pipeline with all the necessary information

to run. A large number of parameters makes designing

and maintaining the user interfaces that gather this in-

formation time consuming and error-prone. Dolphin-

Next includes a meta-language that converts defined

input parameters to web controls. These input parame-

ters are declared in the header of a process script with

the help of additional directives. Form autofill support.

The vast majority of users work with default parameters

and only need to specify a small fraction of all the pa-

rameters used by the pipeline. To simplify pipeline

usage, we designed an autofill option to provide sensible

process defaults and compute environment information.

Autofill is meant to provide sensible defaults; however,

users can override them as needed. The descriptions of

parameters and tooltips are also supported in these di-

rectives. Figure 3 shows the description of a defined par-

ameter in RSEM settings.

Revisioning, reusability and permissions system

DolphinNext implements a revisioning system to track

all changes in a pipeline or a process. In this way, all ver-

sions of a process or pipeline are accessible and can be

used to reproduce old results or to evaluate the impact

of new changes. In addition, DolphinNext provides safe-

guards to prevent the loss of previous pipeline versions.

If a pipeline is shared (publicly or within a group), it is

not possible to make changes on its current revision. In-

stead, users must create a new version to make changes.

Hence, we keep pipelines safe from modifications

yet allowing for improvements to be available in new re-

visions. Unlike nf-core or other Nextflow based pipeline

repositories [18–20], DolphinNext keeps track of revi-

sions for each of the processes within a pipeline rather

than keeping revisions for each pipeline. In this way, the

right combination of process revisions in a pipeline can

be used to reproduce previously generated results. Dol-

phinNext uses a local database to assign and store a

unique identifier (UID) to every process and pipeline

created and every revision made. A central server may

be configured to assign UIDs across different Dolphin-

Next installations so that pipelines can be identified

from the UID, regardless of where they were created.

Pipeline designers and users can select any version of a

pipeline for execution or editing. In addition to database

support, DolphinNext integrates with a GitHub reposi-

tory so that pipelines can be more broadly shared. Dol-

phinNext can seamlessly push pipelines to a specified

repository or branch. In addition to storing the pipeline

code, DolphinNext updates its own pipeline or revision

database record with the GitHub commit id to keep the

revisions that have been synced with a GitHub reposi-

tory. To support tests and continuous integration of

pipelines, we have integrated Travis-ci (travis-ci.org), the

standard for automated testing. Pipeline designers can

define the Travis-ci test description document within

the DolphinNext pipeline builder. When a pipeline is

updated and pushed to GitHub, it automatically triggers

the Travis-ci tests. To enable Travis-ci automation, pipe-

line designers specify a container [25, 26] within the

pipeline builder.

User permissions and pipeline reusability. To increase

reusability, DolphinNext supports pipeline sharing. Dol-

phinNext relies on a permissions system similar to that

used by the UNIX operating systems. There are three

levels of permissions: user, group and world. By default,

a new pipeline is owned and only visible to the user who

created it. The user can change this default by creating a

group of users and designating pipelines as visible to
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users within that group. Alternatively, the user can make

a pipeline available to all users. DolphinNext further

supports a refereed workflow by which pipelines can

only be made public after authorization by an adminis-

trator, this is useful for organizations that desire to

maintain strict control of broadly available pipelines.

Although integration with GitHub makes sharing and

executing possible, pipelines can also be downloaded in

Nextflow format for documentation, distribution and

execution outside of DolphinNext. To allow users and

administrators to make pipelines available across instal-

lations, DolphinNext supports pipeline import and

export.

Nested pipelines

Many pipelines share not just processes, but subcompo-

nents involving several processes. For instance, BAM

quality assurance is common to most sequence process-

ing pipelines (Fig. 2d). It relies on RSeQC [34] and Pic-

ard (http://broadinstitute.github.io/picard) to create read

quality control reports. To minimize redundancy, these

modules can be encapsulated as pipelines and re-used as

if they were processes. The pipeline designer module

supports drag and drop of whole pipelines and in a simi-

lar way as it supports individual processes. Multiple

pipelines such as RNA-Seq, ATAC-Seq, and ChIP-Seq

can, therefore, have the same read quality assurance

logic (Figure S4). Reusing complex logic by

encapsulating it in a pipeline greatly simplifies and stan-

dardizes the maintenance of data processing pipelines.

Pipeline executor
One of the most frustrating events in data processing is

an unexpected pipeline failure. Failures can be the result

of an error in the parameters supplied to the pipeline

(e.g. an output directory with no write permissions, or

incompatible alignment parameters) or because of com-

puter system malfunctions. Restarting a process from

the beginning when an error occurred at the very end of

the pipeline can result in days of lost computing time.

DolphinNext provides a user interface to monitor

pipeline execution in real-time. If an error occurs the

pipeline is stopped; the user, however, can restart the

pipeline from the place where it stopped after changing

the parameters that caused the error (Fig. 3). Users can

also assign pipeline runs to projects so that all pipelines

associated with a project can be monitored together.

In addition to providing default values for options that

are pipeline specific, administrators can provide default

values for options common to all pipelines, such as re-

source allocation (e.g., memory, CPU, and time), and ac-

cess level of pipeline results.

Specific features of pipeline running are:

1. Run status page: DolphinNext provides a “Run

Status” page for monitoring the status of all running

jobs that belong to the user or the groups to which

Fig. 3 Resuming RNA-Seq pipeline after changing RSEM parameters
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the user belongs. This searchable table includes the

name of the run, working directory, description,

and status. Users can also access the run page of a

specific run to make a change, terminate, resume,

copy, delete, or re-execute.

2. Accessibility to all run logs: To monitor run

specific details and troubleshoot failed runs,

DolphinNext provides access to all application logs.

Further, it also gives access to Nextflow’s execution

reports, which include the execution time, resource

utilization (e.g. CPU or memory for each process),

process duration time (both clock and CPU time)

and memory utilization. In this way, users can

optimize their computational resources by reducing

unnecessary overhead based on the data available

from past executions.

Reports
Most processes in a pipeline produce interim data that is

used by downstream processes. For example, in an

RNA-Seq analysis pipeline, subtracting ribosomal reads

prior to genomic alignment reduces processing time.

This is done by aligning directly to the ribosomal RNA

genes, and keeping reads with no matches for alignment

to the genome or transcriptome [35]. In addition to re-

ducing compute time, the fraction of reads that align to

ribosomal genes is an important metric to assess the

technical efficiency of library preparation, specifically to

measure how well ribosomal depletion worked. Dolphin-

Next allows users to access and visualize interim pipe-

line results, such as intermediate alignments like

alignment to the ribosomal RNAs, that are not part of

the final result. Process designers can define any number

of secondary outputs, which the DolphinNext report

module can process and present in a user-friendly for-

mat. While there is an integrated table viewer for tabular

data, this data can also be seamlessly loaded and ana-

lyzed using an embedded DEBrowser, an interactive

visualization tool for count data [36]. PDF and HTML

files can be visualized within DolphinNext or down-

loaded for offline analysis (Fig. 4).

For more flexible reports, DolphinNext supports an R-

markdown defined output. Process designers can include

a custom R markdown script specifically designed to

handle and visualize the process output. Pipeline de-

signers can make this report available to users for inter-

active analysis of the process results (Fig. 5).

Results
Sequence analysis requires an iterative approach that

consists of two main tasks: data processing and data ana-

lysis [38] (Fig. 6). Data processing involves taking raw se-

quencing data to produce a count matrix in which

features (genes, peaks or any genomic annotation) are

scored across samples. Data analysis uses this count

matrix to perform comparisons across conditions (differ-

ential analysis), unbiased analysis (clustering, principal

component analysis), or supervised analysis (data model-

ing, classifier building) [36]. An informative count

matrix requires systematic data processing steps that are

consistent across samples and even projects. As opposed

to data analysis, which involves more ad-hoc, and data-

driven decisions, data processing can be standardized

into a workflow or pipeline that, once established, needs

very few changes. In general, data processing requires

great computing power and storage needs relative to

data analysis.

A typical data processing pipeline can be broken down

into three steps: pre-processing, processing, and post-

processing. Pre-processing: includes eliminating low-

quality reads or low-quality bases through filtering, read

trimming and adapter removal. These steps are critical

to improve alignment and assembly operations, which

make up the central processing step. In general, process-

ing of sequencing reads involves alignment to a genome

or reference annotations (e.g. a transcriptome) or an as-

sembly process. Post-processing involves evaluating the

quality of mapping or assembly before creating a count

table, quality checks of alignment and/or assembly steps,

and outputs the quantification of genomic features as

consolidated count tables. To enable post-processing

and data quality assessment, DolphinNext automatically

creates genome browser loadable files such as Tile Data

Files (TDF) for the Integrative Genome Viewer [39] and

Wiggle Track Format (WIG, or BigWIG) for the UCSC

genome browser [40, 41]. In addition, DolphinNext pro-

duces alignment reports that summarize read coverage

of genomic annotations (e.g. exonic, intergenic, UTR, in-

tronic) in order to help assess whether the library cap-

tured expected genomic regions.

Here, we highlight the flexibility of DolphinNext’s

pipeline builder by providing a detailed description of

end-to-end RNA-Seq and ChIP-Seq/ATAC-Seq process-

ing pipelines. Each of these pipelines provides unique

features not found in other publicly available workflows

such as: 1. Extensive support for pre-processing (read

trimming by quality or adapter sequence, iterative re-

moval of specific RNA or DNA species, such as rRNA

and repetitive sequences), 2. Support for different

aligners and quantification methods in the processing

steps, and 3. An extensive reports and quality control

checks in the post-processing steps.

RNA-Seq pipeline (Figure S1)

All sequence processing pipelines take one or several

fastq input files. This pipeline, like all other high-

throughput sequencing processing pipelines (see below

for other examples), first performs data preparation, a
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step that consists of basic read quality control and filter-

ing actions (Figure S2): read quality reports, read quality

filtering, read quality trimming, adapter removal. After

these quality control steps, the RNA-Seq pipeline offers

the user the option to align, filter out, and/or estimate

the abundance of both standard and predefined sets of

genomic loci (e.g. rRNAs, miRNAs, tRNAs, piRNAs,

snoRNAs, ERCC [42], mobile elements). Before any such

alignment, reads may be trimmed to the desired length

for optimal alignment, especially if quality issues in the

3′ or 5′ ends of the reads are suspected (e.g. to align

miRNA or tRNA sequences). Once the data preparation

phase of the pipeline is complete, the pipeline produces

quality reports including FastQC reports [43] and infor-

mation about the fraction of reads aligned to each of the

genomic loci selected by the user. In its current imple-

mentation, data preparation relies on FastQC [44],

adapter removal using cutadapt [45], 5′ and 3′

Fig. 4 a RSEM module which involves Count_Table to summarize sample counts into a consolidated count table. This process reports the results

with a table or upload the count table to embedded DEBrowser [36], b Count table report c. MultiQC [37] report to summarize numerous

bioinformatics tool results, and d Embedded DEBrowser [36] module for interactive differential expression analysis
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trimming, quality removal using trimmomatic [46], and

Bowtie2 [47] for alignments against selected regions or

transcripts (Figure S3).

Only reads that pass all filters in the data preparation

stage are kept for later steps. To estimate expression

levels, the RNA-Seq pipeline uses RSEM [48] which aligns

reads to a predefined set of transcripts. The user can use

available transcript sets (i.e Ensemble [49], GENCODE

[50, 51], RefSeq [52]) or upload their own. The RNA-Seq

pipeline also allows the user to align reads against the gen-

ome using splicing aware alignment algorithms and gener-

ate a genome browser viewable file to visually assess

genomic contamination and library quality. To do so, the

user may choose between any or all of the most com-

monly used aligners: STAR [53], Hisat2 [54] and Tophat2

[55]. Resulting alignments are then processed to generate

genome browser-friendly formats: bigwig (for UCSC gen-

ome browser [40] or TDF (for the integrative genome

viewer (IGV, [39]).

If the user opted to perform genomic alignments, the

pipeline reports overall quality metrics such as coverage

and the number of mapped reads to different genomic

and transcriptomic regions (Figure S4). These reports

rely on Picard’s CollectRNASeqMetrics program (http://

broadinstitute.github.io/picard) and the RSeQC [34]

program.

Fig. 5 R markdown report for RNA-Seq analysis. Users can adapt this template according to their needs

Fig. 6 DolphinNext allows for implementation of a complete sequencing analysis cycle
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Finally, the RNA-Seq pipeline returns a quantification

matrix that includes the estimated counts and tran-

scripts per million (TPM) based on RSEM [48] or by

simply counting reads using featureCounts [56] for each

gene and/or for each annotated isoform. These matrices

are used as inputs for differential gene expression ana-

lysis and can be uploaded directly to an embedded in-

stance of our DEBrowser [36] software, which allows

interactive exploration of the resulting data.

ATAC-Seq and ChIP-Seq pipeline (Figure S4-S5)

DolphinNext offers pipelines to process libraries for the

analysis of ChIP-Seq and ATAC-Seq data. These two

pipelines share most processes and only differ at a few

very specific points. They also share all initial data prep-

aration steps with the RNA-Seq pipeline, such that both

rely on the very same processes for read filtering, read

quality reporting and alignment to desired genomic loca-

tions to quantify and filter out the reads mapped to re-

peat regions or any other loci of interest. Filtering out

reads mapping to a predefined set of loci can dramatic-

ally speed up the genome-wide alignment that follows.

After data processing, reads are aligned to the genome

using a short read aligner such as Bowtie2 [47]. For large

data files, such as those typically obtained from ATAC-

Seq, alignments can be sped up by splitting the files into

smaller chunks that are aligned in parallel. The choice to

split and the chunk sizes should be determined by the

user based on the specific computing environment. By

default, the pipeline creates smaller files that each have 5

million reads. After alignments of each read chunk, the

results are automatically merged with the samtools [57]

merge function. The pipeline then allows users to esti-

mate and remove PCR duplicates using the Picard’s

mark duplicates (http://broadinstitute.github.io/picard)

function.

For ATAC-Seq, the pipeline calls accessible chromatin

regions by estimating the Tn5 transposase cut sites

through a read extension process that has been shown

to more accurately reflect the exact position that was ac-

cessible to transposase [35, 58]. Once each read has been

shortened, peaks are called identically in both the ChIP-

Seq and ATAC-Seq using MACS 2 [59].

When processing several samples together, the ATAC-

Seq and ChIP-Seq pipelines provide consensus peak calls

by merging all peaks individually called in each sample

using Bedtools [60]. The number of reads in each peak

location are then quantified using Bedtools [60] coverage

function. As a result, ATAC-Seq and ChIP-Seq pipelines

also generate a matrix that has the count values for each

peak region and samples. This matrix can be uploaded

directly to the embedded version of DEBrowser [36] to

perform differential analysis or downloaded to perform

other analysis. Finally, to determine motifs under the

peaks in ChIP-Seq pipeline, there is also a motif discov-

ery support using HOMER (http://homer.salk.edu/

homer/index.html).

Example use cases and comparisons
There are several features of DolphinNext that make

pipeline creation, maintenance and portability much

simpler than in other platforms. Here, we compared

DolphinNext with one of the most popular processing

platforms, Galaxy, to point out the main differences of

DolphinNext. Specifically:

Distributed pipeline execution with containerization

Large enterprises or universities support many different

execution environments: from High Performance Com-

puting Cluster (HPCC) to large workstations and cloud

platforms (AWS, GCP, Azure). Galaxy requires an in-

stance to be deployed and launched for each cloud clus-

ter. To make cloud computing available to users, a

Galaxy server needs to be continuously running on the

cloud or independent instances would need to be spun

for each cloud user. While the first solution can signifi-

cantly increase the cost of cloud computing, the latter

requires an administrator to continuously assist users.

On the other hand, using Nextflow’s cloud support

and containerization, DolphinNext supports all these en-

vironments through configurations stored within Dol-

phinNext. Each environment is configured once and

made available to all users or desired user groups. Fur-

ther, users can add other environments to which they

have exclusive access. For example, an investigator with

dual affiliation who has access to two HPCCs can have

both environments configured within DolphinNext. At

runtime, the investigator, or any members in his or her

group can decide which system to use depending on the

specific needs of their processes or the availability of the

systems. Similarly, investigators can decide on whether

to use their cost-free but busy local HPCC for routine

work without tight deadlines or instead use cloud-based

computing which is more expensive but ensures timely

processing. In fact, once a Google or Amazon cloud au-

thentication is defined in DolphinNext, users can launch

a temporary cluster that can dynamically scale depend-

ing on load with a couple of clicks.

Agile pipeline design

The evolving nature of research constantly requires new

ways in which to process data. As such pipelines are

constantly evolving and constant changes require the

ability to test different parameters and combinations of

existing programs and custom scripts. To adapt a pipe-

line, new parameters may be required or custom scripts

that pre-process data may be included. In Galaxy, the

forms to execute a tool are defined in static XML files in
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a tool wrapper. Any change in these files requires an up-

date by the tool developer and reinstallation of the tool

by the admin and a full system restart. Only a user with

administrator rights can install a new tool so that it is

available to all users. As a result, users cannot rapidly

test pipelines without administrator intervention.

DolphinNext simplifies pipeline/process creation for

regular users as well as administrators. For example, a

user needs to update an RNA-Seq pipeline with add-

itional programs and parameters to support newly avail-

able algorithms to add splicing variant discovery (e.g.

Using StringTie [61]). To do this, the user would navi-

gate to the pipeline builder module where all processes

in the pipeline can be updated or new ones can be

added. In Galaxy, the user depends on the tool developer

to improve the wrapper so that new parameters are ex-

posed, or the new program becomes ready for Galaxy

use. Instead, in DolphinNext, StringTie can be added

directly by the user to a private pipeline version and

used right away. The user can define the new input pa-

rameters to run StringTie as the form elements in the

process design module (see above). The defined input el-

ements (drop box, check box, input box etc.) are then

added to the run page automatically even while the pipe-

line is running. The only thing required is for the soft-

ware (e.g. StringTie) to be installed on a server or

container accessible to DolphinNext. An administrator

may be involved later if the user wants to make their

custom pipeline available to all DolphinNext users with

these changes.

Pipeline sharing

In Galaxy, the investigator can export the pipeline. How-

ever, in order for another investigator to run the pipe-

line, they would need a Galaxy instance installed and

configured with all the pipeline dependencies most likely

requiring administrative assistance.

When investigators use DolphinNext to process their

data, the platform’s pipeline sharing functionality is use-

ful for the reproducibility of the results and valuable for

writing the methods section of the publication. Once

pipelines are finalized, the user can share a link for the

pipeline or utilize GitHub integration. When a link is

shared, other investigators can easily execute the pipe-

line in their instance by just defining their profile. If a

pipeline is shared through GitHub, investigators can also

directly execute the pipeline from the command line

using Nextflow without a DolphinNext instance in-

stalled. Automatic report generator: Galaxy is designed

to chain the executed tools to create pipelines, and this

platform keeps all the uploaded files, defined collections,

and executed tools in its history. This type of history

structure that includes all executed pieces of the pipeline

makes it harder to create a built-in report. Even though

a history file in Galaxy can be shared with collaborators,

it requires extra effort to consolidate the results and

convert them to a report.

In DolphinNext, when users need to add a new report

or customize an existing report section, they can use the

pipeline builder module to simply select an existing out-

put or drag and drop a new output parameter to the

builder and attach it to the process (Fig. 2a) and select

the report type (Fig. 4a) (e.g. Html, table, pdf, R mark-

down, etc.). When executing the pipeline, only outputs

that are set to ‘publish’ are added as a section into the

report page. In this way, users can organize the run re-

sults of a large sequencing project involving hundreds of

samples and tools (see RNA-Seq example above) in a

single report page and easily compare the results of hun-

dred samples using the consolidated tables and plots.

Another advantage of customizing the reports page is

that the same pipeline can be used to assess a different

set of input parameters (e. g. using a new genome as-

sembly or a new transcript annotation set that has im-

proved 3′ UTRs or additional noncoding RNAs).

Rerunning the same pipeline with the new set of param-

eters and comparing the new and previous results are

usually not a trivial task without the automatic report

generator designed for the pipeline. However, it is an

easy task in DolphinNext, once input parameters are

changed and the run resumed, Nextflow only executes

the affected processes with this change to produce the

new reports. The previous reports can still be accessible

with a click on the same page that allows for easy com-

parison. Lastly, the report section in DolphinNext makes

sharing all the published results with collaborators in a

single page easier. In addition to that, embedded shiny

and R-markdown applications in these reports make ef-

fortless interactive data visualization and exploration

possible.

Overall, DolphinNext’s main advantage is to simplify

creating, deploying, sharing and executing pipelines

without administrator rights to democratize the data

processing and analysis for all users.

DolphinNext has been deployed in several institutions

and companies. A typical application of DolphinNext

was showcased in a recent report that identified and

characterized artery- and vein-specific endothelial en-

hancers in Zebrafish [62]. DolphinNext was used to

process single cell RNA-Seq and bulk RNA-Seq data in

this study. Bioinformatics core scientists from these in-

stitutions have particularly benefited from DolphinNext

as it allows them to rapidly customize and test pipelines

to support ever changing needs. DolphinNext also re-

duces the burden of supporting concurrent data process-

ing jobs as core scientists can allow users to monitor

pipeline execution and re-running of similar pipelines

while they focus on designing and testing new solutions.

Yukselen et al. BMC Genomics          (2020) 21:310 Page 12 of 16



DolphinNext helps with pipeline development and main-

tenance by enabling rapid troubleshooting and simpler

workflow definitions.

A comparison between widely used platforms is shown

in Table 1.

Current limitations and future plans
DolphinNext currently relies on Nextflow. Although

Nextflow is a very successful and widely used pipeline

engine, supporting other platforms like SnakeMake [64]

and WDL based execution engines [65] would increase

the usage of DolphinNext.

Currently, all of our processes and modules are inter-

changeable which allows reusing existing components.

This approach required more structured syntax, which

limits the ability to import publicly available Nextflow

pipelines such as those available from nf-core [18], Pipe-

liner [19] or CHIPER [20]. However, in the near future,

we plan to support pipeline executions created in other

standards.

Managing large datasets that have hundreds of librar-

ies and samples is challenging. Hence a system that

stores sample data (metadata) and then relies on meta-

data to help navigate this complexity and automate data

Table 1 Comparison of related applications

DolphinNext Galaxy [5] Sequanix [10] Taverna [9] Arvados [63]

Platforma JS/PHP Python Python Java Go

Workflow management system Nextflow Galaxy Snakemake Taverna Arvados

Native task supportb Yes (any) No Yes (bash only) Yes (bash only) Yes

Common workflow languagec No Yes No No Yes

Streaming processingd Yes No No No Yes

Code sharing integratione Yes No No No Yes (GitHub)

Workflow modulesf Yes Yes Yes Yes Yes

Workflow versioningg Yes Yes No No No

Automatic error failoverh Yes Yes No No Yes

Nested workflows Yes Yes No Yes No

Used syntax/ semantics own/own XML/own Python/own own/own Python/own

Web-based Yes Yes No No No

Web-based process developmenti Yes No No No No

Distributed pipeline executionj Yes No No No No

Container Support

Docker support Yes Yes Yes No Yes

Singularity support Yes Yes Yes No No

Built-in batch schedulers

LSF Yes (Native) Yes (DRMAA) Yes (Native) No No

SGE Yes (Native) Yes (DRMAA) Yes (Native) Yes (Native) No

SLURM Yes (Native) Yes (DRMAA) Yes (Native) No Yes (Native)

IGNITE Yes (Native) No No No No

Built-in cloud

AWS (Amazon Web Services) Yes Yes No Yes Yes

GCP (Google Cloud Platform) Yes Yes (Partial)k No No Yes

Autoscaling Yes Yes No No Yes

aThe technology and the programming language in which each framework is implemented
bThe ability of the framework to support the execution of native commands and scripts without re-implementation of the original processes
cSupport for the CWL specification
dAbility to process tasks inputs/outputs as a stream of data
eSupport for code management and sharing platforms, such as GitHub
fSupport for modules, sub-workflows or workflow compositions
gAbility to track pipeline changes and to execute different versions at any point in time
hSupport for automatic error handling and resume execution mechanism
iAbility to add new processes in an embedded web editor without a wrapper or any installation of the wrapper
jSupport for executing the same pipeline without any change in multiple computing environments to process the data within a single interface (e.g. hpc clusters,

a workstation and cloud)
kA Galaxy instance can be launched in Google cloud but for one-time use. When it is shut down, they are permanently deleted

Yukselen et al. BMC Genomics          (2020) 21:310 Page 13 of 16



processing is critical. There is currently growing support

for metadata definitions in FAIR standards [66]. Integra-

tion of metadata tracking system into DolphinNext in

FAIR standards will increase data portability and enable

a simpler interface for users to integrate and compare

across diverse datasets.

Lastly, another technical limitation of DolphinNext is

related to containerization for advanced users. Even Dol-

phinNext has a GitHub integration that users can push

their pipelines to GitHub and test them using Travis-ci

(travis-ci.org) for any change in the pipeline with defined

Docker containers. Docker Hub is a repository special-

ized in hosting ready to execute images. Integration with

Docker Hub will allow users to deposit, build and test

Docker containers directly from Docker Hub. Currently,

in order to enable automated builds, users need to use

Docker Hub website to create a new repository in

Docker Hub from their GitHub repository of a pipeline.

With Docker Hub integration, we will reduce the com-

plexity of pipeline containerization one more level in the

future.

Conclusion
DolphinNext is a powerful workflow design, execution,

and monitoring platform. It builds on top of recent

technological advances such as software containerization

and the Nextflow engine to address current data pro-

cessing needs in high-throughput biological data ana-

lysis. Its ability to run anywhere, leverage the computing

infrastructure of the institution, and provide an intuitive

user interface makes it suitable for both small, large, and

complex projects.

Reproducing third party analyses that involve many

different programs, each with custom parameters, is a

tremendous challenge. We have put special emphasis on

the reproducibility of pipelines. To enable this, Dolphin-

Next investigators can distribute their processing pipe-

lines as containers that can run as stand-alone

applications including the proper versions of all software

dependencies. Further, DolphinNext supports pipeline

versioning where users can create and tag a pipeline ver-

sion with a unique identifier (UID) that includes the

general pipeline “graphical representation”, the execut-

able Nextflow script, as well as the exact software ver-

sions and parameters used when run on a specific

dataset.

Users with different computational skills can use Dol-

phinNext to increase productivity. Casual users can rely

on previously defined and tested pipelines to process

their datasets. Investigators can easily distribute their

processing pipeline along with the data for others to re-

produce their analyses. Investigators with access to par-

allel computing systems but without a strong

computational background can use DolphinNext to

optimally utilize their computing environment. For ex-

ample, DolphinNext pipelines can automatically split

large sequence data files into smaller “chunks” that can

be aligned in parallel across hundreds of cluster nodes if

such infrastructure is available. Finally, bioinformaticians

can easily create new processes and integrate them into

custom robust and reproducible pipelines.

DolphinNext offers a highly modular platform.

Though this manuscript only focuses on the power of

DolphinNext for data processing, we have also

integrated two different downstream analysis tools

(DEBrowser [36] and Rmarkdown) that take the count

matrices output from the data processing steps directly

into analysis and data exploration steps. Furthermore,

DolphinNext’s modular architecture allows for easy inte-

gration of any custom data analysis and visualization

tool. As such DolphinNext is meant to provide a basic

platform to standardize processing and analysis across

institutions.

Availability and requirements

Project name: DolphinNext.

Project home page: https://github.com/UMMS-Bio-
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Documentation: https://dolphinnext.readthedocs.org
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Other requirements: Nextflow and Java 8 or higher,
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License: GPL-v3.

Restrictions to use by non-academics: None.
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