
DOM-based Content Extraction of HTML Documents

Suhit Gupta
Columbia University
Dept. of Comp. Sci.

New York, NY 10027, US
001-212-939-7184

suhit@cs.columbia.edu

Gail Kaiser
Columbia University
Dept. of Comp. Sci.

New York, NY 10027, US
001-212-939-7081

kaiser@cs.columbia.edu

David Neistadt
Columbia University
Dept. of Comp. Sci.

New York, NY 10027, US
001-212-939-7184

dln35@cs.columbia.edu

Peter Grimm
Columbia University
Dept. of Comp. Sci.

New York, NY 10027, US
001-212-939-7184

pmg23@cs.columbia.edu

Abstract

Web pages often contain clutter (such as
pop-up ads, unnecessary images and extraneous
links) around the body of an article that distract
a user from actual content. Extraction of “useful
and relevant” content from web pages has many
applications, including cell phone and PDA
browsing, speech rendering for the visually
impaired, and text summarization. Most
approaches to removing clutter or making
content more readable involve changing font
size or removing HTML and data components
such as images, which takes away from a
webpage’s inherent look and feel. Unlike
“Content Reformatting”, which aims to
reproduce the entire webpage in a more
convenient form, our solution directly addresses
“Content Extraction”. We have developed a
framework that employs an easily extensible set
of techniques that incorporate advantages of
previous work on content extraction. Our key
insight is to work with the Document Object
Model tree, rather than with raw HTML
markup. We have implemented our approach in
a publicly available Web proxy to extract
content from HTML web pages.

1. Introduction

Web pages are often cluttered with
distracting features around the body of an article
that distract the user from the actual content
they’re interested in. These “features” may
include pop-up ads, flashy banner
advertisements, unnecessary images, or links
scattered around the screen. Automatic

extraction of useful and relevant content from
web pages has many applications, ranging from
enabling end users to accessing the web more
easily over constrained devices like PDAs and
cellular phones to providing better access to the
web for the visually impaired.

Most traditional approaches to removing
clutter or making content more readable involve
increasing font size, removing images, disabling
JavaScript, etc., all of which eliminate the
webpage’s inherent look-and-feel. Examples
include WPAR [18], Webwiper [19] and
JunkBusters [20]. All of these products involve
hardcoded techniques for certain common web
page designs as well as “blacklists” of
advertisers. This can produce inaccurate results
if the software encounters a layout that it hasn’t
been programmed to handle. Another approach
has been content reformatting which reorganizes
the data so that it fits on a PDA; however, this
does not eliminate clutter but merely
reorganizes it. Opera [21], for example, utilizes
their proprietary Small Screen Rendering
technology that reformats web pages to fit
inside the screen width. We propose a “Content
Extraction” technique that can remove clutter
without destroying webpage layout, making
more of a page’s content viewable at once.

Content extraction is particularly useful
for the visually impaired and blind. A common
practice for improving web page accessibility
for the visually impaired is to increase font size
and decrease screen resolution; however, this
also increases the size of the clutter, reducing
effectiveness. Screen readers for the blind, like

mailto:suhit@cs.columbia.edu
mailto:kaiser@cs.columbia.edu
mailto:dln35@cs.columbia.edu
mailto:pmg23@cs.columbia.edu

Hal Screen Reader by Dolphin Computer
Access or Microsoft’s Narrator, don’t usually
automatically remove such clutter either and
often read out full raw HTML. Therefore, both
groups benefit from extraction, as less material
must be read to obtain the desired results.

Natural Language Processing (NLP) and
information retrieval (IR) algorithms can also
benefit from content extraction, as they rely on
the relevance of content and the reduction of
“standard word error rate” to produce accurate
results [13]. Content extraction allows the
algorithms to process only the extracted content
as input as opposed to cluttered data coming
directly from the web [14]. Currently, most
NLP-based information retrieval applications
require writing specialized extractors for each
web domain [14][15]. While generalized content
extraction is less accurate than hand-tailored
extractors, they are often sufficient [22] and
reduce labor involved in adopting information
retrieval systems.

While many algorithms for content
extraction already exist, few working
implementations can be applied in a general
manner. Our solution employs a series of
techniques that address the aforementioned
problems. In order to analyze a web page for
content extraction, we pass web pages through
an HTML parser that corrects the markup and
creates a Document Object Model tree. The
Document Object Model (www.w3.org/DOM)
is a standard for creating and manipulating in-
memory representations of HTML (and XML)
content. By parsing a web site's HTML into a
DOM tree, we can not only extract information
from large logical units similar to
Buyukkokten’s “Semantic Textual Units”
(STUs, see [3][4]), but can also manipulate
smaller units such as specific links within the
structure of the DOM tree. In addition, DOM
trees are highly editable and can be easily used
to reconstruct a complete web site. Finally,
increasing support for the Document Object
Model makes our solution widely portable.

2. Related Work

 There is a large body of related work in
content identification and information retrieval
that attempts to solve similar problems using
various other techniques. Finn et al. [1] discuss
methods for content extraction from “single-
article” sources, where content is presumed to
be in a single body. The algorithm tokenizes a
page into either words or tags; the page is then
sectioned into 3 contiguous regions, placing
boundaries to partition the document such that
most tags are placed into outside regions and
word tokens into the center region. This
approach works well for single-body
documents, but destroys the structure of the
HTML and doesn’t produce good results for
multi-body documents, i.e., where content is
segmented into multiple smaller pieces,
common on Web logs (“blogs”) like Slashdot
(http://slashdot.org). In order for content of
multi-body documents to be successfully
extracted, the running time of the algorithm
would become polynomial time with a degree
equal to the number of separate bodies, i.e.,
extraction of a document containing 8 different
bodies would run in O(N8), N being the number
of tokens in the document.

McKeown et al. [8][9], in the NLP group
at Columbia University, detects the largest body
of text on a webpage (by counting the number
of words) and classifies that as content. This
method works well with simple pages.
However, this algorithm produces noisy or
inaccurate results handling multi-body
documents, especially with random
advertisement and image placement.

Rahman et al. [2] propose another
technique that uses structural analysis,
contextual analysis, and summarization. The
structure of an HTML document is first
analyzed and then properly decomposed into
smaller subsections. The content of the
individual sections is then extracted and
summarized. However, this proposal has yet to

http://www.w3.org/DOM
http://slashdot.org/

be implemented. Furthermore, while the paper
lays out prerequisites for content extraction, it
doesn’t actually propose methods to do so.

A variety of approaches have been
suggested for formatting web pages to fit on the
small screens of cellular phones and PDAs
(including the Opera browser [16], and
Bitstream ThunderHawk [17]); they only
reorganize the content of the webpage to fit on a
constrained device and require a user to scroll
and hunt for content.

Buyukkokten et al. [3][10] define
“accordion summarization” as a strategy where
a page can be shrunk or expanded much like the
instrument. They also discuss a method to
transform a web page into a hierarchy of
individual content units called Semantic Textual
Units, or STUs. First, STUs are built by
analyzing syntactic features of an HTML
document, such as text contained within
paragraph (<P>), table cell (<TD>), and frame
component (<FRAME>) tags. These features
are then arranged into a hierarchy based on the
HTML formatting of each STU. STUs that
contain HTML header tags (<H1>, <H2>, and
<H3>) or bold text () are given a higher
level in the hierarchy than plain text. This
hierarchical structure is finally displayed on
PDAs and cellular phones. While
Buyukkokten’s hierarchy is similar to our DOM
tree-based model, DOM trees remain highly
editable and can easily be reconstructed back
into a complete web site. DOM trees are also a
widely-adopted W3C standard, easing support
and integration of our technology. The main
problem with the STU approach is that once the
STU has been identified, Buyukkokten, et al.
[3][4] perform summarization on the STUs to
produce the content that is then displayed on
PDAs and cell phones. However, this requires
editing the original content and displaying
information that is different from the original
work. Our approach retains all original work.

Kaasinen et al. [5], discusses methods to
divide a web page into individual units likened
to cards in a deck. Like STUs, a web page is
divided into a series of hierarchical “cards” that
are placed into a “deck”. This deck of cards is
presented to the user one card at a time for easy
browsing. The paper also suggests a simple
conversion of HTML content to WML
(Wireless Markup Language), resulting in the
removal of simple information such as images
and bitmaps from the web page so that scrolling
is minimized for small displays. While this
reduction has advantages, the method proposed
in that paper shares problems with STUs. The
problem with the deck-of-cards model is that it
relies on splitting a site into tiny sections that
can then be browsed as windows. But this
means that it is up to the user to determine on
which cards the actual contents are located.

None of the concepts solve the problem
of automatically extracting just the content,
although they do provide simpler means in
which the content can be found. Thus, these
concepts limit analysis of web sites. By parsing
a web site into a DOM tree, more control can be
achieved while extracting content.

3. Our Approach

Our solution employs multiple
extensible techniques that incorporate the
advantages of the previous work on content
extraction. In order to analyze a web page for
content extraction, the page is first passed
through an HTML parser that corrects the
HTML and creates a Document Object Model
tree representation of the web page. Once
processed, the resulting DOM document can be
seamlessly shown as a webpage to the end-user
as if it were HTML. This process accomplishes
the steps of structural analysis and structural
decomposition done by Rahman’s,
Buyukkokten’s and Kaasinen’s techniques (see
Section 2). The DOM tree is hierarchically
arranged and can be analyzed in sections or as a
whole, providing a wide range of flexibility for

our extraction algorithm. Just as the approach
mentioned by Kaasinen et al. modifies the
HTML to restructure the content of the site, our
content extractor navigates the DOM tree
recursively, using a series of different filtering
techniques to remove and modify specific nodes
and leave only the content behind. Each of the
filters can be easily turned on and off and
customized to a certain degree.

There are two sets of filters, with
different levels of granularity. The first set of
filters simply ignores tags or specific attributes
within tags. With these filters, images, links,
scripts, styles, and many other elements can be
quickly removed from the web page. This
process of filtering is similar to Kaasinen’s
conversion of HTML to WML. However, the
second set of filters is more complex and
algorithmic, providing a higher level of
extraction than offered by the conversion of
HTML to WML. This set, which can be
extended, consists of the advertisement
remover, the link list remover, the empty table
remover, and the removed link retainer.

The advertisement remover uses an
efficient technique to remove advertisements.
As the DOM tree is parsed, the values of the
“src” and “href” attributes throughout the page
are surveyed to determine the servers to which
the links refer. If an address matches against a
list of common advertisement servers, the node
of the DOM tree that contained the link is
removed. This process is similar to the use of an
operating systems-level “hosts” file to prevent a
computer from connecting to advertiser hosts.
Hanzlik [6] examines this technique and cites a
list of hosts, which we use for our advertisement
remover.

The link list remover employs a filtering
technique that removes all “link lists”, which are
table cells for which the ratio of the number of
links to the number of non-linked words is
greater than a specific threshold (known as the
link/text removal ratio). When the DOM parser

encounters a table cell, the Link List Remover
tallies the number of links and the number of
non-linked words. The number of non-linked
words is determined by taking the number of
letters not contained in a link and dividing it by
the average number of characters per word,
which we preset as 5 (although it may be
overridden by the user). If the ratio is greater
than the user-determined link/text removal ratio,
the content of the table cell (and, optionally, the
cell itself) is removed. This algorithm succeeds
in removing most long link lists that tend to
reside along the sides of web pages while
leaving the text-intensive portions of the page
intact.

The empty table remover removes tables
that are empty of any “substantive” information.
The user determines, through settings, which
HTML tags should be considered to be
substance and how many characters within a
table are needed to be viewed as substantive.
The table remover checks a table for substance
after it has been parsed through the filter. If a
table has no substance, it is removed from the
tree. This algorithm effectively removes any
tables leftover from previous filters that contain
small amounts of unimportant information.

While the above filters remove non-
content from the site, the removed link retainer
adds link information back at the end of the
document to keep the page browseable. The
removed link retainer keeps track of all the text
links that are removed throughout the filtering
process. After the DOM tree is completely
parsed, the list of removed links is added to the
bottom of the page. In this way, any important
navigational links that were previously removed
remains accessible.

After the entire DOM tree is parsed and
modified appropriately, it can be output in either
HTML or as plain text. The plain text output
removes all the tags and retains only the text of
the site, while eliminating most white space.
The result is a text document that contains the

main content of the site in a format suitable for
summarization, speech rendering or storage.
This technique is significantly different from
Rahman et al. [2], which states that a
decomposed web site should be analyzed to find
the content. Our algorithm doesn’t find the
content but eliminates non-content. In this
manner, we can still process and return results
for sites that don’t have an explicit “main
body”.

4. Implementation

In order to make our extractor easy to
use, we implemented it as a web proxy
(program and instructions are accessible at
http://www.psl.cs.columbia.edu/proxy). This
allows an administrator to set up the extractor
and provide content extraction services for a
group. The proxy is coupled with a graphical
user interface (GUI) to customize its behavior.
The separate screens of the GUI are shown in
figures 1, 2, and 3. The current implementation
of the proxy is in Java for cross-platform
support.

Figure 2

Figure 3

While the Content Extraction
algorithm’s worst case running time is O(N2) for
complex nested tables; without such nesting, the
typical running time is O(N), where N is the
number of nodes in the DOM tree after the
HTML page is parsed. During tests, the
algorithm performs quickly and efficiently
following the one-time proxy customization.
The proxy can handle most web pages,
including those with badly formatted HTML,

Figure 1

http://www.psl.cs.columbia.edu/proxy

because of the corrections automatically applied
while the page is parsed into a DOM tree.

When printed out in text format, most of
the resulting text is directly related to the
content of the site, making it possible to use
summarization and keyword extraction
algorithms efficiently and accurately. Pages
with little or no textual content are extracted
with varying results. An example of text format
extraction performed on the webpage in figure 5
is shown in figure 6.

Depending on the type and complexity
of the web page, the content extraction suite can
produce a wide variety of output. The algorithm
performs well on pages with large blocks of text
such as news articles and mid-size to long
informational passages. Most navigational bars
and extraneous elements of web pages such as
advertisements and side panels are removed are
reduced in size. Figures 4 and 5 show an
example.

Figure 6

 The initial implementation of the proxy
was designed for simplicity in order to test and
design content extraction algorithms. It spawns
a new thread to handle each new connection,
limiting its scalability. Most of the performance
drop from using the proxy originates from the
proxy’s need to download the entire page before
sending it to the client. Future versions will use
a staged event architecture and asynchronous
callbacks to avoid threading scalability issues.

Figure 4 - Before

4.1. Further examples

 Figures 7 and 8 show a example of a
typical page from www.spacer.com and a
filtered version of that site, respectively. This is
another good example of a site that is presented
in a content-rich format. On the other hand, Figure 5 - After

http://www.spacer.com/

Figures 9 and 10 show the front page of
www.planetunreal.com, a site dedicated to the
Unreal Tournament 2003 first-person shooter
game (www.epicgames.com), before and after
content extraction. Despite producing results
that are rich in text, screenshots of the game are
also removed, which the user might deem
relevant content.

Figure 9 - Before

Figure 7 - Before

Figure 10 - After

Figures 11 and 12 show www.msn.com
in its pre- and post-filtered state. Since the site
is a portal which contains links and little else,
the proxy does not find any coherent content to
keep. We are investigating heuristics that would
leave such pages untouched.

Figure 8 - After

http://www.planetunreal.com/
http://www.epicgames.com/
http://www.msn.com/

Figure 11 - Before

Figure 12 - After

4.2. Implementation details

In order to analyze a web page for
content extraction, the page is passed through an
HTML parser that creates a Document Object
Model tree. The algorithm begins by starting at
the root node of the DOM tree (the <HTML>
tag), and proceeds by parsing through its
children using a recursive depth first search
function called filterNode(). The function

initializes a Boolean variable (mCheckChildren)
to true to allow filterNode() to check the
children. The currently selected node is then
passed through a filter method called
passThroughFilters() that analyzes and modifies
the node based on a series of user-selected
preferences. At any time within
passThroughFilters(), the mCheckChildren
variable can be set to false, which allows the
individual filter to prevent specific subtrees
from being filtered. After the node is filtered
accordingly, filterNode() is recursively called
using the children if the mCheckChildren
variable is still true.

The filtering method,
passThroughFilters(), performs the majority of
the content extraction. It begins by examining
the node it is passed to see if it is a “text node”
(data) or an “element node” (HTML tag).
Element nodes are examined and modified in a
series of passes. First, any filters that edit an
element node but do not delete it are applied.
For example, the user can enable a preference
that will remove all table cell widths, and it
would be applied in the first phase because it
modifies the attributes of table cell nodes
without deleting them.

Figure 13. Architectural diagram of the system

The second phase in examining element
nodes is to apply all filters that delete nodes

from the DOM tree. Most of these filters
prevent the filterNode() method from
recursively checking the children by setting
mCheckChildren to false. A few of the filters in
this subset set mCheckChildren to true so as to
continue with a modified version of the original
filterNode() method. For example, the empty
table remover filter sets mCheckChildren to
false so that it can itself recursively search
through the <TABLE> tag using a bottom-up
depth first search while filterNode() uses a top-
down depth first search. Finally, if the node is a
text node, any text filters are applied (there are
currently none, but there may be in the future).

4.3. Implementation as an integrable framework

 Since a content extraction algorithm can
be applied to many different fields, we
implemented it so that it can be easily used in a
variety of cases. Through an extensive set of
preferences, the extraction algorithm can be
highly customized for different uses. These
settings are easily editable through the GUI,
method calls, or direct manipulation of the
settings file on disk. The GUI itself can also
easily be easily integrated (as a Swing JPanel)
into any project. The content extraction
algorithm is also implemented as an interface
for easy incorporation into other Java programs.
The content extractor’s broad set of features and
customizability allow others to easily add their
own version of the algorithm to any experiment
or product.

5. Future Work

 The current implementation in Java uses
a 3rd-party HTML parser to create DOM trees
from web pages. Unfortunately, most of the
publicly-available Java HTML parsers are either
missing support for important features, such as
XHTML or dynamically-generated pages (ASP,
JSP). To resolve this, we intend to support
commercial parsers, such as Microsoft’s HTML
parser (which is used in Internet Explorer), in
the next revision. These are much more robust

and support a wider variety of content.
Integration will be accomplished by porting the
existing proxy to C#/.NET, which will allow for
easy integration with COM components (of
which the MS HTML parser is one).

 We are also working on improving the
proxy’s performance; in particular, we aim to
improve both latency and scalability of the
current version. The latency of the system will
be reduced by adopting a commercial parser and
by improving our algorithms to process DOM
incrementally as the page is being loaded.
Scalability will be addressed by re-architecting
the proxy’s concurrency model to avoid the
current thread-per-client model, adopting a
stage-driven architecture instead.

Finally, we are investigating supporting
more sophisticated statistical, information
retrieval and natural language processing
approaches as additional heuristics to improve
the utility and accuracy of our current system.

 6. Conclusion

Many web pages contain excessive
clutter around the body of an article. Although
much research has been done on content
extraction, it is still a relatively new field. Our
approach, working with the Document Object
Model tree as opposed to raw HTML markup,
enables us to perform Content Extraction,
identifying and preserving the original data
instead of summarizing it. The techniques that
we have employed, though simple, are quite
effective. As a result, we were able to
implement our approach in a publicly-available
Web proxy that anyone can use to extract
content from HTML web pages for their own
purposes.

7. Acknowledgements

The Programming Systems Laboratory is
funded in part by Defense Advanced Research
Project Agency under DARPA Order K503
monitored by Air Force Research Laboratory
F30602-00-2-0611, by National Science
Foundation grants CCR-02-03876, EIA-00-
71954, and CCR-99-70790, and by Microsoft
Research.

In addition, we would like to extend a special
thanks to Janak Parekh, Philip N. Gross and
Jean-Denis Greze.

8. References
[1] Aidan Finn, Nicholas Kushmerick, and Barry

Smyth. “Fact or fiction: Content classification for
digital libraries”. Smart Media Institute,
Department of Computer Science, University
College Dublin. August 11, 2002.
<http://www.smi.ucd.ie/hyppia/publications/DELO
S_workshopAF/DCUconf.html>.

[2] A. F. R. Rahman, H. Alam and R. Hartono.
“Content Extraction from HTML Documents”.
Document Analysis and Recognition Team
(DART). BCL Computers Inc. August 11, 2002.
<http://www.csc.liv.ac.uk/~wda2001/Papers/11_ra
hman_wda2001.pdf>.

[3] O. Buyukkokten, H. Garcia-Molina, and A.
Paepcke. “Accordion Summarization for End-
Game Browsing on PDAs and Cellular Phones”. In
Proc. of the Conf. on Human Factors in Computing
Systems. CHI'01, 2001.

[4] O. Buyukkokten, H, Garcia-Molina, A. Paepcke.
“Seeing the Whole in Parts: Text Summarization
for Web Browsing on Handheld Devices”. Proc.
10th Int. World-Wide Web Conf., 2001.

[5] E. Kaasinen, M. Aaltonen, J. Kolari, S. Melakoski
and T. Laakko. “Two Approaches to Bringing
Internet Services to WAP devices”. In Proc. of 9th
Int. World-Wide Web Conf. 2000. pp. 231-246.

[6] Stuart Hanzlik “Gorilla Design Studios Presents:
The Hosts File”. Gorilla Design Studios. August
31, 2002. < http://accs-net.com/hosts/>.

[7] Marc H. Brown and Robert A. Shillner. “A New
Paradigm for Browsing the Web”. In Human
Factors in Computing Systems (CHI'95 Conference

Companion), Denver, CO, May 7-11, 1995, pages
320-321.

[8] K.R. McKeown, R. Barzilay, D. Evans, V.
Hatzivassiloglou, M.Y. Kan, B. Schiffman, S.
Teufel. “Columbia Multi-document
Summarization: Approach and Evaluation”

[9] N. Wacholder, D. Evans, J. Klavans “Automatic
Identification and Organization of Index Terms for
Interactive Browsing”

[10] O. Buyukkokten, H. Garcia-Molina, A, Paepcke,
“Text Summarization for Web Browsing on
Handheld Devices”, In Proc. of 10th Int. World-
Wide Web Conf., 2001.

[11] Manuela Kunze, Dietmar Rosner “An XML-based
Approach for the Presentation and Exploitation of
Extracted Information”

[12] A. F. R. Rahman, H. Alam and R. Hartono
“Content Extraction from HTML Documents”

[13] Wolfgang Reichl, Bob Carpenter, Jennifer Chu-
Carroll, Wu Chou “Language Modeling for
Content Extraction in Human-Computer
Dialogues”

[14] Ion Muslea, Steve Minton, Craig Knoblock “A
Hierarchal Approach to Wrapper Induction”
Proceedings of the Third International Conference
on Autonomous Agents (Agents'99)

[15] Min-Yen Kan, Judith L. Klavans, and Kathleen R.
McKeown “Linear Segmentation and Segment
Relevance”. In Proceedings of 6th International
Workshop of Very Large Corpora (WVLC-6),
pages 197-205, Montreal, Quebec, Canada, August
1998.

[16] http://www.opera.com

[17] http://www.bitstream.com/wireless

[18] http://sourceforge.net/projects/wpar

[19] http://www.webwiper.com

[20] http://www.junkbusters.com

[21] http://www.opera.com

[22] Private communication, Min-Yen Kan, Columbia
NLP group, 2002

http://www.opera.com/
http://www.bitstream.com/wireless
http://sourceforge.net/projects/wpar
http://www.webwiper.com/
http://www.junkbusters.com/
http://www.opera.com/

