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Abstract

The development of deep learning techniques has allowed Neural Machine Translation
(NMT) models to become extremely powerful, given sufficient training data and training
time. However, systems struggle when translating text from a new domain with a distinct
style or vocabulary. Fine-tuning on in-domain data allows good domain adaptation, but
requires sufficient relevant bilingual data. Even if this is available, simple fine-tuning can
cause overfitting to new data and catastrophic forgetting of previously learned behaviour.

We survey approaches to domain adaptation for NMT, particularly where a system
may need to translate across multiple domains. We divide techniques into those revolving
around data selection or generation, model architecture, parameter adaptation procedure,
and inference procedure. We finally highlight the benefits of domain adaptation and multi-
domain adaptation techniques to other lines of NMT research.

1. Introduction

Neural Machine Translation (NMT) has seen impressive advances for some translation tasks
in recent years. News and biomedical translation shared tasks from the Conference on
Machine Translation (WMT) as early as 2019 identified several systems as performing on
par with a human translator for some high-resource language pairs according to human
judgements (Barrault et al., 2019; Bawden et al., 2019). Indeed, these tasks involve not
only high-resource language pairs but also relatively high-resource domains, with millions
of relevant sentence pairs available for training. However, NMT models perform less well on
out-of-domain data. A model trained on exclusively news data is unlikely to achieve good
performance on the biomedical domain, let alone human parity.

Models trained from scratch on a multi-domain dataset may reach good performance
on domains that are sufficiently well-represented in that dataset. However, new domains of
interest may arise. For example, generic news translation systems of 2019 do not perform
optimally on news from 2020 reporting on the coronavirus pandemic (Anastasopoulos et al.,
2020). While it is possible to train a new model from scratch for every new domain of
interest, it is not generally practical: high-resource training sets contain millions of sentence
pairs and require multiple days for training (Junczys-Dowmunt, 2019). General overviews
of NMT (Stahlberg, 2020; Koehn, 2017; Neubig, 2017) tend to focus on the many design
decisions involved in this from-scratch NMT system development. However, a ready-trained
system can be repurposed to translate new types of language far faster than training a new
model, and often performs better on the language of interest as a result (Luong et al., 2015;
Freitag & Al-Onaizan, 2016). This repurposing is generally known as domain adaptation.
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We interpret domain adaptation as any scheme intended to improve translations from
an existing system for a certain topic or genre of language. In the definition of a domain we
primarily follow Koehn and Knowles (2017), who state that a domain ‘may differ from other
domains in topic, genre, style, level of formality, etc.’. As well as these more ambiguous
qualities, they define a domain as ‘a corpus from a specific source’, a fixed, discrete criteria
often termed domain provenance.

Existing work on domain-specific translation does frequently treat the domain of ‘test’
language as discrete, known, or completely distinct from other domains (Chu & Wang,
2018). Known-domain translation may be relevant in limited scenarios, such as WMT
shared tasks where the topic and genre of text is pre-specified, or bespoke translation
systems adapted to customer data. In this scenario, added domain-specific neural network
layers (Bapna & Firat, 2019b) can be tuned briefly for good performance on a fixed task
with relatively low cost. Such approaches have recently become popular throughout natural
language processing (NLP) using large pre-trained language models: BERT (Devlin et al.,
2019) and GPT-3 (Brown et al., 2020) among others.

However, even in known-domain settings, discrete domain labels or domain-specific pa-
rameters may not always be beneficial. A corpus domain label may not fit all sentences in
that corpus, and sentences can belong to more than one domain. In a very general case,
sentences supplied to a free online translation system could come from any source and con-
tain features of any domain. This article does explore single-domain adaptation, but also
the development of systems that can translate text from multiple domains: multi-domain
translation. We will also emphasise techniques for adaptation that can incorporate the ben-
efits of a new domain without succumbing to forgetting, brittleness, overfitting, or general
failure to successfully translate anything other than a chosen set of adaptation sentences.

The survey begins in Section 2 by exploring what we mean by a domain or multi-domain
adaptation problem. Section 3 gives a brief overview of NMT to provide context for later
adaptation approaches. In Section 4 we summarize fine-tuning, often used as a default
or baseline approach to adaptation, and highlight difficulties that motivate alternative ap-
proaches. We then review domain adaptation methods that intervene in various stages of
NMT system design, training and use. These can be data-centric (Section 5), change the
neural network architecture (Section 6) or adaptation procedure (Section 7), or take place
during inference (Section 8). We explore the possibilities and pitfalls present at each step
of system development. Section 9 presents case studies on three areas of NMT research
that have benefited from framing as domain adaptation problems: low-resource language
translation, demographic bias in translation, and document-level translation. Section 10
concludes with a view of some open challenges in domain adaptation for NMT.

The structure of this survey aims to acknowledge that researchers and practitioners
often only have control over certain elements of an NMT system. A typical scenario is
commercial NMT providers allowing customers access to a pre-trained model with a fixed
inference procedure which the providers adapt to customer data (Savenkov, 2018). In this
case, the end user only has control over the data used for adaptation. By contrast, a
researcher participating in a shared task might have a fixed set of adaptation data to make
best use of, and focus on adjusting the network architecture or adaptation procedure itself.
Even a user with access only to a black-box commercial tool may be able to ‘adapt’ the
output with pre- and post-processing terminology control.
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Chu and Wang (2018) previously performed a brief survey on domain adaptation for
NMT, later extended with more recent references (Chu & Wang, 2020). While their survey
focuses on a handful of domain adaptation methods, primarily mixed fine-tuning, instance
weighting and architectural domain control, this article offers a more substantive overview
of adaptation techniques. In contrast to prior work we also emphasise the relative advan-
tages and disadvantages of different methods in specific scenarios, describe multi-domain
adaptation, and discuss how the described techniques can be applied to NMT challenges
not typically thought of as domains.

Specific contributions of this article are as follows:

• We provide a thorough and up-to-date survey of domain adaptation techniques in
popular use for machine translation at time of writing.

• We provide a taxonomy of adaptation approaches corresponding to the process of
developing an NMT system, letting practitioners identify the most relevant techniques.

• We distinguish between domain adaptation and multi-domain adaptation, and de-
scribe relevant techniques for each.

• We focus throughout on various pitfalls in adaptation as they apply to the surveyed
techniques, particularly forgetting and overfitting.

• We explore the potential of framing other NMT research areas as adaptation problems.

2. What Constitutes a Domain Adaptation Problem?

Adapting to a ‘domain’ for machine translation has come to refer to a number of disparate
concepts. In van der Wees (2017) various aspects combine to form a domain for statistical
MT. In this section, we briefly review their findings and the surrounding literature. We then
clarify what is meant by a domain, and by a domain adaptation problem, for the purposes
of this survey.

2.1 Exploring the Definition of Domain

Many possible categories and sub-categories may describe a language domain for purposes as
disparate as education, text classification or data retrieval. These may not be well defined,
especially across fields of research (Sinclair & Ball, 1996). However, we concentrate on three
primary elements of a domain identified by van der Wees (2017) in the context of machine
translation research: provenance, topic and genre.

Provenance is the source of the text, usually a single discrete label. This may be a narrow
description, such as one news article by a single author, or an extremely broad description,
such as the 37M English-German web-crawled sentence pairs in the cleaned Paracrawl
corpus (Bañón et al., 2020). Importantly, the provenance of a test sentence may not be
known outside well-defined tasks in the research community, such as the WMT shared tasks.
Even if the provenance is known, it may not be useful for adapting translation performance
unless it also corresponds to topic or genre. To take an example from commercial MT, it
may not be helpful to know that a sentence is generated by a particular customer unless their
writing has specific features that should be reflected in a translation. However, it is possible,
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if less common, to require domain-specific translations of sentences of a given provenance
instead of using sentence content to determine domain. For example, two different customers
may have identical source sentences but different preferred translations for certain terms.

Topic is the subject of text, for example news, software, biomedical. Topic often reveals
itself in terms of distribution over vocabulary items. Notably, topic domains can overlap:
each word in the vocabulary may have different topic-conditional probabilities, and a docu-
ment (or sentence) may be classified as a mixture of topics (Blei et al., 2003). The topic(s)
of a given sentence can also be determined as a mix of latent topics determined over a
large dataset. Discrete topics can however be defined, and may be used to resolve lexical
or domain ambiguity for translation, as in the case of domain labels (Kobus et al., 2017).

Genre may be interpreted as a concept that is orthogonal to topic, consisting of func-
tion, register, syntax and style (Santini, 2004). For example, multiple documents about a
company may share topics and use similar vocabulary, such as the company name or specific
products. However, a recruitment document, product specification, or product advertise-
ment would all constitute different genres (Lee & Myaeng, 2002). In some languages it is
possible to convey the same information about the same topic in multiple genres, for exam-
ple by changing formality register. Various cues exist for automatic genre detection in text,
including relative frequency of different syntactic categories, use of particular characters
such as punctuation marks, and sentence length distribution (Kessler et al., 1997).

2.2 Domain Adaptation and Multi-Domain Adaptation

For this article, a domain adaptation problem fulfills the following broad requirements:

1. We wish to improve translation performance on some set of sentences with identifiable
characteristics. The characteristic may be a distinct vocabulary distribution suggest-
ing a topic, a stylometric feature such as sentence length distribution, other features
of language, or otherwise meta-information such as provenance.

2. We wish to avoid retraining the system from scratch. Retraining is generally not desir-
able since it can take a great deal of time and computation, with correspondingly high
financial and energy costs. Retraining may also be impossible, practically speaking,
if we do not have access to the original training data or computational resources.

We are also interested in multi-domain adaptation. For the purposes of this article a
multi-domain adaptation problem requires that in addition to the previous circumstances:

3. We wish to achieve good translation performance on text from more than one domain
using the same system.

We find the multi-domain scenario interpreted in a number of ways in the NMT literature.
Some common settings for multi-domain NMT are as follows:

• Domain labels are known for all sentences. This is often assumed when adapting to
multiple domains (Pham et al., 2021). In this case multi-domain control or domain-
specific subnetworks can be used (Section 6).
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• Some sentences have unknown domain labels. This may also apply when domains
of interest are considered to be fuzzy and potentially overlapping. The closest ‘seen’
domain could be inferred by a domain classifier (Section 6.2) or multiple possible
labels could be accounted for at inference time (Section 8).

• Text from a labeled but unseen domain may appear at inference time. The system may
classify it as the closest ‘seen’ domain, as for unknown-domain text in the previous
point. This scenario also lends itself to few-shot unsupervised adaptation (Section
5.3), or zero-shot adaptation using priming techniques (Section 8.3).

• The domain of the pre-training data is one of the multiple domains we wish to be
able to translate well. This is sometimes referred to as ‘continual learning’ (Cao
et al., 2021). Maintaining performance on the pre-training domain involves avoiding
catastrophic forgetting during adaptation, a problem we discuss in Section 4.2. While
there are many potential solutions to this problem, most popular approaches involve
adjusting the training algorithm (Section 7).

Clearly it is possible for some of these multi-domain settings to co-occur. For example, we
may want to avoid catastrophic forgetting on the original domain and also account for new
domains at inference time. We may have domain labels during training, but need to infer
domain at inference time. However, they are simpler to consider in isolation, and solutions
addressing each individually can also often be combined.

In Section 9 we provide case studies on separate lines of machine translation research:
low-resource language translation, gender handling in translation, and document-level trans-
lation. These are well-established NMT research topics in their own right. Elements of at
least the latter two may be viewed as relevant to genre or topic in terms of gender- and
document-consistent grammar and lexical choice. However, they are not always treated as
relevant to domain adaptation. We will demonstrate that these lines of translation research
can also be treated as domain adaptation problems.

3. A Brief Overview of Neural Machine Translation

Machine Translation (MT) aims to translate written text from a source natural language to
a target language. Originally accomplished with statistical MT (SMT) using phrase-based
frequency models, the state-of-the-art in high-resource language pairs like English-German
has been achieved by Neural Machine Translation (NMT) since 2016 (Bojar et al., 2016).
More recently NMT has also outperformed SMT on low-resource language pairs on generic
domains (Sennrich & Zhang, 2019) or those with sufficient domain-specific data (Ahmadnia
& Dorr, 2020). Here we summarize NMT, focusing on elements relevant to the domain
adaptation techniques in this survey. For an in-depth discussion of general approaches to
NMT, we direct the reader to broader surveys, e.g. Koehn (2020), Stahlberg (2020).

3.1 Representing Language for Neural Machine Translation

NMT models usually take as a single training example two token sequences: x representing
a source language sentence and y representing its target language translation. Tokens are
represented as integer IDs ∈ V where V is the source or target vocabulary, which may
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represent words, subwords, or other features such as domain tags. |V | is usually limited to
tens of thousands of tokens due to the computational complexity of the softmax that maps
embeddings to discrete tokens.

The vocabulary should convey information that is useful for translation, while remaining
computationally tractable. Unknown or out-of-vocabulary (OOV) tokens are undesirable,
as are large vocabulary sizes and very long sentence representations. This causes trade-offs
– for example, a character vocabulary might be very small with no OOVs but very long
sequences. Here we describe ways to address these trade-offs when representing language
for NMT. The chosen approach often affects domain adaptation, since vocabulary and
terminology are strongly indicative of a domain.

3.1.1 Word Vocabularies

Early approaches to NMT focused on word vocabularies, usually either the top |V | words
by frequency (Cho et al., 2014) or all training words with frequencies over a threshold
(Kalchbrenner & Blunsom, 2013). Out-of-vocabulary (OOV) words are represented by a
special UNK token. Word vocabularies must account for sparsity. According to Zipf (1949) a
word’s occurrence probability is inversely related to its vocabulary rank: a large proportion
of words in a language are rare in a given corpus. Representing every rare word as a unique
vocabulary item is inefficient, and may not allow good learned representations.

3.1.2 Subword Vocabularies

Subword vocabularies address the rare word problem by representing words as sequences of
more frequent subwords. Sennrich et al. (2016c) first propose NMT on subword sequences
using Byte Pair Encoding (BPE) (Gage, 1994). A BPE vocabulary initializes with the
set of all character tokens, and with all words represented as character sequences. BPE
then iteratively merges the most frequent token pair. Frequent words become single tokens,
while rare words can be represented as character sequences. The most extreme subword
segmentation is a character vocabulary (Ling et al., 2015; Kim et al., 2016; Costa-jussà
& Fonollosa, 2016; Cherry et al., 2018). Subword vocabularies can be constructed using
syllables (Assylbekov et al., 2017), language model scores (Kudo, 2018) or linguistic infor-
mation (Ataman et al., 2017; Huck et al., 2017; Macháček et al., 2018). However, BPE is
currently widely accepted as a default vocabulary scheme for NMT. BPE granularity can
also affect performance: Ding et al. (2019) find that low-resource NMT benefits from fewer
BPE merges to maintain frequency for individual subwords. Gallé (2019) and Salesky et al.
(2020) similarly find best performance when balancing high-frequency subwords with short
sequence lengths overall.

3.1.3 Tags

NMT language representations primarily vary in granularity, from words to characters.
However, sentence representations can also be augmented with elements not present in the
original text. One example relevant to domain adaptation uses externally-defined tags to
indicate a particular feature of the sentence. Previous work has used sentence tags to con-
vey domain (Kobus et al., 2017; Britz et al., 2017), speaker gender (Vanmassenhove et al.,
2018), or target language formality (Sennrich et al., 2016a; Feely et al., 2019). Multiple
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tags can be used throughout source and target sentences, for example indicating linguistic
features (Sennrich & Haddow, 2016; Garćıa-Mart́ınez et al., 2016; Aharoni & Goldberg,
2017; Saunders et al., 2018) or custom terminology use (Dinu et al., 2019; Michon et al.,
2020). Tags are usually incorporated throughout training, implicitly requiring the avail-
ability of reliable tags for large training datasets, although new tags can also be introduced
during model adaptation (Saunders et al., 2020). Tags can be treated as any other token
in a sentence, or handled in special ways by the neural network (Section 6).

3.1.4 Representing Extra-Sentence Context

NMT typically translates between sentence pairs but can incorporate additional context,
from the previous sentence (Tiedemann et al., 2017) to the whole document (Junczys-
Dowmunt, 2019; Macé & Servan, 2019). Early work on context for recurrent NMT showed
improvements in BLEU score (Wang et al., 2017) and context-based metrics like pronoun
accuracy (Jean et al., 2017). For self-attention models, context improves lexical cohesion
and anaphora resolution (Voita et al., 2019b, 2018), but has inconsistent effects on overall
quality (Stahlberg et al., 2019). Notably, Kim et al. (2019b) suggest that context use may
simply regularize NMT, and that context-specific information for e.g. lexical cohesion can
be retained in very minimal forms, such as terminology tags or syntactic annotation – much
like domain tags. While we focus on sentence-level NMT in this article, in Section 9.3 we
describe approaches to document-level NMT that take a domain adaptation approach.

3.2 Neural Translation Model Architecture

To the NMT architecture, all inputs are sequences of generic ‘tokens’, represented as inte-
ger values. The NMT model input is x = x1, ..., xI , xi ∈ Vsrc, and it must produce another
integer sequence: y = y1, ..., yJ , yj ∈ Vtrg. We refer to the phase of updating model param-
eters given x and y as training, to the phase where parameters are fixed and we generate
hypotheses ŷ without reference tokens y as inference, and to the process of producing any
sequence with the decoder as decoding. While many NMT networks can learn mappings
between x and y that generalize to unseen x during inference, we focus on the Transformer
(Vaswani et al., 2017), the de facto standard for NMT in recent years.

3.2.1 Continuous Token Embeddings

A Transformer first maps a sequence of integers x ∈ Vsrc to embeddings. A |V | > 10K-
dimension token representation is intractable when operating on thousands of tokens per
batch. It is also discrete: the effect of changing one token may not generalize. Bengio et al.
(2003) proposed instead mapping each vocabulary item to a continuous feature vector or
‘embedding’. These are a more tractable size: typically d ≤ 1024. Embeddings trained
with context-related objectives – as in NMT – may exhibit local smoothness and therefore
generalize: words with similar contexts tend to have similar embeddings (Collobert & We-
ston, 2008; Turian et al., 2010). In particular embeddings are often similar for tokens that
belong to the same category – that is, the same domain (Collobert et al., 2011; Mikolov
et al., 2013). These properties can aid data selection for adaptation (Section 5).
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3.2.2 Transformers: Attention-Based Encoder-Decoder Networks

Figure 1: Illustration of the Transformer model architecture, Figure 1 from Vaswani et al.
(2017). The model is made up of encoder (left) and decoder (right) subnetworks.

The Transformer network, proposed by Vaswani et al. (2017) and illustrated in Figure
1, is a self-attention-based encoder-decoder model. It remains state-of-the-art for NMT at
time of writing (Akhbardeh et al., 2021), improving parallelizability and quality over earlier
RNN-based NMT models. The Transformer encoder produces a source sentence embedding
from the source token embeddings. Its decoder produces a target embedding from the target
tokens during training or the partial translation hypothesis during inference. An encoder-
decoder attention network relates the encoder output and decoder state. During inference
the decoder translates based on the target embedding and the encoder-decoder attention.

Recurrent model attention mechanisms such as the earlier state-of-the-art described in
Bahdanau et al. (2015) relate different positions in different sequences in order to learn
a ‘context representation’. The Transformer’s self-attention embedding for a sequence is
instead calculated to relate different positions in the same sequence. Self-attention is on
source embeddings x at the encoder input and target embeddings y at the decoder input. For
a multi-layer encoder or decoder self-attention is calculated on the output of the previous
layer. Any of these elements - encoder, decoder, and attention network - can be made
domain-specific, or duplicated for a specific domain (Section 6.2).
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3.2.3 Increasing Model Depth

The Transformer encoder and decoder are usually formed of several identical layers, each
operating on the output of the layer before. Increasing the number of layers can cause
training difficulties, as loss gradients must propagate through more layers. Difficulties can
be mitigated by adding residual networks, changing each layer output f(z) to f(z) + z (He
et al., 2016). This gives each encoder or decoder layer access to the first layer’s input.
Residual networks are also needed for some domain-specific subnetworks like adapter layers
(Bapna & Firat, 2019b) (Section 6.3). Deep models can significantly improve NMT (Wang
et al., 2019), but shallower models still often perform better for low-resource NMT (Sennrich
& Zhang, 2019; Nguyen & Chiang, 2018). The potential pitfalls of deeper models are worth
considering in relation to architectural approaches to domain adaptation (Section 6).

3.3 Training Neural Machine Translation Models

Once an NMT model architecture is determined, its parameters must be adjusted to map
from source x to target y. NMT model parameters are usually trained by backpropagation
with a gradient descent optimizer (Rumelhart et al., 1986), which requires some objective
on the training set. Standard training objectives vary weight in the gradient direction
of maximising log likelihood, or equivalently minimising cross-entropy loss, for training
examples (Baum & Wilczek, 1988; Levin & Fleisher, 1988). Such objectives condition
the model on real reference sentences. However, during inference, the translation must be
conditioned on the prefix of the model’s own hypothesis ŷ. This difference in conditioning
can cause poor behaviour during inference (Bengio et al., 2015; Ranzato et al., 2016).
Avoiding such over-exposure to training examples has motivated parameter and objective
regularization methods during training. Here we focus on objective functions which are
relevant to domain adaptation.

3.3.1 Cross-Entropy Loss

The most common NMT training objective is varying weights θ to maximise log likelihood
of training examples, known as Maximum Likelihood Estimation (MLE) (Baum & Wilczek,
1988; Levin & Fleisher, 1988).

θ̂ = argmax
θ

logP (y|x; θ) (1)

MLE is equivalent to minimizing cross-entropy loss LCE between the generated output
distribution and the references if each token has one reference label q(y′ = yj |x; θ) = δ(yj):

θ̂ = argmin
θ

|y|∑
j=1

− logP (yj |y1:j−1,x; θ) = argmin
θ

LCE(x,y; θ) (2)

This survey will describe several variations on the MLE loss for domain adaptation
(Section 7.1), as well as adaptation-specific applications of non-MLE objectives which seek
to address some of the downsides of MLE (Section 7.4).
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3.3.2 Objective Function Regularization

We can change Eq. 2 by adding a regularization term LReg to the loss function itself:

θ̂ = argmin
θ

[LCE(x,y; θ) + λLReg(θ)] (3)

One option is an L2 penalty, LReg =
∑

i θ
2
i – variations on L2 regularization are popular

in regularizing adaptation (Section 7.1.2). Alternatively LReg can be an objective from
another task, known as multi-task learning. Translation-specific multi-task terms include a
coverage term (Tu et al., 2016), a right-to-left translation objective (Zhang et al., 2019b),
the ‘future cost’ of a partial translation (Duan et al., 2020), or a target language modelling
objective (Gülcehre et al., 2015; Sriram et al., 2018; Stahlberg et al., 2018a). Another
approach is dropout: randomly omitting a subset of parameters θdropout from optimization
for a training batch (Hinton et al., 2012). This corresponds to regularization with LReg(θ) =
∞ for θ ∈ θdropout, 0 otherwise.

Objective function regularization is often used to avoid catastrophic forgetting during
NMT domain adaptation. We discuss methods relating to dropout in Section 7.1.1, and
other objective regularization methods in Section 7.1.2.

3.3.3 Output Distribution Regularization

MLE assumes that a reference sentence is far more likely than any other translation. This
encourages large differences in likelihood between training examples and language not seen
in training: overfitting. Overfitting can reduce the model’s ability to cope with novel data
during inference. This is especially relevant for adaptation to small domains with limited
training examples. Overfitting can be mitigated by regularizing the distribution over output
labels during training, for example using label smoothing (Szegedy et al., 2016). This
replaces the single target label q(y′|x; θ) = δ(yj) used to derive Eq. 2, instead smoothing the
label distribution by hyperparameter ε towards a uniform distribution over the vocabulary:

q(y′|x; θ) = (1− ε)δ(yj) +
ε

|Vtrg|
(4)

θ̂ = argmin
θ

|y|∑
j=1

∑
y′∈Vtrg

−q(y′|x; θ) logP (y′|y1:j−1,x; θ) (5)

Instead of smoothing with a uniform distribution 1
|Vtrg | , label smoothing can incorpo-

rate prior information about the target language. For example, the smoothing distribution
can come from a larger ‘teacher’ model (Hinton et al., 2015). Pereyra et al. (2017) explore
smoothing towards a unigram distribution over the vocabulary, and address over-confidence
directly by penalizing peaky, low-entropy output distributions. Related distribution regu-
larization schemes have been applied to domain adaptation (Section 7.1.3).

3.4 Inference with Neural Machine Translation Models

An NMT model trains on source and target language sentences x and y, and learns to model
P (y|x). During inference, the model has access only to x, and must produce a translation:
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ŷ = argmax
y

P (y|x) (6)

In this survey we focus on autoregressive NMT inference, by far the most common ap-
proach. For autoregressive inference the model produces one output token at each inference
step j, which is conditioned on the source sentence and all previously output tokens. Ideally:

ŷj = argmax
yj

P (yj |y1:j−1,x) (7)

There are |Vtrg|j possible partial translations ending in the jth output token. Exploring all
of them is impractically slow even using likelihood pruning to reduce the total (Stahlberg &
Byrne, 2019). Nevertheless, approximations to this inference objective work well in practice.
Here we focus on those which have variants used for domain-specific translation.

3.4.1 Beam Search

Beam search is the most common approximation for NMT inference. It tracks the top N
partial hypothesis ‘beams’ by log likelihood. At each inference step all possible single-token
expansions of all beams are ranked, and the new top N selected. Search continues until
all beams terminate with an end-of-sentence token or exceed a maximum length. ‘Greedy’
search is the special case where N = 1, which produces the most likely next token at each
step. Beam search variations include optimizing for diverse hypotheses (Vijayakumar et al.,
2016; Li & Jurafsky, 2016) or adequacy (Wu et al., 2016). In Section 8.2 we describe beam
search variants intended to produce domain-specific translations.

3.4.2 Ensembling

Conducting inference with an ensemble of MT models allows consensus on which tokens to
expand and track in beams at each inference step, usually outperforming individual models
(Sim et al., 2007; Rosti et al., 2007). Ensembles can integrate scores from different NMT
architectures (Stahlberg et al., 2018b) or language models (Vaswani et al., 2013; Gülcehre
et al., 2015). Many schemes for ensembling exist, from majority vote to minimizing Bayes
risk under some metric (Rokach, 2010). Ensembling by static weighting is commonly used in
NMT. For a K-model ensemble with a weight Wk for each model, the ensemble translates:

ŷ = argmax
y

P (y|x) = argmax
y

K∑
k=1

WkPk(y|x) (8)

A downside of ensembling is reduced efficiency. The expensive softmax calculation takes
place K times, and often all ensemble models are stored in memory simultaneously. Effi-
ciency can be improved if one model can learn to reproduce the ensemble’s behaviour, using
simplification schemes like ensemble knowledge distillation (Freitag et al., 2017; Fukuda
et al., 2017) or ensemble unfolding (Stahlberg & Byrne, 2017). Many approaches to en-
sembling assume that all ensembled models generate in the same way, e.g. lexical items
from the same vocabulary, and that fixed ensemble weights can be used regardless of input
content or model domain. Section 8.1 reviews domain-specific ensembling approaches which
relax these assumptions.
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4. Fine-Tuning as a Domain Adaptation Baseline, and its Difficulties

While the previous section covered ‘default’ approaches to NMT, e.g. a Transformer with
a BPE vocabulary trained with cross-entropy loss, this section covers fine-tuning, a ‘de-
fault’ approach to domain adaptation for NMT. It also describes some difficulties with this
approach which motivate many variations in the remainder of this survey.

Given an in-domain dataset and a pre-trained neural model, domain adaptation can
often be achieved by continuing training the model on that dataset: ‘fine-tuning’. Fine-
tuning initially involved monolingual data only for SMT (Lavergne et al., 2011). By contrast
fine-tuning end-to-end NMT models, to the best of our knowledge first proposed in Luong
and Manning (2015), usually requires bilingual parallel data. In both cases the pre-trained
model trains for relatively few additional iterations with the original loss function applied
to the in-domain data.

Fine-tuning is a straightforward and efficient approach to adaptation: adaptation sets
might have thousands of sentence pairs, while training the original model could use millions.
Luong and Manning (2015) find that in-domain NMT can improve dramatically under fine-
tuning despite the low computational requirements. Servan et al. (2016) observe that fine-
tuning on in-domain data may not achieve the same translation quality as retraining the
entire system on combined generic and in-domain data, but report a high proportion of the
improvement in less than one percent of the time needed for complete retraining.

Variations and alternatives to fine-tuning for domain adaptation are discussed in the
remainder of this survey. They include changing the data (Section 5), the network architec-
ture (Section 6), or the tuning procedure itself (Section 7). Alternatively, domain-specificity
can be achieved with domain-adaptive inference (Section 8). These variations on simple
fine-tuning can be combined. For example, a variation on fine-tuning could hypothetically
tune on a synthetically expanded in-domain set (Wei et al., 2020a), using domain-specific
parameters (Bapna & Firat, 2019b), and inference-time domain classification to determine
whether to use the domain-specific parameters (Huck et al., 2015). However, in the litera-
ture it is common to compare proposed domain adaptation interventions in isolation to a
baseline of simple fine-tuning on a pre-defined dataset.

Simple fine-tuning is associated with a number of difficulties. We present three here
– insufficient tuning data, forgetting, and overfitting – to motivate the variations on fine-
tuning data, architecture, tuning and inference presented in the remainder of this survey.

4.1 Difficulty: Not Enough In-Domain Data

Fine-tuning strong pre-trained models on small, trusted sets has become a popular approach
for machine translation fixed-domain tasks. A version of this commonly appearing in WMT
shared task submissions is tuning on test sets released for the same task in previous years
(Schamper et al., 2018; Koehn et al., 2018a; Stahlberg et al., 2019). Shared task adaptation
sets are likely to contain many sentences stylistically very similar to those in the test set.

However, we cannot always assume the existence of a sufficiently large and high-quality
in-domain parallel dataset. Outside well-defined domain adaptation shared tasks, there may
be little or no bilingual in-domain data available for a particular adaptation scenario. In
Section 5, we describe data-centric adaptation methods which aim to expand the in-domain
parallel corpus available for tuning.
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4.2 Difficulty: Forgetting Previous Domains

The difficulty of ‘catastrophic forgetting’ occurs when translating domains other than the
fine-tuning domain. If a neural model with strong performance on domain A is fine-tuned
on domain B, it often improves performance on B at the expense of extreme performance
degradation on A (McCloskey & Cohen, 1989; Ratcliff, 1990). This is especially problematic
if we intended to train a model capable of translating text from multiple domains, regardless
of when during training a given domain was learned.

Some forgetting may be permissible if the model is intended to translate only a small
amount of highly specific data. Examples include adapting a new model to translate each
individual test sentence (Farajian et al., 2017; Li et al., 2018; Mueller & Lal, 2019) or
document (Kothur et al., 2018). Even in this scenario, forgetting all data that is unlike the
tuning data may cause poor performance on even very specific target-domain data – this is
the related scenario of overfitting (Section 4.3).

A straightforward approach to avoiding forgetting under fine-tuning is to simply tune
for fewer steps (Xu et al., 2019), although this introduces an inherent trade-off between
better performance on the new domain and worse performance on the old domain. Other
approaches to good performance on both new and old domains with a single model might
introduce additional domain-specific parameters or subnetworks for the new domain, as
described in Section 6. Alternatively they may involve changing the training approach, for
example to add regularization relative to the original domain, as described in Section 7.

4.3 Difficulty: Overfitting to New Domains

Overfitting or ‘exposure bias’ is common when the fine-tuning dataset is very small or
repetitive. The model may be capable of achieving excellent performance on the precise
adaptation domain B, but any small variations from it – say, B′ – cause difficulties. Farajian
et al. (2017) and Li et al. (2018) observe this degradation after adapting a model to just
tens of training sentences with certain learning settings. Overfitting is particularly relevant
in cases of domain mismatch between the test sentence domain and the fine-tuning domain
(Wang & Sennrich, 2020).

The effect can also occur when the tuning data contains small irregularities. B′ becomes
a subset of B containing misaligned sentence pairs, or sentences with idiosyncratic and
irrelevant terminology use. In this case test sentences may match topic and genre with
overall tuning domain B, but we do not wish to translate them as in B′ – the domain with
irregularities. Ott et al. (2018) observe one example of this effect: a model trained on data
with a high noise proportion may fall back on language model behaviour and generate some
common target sentence from the dataset, or simply copy the input sentence.

Overfitting can be mitigated by expanding the in-domain corpus so that it is harder to
overfit (Section 5), or by adjusting the adaptation procedure to adapt less aggressively to
the new domain (Section 7). An alternative which sidesteps fine-tuning, and therefore much
of the potential for overfitting or forgetting, is adjusting the test-time inference procedure
without changing the model at all (Section 8).
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5. Data-Centric Adaptation Methods

A domain is often identifiable by features of its data. Topic and genre as described in Section
2.1 are defined in terms of vocabulary and syntactic style for in-domain text. However, the
existence of a sufficiently large in-domain parallel dataset is often taken for granted by fine-
tuning (Section 4), as well as many model adaptation methods described in Sections 6 and
7 of this survey. Here we consider how an in-domain dataset can be created or expanded.

By data-centric adaptation methods, we refer to methods that select or generate appro-
priate in-domain data. Natural data – produced by a human – may be selected from some
large generic corpus or corpora according to some domain-specific criteria (Section 5.1). A
special case of natural data selection is filtering an existing in-domain corpus for cleaner or
more relevant data (Section 5.2). If only monolingual natural data is available, correspond-
ing source or target sentences can instead be generated by neural models. Data generation
may also diversify an easily over-fitted bilingual corpus, or text that is mismatched with the
domain of interest (Sennrich et al., 2017). Semi-synthetic bilingual data can be produced
by forward or back translation of existing natural data (Section 5.3). Additional in-domain
bilingual data can be partially synthesised from an in-domain natural dataset using noising
or simplification (Section 5.4). Finally, purely synthetic data - neither source nor target
produced by a human - can be generated for adaptation (Section 5.5).

5.1 Selecting Additional Natural Data for Adaptation

Grangier and Iter (2022) note that selecting a small dataset for domain adaptation involves
an inherent trade-off. A smaller dataset may be more domain relevant, but the impact
of any deviation from the target domain will be magnified. Nevertheless, data selection
from generic parallel text is a popular adaptation approach, and many approaches can be
found in the literature. We divide these into methods using discrete token-level measures
for retrieval, those using continuous sentence representations for retrieval, or those that use
some external model for scoring.

Sentences can be selected by discrete token overlap with in-domain data. Many such
methods have been applied to statistical MT, which typically does not involve continuous
sentence representations. For example, Eck et al. (2004) retrieve sentences for SMT lan-
guage model adaptation by TF-IDF and n-gram-overlap relevance measures. The NMT
adaptation scenario where few in-domain sentences are available has likewise seen fine-
tuning improvements when selecting additional data by straightforward n-gram matching,
as demonstrated for single-sentence adaptation by Farajian et al. (2017) and Li et al. (2018).
Koehn and Senellart (2010) instead use a fuzzy match score based on word-level edit dis-
tance to retrieve similar source sentences for SMT. Xu et al. (2019) apply fuzzy matching
retrieval to NMT, using retrieved sentences as in-domain adaptation data for each test
sentence. However, they obtain slightly better results using n-gram matching. Other appli-
cations of fuzzy matching for NMT use the retrieved sentences directly at inference time as
for the Koehn and Senellart (2010) approach – we discuss these in Section 8.3.2.

It can be beneficial to emphasise selected data diversity, avoiding creation of a repetitive
adaptation set. Poncelas et al. (2019b) take this approach. They select either by overall
n-gram rarity, or by using Feature Decay Algorithms which adjust the ‘value’ of an n-gram
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based on how often it has been sampled. They find both approaches outperform TF-IDF
similarity selection, which does not account for retrieved dataset diversity.

Tuning on data selected by discrete lexical overlap measures can be highly effective and
also relatively efficient. For example, Farajian et al. (2018) and Li et al. (2018) both note
that tuning on sentences that are highly similar to test sentences can improve terminology
use after adaptation, while requiring only a few adaptation examples per test sentence.
However, fine-grained adaptation can result in overfitting if matching is imperfect, with
Chen et al. (2020b) finding better performance tuning on sentences selected by n-gram
match over the entire test set compared to matching per-sentence.

In-domain data can also be retrieved based on continuous representations. For example,
Wang et al. (2017a) expand an in-domain corpus by selecting sentences with embeddings
similar to in-domain sentence embeddings. Bapna and Firat (2019a) combine n-gram-based
retrieval with dense vector representations to improve candidate retrieval across multiple
domains. Lohar et al. (2022) combine continuous and discrete approaches, using an em-
bedding comparison model to determine key phrases from each test input document, then
selecting data for adaptation by discrete key phrase matching.

Whether using a discrete or continuous representation, matching usually occurs in the
source language, as this allows direct comparison between source and test input sentences.
Notable exceptions are the recent approaches of Cai et al. (2021) and Vu et al. (2021),
both of whom use a cross-lingual network to retrieve target language sentences with similar
embeddings to an input source sentence. While this requires a cross-lingual model, it has
the advantage that ‘real’ relevant target sentences are retrieved. Many previously-described
approaches assume the retrieved source sentences will have good reference translations, or
retrieve only source sentences and then generate synthetic targets (Section 5.3.2).

Sentences can be selected by scoring for domain-relevance using external models. Moore
and Lewis (2010) select in-domain data to train language models by scoring the data under
in-domain and general domain language models and taking the cross-entropy difference as in-
domain relevance. Axelrod et al. (2011) add a bilingual cross-entropy difference term to the
Moore and Lewis (2010) approach to select parallel data for SMT adaptation. More recently,
Vu and Moschitti (2021) select documents based on support vector machines trained to
classify between the target domain data and random mixed-domain data. However, van der
Wees et al. (2017) note that such static discriminative filtering schemes can struggle with
very similar in-domain and generic corpora. Axelrod (2017) instead suggests ‘cynical data
selection’: repeatedly selecting the sentence that most reduces the relative entropy for
modelling the domain of interest. Importantly given the ambiguity over the meaning of
‘domain’ mentioned in Section 2.1, this does not involve actually defining a domain. Indeed,
Santamaŕıa and Axelrod (2017) note that using classifiers for data selection is not necessarily
a good conceptual approach as a sentence pair may easily appear in multiple corpora. They
instead reframe the ‘in-domain’ and ‘general domain’ corpora as data that we know we are
interested in or do not yet have an opinion about.

Aharoni and Goldberg (2020) dispense with assigned corpus labels and show that adapt-
ing to data identified by unsupervised domain clustering using large language models
matches or out-performs tuning on the ‘correct’ domain-labelled data. Del et al. (2021)
extend this idea to show that NMT models themselves can cluster sentences by embedding
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into domains that allow for better adaptation than pre-defined corpora. We regard these
results as an indication that arbitrary labels should not be relied upon as domain identifiers.

5.2 Filtering Existing Natural Data

Taking an existing corpus label as indicative of domain is a simple approach to natural data
selection for adaptation, despite the deficiencies mentioned at the end of Section 5.1. If we
do start with a pre-labeled corpus, data filtering can be applied to ensure that the selected
data is actually domain-representative. For example, Taghipour et al. (2011) map sentences
in a parallel corpus to a feature space, and mark the most novel pairs in the feature space
as noise to be removed. Care must be taken not to diminish the training space too far: for
example, Lewis and Eetemadi (2013) filter sentences for SMT while attempting to maintain
maximum n-gram coverage.

A special case of data filtering is targeted to remove ‘noisy’ training examples, as for
example in the WMT parallel corpus filtering task (Koehn et al., 2018b). Data cleaning
may involve ensuring source and target sentences in the training sentence are well-aligned,
contain the languages of interest, are not too long or contain too many non-words, such as
HTML tags (Khayrallah & Koehn, 2018; Berard et al., 2019). Cleaning methods can be
very similar to domain data selection, for example with extensions of previously-mentioned
cross-entropy difference filtering (Moore & Lewis, 2010) to bilingual training examples,
where the ‘in-domain’ models are trained on verifiably clean data only (Junczys-Dowmunt,
2018a, 2018b). While data cleaning has become a standard step in data preprocessing when
training any NMT system, we note it is particularly crucial to domain adaptation if only a
small in-domain dataset is available, as discussed in Section 4.3, and is widely mentioned
in the submissions for domain-specific shared tasks (Bawden et al., 2019).

5.3 Generating Synthetic Bilingual Adaptation Data from Monolingual Data

Bilingual training data that is relevant to the domain of interest may not be available.
However, source or target language monolingual data in the domain of interest is often
much easier to acquire. In-domain monolingual data can be used to construct partially
synthetic bilingual training corpora by forward- or back translation. This is a case of
bilingual data generation for adaptation rather than data selection.

Source or target language sentences in the domain of interest may be extracted from
monolingual corpora using techniques described previously in this section. A sufficiently
strong source-to-target translation model can forward-translate these sentences, or a target-
to-source model can back-translate them. The result is aligned in-domain source and tar-
get language training sentences. This allows ‘unsupervised’ MT domain adaptation where
parallel data is unavailable. Statistical MT has benefited from both forward translation
(Schwenk, 2008) and back-translation (Bertoldi & Federico, 2009; Lambert et al., 2011)
in the context of domain adaptation, with back translation performing better in direct
comparisons. Here we discuss more recent work on adaptation data generation for NMT.

5.3.1 Back Translation

Back translation uses natural monolingual data as target sentences, and requires a target-
to-source NMT model to generate synthetic source sentences. Back translations are com-
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monly used to augment general domain translation corpora, with strong improvements over
models not trained on back-translated data (Sennrich et al., 2016b). Even models trained
exclusively on back translations can perform similarly to models trained on natural data
(Poncelas et al., 2018). More relevant to this survey, back translation is also used to gener-
ate adaptation data for domains where in-domain target sentences are available (Sennrich
et al., 2017; Jin et al., 2020). In-domain target sentences may be identified with known
topic and genre, for example biomedical papers (Abdul Rauf et al., 2020) or coronavirus-
related texts (Mahdieh et al., 2020). Parthasarathy et al. (2020) extract target sentences
by finding target language terms that are likely to be in the test set, while Vu et al. (2021)
use a cross-lingual domain classification model to extract target sentences that are relevant
to test source sentences. These target sentences are then back-translated. The synthetic-
source sentence pairs are typically used directly for fine-tuning the model, but can also be
used as candidates for a domain-specific data selection scheme (Poncelas & Way, 2019).

Notably, Poncelas et al. (2019a) show that back-translated sentences can improve do-
main adaptation even when the original examples were used to train the general domain
model, suggesting it is not simply the in-domain target sentences but the novel synthetic
source sentences that aid adaptation. However, the quality and domain-relevance of the syn-
thetic source sentences is also important for adaptation. Wei et al. (2020a) show that using a
general domain model to back-translate in-domain sentences gives poor synthetic source sen-
tences, harming adaptation. Instead, they suggest ‘domain repairing’ the synthetic source
sentences before adaptation. Kumari et al. (2021) similarly show that domain-filtering
back-translated data improves NMT adaptation.

A related approach proposed by Currey et al. (2017) does not back-translate in-domain
target sentences at all, but instead copies them to the source side. This can teach the
model to produce rare words present in target language in-domain monolingual data without
requiring an expensive back-translation model. Burlot and Yvon (2018) show that training
on such copied sentence pairs with language-tags on the source side can give similar results
to using true back translation.

Zhang and Toral (2019) and Graham et al. (2020) have shown that training on high
proportions of back-translations gives a false sense of model quality on back-translated test
sets, while the apparent improvements may not be seen on natural test sets. Effectively,
back translations can constitute their own domain. Tagging back translated data, as for a
domain (Section 6.1) appears to mitigate this effect (Caswell et al., 2019), and is particularly
successful in low-resource scenarios (Marie et al., 2020), further emphasising the domain-
like nature of back translation. Adapting exclusively to back-translated data risks adapting
to this ‘translationese’ domain instead of the true domain of interest. Jiao et al. (2021)
propose mitigating this effect by interposing authentic natural parallel data, if available,
when tuning on back-translated data.

5.3.2 Forward Translation

Forward translation generates synthetic target sentences with an existing source-to-target
NMT model. A sub-type, self-learning, trains a model with its own synthetic translations.
Forward translation is less common than back translation, perhaps because the synthetic
data is on the target side and so any translation errors may be reinforced and produced dur-
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ing inference. However, self-learning can mean more efficient domain adaptation compared
to back translation, as it requires no additional NMT model. Chinea-Ŕıos et al. (2017)
demonstrate self-learning for domain adaptation, producing data in the target domain by
forward translation and then tuning on that data. Zhang and Zong (2016b) find self-
learning particularly beneficial for low-resource target languages. As in previous sections,
relevant monolingual data can be selected using domain-specific terminology or n-gram
overlap (Haque et al., 2020) or continuous representations (Chinea-Ŕıos et al., 2017).

A variation of forward translation uses one or more much larger or otherwise stronger
‘teacher’ models to generate in-domain forward translations which are then used to train
or tune a ‘student’ model. Gordon and Duh (2020) demonstrate that even strong generic
models can benefit from training on in-domain forward translations from a teacher. Currey
et al. (2020) extend this idea to train a multi-domain system using forward translations
from multiple separate in-domain teachers.

Unlike back translation, forward translation can also be applied to precisely the in-
domain source text we actually wish to translate, letting us generate synthetic test target
sentences. These can be used for direct fine-tuning, or as a seed to retrieve more natural or
synthetic parallel sentences for adaptation as in Poncelas et al. (2018). In this way forward
translation permits few-shot translation to previously unseen or unknown domains in a
multi-domain scenario.

Adapting to forward translated data does not risk adaptation to a ‘domain’ of synthetic
inputs as for back translation, since the source sentences remain natural. However, the
presence of target-side synthetic sentences still requires caution, since the model may learn
to generate translationese for the domain of interest. Any forward translation errors will also
be reinforced by adaptation. The outcome of adapting to either forward or back translations
depends heavily on the quality of the data-generating system. Notably, Bogoychev and
Sennrich (2019) suggest that forward translation is more sensitive to the quality of the
generating system, and that humans typically prefer the fluency of systems trained on back
translation.

5.4 Artificially Noising and Simplifying Natural Data

In some cases only a small in-domain dataset is available for adaptation, with no additional
bilingual nor monolingual corpora large enough to provide additional relevant sentences. In
this scenario we can generate new data from the available in-domain set by changing its
source or target sentences in some way. Including these variations in tuning can reduce the
likelihood of overfitting or over-exposure to a small set of one-to-one adaptation examples
(Bishop, 1995), thus addressing one of the fine-tuning pitfalls of Section 4.

A common example adds artificial noise to source sentences, for example by deleting,
substituting or permuting characters or words. As well as mitigating overfitting during
adaptation, tuning on such sentences can improve NMT robustness. Tuning on noised data
can improve performance on new sentences containing natural mistakes (Vaibhav et al.,
2019; Karpukhin et al., 2019) or noise introduced synthetically, for example by a poorly-
performing automatic speech recognition (ASR) system (Sperber et al., 2017; Gangi et al.,
2019). Some ‘noised’ datasets may themselves be domains of interest, as for the work of Tan
et al. (2020) adapting NMT to handle a wider range of natural linguistic variation. Kim
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et al. (2021) highlight another benefit of performing domain adaptation with noisy data, in
their case heavily segmented sentence fragments. They suggest that sufficient noising may
serve to redact any confidential information in adaptation data, mitigating privacy concerns
while still benefiting in-domain translation performance. Hu and Neubig (2021) also fine-
tune on fragmented phrase translations, but note that fragmentation-noising eventually
limits performance on non-noisy longer sentences – a case of over-fitting.

New in-domain examples can also be constructed by simplifying some natural source (Li
et al., 2020; Hasler et al., 2017) or target (Agrawal & Carpuat, 2019) sentences. Simplifying
sources can make translation easier and is applicable to unseen in-domain sentences at
inference time. Simplifying targets during training allows specification of output language
complexity, which may itself be a domain feature. However, simplification approaches to
adaptation are rare compared to noising approaches. This may be due to the difficulty
in obtaining training data and models for simplification – these models themselves may
be domain-sensitive or domain-mismatched – while noising text is intuitively often easier.
Interestingly, Mehta et al. (2020) find that back-translation can function as a simplification
system, and that training on the resulting simplified sentences benefits NMT in low resource
settings. This may suggest that adapting to back-translations (Section 5.3.1) is beneficial
in part due to the simplified synthetic source sentences.

5.5 Synthetic Bilingual Adaptation Data

A final type of data used for adaptation is purely synthetic. Purely synthetic data may be
beneficial when even monolingual in-domain natural data is unavailable, either due to lack
of resources or an extremely narrow target domain. Synthetic data may be obtained from
an external or induced lexicon. Alternatively synthetic sentences may be produced by a
template or an external model, perhaps in conjunction with forward or back translation.

Lexicons have been used effectively when dealing with rare words, OOV words or am-
biguous words with multiple senses in the training data (Zhao et al., 2018). For SMT
lexicons can be used to mine in-domain translation model probabilities directly (Daumé III
& Jagarlamudi, 2011). In NMT domain-specific lexicon probabilities may be incorporated
into the NMT loss function (Arthur et al., 2016) or bilingual lexicon entries may be used
to construct partially synthetic sentence pairs (Zhang & Zong, 2016a).

Another application of synthetic lexicon data is covering words or phrases for which
there is an easily obtainable translation, and which the model is likely to be required to
translate. This type of data is usually domain specific: NMT for use on social media may
require translations for common greetings, while a biomedical NMT system may have a fixed
set of terminology to translate. Hu et al. (2019) adapt to this form of lexicon for a pre-
defined domain, and find that it is complementary to tuning on back translated data, with
lexicons aiding translation of isolated words and back translations aiding overall in-domain
fluency. Kothur et al. (2018) adapt to a lexicon containing novel words in a test document,
and find that careful hyperparameter tuning is necessary to mitigate overfitting behaviour
when adapting to dictionaries for too many epochs. Peng et al. (2020) mitigate this form
of overfitting by combining generic domain parallel data with in-domain dictionaries to
synthesize in-domain parallel sentences that are similar to generic domain data.
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A final approach generates synthetic in-domain monolingual sentences, then translates
them. With known vocabulary of interest, Saunders and Byrne (2020b) fill generic templates
with in-domain source terminology, then forward translates. Given pre-trained language
models for the target language, Moslem et al. (2022) use existing in-domain target sentences
as language model prompts to generate additional examples, then back translates. In both
cases the resulting synthetic bilingual data is used for domain adaptation.

6. Architecture-Centric Adaptation

Architecture-centric approaches to domain adaptation typically add trainable parameters
to the NMT model itself. This may be a single new layer, a domain discriminator, or
a new subnetwork. If domains of interest are known ahead of model training, domain-
specific parameters may be learned jointly with NMT model training. However, in a domain
adaptation scenario where we wish to avoid retraining, domain-specific parameters can be
added after pre-training but before any fine-tuning on in-domain data.

Many of the papers surveyed in this section describe learning domain-specific labels or
parameters when training NMT models from scratch. Their focus is thus on domain adap-
tation as in adapting the domain of a specific translation, but not as in the goal in Section
2.2 of achieving good in-domain performance without retraining from scratch. We survey
these papers regardless for two reasons. One is completeness: many approaches described
here are popular ways to control or improve domain-specific translation. The second is
that the choice to train from scratch with domain-specific features is often based only on
relative simplicity of implementation. Editing the architecture of a pre-trained model can
be more complex than simply retraining a new model with a different architecture. We
highlight work where domain-specific parameters or other modeling changes are made after
pre-training, notably adapter layers (Section 6.3) as indicative that similar ‘from scratch’
approaches described here could also adapt without requiring retraining.

6.1 Domain Labels and Control

Figure 2: Domain tagging schemes mentioned in this section. a) Prepending an inline
domain tag (D) to the source (S) (Kobus et al., 2017; Tars & Fishel, 2018). b) Prepending
multiple inline domain tokens to the source (Stergiadis et al., 2021). c) Prepending an inline
domain tag to the target (T) (Britz et al., 2017). d) Embedding domain tags separately from
plain-text tokens, and concatenating the embeddings so the embedded sequence contains
per-token domain features (Kobus et al., 2017; Tars & Fishel, 2018).
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Where data is domain-labelled, the labels can be used to signal domain for a multi-
domain system. Domain labels may come from a human-curated source or from a trained
domain-classifier. Tags can be applied to either the source or target sentence. While tags
may be treated as simply another token in the source or target sequence – ‘inline’ tagging –
they also frequently involve a separate embedding or subnetwork (Figure 2). We therefore
discuss tags here in conjunction with architectural considerations.

Tagging the source allows external control of the target domain. One motivation for
source tagging is that some sentences can conceivably be translated into multiple domains,
particularly given that domain can encompass genre-related concepts like formality register.
Another motivation is that contemporary NMT systems may not successfully infer domain
from the source sentence. Instead, there is some evidence that they struggle with aspects of
language that would indicate domain to a human, such as lexical ambiguity (Emelin et al.,
2020) or formality (Hovy et al., 2020). Consequently any available domain information may
help to guide the NMT system during adaptation.

Kobus et al. (2017) explore domain-tagging the source sentence for NMT with either a
single inline token or as an embedded feature combined with each token embedding (Figure
2). Tars and Fishel (2018) also source-tag domains as either a single tag or as a tag
feature, using real known-domain labels as well as those determined by external supervised
classifiers and unsupervised clustering schemes. Both Kobus et al. (2017) and Tars and
Fishel (2018) find slightly better performance for domain features than for discrete tags.
Both also find that tags improve in-domain translation over simple fine-tuning on the target
domain, supporting the view that untagged NMT may not successfully infer domain.

Chu et al. (2017) introduce in-domain and generic domain source sentence tags during
fine-tuning. They find this improves performance on the target domain, but show improved
performance on the generic domain without tags, and suggest that tags discourage the model
from taking advantage of any overlap between the generic and target domains. Stergiadis
et al. (2021) account for this problem of overlapping domains by using multiple domain
tags for each source sentence. Mino et al. (2020) likewise use multiple inline tags indicating
domain and whether data is noised, and show benefits over using single tags. Wang et al.
(2021) fine-tune on mixed domains, but improve over simple domain tagging by tuning
with counterfactual tagged examples, where some generic domain source sentences are also
labelled with a best-fit in-domain tag.

While most of the above work focuses on tagging the source sentence, Britz et al. (2017)
instead prepend inline domain tags to the target sentence. They suggest that although NMT
models may not learn to infer domain without intervention, target tagging can provide that
intervention and teach the model to classify the source sentence’s domain. Importantly
this does not require the domain to be explicitly determined for new, user-generated source
sentences. However, it also complicates the process of controlling the desired domain.

Although many of the papers proposing domain control apply labels to all sentences
when training from scratch, this is not strictly necessary. Indeed Pham et al. (2021), com-
paring several previously proposed tagging approaches, note that introducing new domains
by specifying new labels at fine-tuning time is straightforward.
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6.2 Domain-Specific Subnetworks

Another architecture-based approach introduces new subnetworks for domains of interest.
This could be a domain-specific element of the original NMT architecture (e.g. vocabulary
embedding, encoder, decoder), or a domain embedding determined by a subnetwork not
typically found in the Transformer.

Vocabulary embeddings can be made wholly or partially domain-specific. This is related
to the domain-embedding feature discussed in Section 6.1, but differs in that the whole
embedding relates to the vocabulary item, not to a domain tag. For example, Zeng et al.
(2018) determine both domain-specific and domain-shared source sentence representations.
Pham et al. (2019) change existing word embeddings to have domain-specific features which
are activated or deactivated for a given input, improving lexical choice. Lin et al. (2021)
cache keywords for individual users with dedicated subnetworks, effectively tracking user
‘domain’-specific vocabulary embeddings to combine with the generic embeddings. Sato
et al. (2020) replace generic translation word embeddings with domain-specific vocabulary
embeddings learned by domain-specific language models from monolingual data. Dou et al.
(2019a) also learn domain-specific embeddings using monolingual target data, but via an
auxiliary language modelling task learned jointly with model tuning.

While most work mentioned in Section 6.1 assumes known domain labels or determines
them using an external classification model, it is also possible to learn a domain classifier
jointly with the NMT model, as in Britz et al. (2017). Similarly Lachaux et al. (2020)
represent the target domain as a latent variable input to a shared decoder. In these cases
target domain labels are assumed to be available for training, but at inference time domain
labels can be input to the model to control the output domain. Even if the desired domain
label is unknown at inference time, multiple sets of outputs can be generated by performing
inference with different domain label control.

The domain can be incorporated into the model architecture in ways other than simply
changing the word embeddings. For example, Michel and Neubig (2018) learn domain
embeddings for many individual speaker ‘domains’ during fine-tuning. They use these to
bias the softmax directly, resulting in small improvements over tuning with domain tags
prepended to the target sentence. Chu and Dabre (2019) likewise learn domain-specific
softmax biases for multiple domains, although they do not see improvements over simply
appending a domain token to the source sentence. A domain embedding does not need to
be determined directly from the source sentence: Wu et al. (2019) and Wang et al. (2020)
both learn domain-specific representations across multiple domains from the output of the
encoder, to feed to a shared decoder. These approaches encourage domain-specificity in
parts of the model other than the source sentence representation.

An alternative approach is to duplicate encoders or decoders for each domain of interest,
although this quickly becomes expensive in terms of added model size and therefore com-
putational and energy cost for training and inference. Gu et al. (2019) use both a shared
encoder and decoder for all sentences, as well as domain-specific encoders and decoders for
each input domain as determined by a classifier. Jiang et al. (2020) define multi-head atten-
tion networks for each domain. The overall attention in each layer is a weighting function
of the different domain attention networks, determined by domain classifiers for each layer.
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6.3 Lightweight Added Parameters

Figure 3: Illustration of adapter layers used for domain adaptation, based on Figure 1 from
Bapna and Firat (2019b). A separate set of adapters can be defined for each domain of
interest, here News, IT and Bio. The adapter (right) consists of relatively few parameters,
and is incorporated into both encoder (left) and decoder (middle) layers.

A lightweight architectural approach to domain adaptation for NMT adds only a limited
number of parameters after pre-training. The added parameters are usually adapted on in-
domain data while pre-trained parameters are ‘frozen’ – held at their pre-trained values. For
example, Vilar (2018) introduces a new component to each hidden unit in the model which
can amplify or decrease the contribution of that unit. Bapna and Firat (2019b) instead
add new layers, called ‘adapters’. In each case the domain-specific multiplicative unit or
adapter layer is tuned on the in-domain data while the rest of the model is frozen.

Adapter layers (Figure 3) have achieved particular popularity as they require very simple
and lightweight model modification, and inherently involve no forgetting since the original
model parameters are unchanged. They are typically inserted between layers in the encoder
and decoder, and may be used alongside a domain discriminator that determines which
adapter to use (Pham et al., 2020a). Notably, Abdul Rauf et al. (2020) find that adapters
can outperform full model fine-tuning when translating a ‘noisy’ domain, to which the full
model overfits. However, many of the above papers highlight that using adapters for NMT
domain adaptation requires careful choice of adapter size and number of tuning steps.

6.4 Architecture-Centric Multi-Domain Adaptation

Architectural approaches as described in this section are capable of good performance over
multiple domains. In particular, schemes that leave original parameters unchanged and
only adapt a small added set of parameters can avoid any performance degradation from
forgetting or overfitting by simply using the original parameters. Adapter-like architectural
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approaches may therefore have a natural application to continual learning, and can also be
a lightweight approach for other multi-domain scenarios.

It is worth noting that using a certain set of parameters for a certain domain implicitly
assumes that language domains are discrete, distinct entities. New architecture may be
either ‘activated’ if the test set is in-domain, or ‘deactivated’ for better general domain
performance as in Vilar (2018). A sentence may be assigned to a single domain, and a
label added for that domain as in Tars and Fishel (2018). However, multiple text domains
may overlap, and training domains may be mutually beneficial for translation performance
– using discrete tags may interfere with this, as found by Chu et al. (2017), and likewise
discrete domain-specific subnetworks may not make optimal use of multi-domain data.

One option proposed by Vu et al. (2022) explicitly accounts for the future presence of
new, unknown domains when tuning adapter layers. They add a ‘fusion’ adapter layer whose
purpose is to generalise from other, domain-specific layers. They find that learning to com-
bine results from domain-specific parameters improves performance on unseen domains.
Their finding is corroborated by Pham et al. (2021), who compare various architecture-
centric approaches to NMT domain-specificity mentioned in this section, focusing on their
performance in a multi-domain setting. They highlight that systems relying on domain
tags are hampered by wrong or unknown tags, for example for new domains or unfamiliar
examples of existing domains. Among the compared multi-domain systems, they find per-
formance generally underperforms simple fine-tuning for a single given domain, but that
when domains are close or overlapping, multi-domain systems that share parameters across
different domains are most effective.

7. Training Schemes for Adaptation

Once data is selected or generated for adaptation and a neural architecture is determined
and pre-trained, the model can be adapted to the in-domain data. One straightforward ap-
proach described in Section 4 is fine-tuning the neural model with the same MLE objective
function used in pre-training. However, as mentioned there, simple MLE fine-tuning can
cause catastrophic forgetting of old domains and overfitting to new domains. In this sec-
tion we discuss training schemes intended to mitigate these problems: regularized training,
curriculum learning, instance weighting and non-MLE fine-tuning.

7.1 Objective Function Regularization

A straightforward way to mitigate forgetting is to minimize changes to the model param-
eters. Intuitively, if parameters stay close enough to their pre-trained values they will
give similar performance on the pre-training domain. Here we discuss regularization and
knowledge distillation techniques which may be applied during adaptation for this purpose.

7.1.1 Freezing Parameters

One way to ensure model parameters do not change is to simply not update them, effec-
tively dropping them out of adaptation (Section 3.3.3). Research has shown that effective
adaptation results can be obtained by varying just a small subset of the original model
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parameters1. For example, Thompson et al. (2018) choose subnetworks of recurrent NMT
models to hold at their pre-trained values when fine-tuning on a new domain. Gu and Feng
(2020) extend this work to the Transformer architecture. Both note a decrease in forget-
ting dependent on which subnetwork is frozen, although performance on the new domain
is reduced relative to fine-tuning. Wuebker et al. (2018) likewise adapt only a manually
defined subset of model parameters, encouraging sparsity in the adapted parameters with
L1 regularization to improve efficiency. Deng et al. (2020) factorize all model components
into shared and domain-specific, freezing the shared factors when tuning the domain-specific
components on multiple domains. In these two cases performance on the new domains is
shown to be similar to full fine-tuning, even though only a fraction of the parameters are
adapted.

Parameters to be frozen do not necessarily have to be defined manually. Liang et al.
(2021) identify low-magnitude parameters as sparse or underused areas of the network that
can be easily adapted to new domains. They prune the sparse areas, then tune the original
network on the generic domain so that it recovers, after which the sparse areas can be
reintroduced and tuned on the new domain while the rest of the network is frozen. Gu
et al. (2021) take a very similar approach, but recover the pruned model using knowledge
distillation with in-domain data, removing the need for access to the generic dataset. In both
cases the authors demonstrate adaptation to multiple domains while significantly reducing
forgetting on the generic domain.

As for the approaches described in Section 6.3, these schemes have the advantage that
only a small number of parameters need be saved for each adapted model. This is partic-
ularly useful for saving memory if ‘personalizing’ many models for fine-grained domains,
such as individual users.

7.1.2 Regularizing Parameters

Figure 4: Illustration of parameter regularization during fine-tuning from a pre-training
(PT) domain to a new domain, based on Figure 1 from Kirkpatrick et al. (2017). If the pre-
trained parameters θPT are adapted with no regularization (NR), good performance on the
new domain corresponds to catastrophic forgetting on PT. Applying the same regularization
to all parameters (L2) encourages minimal overall change from θPT . EWC regularization
(Kirkpatrick et al., 2017) aims to vary the parameters that are unimportant for PT.

1. Different to adapters (Section 6.3), which introduce new parameters and freeze all original parameters.
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If adapting all parameters, regularizing the amount of adaptation can mitigate forget-
ting. Barone et al. (2017) allow all NMT model parameters to vary under L2 regularization
relative to their pre-trained values θPT , while Kirkpatrick et al. (2017) introduce the related
approach of Elastic Weight Consolidation (EWC) for computer vision domain adaptation,
which effectively scales the L2 regularization applied to each parameter θj by a value Fj . If
Λ is a scalar weight, a general-form L2 regularized loss function is:

θ̂ = argmin
θ

[LCE(x,y; θ) + Λ
∑
j

Fj(θj − θPTj )2] (9)

We illustrate these approaches in Figure 4. Relative domain importance can be controlled
or tuned with Λ, which is larger if the old domain is more important and smaller if the
new domain is more important. L2 regularization occurs where Fj = 1 for all j. For EWC
Kirkpatrick et al. (2017) define Fj as the Fisher information for the pre-training domain
estimated over a sample of data from that domain, (xPT ,yPT ).

Fj = E
[
∇2LCE(xPT ,yPT ; θPTj )

]
(10)

EWC has been broadly applied to NMT domain adaptation in recent years. Thompson
et al. (2019) demonstrate that it mitigates catastrophic forgetting adapting from a generic
to a specific domain. Saunders et al. (2019) demonstrate that this extends to sequential
adaptation across multiple domains, and Stahlberg et al. (2019) show that EWC can improve
translation on the generic domain when adapting between related domains.

Cao et al. (2021) observe that catastrophic forgetting corresponds to the model reducing
the probability of words from previous domains by shrinking their corresponding param-
eters. They address this by normalizing target word parameters, an approach previously
proposed by Nguyen and Chiang (2018) to improve rare word translation by mitigating
the bias towards common words. While not quite the same as regularizing parameters
via the objective function, the immediate goal of avoiding excessive changes in parameter
magnitude during tuning is the same, as is the effect of reducing forgetting.

Parameter regularisation methods involve a higher computational load than parame-
ter freezing, since all parameters in the adapted model are likely to be different from the
baseline, and the baseline parameter values are often needed for regularisation. However,
regularisation may also function more predictably across domains, language pairs and mod-
els than selecting parameters to freeze by subnetwork.

7.1.3 Knowledge Distillation

Knowledge distillation and similar ‘teacher-student’ model compression schemes effectively
use one teacher model to regularize training or tuning of a separate student model (Buciluǎ
et al., 2006; Hinton et al., 2015). Typically the teacher model is a large, pre-trained model,
and the student is required to emulate its behaviour with far fewer parameters. The student
model is tuned so its output distribution remains similar to the teacher’s output distribution
over the pre-trained data, often via an addition to the loss function (Kim & Rush, 2016).
We note that ‘knowledge distillation’ is sometimes used in the literature to mean training
a student model on forward translations produced by a teacher model – this approach is
described in Section 5.3.2.
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In a domain adaptation context, knowledge distillation encourages similar performance
on the pre-training domain using a regularization function between general and in-domain
model output distributions. The teacher is another NMT model. Dakwale and Monz (2017)
focus on weighting the teacher distribution weighting to reduce catastrophic forgetting,
while Khayrallah et al. (2018) aim for better in-domain performance on a single domain and
Mghabbar and Ratnamogan (2020) use knowledge distillation to adapt to multiple domains
simultaneously. Cao et al. (2021) extend knowledge distillation for domain adaptation to a
continual learning scenario where the model is adapted sequentially multiple times. They
propose dynamic knowledge distillation, in which older versions of the model carry less
weight compared to newer versions.

We see knowledge distillation as similar in spirit to parameter regularization. However,
it has a higher computational cost, since two models must actually operate on the data,
instead of some parameter values simply being stored in memory. This can be effective
when the aim is to compress the teacher model, since in this case the in-domain student
model is likely to be much smaller than the other. For models remaining the same size,
parameter regularization may be more practical.

7.2 Curriculum Learning

Figure 5: Curricula discussed in this section, moving from dataset A to dataset B. Typically,
A consists of ‘easy’ examples and B of ‘difficult’ examples. In a domain adaptation context,
A is the generic domain and B the target domain. a): Gradually mixing more of the target
domain into the curriculum (Zhang et al., 2019a). b) Simple fine-tuning – pre-training on
the generic domain for a long time, then switching to the target domain for a short time
– as discussed in section 4. c) Mixed fine-tuning, where the target-domain portion of the
curriculum incorporates a fixed proportion of the generic domain (Chu et al., 2017).

Bengio et al. (2009) recognize that humans learn best when concepts are presented in
a meaningful order, or a ‘curriculum’. They hypothesize that neural model training can
benefit from the same strategy of curriculum learning in terms of learning speed or quality.
In broad terms, a curriculum ranks the training examples, and that ranking guides the
order in which examples are presented to the model during training or fine-tuning.

Figure 5 illustrates some typical curricula used in domain adaptation for NMT. ‘Cur-
riculum learning’ often refers to Figure 5a, where examples from a new dataset are gradually
over-sampled during training. Often simple examples are shown first and difficult examples
introduced later (Zhang et al., 2017; Weinshall et al., 2018). Difficulty can be determined
in terms of objective data features like sentence length, linguistic complexity or word rarity
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(Kocmi & Bojar, 2017; Platanios et al., 2019). Difficulty can also depend on model ‘com-
petence’ for a given example at a certain state (Platanios et al., 2019). A training example
may be considered difficult for an NMT model at a given point in training if the example’s
embedding norm is large (Liu et al., 2020b), if the training loss of the example is changing
significantly between training iterations (Wang et al., 2018), or if the model simply does
not translate it well (Dou et al., 2020).

Although an easiest-first ranking is common, other rankings are possible. In fact, Zhang
et al. (2018) find that both easy-first and hardest-first schedules can give similar speed
improvements. We note that curricula involving translating all training examples during
training or tracking competence across epochs may increase the computational cost to an
extent that outweighs any benefits of better data ordering.

More relevant to this survey, a curriculum can be constructed from least-domain-relevant
examples to most-domain-relevant. In fact, simple fine-tuning (Section 4, Figure 5b) is effec-
tively curriculum learning where the final part of the curriculum contains only in-domain
data. However, curriculum-based approaches to domain adaptation generally involve a
gradual transition to in-domain data. For example, Wang et al. (2018) use an incremental
denoising curriculum to fine-tune a pre-trained NMT model on increasingly clean data from
its existing training corpus. Similar ‘cleaning’ fine-tuning curricula data can be learned via
reinforcement learning methods (Kumar et al., 2019; Zhao et al., 2020).

A curriculum can be determined in terms of training example similarity with the target
or generic domain. Moving smoothly between the generic and target domains may mitigate
forgetting and overfitting. One way to move smoothly from the generic to the target do-
main is to extract target-domain-relevant data from generic data already seen by the model.
Zhang et al. (2019a) identify such ‘pseudo in-domain’ data from general corpora and use
similarity scores to rearrange training sample order. This effectively treats distance from
in-domain data as a curriculum difficulty score. van der Wees et al. (2017) likewise per-
form domain adaptation while gradually emphasising more in-domain data from the generic
dataset each training epoch.

The idea of a data sampling curriculum can be extended to multi-domain models. Saj-
jad et al. (2017) carry out ‘model stacking’, training on incrementally closer domains to
the target domain, spending several epochs on each domain with the aim of maintaining
good performance across multiple domains. Wang et al. (2020) use a difficulty-based domain
adaptation curriculum across multiple domains simultaneously, using multi-dimensional do-
main features as difficulty scores. Wu et al. (2021) use model uncertainty on a small, trusted
multi-domain dataset to determine a curriculum across corpora for a multi-domain model.
Pham et al. (2022) determine multi-domain curricula with a reinforcement learning ap-
proach. They show that this outperforms the simple domain curriculum of Zhang et al.
(2019a) for single- and two-domain adaptation, while also allowing n-domain adaptation.

A different perspective on on curricula for domain adaptation ‘reminds’ the model of the
generic domain during adaptation, if generic data is available at adaptation time. Mixed
fine-tuning, proposed by Chu et al. (2017) mixes domain-tagged generic data into the adap-
tation data for the target domain, effectively incorporating previously-seen data into the
later half of a static curriculum (Figure 5c). They demonstrate strongly reduced catas-
trophic forgetting compared to simple fine-tuning, since the model is tuned on a more
diverse dataset. They also show complementary behaviour to domain tagging (Section 6.1).
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Song et al. (2020) extend mixed fine-tuning to a multi-stage multi-domain curriculum, se-
quentially learning new domains while discarding less relevant prior-domain data from the
data mix, and show that this improves over single-stage mixed fine-tuning. Hasler et al.
(2021) demonstrate that mixed fine-tuning without domain tags is complementary to di-
rectly regularizing parameters using EWC (Section 7.1.2). ‘Reminder’ techniques like mixed
fine-tuning can be effective even if domains are not treated as distinct entities: Aljundi et al.
(2019) demonstrate that maintaining a representative ‘replay buffer’ of past training exam-
ples avoids forgetting even without hard domain boundaries available.

7.3 Instance Weighting

Instance weighting adjusts the loss function to weight training examples according to their
target domain relevance (Foster et al., 2010). For NMT, an instance weight Wx,y for each
source-target training example can easily be integrated into a cross-entropy loss function:

L(x,y; θ) =
∑
(x,y)

−Wx,y logP (y|x; θ) (11)

A higher weight indicates that a sentence pair is important for training towards the
target domain, while a low (or zero) weight will lead to sentences effectively being ignored
during tuning. While this involves adjusting the loss function rather than data reordering,
the effect is to simulate over- or under-sampling particular examples during adaptation.

The weight may be determined in various ways. It may be the same for all sentences
marked as from a given domain, or defined for each sentence using a domain measure like
n-gram similarity (Joty et al., 2015) or cross-entropy difference (Wang et al., 2017b). If
changes can be made to the model architecture, the instance weight may be determined by
a domain classifier (Chen et al., 2017), or an architecture-dependent approach like sentence
embedding similarity (Zhang & Xiong, 2018). The same effect is achieved by Farajian et al.
(2018) by adjusting the learning rate and number of adaptation epochs dedicated to tiny
adaptation sets based on their domain similarity. In each case the outcome is to place more
or less emphasis on particular adaptation examples during training.

We view instance weighting as fundamentally the same idea as curriculum learning
(Section 7.2). Both schemes bias the model to place more importance on certain training
examples, allowing some control over how the model fits, forgets, or overfits certain sen-
tences. Some forms of curriculum learning are implemented in a similar way to instance
weighting, with a higher weight applied to examples that fall into the current section of the
curriculum, or a zero weight applied to examples that should not yet be shown to the model
(Bengio et al., 2009; Dou et al., 2020). One difference is that instance weights for domain
adaptation do not usually change as training progresses or model competence changes, but
bias the model towards in-domain data in a constant manner.

7.4 Non-MLE Training

As discussed in Section 3.3, MLE training is particularly susceptible to exposure bias, since
it tunes for high likelihood only on the sentences available in the training or adaptation
corpus. MLE also experiences loss-evaluation metric mismatch, since it optimizes the log
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likelihood of training data while machine translation is usually evaluated with translation-
specific metrics. Tuning an NMT system with a loss function other than the simple MLE on
pairs of training sentences may therefore improve domain adaptation. Here we describe two
other training objectives that have been demonstrated as useful precursors or follow-ups to
domain-adaptive MLE fine-tuning: minimum risk training and meta-learning.

7.4.1 Minimum Risk Training

Discriminative training for MT was introduced for phrase-based machine translation, min-
imizing the expected cost of model hypotheses with respect to an evaluation metric like
document-level BLEU (Papineni et al., 2002). Shen et al. (2016) extend these ideas to Min-
imum Risk Training (MRT) for NMT, using expected minimum risk at the sequence level
with a sentence-level BLEU (sBLEU) cost for end-to-end NMT training. Given N sampled
target sequences yn and the corresponding reference sequences y∗, for each sentence pair
in a minibatch the MRT objective is:

θ̂ = argmin
θ

N∑
n=1

∆(yn,y
∗)

P (yn|x; θ)α∑N
n′=1 P (yn′ |x; θ)α

(12)

Hyperparameter α controls the smoothness of the sample probability distribution. Func-
tion ∆(.) measures hypothesis cost ∈ [0, 1], often related to sentence BLEU. MRT has been
applied to NMT in various forms since its introduction. Edunov et al. (2018) explore varia-
tions on MRT, using samples produced by beam search and an sBLEU-based cost. Wieting
et al. (2019) use MRT with sBLEU and sentence similarity metrics. Saunders et al. (2020)
use MRT for translation with BLEU calculated over minibatch-level ‘documents’.

MRT is of particular relevance to domain adaptation for two reasons. Firstly, in the
NMT literature we find that MRT is exclusively applied to fine-tune a model that has
already converged under a maximum likelihood objective. MRT therefore fits naturally
into a discussion of improvements to pre-trained NMT models via parameter adaptation.

Secondly, there is some indication that MRT may be effective at reducing the effects of
exposure bias. Exposure bias can be a particular difficulty where there is a risk of overfitting
a small dataset, which is often the case for domain adaptation, especially if there is a domain
mismatch between adaptation and test data (Müller et al., 2020). However, MRT optimizes
with respect to model samples rather than tuning set target sentences – the latter may be
less diverse and thus easier to overfit. Moreover, a high-quality NMT baseline may produce
synthetic samples that are better aligned than available natural data. The ability of MRT to
mitigate overfitting is highlighted by Neubig (2016), who notes that MRT tends to produce
sentences of the correct length without needing length penalty decoding. When applied to
adaptation, MRT has been shown to mitigate exposure bias when the test data domain is
very different from the training domain (Wang & Sennrich, 2020), and when adaptation
data is in-domain but noisy, poorly aligned or unreliable (Saunders & Byrne, 2020a).

7.4.2 Meta-Learning

Meta-learning was proposed by Finn et al. (2017) as a means of tuning a neural model such
that it can easily learn new tasks in few additional steps: ‘learning to learn’. The aim is
to find model parameters that can be adapted to a range of domains easily, in few training
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steps and with few training examples. This is achieved by introducing a meta-learning
phase after pre-training and before fine-tuning on any particular target domain.

During the meta-learning phase the model fθ sees a number of few-shot adaptation tasks
T , where each task consists of training and test examples. In a meta-training step, model
parameters θ are first temporarily updated using the training examples, then the updated
model’s loss LT on the task test examples is used as the real meta-training objective.
Effectively, test losses for the meta-training tasks are used as the model’s training loss
during meta-training. For a given learning rate α:

argmin
θ

∑
T

LT (fθ̂) =
∑
T

LT (fθ−α∇θLT (fθ)) (13)

Sharaf et al. (2020) apply meta-learning to NMT domain adaptation. They specifically
meta-tune the parameters of a single adapter layer (Section 6.3) and simulate small domains
for meta-training by sampling sets of just hundreds of parallel sentences. They find that
this outperforms simply fine-tuning on the same samples when the number of simulated
domains is high, but not when fewer, larger meta-training domains are sampled, potentially
due to overfitting the meta-training sets. They also note that meta-training all Transformer
parameters instead of an adapter leads to catastrophic forgetting of the original domain.
Song et al. (2021) also meta-learn adapter layers, but adjust meta-learning learning rate
α dynamically to make the process sensitive to domain differences. They focus on do-
main differences in terms of model confidence in modelling a particular domain, and how
representative each sentence pair is of a particular domain. They find dynamic learning
rate adjustment particularly improves meta-learning performance when target domains of
interest are very different sizes. Park et al. (2021) apply meta-learning to unsupervised do-
main adaptation with only monolingual data. They do so by incorporating back-translation
and language modelling objectives into the meta-learning phase, and demonstrate strong
improvements over both simple fine-tuning and mixed fine-tuning.

Li et al. (2020) meta-learn the encoder and vocabulary embedding spaces, and find this
outperforms fine-tuning except for domains with many infrequent words. Zhan et al. (2021)
effectively apply a curriculum (Section 7.2) to the meta-learning process. They initiate the
meta-learning phase by sampling similar meta-training domains, and gradually introduce
more divergent domains. They find small improvements for the domains seen during meta-
learning. These two works together suggest that meta-learning may out-perform fine-tuning
for domains where test data is well-represented by the tuning data.

8. Inference Schemes for Adaptation

One way to side-step the problem of translating multiple domains in a single model is to
simply assign a separate NMT model to each domain and combine them at inference time.
Such models can be obtained using the techniques discussed in the previous sections, for
example by fine-tuning a single pre-trained model on data from each domain of interest.
While this approach is simple, if not memory-efficient, it begs the question of how best
to perform translation on an unseen source sentence from an unknown domain. Possible
approaches are multi-domain ensembling, and reranking or rescoring an existing set of
translation hypotheses.
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We also describe ways to encourage a model to produce domain-specific terminology or
phrasing via a pre- or post-processing step at inference time. This approach bypasses even
domain-specific tuning of an NMT model.

8.1 Multi-Domain Ensembling

At inference time an NMT ensemble can use predictions from multiple models to produce a
translation in a single pass, as described in Section 3.4. Here we discuss two forms of domain-
specific ensembling. Domain adaptive ensembling seeks to find a good set of interpolation
weights for a traditional ensemble of NMT models when translating a sentence of unknown
domain. Retrieval-based ensembling is a recently-proposed technique that interpolates NMT
predictions with a distribution over tokens that are likely in context, extracted from a static
in-domain datastore.

8.1.1 Domain Adaptive Ensembling

Certain models in an ensemble may be more useful than others for certain inputs. For
example, if ensembling a travel-domain model with a science-domain model, we might
expect the science model to be more useful for translating medical abstracts. This idea
of varying utility across an ensemble is particularly relevant when the domain of a test
sentence is unknown and therefore the best ensemble weighting must be determined at
inference time. We make an important distinction between the domain of the training data
and model – typically known, often with an available development set – and the test data,
for which we do not always know the domain or have access to a development set.

With a source sentence of unknown domain, Freitag and Al-Onaizan (2016) demonstrate
that reasonable performance can be achieved via a uniform ensemble of general models and
in-domain translation models. For models over K domains:

ŷ = argmax
y

K∑
k=1

1

K
Pk(y|x) (14)

However, intuition would suggest that the in-domain model should be prioritised when
inputs are closer to in-domain data, and the general model if inputs are more similar to
generic training data. Uniform ensembling is straightforward, but does not emphasise per-
formance on any particular domain.

Sajjad et al. (2017) also use multi-domain ensembles, but determine an ensemble weight
Wk for each model and test set t, tuned on development sets:

ŷ = argmax
y

K∑
k=1

Wk(t)Pk(y|x) (15)

This static weighting approach can be targeted to a particular domain, but tuning can
be slow, and requires either that the domain of the test set is known or that a development
set representative of the test set is available.

Domain adaptive approaches to inference can instead determine the ensemble weights
conditioned only on the source sentence or the partial translation hypothesis, without the
need to tune weights manually. For SMT, Huck et al. (2015) use a language model to classify
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the domain of an unseen source sentence x when determining which set of parameters to use
when generating the translation hypothesis. Liu et al. (2020a) use text similarity between
x and the in-domain corpus to determine an ensemble interpolation weight between generic
and in-domain NMT models.

ŷ = argmax
y

K∑
k=1

Wk(x)Pk(y|x) (16)

An alternative approach, Bayesian Interpolation, is introduced by Allauzen and Riley
(2011) for language model ensembling. Bayesian Interpolation allows adaptive weighting
without necessarily specifying that the domain of the test sentence is fixed for the entire
sentence. A set of initial approximated ensemble weights Wk(t) defines a task-conditional
ensemble as in Equation 15. This becomes a fixed weight ensemble if t is known for a test
set or sentence, much like the approaches described in Huck et al. (2015) and Sajjad et al.
(2017). However if t is not known, ensemble weights can be estimated at each inference
step i, where hi is history y1:i−1:

p(yi|hi) =
T∑
t=1

p(t, yi|hi) =
K∑
k=1

pk(yi|hi)
T∑
t=1

p(t|hi)Wk(t)

That is, a weighted ensemble with state-dependent mixture weights computable from
priors Wk(t) priors and the updated language model posterior. Saunders et al. (2019)
extend this formalism to include conditioning on a source sentence and estimating Wk(t)
from the source sentence, Wk(x). This permits domain adaptive NMT with multi-domain
ensembles when the test sentence domain is unknown and may vary within the sentence. If
a new, unseen domain is present, adaptive weighting will favour models for which that new
domain is likely. Saunders et al. (2019) demonstrate that adaptive ensemble weighting is
most beneficial when ensembling models specializing in different domains. An ensemble of
models specializing in similar domains may indeed perform well with a uniform weighting.

8.1.2 Retrieval-Based Ensembling

An ensemble does not need to consist purely of NMT models, or even involve an additional
neural network. Khandelwal et al. (2021) propose k-nearest-neighbour (kNN) machine
translation using a domain-specific data-store. The data-store maps NMT decoder states
to in-domain target language tokens. At each inference step the NMT model’s predictions
are interpolated with a distribution over the k retrieved nearest neighbour tokens given
the current model state. This is effectively an ensemble with a distribution from a static
context-to-token map.

Zheng et al. (2021a) demonstrate that this technique can benefit from determining k
itself adaptively for a given context: retrieving many tokens from rare contexts is likely to
result in noisy retrieved neighbours. Zheng et al. (2021b) further show that the kNN data-
store itself can be adapted for a given domain in the absence of parallel data using copying
and backtranslation (Section 5.3) to create pseudo-parallel data, and adapters (Section 6.3)
to learn states from the pseudo-parallel data. Martins et al. (2022) improve efficiency of
domain-specific kNN by caching retrieved translations for a given domain. All these variants
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on kNN have been shown to improve in-domain translation significantly without requiring
an additional NMT model.

8.2 Constrained Inference and Rescoring

Ensembling uses multiple models to produce a translation simultaneously. An alternative is
a multi-pass approach to inference, in which one model produces an initial translation which
is adjusted or corrected using another model. While this approach involves multiple models
performing their own separate inference passes, it can be more efficient than ensembling.
Multi-pass approaches do not involve holding multiple models in memory at once, and
the second translation pass is commonly held close to the initial translation in some way,
reducing the number of translations to be scored.

The initial model may produce multiple translations – for example, the highest scoring N
translations following beam search (Section 3.4.1). In this case a second inference pass can
rescore this N-best list using a different model or loss function. For example, Minimum Bayes
Risk (MBR) decoding rescores N-best lists or lattices to improve single system performance
for SMT (Kumar & Byrne, 2004; Tromble et al., 2008; de Gispert et al., 2010), or for NMT
if a sufficiently diverse lattice can be defined, for example, from SMT n-gram posteriors
(Stahlberg et al., 2017). In the context of domain adaptation, Dou et al. (2019b) propose
rescoring generic NMT model translations with domain-specific language models. Zhang
et al. (2018) retrieve in-domain source sentences that are similar to test inputs, and up-score
initial NMT hypotheses which contain fragments of their translations.

A related idea which has been applied to domain-specific translation is constrained in-
ference, where the NMT model is only permitted to produce certain translations. The
constraints may be generated by another translation model. For example, Stahlberg et al.
(2016) generate translation hypotheses with an SMT model, which are then represented
as a lattice that constrains NMT decoding. Khayrallah et al. (2017) constrain NMT out-
put to a domain-specific lattice to improve adequacy in domain adaptation scenarios. The
constraints may allow only certain domain-relevant words to change: Saunders and Byrne
(2020b) use lattice constraints when rescoring translations with an adapted model to cor-
rect mistakes in a gender ‘domain’. Constrained decoding can mitigate forgetting under
a domain-adapted model, as the adapted model only changes the original translation in
pre-determined permitted ways.

The initial beam search may itself be constrained to domain-specific language. Hokamp
and Liu (2017) and Hasler et al. (2018) both adjust the beam search algorithm to force
domain-specific terminology into the output of a generic model, although both approaches
are slower than straightforward beam search. An extension of the Hokamp and Liu (2017)
approach by Xie and Way (2020) finds that using alignment information can significantly
improve the efficiency of constrained beam search, with a similar BLEU score.

We note that the initial hypotheses used for rescoring or with constraints do not have
to be generated by a domain-specific model, or even a model which the user can tune. For
example, a user might generate initial translations with a generic commercial tool, then
rescore or retranslate the translations with constraints relating to the desired output, as in
Saunders and Byrne (2020b). It may be more practical for a user to edit or repair small
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aspects of generic translations from commercial systems in domain-specific ways, manually
or with their own monolingual tool, than to access a custom NMT system.

8.3 Domain Terminology Via Pre- and Post-Processing

A similar idea to domain terminology ‘correction’ during inference treats the presence of
domain-specific terminology as a pre- and post-processing problem. We discuss two such
approaches here. The first incorporates domain-specific terminology into the source sentence
in pre- and post-processing steps so as to ensure they are correctly translated. The second
preprocesses the input with similar source sentences or translations as a cue for the model.

8.3.1 Terminology Tagging

There are many possible ways to integrate terminology into the system at inference time.
Dinu et al. (2019) add inline tags to terminology in the source sentence as a pre-processing
step, and then replace the translated tags with corresponding target language terms. Song
et al. (2019) simply replace certain source phrases with pre-specified domain-specific target
translations as a preprocessing step, encouraging copy behaviour. Michon et al. (2020)
compare several variations on inline terminology tags, and find that the approach of Dinu
et al. (2019) may give the best scores where terminology is already reasonably well-handled,
but that it is less effective at introducing poorly-handled terminology. By contrast with the
above approaches Dougal and Lonsdale (2020) inject terminology after inference as a post-
processing step using source-target alignments. This has the advantage of not requiring a
model to handle tags, and could in principle be used to introduce terminology to a generic
or commercial system output. It is, however, reliant on an effective alignment model.

Chen et al. (2020a) take a similar approach to Dinu et al. (2019) and Song et al. (2019),
but do not require alignments and only require bilingual dictionaries during inference -
they specify the reference terminology in a fixed source position, encouraging the model
to learn correct alignments. Niehues (2021) also specify the reference terminology in a
fixed source position, but additionally use only the lemma, encouraging the model to learn
correct inflections for provided terminology. Lee et al. (2021) add an objective to predict
the span of masked source terms during NMT training, allowing them to insert multi-word
domain-specific terms during inference. They find similar unigram performance to Chen
et al. (2020a), but better reproduction of longer terms.

We note that many of these approaches do not actually require the baseline model
to see or produce the domain-specific terminology. This means terminology injection can
take place even for new, unseen domains whose terminology which would not otherwise be
generated by the model (Michon et al., 2020).

8.3.2 In-Domain Priming

An extension to priming the model with individual terminology incorporates entire related
sentences. For a given sentence, similar source sentences and their translations can be
extracted from a parallel dataset using fuzzy matching as described in Section 5.1. The
similar sentence or its translation can be used as a domain-specific input prompt.

Bulte and Tezcan (2019) propose priming with Neural Fuzzy Repair (NFR) based on
token edit distance: they incorporate known translations of similar sentences into the model
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input to act as context cues at inference. Xu et al. (2020) perform sentence priming ex-
periments with a wider range of similarity metrics, including continuous representations.
They distinguish between related and unrelated target words, bringing their work closer to
terminology tagging approaches of Section 8.3.1. Tezcan et al. (2021) develop NFR towards
use of subword representations for identifying matches, and also mark related and unre-
lated target terms. By contrast to these approaches Pham et al. (2020b) ‘prime’ using both
source and target sides of related sentence pairs, forcing the model to produce an in-domain
target-language ‘cue’ before translating the sentence of interest. Interestingly, Moryossef
et al. (2019) successfully prime commercial MT systems with short phrases relating to gen-
der or number, suggesting custom content injection may even be possible in some black-box
scenarios.

Pre- and post-processing approaches may work best if the NMT model is trained from
scratch such that it ‘sees’ examples of generic terminology tags or priming cues during
training. However, importantly, this training is not domain-specific, and the model does
not need to be retrained for performance on a particular domain. At inference time, these
approaches effectively adapt a translation’s domain-specificity without the need to retrain
or further change the model itself.

9. Case Studies for (Multi-)Domain Adaptation

We conclude this survey by briefly describing three ongoing lines of NMT research. At
first glance they may seem unrelated to the domain adaptation scenarios described above.
However, all have seen successful application of domain adaptation techniques in recent
years. In each case we briefly describe the problem, and assess whether it meets the criteria
for a single-domain or multi-domain adaptation problem using the points summarized in
Section 2. We then summarize recent approaches to each problem, focusing on those that
use a domain adaptation framing. Some of these approaches have been mentioned elsewhere
in this survey: here we put them in the context of their broader line of research. We do
not intend this to be a comprehensive survey of work on each problem, and refer to prior
surveys where available in each case. Instead we include this section as a demonstration of
the power and wide applicability of domain adaptation techniques, as well as guidance for
applying the (multi-)domain adaptation framing to new problems.

In this section we demonstrate the general utility of techniques in this survey for notions
other than changing text topic or genre. The ‘domains’ referred to in this section are not
necessarily implicit given the source sentence in the same way that topic or genre might
be. However, we note that even traditional domain adaptation often handles sentences
where domain is not implicit. Indeed, identical sentences may be translated in multiple
different ways depending on target domain, whether due to lexical ambiguity, customer-
specific terminology or genre-appropriate formality. Any of these could be resolved by
controlling the target domain. Likewise, we may wish to control an output language, entity
gender or document ‘domain’ despite not being able to infer it from the source.

9.1 Low Resource Language Translation as a Domain Adaptation Problem

Neural machine translation systems have achieved impressive performance on language pairs
with millions of well-aligned bilingual training sentence pairs available. For many language
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pairs, such resources are not available. A survey on natural language processing in such low
resource cases is given in Hedderich et al. (2020).

Faced with machine translation between a low resource language pair, we may wish
to improve the available resources, for example by generating synthetic bilingual data.
Alternatively we may decide to minimize the need for additional resources, for example by
adapting an existing NMT model trained to translate from the same source language. These
approaches are closely related to those described for domain adaptation in this article: in
effect, they treat the low resource language pair as its own domain.

A related approach to low resource language translation is multilingual translation. In
multilingual NMT, the goal is to translate to or from more than one language with a single
model (Dong et al., 2015; Aharoni et al., 2019). Multilingual NMT is a broad field of research
which does not necessarily involve low resource translation. However we are particularly
interested in the application of multilingual NMT to low resource languages (Mueller et al.,
2020). This can be seen as analogous to a multi-domain adaptation scenario: we wish to
achieve good performance on multiple distinct sets of text without compromising translation
on any, and ideally with the distinct ‘domains’ benefiting each other.

9.1.1 Can Low Resource Language Translation Be Treated as a Domain
Adaptation Problem?

Low resource language translation can be seen as a single-domain adaptation problem in
most cases, although for multilingual NMT systems it may become a multi-domain adap-
tation problem:

• We wish to improve translation performance on sentences from a low-resource lan-
guage pair. These should be very identifiable.

• We wish to avoid retraining, since we know that training from scratch on the low-
resource language pair alone is unlikely to be effective.

• Training a system to translate between only a single pair of languages will not be a
multi-‘domain’ problem. However, if we are training a one- or many-to-many multi-
lingual NMT model, we may want to adapt so as to translate into several languages
simultaneously. This may mean avoiding forgetting previous language pairs, learning
multiple languages simultaneously, or learning new languages in a few-shot manner.

9.1.2 Improving Low Resource Language Translation by Adaptation

Early and straightforward data-centric approaches to low resource language translation,
like domain adaptation, center around tuning an existing model on data for the new lan-
guage pair, usually sharing either the target language (Zoph et al., 2016) or source language
(Kocmi & Bojar, 2018). A distinction is that in this case catastrophic forgetting of the origi-
nal model’s abilities is less of a concern, since it is likely that a user can pre-determine which
languages will be translated with which model. However, many techniques are applicable
to both single-language-pair domain adaptation and cross-lingual transfer learning.

If the architecture is to be kept the same, lack of vocabulary overlap can be a difficulty,
although less so for related languages or those that can leverage similar BPE vocabularies
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(Nguyen & Chiang, 2017). Alternatively, both the data and architecture can change: for
example, Kim et al. (2019a) explore use of adding or sharing network components for
transfer learning new languages.

Monolingual data is often more freely available than bilingual data for low resource
translation, as for small-domain translation. Data-centric approaches to low-resource lan-
guage translation may therefore adapt to semi-synthetic datasets created by forward- or
back-translation (Rubino et al., 2020; Karakanta et al., 2018). Even if this pseudo-parallel
data is generated using a relatively weak low resource translation system, it still may be
beneficial for further tuning that system (Currey & Heafield, 2019). An alternative option
is to generate purely synthetic data: for example Fadaee et al. (2017) target rare words for
low resource NMT by situating them in new, synthetic contexts.

If tuning a previously-trained model on a new language pair, it is not usually necessary
to maintain performance on the original language pair. However, if e.g. the original source
language is shared with the new language pair, it may be better to avoid overfitting the
original encoder on the new dataset. To this end, previous work has experimented with
freezing some parameters (Ji et al., 2020), or jointly training on the low and high resource
language for ‘similar language regularization’ (Neubig & Hu, 2018). It may also be possible
to leverage monolingual data from the low resource language during tuning, for example
to regularize adaptation (Baziotis et al., 2020). Such approaches are clearly reminiscent of
domain adaptive tuning techniques described in Section 7.

A separate approach develops multilingual NMT models, which may translate between
very many language pairs. As for single-low-resource-language adaptation, most ‘domain’-
adjacent techniques used here are naturally data-centric. For example, if the language set
includes both high and low resource language pairs, these may act analogously to high
and low resource domains, with lower resource language pairs benefiting from the higher
resource lexical representations (Gu et al., 2018). Multilingual models may also benefit
from pseudo-parallel datasets, even for language pairs with no parallel data (Firat et al.,
2016). New language pairs may be introduced at different points during training, with
language or language pair tags, or subsets of the model parameters reserved for individual
language pairs (Blackwood et al., 2018; Zhang et al., 2020). Parameter regularization can
avoid forgetting previously learned language pairs. (Carrión-Ponz & Casacuberta, 2022).
In terms of architecture-centric approaches, the adapter scheme described in Section 6.3
was proposed simultaneously for multi-domain adaptation and multilingual NMT (Bapna
& Firat, 2019b; Philip et al., 2020), highlighting the conceptual connection between these
lines of research.

9.2 Gender Bias in Machine Translation as a Domain Adaptation Problem

Translation into languages with grammatical gender involves correctly inferring the gram-
matical gender of all entities in a sentence. In some languages this grammatical gender is
dependent on the social gender of human referents. For example, in German, translation of
the entity ‘the doctor’ would be feminine for a female doctor – Die Ärztin – or masculine
for a male doctor – Der Arzt. In practice, however, many NMT models struggle to gen-
erate such inflections correctly (Prates et al., 2020). Stanovsky et al. (2019) explore these
mistakes and demonstrate that they tend to reflect social gender bias: machine translation
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tends to translate based on profession-based gender stereotypes instead of using the context
of e.g. referential pronouns. A full survey of this behaviour in NMT can be found in Savoldi
et al. (2021).

English source The doctor helps the patient, although she is busy

German reference
Die Ärztin hilft dem Patienten, obwohl sie beschäftigt ist
The [female] doctor helps the [male] patient, although she is busy

MT with a bias-
related mistake

Der Arzt hilft der Patientin, obwohl sie beschäftigt ist
The [male] doctor helps the [female] patient, although she is busy

English source The nurse helps the patient, although he is busy

German reference
Der Krankenpfleger hilft dem Patienten, obwohl er beschäftigt ist
The [male] nurse helps the [male] patient, although he is busy

MT with a bias-
related mistake

Die Krankenschwester hilft dem Patienten, obwohl er beschäftigt ist
The [female] nurse helps the [male] patient, although he is busy

Table 1: Examples of mistranslation relating to gender bias effects. Bolded words are
entities inflected to correspond to the pronoun. MT from Microsoft Translator 05/22.

Gender-based errors are particularly common when translating sentences involving coref-
erence resolution. Table 1 gives two typical examples. These effects may occur because the
systems are influenced by the higher frequency of masculine-inflected doctors and feminine-
inflected nurses in training data, resulting from historical or cultural imbalances in the
society that produces this data.

Such effects are commonly referred to as systems exhibiting gender bias. Interestingly,
the effects can be interpreted in much the same way as a traditional text domain: certain
gendered terms have become associated with masculine or feminine grammar in the target
language. The model effectively derives a ‘gender’ domain implicitly from even gender-
ambiguous source sentences (e.g. ‘the doctor helps the patient’), even though this is not
desirable. Mitigation techniques typically revolve around controlling this ‘domain’ more
sensibly.

9.2.1 Can Gender Bias Be Treated as a Domain Adaptation Problem?

The problem of mitigating the effects of gender bias in NMT can be cast as a multi-domain
adaptation problem:

• We wish to improve translation for sentences with a distinct vocabulary distribution,
which can be interpreted as a domain: sentences containing gendered terms which do
not match existing social biases, such as female doctors and male nurses.

• We wish to avoid retraining: biases may be reinforced by the overall training set.

• We want to translate at least two domains. One consists of sentences affected by bias,
the other of sentences that are unaffected – we do not wish to compromise translation
of sentences without gendered terms. We may also want to continually adapt to new
‘domains’ to mitigate newly identified biases, since we are unlikely to successfully
pre-determine all relevant biases and their sources.
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9.2.2 Mitigating the Effects of Gender Bias by Adaptation

While there has been interest in mitigating undesirable data bias prior to training, this
may be not be practical in terms of computation or in terms of ability to adjust the data
(Tomalin et al., 2021). Such approaches may also not be conceptually sensible, as there are
countless ways in which biases could conceivably manifest in generated natural language,
relating to gender or otherwise (Hovy et al., 2020; Shah et al., 2020), so speaking in terms
of simple biases or imbalances that can be addressed is not clearly meaningful. Instead, a
range of approaches benefit from treating gender handling as a domain.

Improving gender translation by adapting to new data has been demonstrated in several
ways, although as with domain adaptation these approaches generally involve some mitiga-
tion of forgetting and/or overfitting during training or inference. Jwalapuram et al. (2020)
adapt, using a discriminative loss function to mitigate overfitting, to sentences containing
pronouns that were previously mistranslated. Saunders and Byrne (2020b) adapt to semi-
synthetic forward-translated gendered sentences and fully synthetic template-generated sen-
tences, exploring adaptation with EWC and constrained retranslation to avoid forgetting.
Costa-jussà and de Jorge (2020) fine-tune on natural gender-balanced data, and mitigate
forgetting by mixing in a proportion of general-domain data.

The idea of controlling machine translation gender inflections with some form of tag,
reminiscent of domain tagging, has been proposed in several forms. Vanmassenhove et al.
(2018) incorporate a ‘speaker gender’ tag into all training data, allowing gender to be con-
veyed at the sentence level. More relevant to domain adaptation, explicit gender tags have
been introduced during model adaptation (Saunders et al., 2020). Interestingly, implicit
gender tags in the form of gendered ‘prompts’ such as prepending the phrase ‘he said’ or
‘she said’ have been demonstrated by Moryossef et al. (2019) to control translation gender at
inference time, reminiscent of ‘priming’ techniques described in Section 8.3. This approach
effectively provides gender domain tags without requiring any changes to the model.

9.3 Document-Level Translation as a Domain Adaptation Problem

Document-level machine translation, summarized in Section 3.1.4, has come to refer to
two connected ideas. The first is translating one specific document, accounting for its
terminology or writing style. The second is translation of documents in general, accounting
for context beyond the individual sentence - for example to resolve pronoun coreference
when handling gender, as in Section 9.2. Document-specific terminology can benefit from
extra-sentential context, as shown in Table 2, so the ideas can be considered linked, and are
often explored together in the literature – a thorough survey of which can be found in Maruf
et al. (2021). Translating a specific document can clearly be cast as an adaptation problem.
We find that incorporating document context into an existing model often also involves
adaptation-adjacent approaches, since document-aligned bilingual datasets are usually much
smaller than sentence-aligned bilingual datasets (Voita et al., 2019b).

9.3.1 Can Document NMT be Treated as a Domain Adaptation Problem?

Improving document-level translation can be seen as a domain adaptation problem, and
may be seen as a multi-domain adaptation problem depending on efficiency requirements:
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English [X] is a portrait photographer12. She1 is known for
shooting2 in the woods.

German translations
of individual sentences

[X] ist Porträtfotograf. Sie ist bekannt dafür, im Wald zu
schießen.
X is a [male] portrait photographer. She is known for shoot-
ing [a weapon] in the woods.

German translations
with context

[X] ist Porträtfotografin. Sie ist bekannt dafür, im Wald
zu fotografieren.
X is a [female] portrait photographer. She is known for tak-
ing photographs in the woods.

Table 2: Example of English-to-German translation improved by document context. Two
terms with their cross-sentence resolution are numbered in the English sentence: 1 involves
an anaphoric pronoun and 2 is a case of lexical ambiguity. Ambiguous German translations
(bolded) are resolvable given document context.

• We wish to improve translation performance on (at least) one document, which may
use specific terminology or a distinct writing style.

• We wish to avoid retraining from scratch: an individual document or set of document-
aligned data is very small compared to typical sentence-aligned generic training sets,
so retraining would be especially inefficient.

• If we are not willing to tune one model per document, we may wish to use the same
model to translate well across multiple documents. This would be a multi-domain
adaptation problem for the sake of efficiency. However, it is possible that only one
document is of interest at a time.

9.3.2 Improving Document-Level Translation By Adaptation

Many of the data-centric adaptation approaches described in Section 5 use some ‘seed’ text
to extract related bilingual or monolingual data. These can be used for document-level
translation with the document to be translated as a seed. An example of this approach is
Kothur et al. (2018), who adapt to a lexicon containing novel words in a test document.

Attempts to use extra-sentential context in document translation have primarily incor-
porated additional sentences into the model input as described in Section 3.1.4. However,
an alternative approach reminiscent of domain adaptation is to condense document informa-
tion into tag or label form (6.1). Jehl and Riezler (2018) use inline document-content tags
for patent translation, integrating information at the word and sentence-level. Stojanovski
and Fraser (2020) show that incorporating document context can improve domain-specific
translation, suggesting that domain tags and document tags may function similarly. Kim
et al. (2019b) demonstrate that contextual and lexical information can be incorporated into
a very minimal form, reminiscent of tagging approaches, rather than necessitating encoding
entire additional sentences or documents.

The neural network architecture may need to be adjusted in order to incorporate context
beyond the individual sentence. A typical change is simply adding additional context source
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sentences alongside additional encoder parameters. Stojanovski and Fraser (2019) take this
approach, initialising the new context parameters randomly in a pre-trained model before
tuning on smaller document-level datasets. Voita et al. (2019b) initialise and tune a context-
aware decoder on a relatively small amount of document-sensitive data. Ul Haq et al. (2020)
first train a generic NMT model, then add and adapt context-sensitive hierarchical attention
networks on document-specific data. A final set of domain-adaptation-adjacent approaches
to document-level translation incorporates document information at inference time (Section
8): Voita et al. (2019a) carry out monolingual document repair with a specialised system
trained on ‘in-domain’ – context-aware – data. Stahlberg et al. (2019) similarly rerank
translations with a language model that incorporates document context.

10. Conclusions and Future Directions

Domain adaptation lets NMT models achieve good performance on language of interest with
limited training data, and without the cost of retraining the model from scratch. Adaptation
may even allow better performance than from-scratch training on a given domain. Some
ongoing challenges for machine translation can be framed as domain adaptation problems,
inviting the application of the well-tested techniques reviewed in the earlier sections of this
article. As our case studies in Section 9 have shown, there is already a trend towards using
adaptation for pseudo-domains other than straightforward provenance, topic or genre. It
remains to be seen which other lines of NMT research might benefit from domain adaptation
techniques.

We conclude this survey with a view to the future, highlighting four areas that are of par-
ticular interest for future work on NMT domain adaptation: extremely fine-grained adap-
tation, unsupervised adaptation, efficiency, and intentional forgetting. We have touched on
these at various points in this survey; here we emphasise their relevance to future research.

As observed in Section 2.1, text domains can be difficult to interpret, with topic and style
not necessarily consistent even within one document. Fine-grained adaptation of models to
very small amounts of data is one way to account for this domain fuzziness and variability
(Michel & Neubig, 2018). It has also become a popular way for industrial MT providers to
differentiate their products or target them to specific clients (Savenkov, 2018). Models may
be tuned to translate text by a particular author (Michel & Neubig, 2018; Buj et al., 2020),
or for every sentence (Farajian et al., 2017; Li et al., 2018; Mueller & Lal, 2019). While
fine-grained adaptation may improve lexical choice, it is often slow, and risks overfitting to
irrelevant data (Li et al., 2018). Future work in fine-grained or ‘extreme’ adaptation may
therefore focus on extraction of relevant data (Section 5) or ways to adapt at a per-sentence
level without changing the model at all (Section 8.3).

Unsupervised domain adaptation, which tunes a system without access to parallel data,
is also growing in popularity (Ramponi & Plank, 2020). A low resource domain – espe-
cially a very fine-grained domain – may not have parallel corpora for a particular language
pair. However, in-domain monolingual data is more widely available, and can let us produce
pseudo-parallel data by forward or back translation (Section 5.3), allowing adaptation with-
out genuine ‘supervised’ parallel data. Open questions involve the best ways of extracting
large amounts of in-domain data from multiple corpora given small amounts of in-domain
data, or of producing pseudo-parallel in-domain data from monolingual in-domain data.
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With interest in adapting to ever-finer domains, sufficient in-domain parallel data is in-
creasingly scarce: we predict interest in unsupervised adaptation will grow.

Efficiency concerns stem from the tension between high-quality, fine-grained adaptation
and practical use of limited resources. As typical NMT models grow larger (Wei et al.,
2020b) and more work emphasises extreme adaptation at the user or sentence level, there
is growing awareness that training and storing large numbers of deep neural models is
unsustainable from both a financial and an environmental perspective (Strubell et al., 2019;
Bender et al., 2021). Energy use and carbon footprint are certainly greater when training
from scratch on hundreds of millions of sentences as compared to fine-tuning models only
on relevant data. However, it may be that the aggregate effect of ‘personalizing’ large
NMT systems for many users outweighs the reduced per-model training time. In general,
we predict that efficiency in terms of tuning and storing models will continue to grow in
importance. This convergence of requirements may draw attention to approaches which
adapt using fewer tuning steps, or do not adapt the entire model. These may be variations
on adapter layers (Section 6.3), ways to find sparse or underused subsets of parameters
for minimal model adaptation (Section 7.1.1), or means of adapting the output that avoid
parameter tuning completely (Section 8.3).

Finally, we note an interesting trend of machine learning research into neural unlearning
(Kwak et al., 2017; Cao et al., 2018; Neel & Sharifi-Malvajerdi, 2021). We have previously
described catastrophic forgetting as a pitfall for adaptation, but forgetting can be viewed
as a feature, not a bug. As we saw in case studies on low resource and gender translation,
domain adaptation techniques can find application in intentionally forgetting or abandon-
ing certain behaviour which is no longer desirable, rather than specifically learning new
behaviour. We might want to unlearn domains we know we will not translate in the future,
or abandon a tendency to default to outdated translations, or mitigate more subtle effects
resulting from word associations relating to demographic biases. Adaptation for the pur-
poses of intentional forgetting may become more relevant with new risks connected to NLP
systems. For example, recent research has suggested that neural language models can be
‘attacked’ to retrieve their training data (Wallace et al., 2020; Gong et al., 2020). Given this
risk the ability to redact specific translation examples via unlearning might be desirable,
especially in privacy-sensitive cases such as biomedical translation. As a relatively new area
of research, the effect of unlearning on NMT remains an open question.

Natural language is both complex and evolving, as are the AI systems that interact
with natural language. With this survey we hope to draw attention to the possible benefits
and drawbacks of different approaches to domain adaptive translation, as well as their
possible applications. We hope that future work on adapting neural machine translation
will focus not only on individual domains of immediate interest, but on the range of machine
translation abilities that we wish to maintain or abandon.

Acknowledgements

Many thanks to Bill Byrne for helpful comments on earlier versions of this survey, as well
as associate editor Marcello Federico and the anonymous reviewers for their feedback. The
survey was finalized while working at RWS Language Weaver, and draws from the author’s
PhD thesis which was supported by EPSRC grants EP/M508007/1 and EP/N509620/1.

393



Saunders

References
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Kim, Y., López, J., & Kim, T. (Eds.), Proceedings of the 2018 on Asia Conference on
Computer and Communications Security, AsiaCCS 2018, Incheon, Republic of Korea,
June 04-08, 2018, pp. 735–747. ACM.

Cao, Y., Wei, H.-R., Chen, B., & Wan, X. (2021). Continual learning for neural machine
translation. In Proceedings of the 2021 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language Technologies, pp.
3964–3974, Online. Association for Computational Linguistics.

Carrión-Ponz, S., & Casacuberta, F. (2022). Few-shot regularization to tackle catastrophic
forgetting in multilingual machine translation. In Proceedings of the 15th biennial
conference of the Association for Machine Translation in the Americas (Volume 1:
Research Track), pp. 188–199, Orlando, USA. Association for Machine Translation in
the Americas.

Caswell, I., Chelba, C., & Grangier, D. (2019). Tagged back-translation. In Proceedings
of the Fourth Conference on Machine Translation (Volume 1: Research Papers), pp.
53–63, Florence, Italy. Association for Computational Linguistics.

Chen, B., Cherry, C., Foster, G., & Larkin, S. (2017). Cost weighting for neural machine
translation domain adaptation. In Proceedings of the First Workshop on Neural Ma-
chine Translation, pp. 40–46, Vancouver. Association for Computational Linguistics.

Chen, G., Chen, Y., Wang, Y., & Li, V. O. K. (2020a). Lexical-constraint-aware neural
machine translation via data augmentation. In Bessiere, C. (Ed.), Proceedings of the
Twenty-Ninth International Joint Conference on Artificial Intelligence, IJCAI 2020,
pp. 3587–3593. ijcai.org.

Chen, P., Bogoychev, N., & Germann, U. (2020b). Character mapping and ad-hoc adapta-
tion: Edinburgh’s IWSLT 2020 open domain translation system. In Proceedings of the
17th International Conference on Spoken Language Translation, pp. 122–129, Online.
Association for Computational Linguistics.

Cherry, C., Foster, G., Bapna, A., Firat, O., & Macherey, W. (2018). Revisiting character-
based neural machine translation with capacity and compression. In Proceedings of
the 2018 Conference on Empirical Methods in Natural Language Processing, pp. 4295–
4305, Brussels, Belgium. Association for Computational Linguistics.
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Tezcan, A., Bulté, B., & Vanroy, B. (2021). Towards a better integration of fuzzy matches
in neural machine translation through data augmentation. Informatics, 8 (1), 7.

Thompson, B., Gwinnup, J., Khayrallah, H., Duh, K., & Koehn, P. (2019). Overcoming
catastrophic forgetting during domain adaptation of neural machine translation. In
Proceedings of the 2019 Conference of the North American Chapter of the Associa-
tion for Computational Linguistics: Human Language Technologies. Association for
Computational Linguistics.

Thompson, B., Khayrallah, H., Anastasopoulos, A., McCarthy, A. D., Duh, K., Marvin, R.,
McNamee, P., Gwinnup, J., Anderson, T., & Koehn, P. (2018). Freezing subnetworks
to analyze domain adaptation in Neural Machine Translation. In Proceedings of the
Third Conference on Machine Translation, pp. 124–132.

Tiedemann, J., Scherrer, Y., et al. (2017). Neural machine translation with extended con-
text. In Proceedings of the Third Workshop on Discourse in Machine Translation.
Association for Computational Linguistics.

Tomalin, M., Byrne, B., Concannon, S., Saunders, D., & Ullmann, S. (2021). The practical
ethics of bias reduction in machine translation: Why domain adaptation is better than
data debiasing. Ethics and Information Technology, 23 (1).

Tromble, R., Kumar, S., Och, F., & Macherey, W. (2008). Lattice Minimum Bayes-Risk
decoding for statistical machine translation. In Proceedings of the 2008 Conference on
Empirical Methods in Natural Language Processing, pp. 620–629, Honolulu, Hawaii.
Association for Computational Linguistics.

418



Domain Adaptation for Neural Machine Translation: A Survey

Tu, Z., Lu, Z., Liu, Y., Liu, X., & Li, H. (2016). Modeling coverage for neural machine
translation. In Proceedings of the 54th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pp. 76–85, Berlin, Germany. Association
for Computational Linguistics.

Turian, J., Ratinov, L.-A., & Bengio, Y. (2010). Word representations: A simple and general
method for semi-supervised learning. In Proceedings of the 48th Annual Meeting of the
Association for Computational Linguistics, pp. 384–394, Uppsala, Sweden. Association
for Computational Linguistics.

Ul Haq, S., Abdul Rauf, S., Shoukat, A., & Hira, N.-e. (2020). Improving document-level
neural machine translation with domain adaptation. In Proceedings of the Fourth
Workshop on Neural Generation and Translation, pp. 225–231, Online. Association
for Computational Linguistics.

Vaibhav, V., Singh, S., Stewart, C., & Neubig, G. (2019). Improving robustness of machine
translation with synthetic noise. In Proceedings of the 2019 Conference of the North
American Chapter of the Association for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long and Short Papers), pp. 1916–1920, Minneapolis,
Minnesota. Association for Computational Linguistics.

van der Wees, M. (2017). What’s in a domain?: Towards fine-grained adaptation for machine
translation. Ph.D. thesis, University of Amsterdam.

van der Wees, M., Bisazza, A., & Monz, C. (2017). Dynamic data selection for neural
machine translation. In Proceedings of the 2017 Conference on Empirical Methods in
Natural Language Processing, pp. 1400–1410, Copenhagen, Denmark. Association for
Computational Linguistics.

Vanmassenhove, E., Hardmeier, C., & Way, A. (2018). Getting gender right in neural
machine translation. In Proceedings of the 2018 Conference on Empirical Methods
in Natural Language Processing, pp. 3003–3008, Brussels, Belgium. Association for
Computational Linguistics.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser,  L., &
Polosukhin, I. (2017). Attention is all you need. In Advances in Neural Information
Processing Systems, pp. 6000–6010.

Vaswani, A., Zhao, Y., Fossum, V., & Chiang, D. (2013). Decoding with large-scale neural
language models improves translation. In Proceedings of the 2013 Conference on Em-
pirical Methods in Natural Language Processing, pp. 1387–1392, Seattle, Washington,
USA. Association for Computational Linguistics.

Vijayakumar, A. K., Cogswell, M., Selvaraju, R. R., Sun, Q., Lee, S., Crandall, D., & Batra,
D. (2016). Diverse beam search: Decoding diverse solutions from neural sequence
models. CoRR, abs/1610.02424.

Vilar, D. (2018). Learning hidden unit contribution for adapting neural machine translation
models. In Proceedings of the 2018 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies, Vol. 2, pp.
500–505.

419



Saunders

Voita, E., Sennrich, R., & Titov, I. (2019a). Context-aware monolingual repair for neural
machine translation. In Proceedings of the 2019 Conference on Empirical Methods in
Natural Language Processing and the 9th International Joint Conference on Natural
Language Processing (EMNLP-IJCNLP), pp. 877–886, Hong Kong, China. Associa-
tion for Computational Linguistics.

Voita, E., Sennrich, R., & Titov, I. (2019b). When a good translation is wrong in context:
Context-aware machine translation improves on deixis, ellipsis, and lexical cohesion.
In Proceedings of the 57th Annual Meeting of the Association for Computational Lin-
guistics, pp. 1198–1212, Florence, Italy. Association for Computational Linguistics.

Voita, E., Serdyukov, P., Sennrich, R., & Titov, I. (2018). Context-aware neural machine
translation learns anaphora resolution. In Proceedings of the 56th Annual Meeting of
the Association for Computational Linguistics (Volume 1: Long Papers), pp. 1264–
1274, Melbourne, Australia. Association for Computational Linguistics.

Vu, T., & Moschitti, A. (2021). Machine translation customization via automatic train-
ing data selection from the web. In Hiemstra, D., Moens, M., Mothe, J., Perego,
R., Potthast, M., & Sebastiani, F. (Eds.), Advances in Information Retrieval - 43rd
European Conference on IR Research, ECIR 2021, Virtual Event, March 28 - April
1, 2021, Proceedings, Part I, Vol. 12656 of Lecture Notes in Computer Science, pp.
666–679. Springer.

Vu, T.-T., He, X., Phung, D., & Haffari, G. (2021). Generalised unsupervised domain adap-
tation of neural machine translation with cross-lingual data selection. In Proceedings
of the 2021 Conference on Empirical Methods in Natural Language Processing, pp.
3335–3346, Online and Punta Cana, Dominican Republic. Association for Computa-
tional Linguistics.

Vu, T.-T., Khadivi, S., Phung, D., & Haffari, G. (2022). Domain generalisation of NMT:
Fusing adapters with leave-one-domain-out training. In Findings of the Association
for Computational Linguistics: ACL 2022, pp. 582–588, Dublin, Ireland. Association
for Computational Linguistics.

Wallace, E., Stern, M., & Song, D. (2020). Imitation attacks and defenses for black-box
machine translation systems. In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP), pp. 5531–5546, Online. Associa-
tion for Computational Linguistics.

Wang, C., & Sennrich, R. (2020). On exposure bias, hallucination and domain shift in neural
machine translation. In Proceedings of the 58th Annual Meeting of the Association
for Computational Linguistics, pp. 3544–3552, Online. Association for Computational
Linguistics.

Wang, K., Chen, G., Huang, Z., Wan, X., & Huang, F. (2021). Bridging the domain gap: Im-
prove informal language translation via counterfactual domain adaptation. In Thirty-
Fifth AAAI Conference on Artificial Intelligence, AAAI 2021, Thirty-Third Confer-
ence on Innovative Applications of Artificial Intelligence, IAAI 2021, The Eleventh
Symposium on Educational Advances in Artificial Intelligence, EAAI 2021, Virtual
Event, February 2-9, 2021, pp. 13970–13978. AAAI Press.

420



Domain Adaptation for Neural Machine Translation: A Survey

Wang, L., Tu, Z., Way, A., & Liu, Q. (2017). Exploiting cross-sentence context for neural
machine translation. In Proceedings of the 2017 Conference on Empirical Methods in
Natural Language Processing, pp. 2826–2831, Copenhagen, Denmark. Association for
Computational Linguistics.

Wang, Q., Li, B., Xiao, T., Zhu, J., Li, C., Wong, D. F., & Chao, L. S. (2019). Learning
deep transformer models for machine translation. In Proceedings of the 57th Annual
Meeting of the Association for Computational Linguistics, pp. 1810–1822, Florence,
Italy. Association for Computational Linguistics.

Wang, R., Finch, A., Utiyama, M., & Sumita, E. (2017a). Sentence embedding for Neural
Machine Translation domain adaptation. In Proceedings of the 55th Annual Meeting
of the Association for Computational Linguistics (Volume 2: Short Papers), Vol. 2,
pp. 560–566.

Wang, R., Utiyama, M., Liu, L., Chen, K., & Sumita, E. (2017b). Instance weighting for
neural machine translation domain adaptation. In Proceedings of the 2017 Conference
on Empirical Methods in Natural Language Processing, pp. 1482–1488, Copenhagen,
Denmark. Association for Computational Linguistics.

Wang, R., Utiyama, M., & Sumita, E. (2018). Dynamic sentence sampling for efficient
training of neural machine translation. In Proceedings of the 56th Annual Meeting of
the Association for Computational Linguistics (Volume 2: Short Papers), pp. 298–304,
Melbourne, Australia. Association for Computational Linguistics.

Wang, W., Tian, Y., Ngiam, J., Yang, Y., Caswell, I., & Parekh, Z. (2020). Learning a multi-
domain curriculum for neural machine translation. In Proceedings of the 58th Annual
Meeting of the Association for Computational Linguistics, pp. 7711–7723, Online.
Association for Computational Linguistics.

Wang, W., Watanabe, T., Hughes, M., Nakagawa, T., & Chelba, C. (2018). Denoising
neural machine translation training with trusted data and online data selection. In
Proceedings of the Third Conference on Machine Translation: Research Papers, pp.
133–143, Belgium, Brussels. Association for Computational Linguistics.

Wang, Y., Wang, L., Shi, S., Li, V. O. K., & Tu, Z. (2020). Go from the general to the
particular: Multi-domain translation with domain transformation networks. In The
Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-
Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The
Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI,
pp. 9233–9241. AAAI Press.

Wei, H.-R., Zhang, Z., Chen, B., & Luo, W. (2020a). Iterative domain-repaired back-
translation. In Proceedings of the 2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pp. 5884–5893, Online. Association for Computa-
tional Linguistics.

Wei, X., Yu, H., Hu, Y., Zhang, Y., Weng, R., & Luo, W. (2020b). Multiscale collaborative
deep models for neural machine translation. In Proceedings of the 58th Annual Meeting
of the Association for Computational Linguistics, pp. 414–426, Online. Association for
Computational Linguistics.

421



Saunders

Weinshall, D., Cohen, G., & Amir, D. (2018). Curriculum learning by transfer learning:
Theory and experiments with deep networks. In International Conference on Machine
Learning, pp. 5238–5246.

Wieting, J., Berg-Kirkpatrick, T., Gimpel, K., & Neubig, G. (2019). Beyond BLEU:training
neural machine translation with semantic similarity. In Proceedings of the 57th Annual
Meeting of the Association for Computational Linguistics, pp. 4344–4355, Florence,
Italy. Association for Computational Linguistics.

Wu, M., Li, Y., Zhang, M., Li, L., Haffari, G., & Liu, Q. (2021). Uncertainty-aware bal-
ancing for multilingual and multi-domain neural machine translation training. In
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Pro-
cessing, pp. 7291–7305, Online and Punta Cana, Dominican Republic. Association for
Computational Linguistics.

Wu, S., Zhang, D., & Zhou, M. (2019). Effective soft-adaptation for neural machine transla-
tion. In Tang, J., Kan, M., Zhao, D., Li, S., & Zan, H. (Eds.), Natural Language Pro-
cessing and Chinese Computing - 8th CCF International Conference, NLPCC 2019,
Dunhuang, China, October 9-14, 2019, Proceedings, Part II, Vol. 11839 of Lecture
Notes in Computer Science, pp. 254–264. Springer.

Wu, Y., Schuster, M., Chen, Z., Le, Q. V., Norouzi, M., Macherey, W., Krikun, M., Cao,
Y., Gao, Q., Macherey, K., et al. (2016). Google’s neural machine translation system:
Bridging the gap between human and machine translation. CoRR, abs/1609.08144.

Wuebker, J., Simianer, P., & DeNero, J. (2018). Compact personalized models for neural
machine translation. In Proceedings of the 2018 Conference on Empirical Methods in
Natural Language Processing, pp. 881–886, Brussels, Belgium. Association for Com-
putational Linguistics.

Xie, G., & Way, A. (2020). Constraining the transformer NMT model with heuristic grid
beam search. In Proceedings of the 14th Conference of the Association for Machine
Translation in the Americas (Volume 1: Research Track), pp. 36–49, Virtual. Associ-
ation for Machine Translation in the Americas.

Xu, J., Crego, J., & Senellart, J. (2019). Lexical micro-adaptation for neural machine
translation. In International Workshop on Spoken Language Translation.

Xu, J., Crego, J., & Senellart, J. (2020). Boosting neural machine translation with similar
translations. In Proceedings of the 58th Annual Meeting of the Association for Com-
putational Linguistics, pp. 1580–1590, Online. Association for Computational Linguis-
tics.

Zeng, J., Su, J., Wen, H., Liu, Y., Xie, J., Yin, Y., & Zhao, J. (2018). Multi-domain neural
machine translation with word-level domain context discrimination. In Proceedings
of the 2018 Conference on Empirical Methods in Natural Language Processing, pp.
447–457, Brussels, Belgium. Association for Computational Linguistics.

Zhan, R., Liu, X., Wong, D. F., & Chao, L. S. (2021). Meta-curriculum learning for do-
main adaptation in neural machine translation. In Thirty-Fifth AAAI Conference on
Artificial Intelligence, AAAI 2021, Thirty-Third Conference on Innovative Applica-
tions of Artificial Intelligence, IAAI 2021, The Eleventh Symposium on Educational

422



Domain Adaptation for Neural Machine Translation: A Survey

Advances in Artificial Intelligence, EAAI 2021, Virtual Event, February 2-9, 2021,
pp. 14310–14318. AAAI Press.

Zhang, B., Williams, P., Titov, I., & Sennrich, R. (2020). Improving massively multilingual
neural machine translation and zero-shot translation. In Proceedings of the 58th An-
nual Meeting of the Association for Computational Linguistics, pp. 1628–1639, Online.
Association for Computational Linguistics.

Zhang, D., Kim, J., Crego, J., & Senellart, J. (2017). Boosting neural machine translation.
In Proceedings of the Eighth International Joint Conference on Natural Language
Processing (Volume 2: Short Papers), pp. 271–276, Taipei, Taiwan. Asian Federation
of Natural Language Processing.

Zhang, J., & Zong, C. (2016a). Bridging neural machine translation and bilingual dictio-
naries. CoRR, abs/1610.07272.

Zhang, J., & Zong, C. (2016b). Exploiting source-side monolingual data in neural machine
translation. In Proceedings of the 2016 Conference on Empirical Methods in Natural
Language Processing, pp. 1535–1545, Austin, Texas. Association for Computational
Linguistics.

Zhang, J., Utiyama, M., Sumita, E., Neubig, G., & Nakamura, S. (2018). Guiding neu-
ral machine translation with retrieved translation pieces. In Proceedings of the 2018
Conference of the North American Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume 1 (Long Papers), pp. 1325–1335, New
Orleans, Louisiana. Association for Computational Linguistics.

Zhang, M., & Toral, A. (2019). The effect of translationese in machine translation test sets.
In Proceedings of the Fourth Conference on Machine Translation (Volume 1: Research
Papers), pp. 73–81, Florence, Italy. Association for Computational Linguistics.

Zhang, S., & Xiong, D. (2018). Sentence weighting for neural machine translation domain
adaptation. In Proceedings of the 27th International Conference on Computational
Linguistics, pp. 3181–3190, Santa Fe, New Mexico, USA. Association for Computa-
tional Linguistics.

Zhang, X., Kumar, G., Khayrallah, H., Murray, K., Gwinnup, J., Martindale, M. J., Mc-
Namee, P., Duh, K., & Carpuat, M. (2018). An empirical exploration of curriculum
learning for neural machine translation. CoRR, abs/1811.00739.

Zhang, X., Shapiro, P., Kumar, G., McNamee, P., Carpuat, M., & Duh, K. (2019a). Curricu-
lum learning for domain adaptation in neural machine translation. In Proceedings of
the 2019 Conference of the North American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers),
pp. 1903–1915, Minneapolis, Minnesota. Association for Computational Linguistics.

Zhang, Z., Wu, S., Liu, S., Li, M., Zhou, M., & Xu, T. (2019b). Regularizing neural machine
translation by target-bidirectional agreement. In Proceedings of the AAAI Conference
on Artificial Intelligence, Vol. 33, pp. 443–450.

Zhao, M., Wu, H., Niu, D., & Wang, X. (2020). Reinforced curriculum learning on pre-
trained neural machine translation models. In The Thirty-Fourth AAAI Conference
on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of

423



Saunders

Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Edu-
cational Advances in Artificial Intelligence, EAAI, pp. 9652–9659. AAAI Press.

Zhao, Y., Zhang, J., He, Z., Zong, C., & Wu, H. (2018). Addressing troublesome words
in neural machine translation. In Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing, pp. 391–400, Brussels, Belgium. Association
for Computational Linguistics.

Zheng, X., Zhang, Z., Guo, J., Huang, S., Chen, B., Luo, W., & Chen, J. (2021a). Adaptive
nearest neighbor machine translation. In Proceedings of the 59th Annual Meeting
of the Association for Computational Linguistics and the 11th International Joint
Conference on Natural Language Processing (Volume 2: Short Papers), pp. 368–374,
Online. Association for Computational Linguistics.

Zheng, X., Zhang, Z., Huang, S., Chen, B., Xie, J., Luo, W., & Chen, J. (2021b). Non-
parametric unsupervised domain adaptation for neural machine translation. In Find-
ings of the Association for Computational Linguistics: EMNLP 2021, Virtual Event /
Punta Cana, Dominican Republic, 16-20 November, 2021, pp. 4234–4241. Association
for Computational Linguistics.

Zipf, G. K. (1949). Human behavior and the principle of least effort. Addison-Wesley Press.

Zoph, B., Yuret, D., May, J., & Knight, K. (2016). Transfer learning for low-resource neural
machine translation. In Proceedings of the 2016 Conference on Empirical Methods in
Natural Language Processing, pp. 1568–1575.

424


