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Abstract

We propose a multiple source domain adaptation

method, referred to as Domain Adaptation Ma-

chine (DAM), to learn a robust decision function

(referred to as target classifier) for label predic-

tion of patterns from the target domain by lever-

aging a set of pre-computed classifiers (referred

to as auxiliary/source classifiers) independently

learned with the labeled patterns from multi-

ple source domains. We introduce a new data-

dependent regularizer based on smoothness as-

sumption into Least-Squares SVM (LS-SVM),

which enforces that the target classifier shares

similar decision values with the auxiliary classi-

fiers from relevant source domains on the unla-

beled patterns of the target domain. In addition,

we employ a sparsity regularizer to learn a sparse

target classifier. Comprehensive experiments on

the challenging TRECVID 2005 corpus demon-

strate that DAM outperforms the existing multi-

ple source domain adaptation methods for video

concept detection in terms of effectiveness and

efficiency.

1. Introduction

Collection of labeled patterns requires expensive and time-

consuming efforts of human annotators. Domain adapta-

tion methods 1 were proposed (Wu & Dietterich, 2004;

Blitzer et al., 2006; Daumé III, 2007) to learn robust clas-

1Domain adaptation is different from Semi-Supervised Learn-
ing (SSL). SSL methods employ both labeled and unlabeled data
for better classification, in which the labeled and unlabeled data
are assumed to come from the same domain.
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sifiers with only a few or even no labeled patterns from the

target domain by leveraging a large amount of labeled train-

ing data from other domains (referred to as auxiliary/source

domains). These methods demonstrated that the labeled

patterns collected from other domains are useful for clas-

sifying the patterns from the target domain in many real

applications, such as sentiment classification, text catego-

rization, WiFi localization and video concept detection.

To utilize all training patterns from the source and target

domains, Blitzer et al. (2006) proposed Structural Corre-

spondence Learning (SCL) algorithm to induce the corre-

spondences among features from different domains. They

employed a heuristic technique to select the pivot features

that appear frequently in both domains. Daumé III (2007)

proposed a Feature Replication (FR) method to augment

features for domain adaptation. The augmented features

are then used to construct a kernel function for kernel meth-

ods. Yang et al. (2007) proposed Adaptive Support Vector

Machine (A-SVM) to learn a new SVM classifier fT (x) for

target domain, which is adapted from an existing classifier

fs(x) trained with the patterns from the source domain.

However, numerous unlabeled patterns in the target domain

are not exploited in the above domain adaptation methods

(Wu & Dietterich, 2004; Daumé III, 2007; Yang et al.,

2007). As shown in (Joachims, 1999; Belkin et al., 2006),

such unlabeled patterns can also be employed to improve

the generalization performance. When there are only a

few or even no labeled patterns available in the target do-

main, the classifiers can be trained with the patterns from

the source domains. In such an extreme case, several do-

main adaptation methods (Huang et al., 2007; Storkey &

Sugiyama, 2007) were proposed to cope with the inconsis-

tency of data distribution (such as covariate shift (Storkey

& Sugiyama, 2007) or sampling selection bias (Huang

et al., 2007)). These methods re-weighted the training pat-

terns from the source domain by leveraging the unlabeled

data from the target domain such that the statistics of pat-
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terns from both domains are matched.

Recently, several domain adaptation methods (Crammer

et al., 2008; Luo et al., 2008; Mansour et al., 2009) were

proposed to learn robust classifiers with the diverse training

data from multiple source domains. Crammer et al. (2008)

assumed that the distributions of multiple sources are the

same, and the change of labels is due to the varying amount

of noise. Luo et al. (2008) proposed to maximize the con-

sensus of predictions from multiple sources. Mansour et al.

(2009) estimated the data distribution of each source to re-

weight the patterns from different sources. However, some

source domains may not be useful for knowledge adapta-

tion. The brute-force transfer of knowledge without do-

main selection may degrade the classification performance

in the target domain (Schweikert et al., 2009), which is also

known as negative transfer (Rosenstein et al., 2005).

Contribution : In this paper, we focus on the setting in

which there are multiple source domains, which is referred

to as multiple source domain adaptation. We develop a new

domain adaptation method, referred to as Domain Adap-

tation Machine (DAM), to learn a robust decision func-

tion (referred to as target classifier) for label prediction of

patterns in the target domain by leveraging a set of pre-

computed classifiers (referred to as auxiliary/source clas-

sifiers) independently learnt with the labeled samples from

multiple source domains. Motivated from Manifold Regu-

larization (MR) (Belkin et al., 2006) and the graph based

Multi-Task Learning (MTL) (Evgeniou et al., 2005; Kato

et al., 2008), a data-dependent regularizer based on smooth-

ness assumption is proposed to enforce that the learned tar-

get classifier should have similar decision values with the

auxiliary classifiers of relevant source domains on the unla-

beled patterns of the target domain. In addition, we employ

a sparsity regularizer to enforce the sparsity of the target

classifier.

Significance : We test DAM for the challenging video con-

cept detection task on the TRECVID 2005 data set, which

is collected from six channels including three English chan-

nels, two Chinese channels and one Arabic channel. The

data distributions of six channels are quite different, mak-

ing it suitable for evaluating multiple source domain adap-

tation methods. Our comprehensive experiments demon-

strate that DAM outperforms the existing domain adapta-

tion methods. Moreover, with the sparsity regularizer, the

prediction of DAM is much faster than other domain adap-

tation methods, making it suitable for large-scale applica-

tions such as video concept detection.

2. Domain Adaptation Machine

In the sequel, the transpose of vector / matrix is denoted by

the superscript ′. Let us also define I as the identity matrix

and 0,1 ∈ ℜn as the zero vector and the vector of all ones,

respectively. The inequality u = [u1, . . . , un]′ ≥ 0 means

that ui ≥ 0 for i = 1, . . . , n.

We focus on the multiple source domain adaptation. Sup-

pose there are plenty of unlabeled data and only few labeled

data are available in the target domain. Denote the labeled

and unlabeled patterns from the target domain as DT
l =

(xT
i , yT

i )|nl

i=1 and DT
u = xT

i |nl+nu

i=nl+1 respectively, where yT
i

is the label of xT
i . We also define DT = DT

l ∪ DT
u as the

data set from the target domain with the size nT = nl +nu,

and Ds = (xs
i , y

s
i )|ns

i=1, s = 1, 2, . . . , P as the data set

from the s-th source domain, where P is the total number

of source domains.

2.1. Domain Adaptation from Auxiliary Classifiers

Yang et al. (2007) proposed Adaptive SVM (A-SVM), in

which a new SVM classifier fT (x) is adapted from the ex-

isting auxiliary classifiers fs(x)’s trained with the patterns

from the auxiliary sources. Specifically, the new decision

function is formulated as:

fT (x) =
∑

s

γsf
s(x) + ∆f(x), (1)

where the perturbation function ∆f(x) is learned using the

labeled data DT
l from the target domain, and γs ∈ (0, 1) is

the weight2of each auxiliary classifier fs and
∑

s γs = 1.

As shown in (Yang et al., 2007), the perturbation func-

tion can be formulated by ∆f(x) =
∑nl

i=1 αT
i yT

i k(xT
i ,x),

where αT
i is the coefficient of the i-th labeled pattern

in the target domain, and k(·, ·) is a kernel function in-

duced from the nonlinear feature mapping φ(·). In ad-

dition, the authors assumed that the auxiliary classifiers

are also learned with the same kernel function, namely

fs(x) =
∑ns

i=1 αs
i y

s
i k(xs

i ,x), where αs
i is the learnt co-

efficient of the i-th pattern from the s-th source domain.

Then the decision function (1) becomes:

fT (x)=
∑

s

γs

ns∑

i=1

αs
i y

s
i k(xs

i ,x)+

nl∑

i=1

αT
i yT

i k(xT
i ,x), (2)

which is the sum of a set of weighted kernel evaluations

between the test pattern x and all labeled patterns xT
i and

xs
i respectively from the target domain and all the source

domains. Thus, the prediction using (2) is inefficient in

the large-scale applications with a large amount of test pat-

terns. In addition, it is unclear how to use the valuable

unlabeled data DT
u in the target domain in A-SVM.

2.2. Smoothness Assumption for Domain Adaptation

In Manifold Regularization (Belkin et al., 2006), the deci-

sion function is enforced to be smooth on the data manifold,

namely, the two nearby patterns in a high-density region

should share similar decision values. For domain adapta-

tion, we also assume that the target classifier fT should

2In (Yang et al., 2007), the equal weights γs are used for all
auxiliary classifiers in the experiments.
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have similar decision values with the pre-computed auxil-

iary classifiers. Let us define γs as the weight for measuring

the relevance between the s-th source domain and the tar-

get domain (See Section 3.1 for more discussions on γs).

For the i-th pattern xi, we also denote fT
i = fT (xi) and

fs
i = fs(xi), where fs is the auxiliary function of the s-

th source domain. If two domains are relevant (i.e., γs is

large), we enforce fs
i should be close to fT

i .

For the unlabeled target patterns DT
u in the target domain,

let us define the decision values from the target classifier

and the s-th auxiliary classifier as fT
u = [fT

nl+1, . . . , f
T
nT

]′

and fs
u = [fs

nl+1, . . . , f
s
nT

]′ respectively. We define a data-

dependent regularizer for the target classifier fT :

Definition 1. Data-Dependent Regularizer for Domain

Adaptation

ΩD(fT
u )=

1

2

nT∑

i=nl+1

∑

s

γs(f
T
i −fs

i)
2 =

1

2

∑

s

γs‖fT
u−fs

u‖2. (3)

We note that (Evgeniou et al., 2005; Kato et al., 2008)

similarly defined a graph based regularizer for Multi-Task

Learning (MTL), which is based on two MTL functions fs

and fT in the Reproducing Kernel Hilbert Space (RKHS)

H:

ΩG(f1, f2, . . . , fP , fT ) =
1

2

∑

(fs,fT )∈G
γsT ‖fs − fT ‖2

H, (4)

where γsT defines the relevance between the s-th task and

the T -th task of a graph G and the graph G represents the

weighted connectivity of tasks.

The regularizers defined in our DAM and MTL are differ-

ent in the following aspects: 1) MTL simultaneously learns

two functions fs and fT (see (4)) and the two functions

are compared in the same RKHS H. In contrast, the auxil-

iary classifiers fs’s in (3) are assumed to be pre-computed,

and DAM focuses on the learning of the target classifier

only; Moreover, different kernels (or RKHS) or even dif-

ferent learning methods can be employed to train the auxil-

iary classifiers and the target classifier in DAM; 2) It is still

unclear how to exploit the unlabeled samples through the

regularizer (4) of MTL. In contrast, the unlabeled patterns

DT
u from the target domain are used in DAM (See Figure 1

and ( 3)).

2.3. Proposed Formulation

Based on the smoothness assumption for domain adapta-

tion, we propose to minimize simultaneously the structural

risk functional of Regularized Least-Squares (RLS) (a.k.a.

Least-Squares SVM3 (LS-SVM) (Van Gestel et al., 2004)),

as well as the data-dependent regularizer defined in Sec-

3Experimental results show that LS-SVM is comparable with
SVM (Van Gestel et al., 2004).

Figure 1. Label propagation from multiple auxiliary classifiers

f1, f2, . . . , fP to the unlabeled patterns in the target domain.

tion 2.2. The proposed method, namely Domain Adapta-

tion Machine (DAM), is then formulated as follows:

min
fT

Ω(fT ) +
1

2

nl∑

i=1

(fT
i − yT

i )2 + ΩD(fT
u ), (5)

where Ω(fT ) is a regularizer to control the complexity of

the target classifier fT , the second term is the empirical

error of the target classifier fT on the target labeled patterns

DT
l , and the last term is our data-dependent regularizer.

Theorem 1. Assume that the target decision function is in

the form of fT (x) = w′φ(x) and the regularizer Ω(fT ) =
1
2θ
‖w‖2, where θ > 0 is a regularization parameter. Then,

the solution fT of the optimization problem (5) is

fT (x)=θ
∑

s

γs

nT∑

i=1

fs(xT
i )k̃(xT

i ,x)+

nl∑

i=1

αT
i k̃(xT

i ,x),

(6)

where

k̃(xi,xj) = k(xi,xj) − k′
xi

(I + MK)−1Mkxj
(7)

is the kernel function for Domain Adaptation, k(xi,xj) =
φ(xi)

′φ(xj) is the inner product between φ(xi) and φ(xj),
kx = [k(xT

1 ,x), . . . , k(xT
nT

,x)]′, K = [k(xT
i ,xT

j )] ∈
ℜnT ×nT is the kernel matrix defined on both labeled and

unlabeled data in the target domain, M = θ
∑

s γsI, and

αT
i is the coefficient for the i-th labeled patterns in the tar-

get domain.

Proof. Due to space limit, the proof is omitted here.

Note, similar to (Evgeniou et al., 2005), the solution of the

target decision function fT is non-sparse. All the auxiliary

classifiers fs need to be used for predicting labels of the

target patterns, making it inefficient for large-scale appli-

cations (e.g., video concept detection). Moreover, similar

to the manifold kernel defined in (Sindhwani et al., 2005),

the kernel for domain adaptation (7) involves the matrix in-

version of a matrix (I + MK), which is computationally

infeasible when nu is large.
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2.3.1. SPARSE SOLUTION

Recall that the use of the ǫ-insensitive loss function in Sup-

port Vector Regression (SVR) can usually lead to a sparse

representation of the decision function. Therefore, to ob-

tain the sparse solution, we introduce an additional term

in (5), which regulates the approximation quality and the

sparsity of the decision function. Moreover, we also as-

sume that the regularizer Ω(fT ) = 1
2θ
‖w‖2 for the penalty

of function complexity of fT . The optimization problem

(5) is then rewritten as:

minfT ,w,b

1

2
‖w‖2 + C

nT∑

i=1

ℓǫ(w
′φ(xi) + b − fT

i )

+θ

(
1

2
‖fT

l − yl‖2 + ΩD(fT
u )

)
, (8)

where fT
l = [fT

1 , . . . , fT
nl

]′ is the vector of the target de-

cision function on the labeled patterns DT
l from the tar-

get domain, yl = [y1, . . . , ynl
]′ is the vector of true la-

bels in the target domain, θ is a tradeoff parameter to con-

trol the empirical error of the label patterns from the tar-

get domain as well as the smoothness regularizer, C is an-

other tradeoff parameter to control the difference between

fT (x) and w′φ(x) + b, and ℓǫ(t) is ǫ-insensitive loss:

ℓǫ(t) =

{
|t| − ǫ, if |t| > ǫ;

0, otherwise.
Since ǫ-insensitive loss

is non-smooth, (8) is usually transformed as a constrained

optimization problem, that is:

minfT ,w,b,ξi,ξ
∗

i

1

2
‖w‖2 + C

nT∑

i=1

(ξi + ξ∗i )

+
1

2
θ

(
‖fT

l − yl‖2 +
∑

s

γs‖fT
u − fs

u‖2

)

s.t. w′φ(xi) + b − fT
i ≤ ǫ + ξi, ξi ≥ 0, (9)

fT
i − w′φ(xi) − b ≤ ǫ + ξ∗i , ξ∗i ≥ 0, (10)

where ξi’s and ξ∗i ’s are slack variables for ǫ-insensitive loss.

2.3.2. DETAILED DERIVATION

By introducing the Lagrange multipliers αi’s and ηi’s (resp.

α∗
i ’s and η∗

i ’s) for the constraints of (9) (resp. (10)), we

obtain the following Lagrangian:

L =
1

2
‖w‖2 + C

nT∑

i=1

(ξi + ξ∗i )

+
1

2
θ

(
‖fT

l − yl‖2 +
∑

s

γs‖fT
u − fs

u‖2

)

−
nT∑

i=1

αi(ǫ+ξi+fT
i −w′φ(xi)−b)−

nT∑

i=1

ξi
′ηi

−
nT∑

i=1

α∗
i (ǫ+ξ∗i −fT

i +w′φ(xi)+b)−
nT∑

i=1

ξ∗i
′ηi

∗.(11)

Setting the derivative of (11) w.r.t. the primal variables

(fT ,w, b, ξi and ξ∗i ) to zeros, we have:

fT =

[
yl∑

s γ̃sf
s

]
+

α − α∗

θ
, (12)

and w = Φ(α∗ − α), α′1 = α∗′1, C1 ≥ α, α∗ ≥ 0,
where γ̃s = γs∑

s γs
is the normalized weight for the s-

th auxiliary classifier, α = [α1, . . . , αnT
]′ and α∗ =

[α∗
1, . . . , α

∗
nT

]′ are the vectors of the dual variables, and

Φ = [φ(x1), . . . , φ(xnT
)]. Substituting them back into

(11), we arrive at the following dual formulation:

minα,α∗

1

2
(α−α∗)′K̃(α−α∗)+ỹ′(α−α∗)+ǫ1′(α+α∗)

s.t. α′1=α∗′1, 0≤α, α∗≤C1, (13)

where

K̃ = K +
1

θ

[
I 0

0 1
p
I

]
(14)

is a transformed kernel matrix, and p =
∑

s γs, and

ỹ =

[
yl∑

s γ̃sf
s

]
. (15)

2.3.3. PARAMETRIC PREDICTION

From the Karush Kuhn Tucker (KKT) condition in (12),

we can obtain the vector of the target decision values fT .

Moreover, the decision value of unlabeled data DT
u in the

target domain is given as: fT (xi) =
∑

s γ̃sf
s(xi) +

αi−α∗

i

θ
, ∀i = nl + 1, . . . , nT , which is similar to that

of A-SVM when we set the perturbation ∆f in A-SVM for

the unlabeled pattern xi as ∆f(xi) =
αi−α∗

i

θ
. However,

fT (xi) also involves the ensemble output from the auxil-

iary classifiers. Alternatively, we use the parametric form

of the target decision function for label prediction on any

test pattern by

f(x)=w′φ(x) + b=
∑

αi−α∗

i
6=0

(α∗
i −αi)k(xi,x)+b, (16)

which is a linear combination of k(xi,x)’s only without

involving any auxiliary classifiers. Here, xi is the sup-

port vector from the target patterns with nonzero coefficient

α∗
i −αi, and the bias b can be obtained from the KKT con-

ditions. According to the KKT conditions, if the patterns

have the value |w′φ(xi) + b − fT
i | less than ǫ, then their

corresponding coefficient in (16) becomes zero. Therefore,

with the use of ǫ-insensitive loss function, the computa-

tion for the prediction using the sparse representation in

(16) can be greatly reduced, when compared with that of

A-SVM.

2.3.4. CONNECTION TO SVR

Surprisingly, the dual (13) does not involve any expensive

matrix operation as in (Evgeniou et al., 2005; Kato et al.,
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2008) and can be reduced to a form, which is similar to the

dual of ǫ-SVR:

minα,α∗

1

2
(α−α∗)′K(α−α∗)+y′(α−α∗)+ǫ1′(α+α∗)

s.t. α′1=α∗′1, 0≤α, α∗≤C1,

except that the kernel matrix K is replaced by the trans-

formed kernel matrix K̃, and the regression label vector

y is replaced by ỹ in (15). In experiments, we normal-

ize the sum of γs to 1 (i.e., p = 1). So the transformed

kernel matrix is K + I/θ, which is similar to Automatic

Relevance Determination (ARD) kernel used in Gaussian

Process, where θ is a parameter to control the noise of out-

put. Note that the last nu entries of ỹ is similar to a virtual

label ỹi =
∑

s γ̃sf
s(xi) generated by the auxiliary classi-

fiers fs’s on the unlabeled target data DT
u (See Figure 1).

Moreover, the sparsified DAM in (8) can be solved effi-

ciently by using state-of-the-art SVM solvers such as LIB-

SVMfor large data sets, which takes O(n2.3
T ) training time

and O(nT ) memory storage only. When compared with the

original formulation in (5), the calculation of the matrix in-

version in (7) is avoided.

2.4. Discussions with Related Work

Our proposed DAM is different from MTL. DAM focuses

on learning the target decision classifier only by leveraging

the existing auxiliary classifiers, and the computational cost

in learning stage is significantly reduced. In addition, ac-

cording to the definition of our data-dependent regularizer

in ( 3), the auxiliary classifiers can be trained with different

kernels and even different learning methods.

The most related work to DAM is A-SVM (Yang et al.,

2007), in which the new SVM classifier is adapted from

the existing auxiliary classifiers. However, DAM is differ-

ent from A-SVM in several aspects: 1) A-SVM did not

exploit the unlabeled data DT
u in the target domain. In con-

trast, the unlabeled patterns DT
u in the target domain are

employed in DAM (see the data-dependent regularizer de-

fined in (3)); 2) A-SVM employed auxiliary classifiers for

the label prediction of the patterns in the target domain. In

contrast, the target classifier learned in DAM (See (16)) is

in a sparse representation of the target patterns only. There-

fore, as shown in the experiments, DAM is much faster than

A-SVM in terms of the average total testing time.

Finally, DAM also differs from other SSL methods. SSL

methods generally assumed that the labeled and unlabeled

samples come from the same domain. In contrast, DAM

does not enforce such assumption.

3. Experiments

We compare our proposed method DAM with the base-

line SVM, Transductive SVM (T-SVM) (Joachims, 1999),

and other four domain adaptation methods: Multiple Con-

vex Combination of SVM (MCC-SVM) (Schweikert et al.,

2009), Feature Replication (FR) (Daumé III, 2007), Adap-

tive SVM (A-SVM) (Yang et al., 2007) and multiple KMM

(Multi-KMM) (Schweikert et al., 2009).

Table 1. Description of TRECVID 2005 data set

Domain Channel # keyframes

D1 CNN ENG 11,025

D2 MSNBC ENG 8,905

D3 NBC ENG 9,322

D4 CCTV4 CHN 10,896

D5 NTDTV CHN 6,481

DT LBC ARB 15,272

3.1. Experimental Setup

We use TRECVID 2005 dataset, which contains 61,901

keyframes extracted from 108 hours of video programmes

from six different broadcast channels, including three En-

glish channels (CNN, MSNBC and NBC), two Chinese

channels (CCTV and NTDTV) and one Arabic channel

(LBC). The total number of key-frames in six channels are

listed in Table 1. We choose 36 semantic concepts from the

LSCOM-lite lexicon (Naphade et al., 2005). The 36 con-

cepts covers the dominant visual concepts present in broad-

cast news videos, and they have been manually annotated to

describe the visual content of the keyframes in TRECVID

2005 data set.

As shown in (Yang et al., 2007), the data distributions of

six channels are quite different, making it suitable for eval-

uating domain adaptation methods. In this work, three En-

glish channels and two Chinese channels are used as the

source domains, and the Arabic channel is used as the tar-

get domain DT . The training set comprises of all the la-

beled samples from the source domains as well as 360 la-

beled samples (i.e., DT
l ) from the target domain, in which

10 samples per concept are randomly chosen. The remain-

ing samples in the target domain are used as the test data

set.

Three low-level global features Grid Color Moment (225

dim.), Gabor Texture (48 dim.) and Edge Detection His-

togram (73 dim.) are used to represent the diverse con-

tent of keyframes, because of their consistent, good per-

formance reported in TRECVID (Yang et al., 2007). Then

the three types of features are put together to form a 346-

dimensional feature to represent each keyframe.

MCC-SVM, FR, A-SVM and Multi-KMM can cope with

training samples from multiple source domains. For MCC-

SVM, similarly as in (Schweikert et al., 2009), we equally

fuse the decision values of six SVM classifiers indepen-

dently trained with the labeled patterns from the target do-

main and five source domains. For the baseline SVM algo-

rithm, we report the results for two cases: 1) in SVM T, we

only use the the training patterns from the target domain
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(i.e., DT
l ) for SVM learning; 2) in SVM S, we equally

fuse the decision values of five auxiliary classifiers inde-

pendently trained with the labeled patterns from five source

domains. Considering that DAM can take advantage of

both labeled and unlabeled data, we use semi-supervised

setting in this work. In practice, 4,000 test instances from

the target domain are randomly sampled as DT
u for DAM,

which are used as unlabeled data during the learning pro-

cess. For semi-supervised learning algorithm T-SVM, we

also report two results: 1) in T-SVM T, the labeled data

from DT
l as well as the 4,000 unlabeled patterns from DT

u

are employed for learning; 2) in T-SVM ST, we equally

fuse the decision values of six classifiers including the five

auxiliary classifiers as well as the T-SVM T classifier.

For all methods, we train one-versus-others SVM classi-

fiers with the fixed regularization parameter C = 1. For

DAM, we also fix the tradeoff parameter θ = 100. Gaus-

sian kernel (i.e., k(xi, xj) = exp(−γ‖xi − xj‖2)) is used

as the default kernel in SVM T, SVM S, MCC-SVM, FR

and Multi-KMM, where γ is set to 1
d

= 0.0029 (d = 346
is the feature dimension). For A-SVM, we train 50 aux-

iliary classifiers by independently using five sources and

ten kernel parameters for Gaussian kernel, which are set

as 1.2δγ, δ = {−0.5, 0, 0.5, . . . , 4}. We also report two

results for DAM: 1) in DAM 50, we exploit the same 50

auxiliary classifiers as in A-SVM; 2) in DAM 200, we ad-

ditionally employ another three types of kernels: Lapla-

cian kernel (i.e., k(xi, xj) = exp(−√
γ‖xi−xj‖)), inverse

square distance kernel (i.e., k(xi, xj) = 1
γ‖xi−xj‖2+1 ) and

inverse distance kernel (i.e., k(xi, xj) = 1√
γ‖xi−xj‖+1 ). In

total, there are 200 auxiliary classifiers from five sources,

four types of kernels and ten kernel parameters.

In A-SVM and DAM, we need to determine γs in (3). For

fair comparison, we set γs = exp(−β(Distk(Ds,DT ))ρ)
∑

s exp(−β(Distk(Ds,DT ))ρ)
∈

(0, 1), where β = 1000 and ρ = 2 are parameters to con-

trol the spread of Distk(Ds, DT ) and Distk(Ds, DT ) is the

Maximum Mean Discrepancy (MMD)4 for measuring the

data distributions between the source and target domains.

3.2. Performance Comparisons

For performance evaluation, we use non-interpolated Aver-

age Precision (AP) (Smeaton et al., 2006), which has been

used as the official performance metric in TRECVID since

2001. It corresponds to the multi-point average precision

value of a precision-recall curve, and incorporates the ef-

fect of recall when AP is computed over the entire classifi-

cation results.

4MMD proposed by Borgwardt et al. (2006) is a
nonparametric distance metric for comparing data dis-
tributions in the RKHS, namely Distk(Ds, DT ) =
∥

∥

∥

1

ns

∑

ns

i=1
φ(xs

i )−
1

nT

∑

nT
i=1

φ(xT

i )
∥

∥

∥

2

.

The per-concept APs are shown in Figure 2 and the Mean

Average Precision (MAP) over all 36 concepts is given in

Table 2. From Table 2, we observe that the domain adap-

tation methods MCC-SVM, FR, Multi-KMM and A-SVM

outperform SVM T and SVM S, which demonstrates that

the patterns from source domains and target domain can be

used to improve generalization performance in the target

domain. MCC-SVM, FR and A-SVM achieve similar per-

formance in terms of MAP over 36 concepts. Multi-KMM

is worse than MCC-SVM, FR and A-SVM, possibly be-

cause it is difficult to estimate the means to be shifted with

many source domains.

Our proposed method DAM outperforms all the other al-

gorithms in terms of MAP, demonstrating that DAM learns

a robust target classifier for domain adaptation by lever-

aging a set of pre-learnt auxiliary classifiers. In prac-

tice, DAM achieves the best results in 14 out of 36 con-

cepts. When compared with SVM T and MCC-SVM (the

second best result), the relative MAP improvements of

DAM 200 are 21.2% and 7.3%, respectively. When com-

pared with A-SVM, the relative improvements of DAM 50

and DAM 200 are 6.0% and 10.0%, respectively. More-

over, the MAP performances of two single-source SVM

models, which are trained based on labeled patterns from

all the source domains and from all the source and target

domains, are 23.4% and 28.4% respectively. They are infe-

rior to SVM S and MCC-SVM in multi-source setting.

Observed from Figure 2, SVM T performs better than other

domain adaptation methods for some concepts, such as

“Weather”, “Court”, “Bus” and so on. For those concepts

with few positive training samples, the data distributions of

source and target domains based on the low-level features

can be very different. Thus, the source domains cannot pro-

vide useful information to the target domain, and may lead

to negative transfer.

Finally, we compare DAM with the semi-supervised learn-

ing algorithm T-SVM. The MAPs of T-SVM T and T-

SVM ST over all 36 concepts are 22.6% and 25.1%, re-

spectively, which is significantly worse than DAM. We also

observe that T-SVM T and T-SVM ST are even worse than

SVM T in terms of MAP, possibly because T-SVM suffers

from the local minima solution and the sampling selection

bias of labeled patterns from the target domain.

3.3. Testing Time Comparisons

The testing time is crucial for large-scale applications with

a large number of test patterns. All the experiments are

performed on an IBM workstation (2.13 GHz CPU with

16 Gbyte RAM). In Table 3, we compare DAM with other

methods in terms of the average support vectors (SVs) as

well as the average total testing time on the test data set

(about 15,000 samples) from Arabic channel over all 36

concepts. Because of the utilization of sparsity regular-
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Figure 2. Performance Comparison of DAM with other methods in terms of Per-Concept Average Precision (AP).

Table 2. Performance comparisons of DAM with other methods in terms of Mean Average Precision (MAP) over all 36 concepts.

SVM T SVM S MCC-SVM FR Multi-KMM A-SVM DAM 50 DAM 200

MAP 25.5% 26.4% 28.8% 28.7% 26.7% 28.1% 29.8% 30.9%

Table 3. Performance comparisons of DAM with other methods in terms of the average number of support vectors (SVs) and the average

total testing time on the test data set (about 15,000 samples) from Arabic channel over all 36 concepts.

SVM T SVM S MCC-SVM FR Multi-KMM A-SVM DAM 50 DAM 200

# SVs 95 7,029 7,124 7,238 2,167 86,104 561 380

Avg. Total Testing Time (s) 22 1,063 1,085 721 212 10,810 52 35
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izer, we observe that DAM has much fewer support vectors,

when compared with SVM S and other domain adaptation

methods MCC-SVM, FR, Multi-KMM and A-SVM. DAM

is as fast as SVM T and it is much faster than SVM S and

other domain adaptation methods in terms of the average

total testing time. We also observe that A-SVM is more

than 300 times slower than DAM 200. Note A-SVM used

all the 50 auxiliary models for label prediction with (2).

In contrast, the prediction function in DAM is in a sparse

representation of target patterns only.

4. Conclusion

We have proposed a new domain adaptation method, re-

ferred to as Domain Adaptation Machine (DAM), for the

challenging video concept detection task. DAM learns

a robust target classifier for predicting labels of the pat-

terns from the target domain by leveraging a set of pre-

learnt auxiliary classifiers based on the labeled samples

from multiple source domains. We introduce smoothness

assumption into the Least Squares SVM (LS-SVM) as a

data-dependent regularizer such that the target classifier is

enforced to share similar decision values with the auxil-

iary classifiers. We additionally exploit a sparsity regu-

larizer to learn a sparse target classifier. The experiments

on TRECVID 2005 data set demonstrate that DAM outper-

forms existing multiple source domain adaptation methods.

DAM is also suitable for large-scale video concept detec-

tion task because of its efficiency for label prediction.
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