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Abstract

Let X denote the feature and Y the tar-
get. We consider domain adaptation under
three possible scenarios: (1) the marginal
PY changes, while the conditional PX|Y stays
the same (target shift), (2) the marginal PY

is fixed, while the conditional PX|Y changes
with certain constraints (conditional shift),
and (3) the marginal PY changes, and the
conditional PX|Y changes with constraints
(generalized target shift). Using background
knowledge, causal interpretations allow us to
determine the correct situation for a problem
at hand. We exploit importance reweight-
ing or sample transformation to find the
learning machine that works well on test
data, and propose to estimate the weights
or transformations by reweighting or trans-

forming training data to reproduce the covari-

ate distribution on the test domain. Thanks
to kernel embedding of conditional as well
as marginal distributions, the proposed ap-
proaches avoid distribution estimation, and
are applicable for high-dimensional problems.
Numerical evaluations on synthetic and real-
world data sets demonstrate the effectiveness
of the proposed framework.

1. Introduction

The goal of supervised learning is to infer a function f

from a training set Dtr = {(xtr

1
, ytr

1
), ..., (xtr

m
, ytr

m
)} ⊆

X × Y, where X and Y denote the domains of pre-
dictors X and target Y , respectively. The estimated
f is expected to generalize well on the test set Dte =
{(xte

1
, yte

1
), ..., (xte

n
, yte

n
)} ⊆ X × Y, where yte

i
are un-
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known. Traditionally, the training set and test set are
assumed to follow the same distribution. However, in
many real world problems, the training data and test
data have different distributions, i.e., P tr

XY
6= P te

XY
,

and the goal is to find a learning machine that per-
forms well on the test domain. This problem is known
as domain adaptation in machine learning.

If the data distribution changes arbitrarily, training
data would be of no use to make predictions on the test
domain. To perform domain adaptation successfully,
relevant knowledge in the training (or source) domain
should be transferred to the test (or target) domain.
For instance, the situation where P tr

XY
and P te

XY
only

differ in the marginal distribution of the covariate (i.e.,
P tr

X
6= P te

X
, while P tr

Y |X = P te

Y |X) is termed covariate

shift (Shimodaira, 2000; Sugiyama et al., 2008; Huang
et al., 2007) or sample selection bias (Zadrozny, 2004),
and has been well studied. For surveys on domain
adaptation for classification, see, e.g., Jiang (2008);
Pan & Yang (2010); Candela et al. (2009).

In particular, we address the situation where both the
marginal distribution PX and the conditional distri-
bution PY |X may change across the domains. Clearly,
we need to make certain assumptions for the training
domain to be adaptable to the test domain. We first
consider the case where PX|Y is the same on both do-
mains. As a consequence of Bayes’ rule, the changes
in PX and PY |X are caused by the change in PY , the
marginal distribution of the target variable. We term
this situation Target Shift (TarS) which is frequently
encountered in practice; for instance, it is known as
choice-based or endogenous stratified sampling (Man-
ski & Lerman, 1977) in econometrics, and is sometimes
called prior probability shift (Storkey, 2009).

We further discuss the situation where PY remains the
same, while PX|Y changes, as termed conditional shift

(ConS). Estimation of P te

X|Y under ConS is in general
ill-posed; we consider a rather practical yet identi-
fiable case where PX|Y changes under location-scale
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(LS) transformations on X. We show how to trans-
form the training points to mimic the distribution of
test data and facilitate learning on the test domain.
Finally, the situation in which both PY and PX|Y

change across domains is termed generalized target

shift (GeTarS); we focus on LS-GeTarS, i.e., GeTarS
with PX|Y changes under LS transformations, and pro-
pose practical methods to estimate both changes, mak-
ing domain adaptation possible.

It has been demostrated that causal information can
be derived from changes in data distributions (Tian
& Pearl, 2001); on the other hand, knowledge of the
data generating process, or causal knowledge, would
imply how the data distribution changes across do-
mains and help in domain adaptation. Schölkopf et al.
(2012) demonstrated that a number of learning tasks,
especially semi-supervised learning, can be understood
from the causal point of view. The problems studied
here, TarS, ConS, and GeTarS, have clear causal inter-
pretations. Throughout the paper, we assume that Y
is a cause ofX.1 If we further know thatX depends on
the domain (or selection variable) only via Y , we have
the TarS situation: the marginal distribution of the
cause, PY , describes the process which generates Y in
the domain, and PX|Y describes the data generating
mechanism for X from the cause Y , which is indepen-
dent of the domain. According to Woodward (2003),
the invariance of PX|Y w.r.t. the change in PY is one of
the features of the causal system Y → X. Consider the
clinical diagnosis as an example. The disease is nat-
ually considered as the cause of symptoms; moreover,
the marginal distribution of the disease could change
across different regions, but the conditional distribu-
tion of the symptoms given the disease is expected to
be invariant. Furthermore, if both Y and the domain
are causes of X while Y is independent of the domain,
we have the ConS situation. More generally, the situ-
ation where Y is a cause of X and both PY and PX|Y

depend on the domain corresponds to GeTarS.

In the classification scenario, target shift was re-
ferred to the class imbalance problem by Japkowicz &
Stephen (2002). To solve it, sometimes it is assumed
that P te

Y is known a priori (Lin et al., 2002), or that
some knowledge about the change in PY is known (Yu
& Zhou, 2008). However, this is usually not the case in
practice. Chan & Ng (2005) proposed to estimate P te

Y

with an EM algorithm. Unfortunately, this approach
has to estimate P tr

X|Y , which is a difficult task if the di-
mensionality of X is high; moreover, it does not apply
to regression problems. In fact, lack of information on

1This is usually the case, especially for classification:
in many cases features were generated from classes; for
instance, see the handwriting digit recognition problem.

P te
Y causes the main difficulty in domain adaptation

under TarS.

In this paper we provide practical approaches for
domain adaptation under TarS, LS-ConS, and LS-
GeTarS, by sample importance reweighting or sample
transformation. The approach for TarS also applies to
regression. Kernel embedding of both conditional and
marginal distributions provides a convenient tool to es-
timate the importance weights or the sample transfor-
mations. With it, we are able to avoid estimating any
distribution explicitly, and the proposed approaches
apply to high-dimenional problems without any dif-
ficulty. We note that kernel distribution embedding
has been used to correct for covariate shift in Huang
et al. (2007); Gretton et al. (2008), but the studied
problems are inherently different: they used the kernel
mean matching to estimate the ratio P te

X /P tr
X , avoid-

ing estimating P te
X and P tr

X explicitly from data; in
our problems we are interested in how P te

Y is different
from P tr

Y (for TarS and GeTarS) or how P tr
X|Y changes

to P te
X|Y (for ConS and GeTarS), but there are no data

points available to estimate P te
Y or P te

X|Y , making the
problems much more difficult to solve.

2. Distribution Shift Correction

In this section, we outline two scenarios for distribu-
tion shift correction, namely, importance reweighting

and sample transformation.

Importance Reweighting We aim to find the
function f(x) that minimizes the expected loss on test
data. Assume the support of P te

XY is contained by

that of P tr
XY . The expected loss is [P te, θ, l(x, y; θ)] =

E(X,Y )∼P te [l(x, y; θ)] =
∫
P tr
XY ·

P te

XY

P tr

XY

· l(x, y, θ)dxdy =

E(X,Y )∼P tr [β∗(y) · γ∗(x, y) · l(x, y; θ)] , where θ de-
notes the parameters in the loss function l(x, y; θ),

β∗(y) , P te
Y /P tr

Y and γ∗(x, y) , P te
X|Y /P

tr
X|Y . Here

we factorize PXY as PY PX|Y instead of PXPY |X be-
cause it provides a more convenient way to handle the
change in PXY , according to our assumptions given
later. In practice, we minimize the empirical loss,

R̂ =
1

m

m∑

i=1

β
∗(ytr

i )γ∗(xtr

i , y
tr

i )l(xtr

i , y
tr

i ; θ), (1)

to find the supervised learning machine which is ex-
pected to work well on test data, if β∗(ytri )γ∗(xtr

i , ytri )
are given. Readers who are interested in how to re-
duce the variance of the empirical expected loss may
refer to, e.g., Shimodaira (2000); Robert & Casella
(2004).

Sample Transformation and Reweighting Sam-
ple reweighting only applies when the suport of P te

XY
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is contained in that of P tr
XY ; even under this condition,

it is usually very difficult to estimate γ∗(x, y) without
prior knowledge on how PX|Y changes. Therefore, in
the case where both PY and PX|Y change, the appli-
cation of the sample reweighting scheme is rather lim-
ited. Instead, if we can find the transformation from
P tr
X|Y to P te

X|Y , i.e., find the transformation T such that

the conditional distribution of Xnew = T (Xtr, Y tr)
satisfies Pnew

X|Y = P te
X|Y , we can calculate the ex-

pected loss on the test domain: R[P te, θ, l(x, y; θ)] =
E(X,Y )∼P te [l(x, y; θ)] =

∫

P tr
Y · β∗(y) · P te

X|Y ·

l(x, y; θ)dxdy = E(X,Y )∼P tr
Y

Pnew
X|Y

[β∗(y) · l(x, y; θ)] .

Note that Y tr is an argument of the transformation T ,
i.e., T might be different at different Y values. This
empirical loss can be calculated on the transformed
training points (xnew,ytr) with weights β∗:

R̂[P te
, θ, l(x, y; θ)] =

1

m

m∑

i=1

β
∗(ytr

i )l(xnew

i , y
tr

i ; θ). (2)

Classification and Regression Machines In this
paper, we use support vector machine (SVM) and ker-
nel ridge regression (KRR) for classification and re-
gression problems, respectively. The standard formu-
lation of both SVM and KRR can be straightforwardly
modified to incorporate the importance weights ac-
cording to (1) and (2). Details are skipped.

3. Correction for Target Shift

Unfortunately, unlike the covariate shift, the weights
β∗(yi)γ

∗(xi, yi) cannot be directly estimated because
P te
Y and P te

X|Y are unknown on the test data. Below we

first consider the situation where P te
X|Y = P tr

X|Y , i.e.,

γ∗(x, y) ≡ 1, and propose a practical method to esti-
mate β∗(ytr) as well as P te

Y based on kernel embedding
of conditional and marginal distributions.

3.1. Assumptions

We first consider Target Shift (TarS):

ATarS
1 : P te

X|Y = P tr
X|Y and P te

Y 6= P tr
Y .

domain Y X

Figure 1. A causal model for TarS.

That is, the differ-
ence between P tr

XY

and P te
XY is caused

by a shift in tar-
get distribution PY .
Fig. 1 shows a causal interpretation of TarS. For clas-
sification problems, it is possible to estimate P te

Y in an
iterative way by maximizing the likelihood on xte, for
instance, with the EM algorithm (Chan & Ng, 2005);
however, such approaches involve estimation of P tr

X|Y

explicitly, which is difficult for high-dimensional prob-
lems. They are also not practical for regression.

We make the following assumptions on P te
Y and P tr

X|Y .

ATarS
2 : The support of P te

Y is contained in the support
of P tr

Y (i.e., roughly speaking, the training set is
richer than the test set).

ATarS
3 : There exists only one possible distribution of
Y that, together with P tr

X|Y , leads to P
te
X .

Imagine that we can draw a biased sample from the
training data; here the selection variable depends only
on Y , i.e., it is independent of X given Y . Denote
by Pnew(·) the distribution on this sample. Note that
Pnew
X|Y = P tr

X|Y = P te
X|Y . Thus, we can make Pnew

X

identical to P te
X by adjusting Pnew

Y .

Let β(y) be the ratio of the Pnew
Y to P tr

Y , i.e.,
Pnew
Y = β(y) · P tr

Y . To make Pnew
X identical to

P te
X , we can adjust β(y) to minimize D(P te

X , P
new
X ) =

D
(

P te
X ,

∫

P tr
Y β(y)P

tr
X|Y dy

)

, where D measures the dif-
ference between two distributions; it can be the mean
square error or the Kullback-Leibler distance. To solve
this problem, we have to estimate P tr

X|Y and P tr
X from

the training set, and moreover, the integral makes op-
timization very difficult.

3.2. A Kernel Mean Matching Approach

Instead, we solve this problem by making use of the
kernel mean embedding of the marginal and con-
ditional distributions; see Table 1 for the notation
we use. The kernel mean embedding of PX (Smola
et al., 2007; Gretton et al., 2007) is a point in the
Reproducing Kernel Hilbert Space (RKHS) given by
µ[PX ] = EX∼PX

[ψ(X)], and its empirical estimate is
µ̂[PX ] = 1

m

∑m

i=1 ψ(xi). The embedding of the con-
ditional distribution has been studied by Song et al.
(2009; 2010). The embedding of PX|Y can be con-
sidered as an operator mapping from G to F , defined
as U [PX|Y ] = CXY C

−1
Y Y , where CXY and CY Y denote

the (uncentered) cross-covariance and covariance op-
erators, respectively (Fukumizu et al., 2004). Further-
more, we have µ[PX ] = U [PX|Y ]µ[PY ].

We make the following assumption on the kernels:

ATarS
4 : Product kernel kl on X × Y is characteristic.

For characteristic kernels, the kernel mean map µ from
the space of the distribution to the RKHS is injective,
meaning that all information of the distribution is pre-
served (Fukumizu et al., 2008; Sriperumbudur et al.,
2011). In this paper we use the Gaussian kernel, i.e.,

k(xi, xj) = exp
(

−
||xi−xj ||

2

2σ2

)

, where σ is the kernel
width. Note that under assumptions ATarS

3 and A
TarS
4 ,

for the embedding U [P tr
X|Y ], which is a mapping from

G to F , the pre-image of µ[P te
X ] is unique.
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Table 1. Notation used in this paper.

random variable X Y

domain X Y

observation x y

data matrix x y

kernel k(x, x′) l(y, y′)
kernel matrix on training set K L

feature map ψ(x) φ(y)
feature matrix on training set Ψ Φ
RKHS F G

The kernel mean embedding of Pnew
Y is

µ[Pnew
Y ] = EY ∼Pnew

Y
[φ(Y )] = EY ∼P tr

Y
[β(y)φ(Y )]. (3)

The embedding of Pnew
X is then given by µ[Pnew

X ] =
U [P tr

X|Y ]µ[P
new
Y ]. Consequently, in the population ver-

sion, we can find β(y) by minimizing the maximum
mean discrepancy:

∣
∣
∣
∣µ[Pnew

X ]− µ[P te
X ]

∣
∣
∣
∣ =

∣
∣
∣
∣U [P tr

X|Y ]µ[Pnew
Y ]− µ[P te

X ]
∣
∣
∣
∣

=
∣
∣
∣
∣U [P tr

X|Y ]EY ∼P tr
Y
[β(y)φ(y)]− µ[P te

X ]
∣
∣
∣
∣, (4)

subject to β(y) ≥ 0 and EP tr
Y
[β(y)] = 1, which guar-

antees that Pnew
Y = β(y)P tr

Y is a valid distribution.

Theorem 1 Under assumptions ATarS
2 , ATarS

3 , and
ATarS

4 , the minimization problem (4) is convex in β.

Further suppose ATarS
1 holds. Then the solution to (4)

is β(y) =
P te

Y (y)
P tr

Y
(y)

.

For a proof see the supplementary material. In prac-
tice we have to use an empirical version. The empirical
estimate of UX|Y is ÛX|Y = Ψ(L + λI)−1Φ⊺. Recall
thatm and n are the sizes of the training and test sets.
Denote by 1n the vector of 1’s of length n, and by Kc

the “cross” kernel matrix between yte and ytr , i.e.,
Kc

ij = k(xtei , x
tr
j ). Let β stand for β(ytr) and βi for

β(ytri ). The empirical version of the square of (4) is

∣
∣
∣

∣
∣
∣ÛX|Y ·

1

m

m∑

i=1

βiφ(y
tr
i )−

1

n

n∑

i=1

ψ(xtei )
∣
∣
∣

∣
∣
∣

2

=
1

m2
β
⊺
φ
⊺(ytr)Û⊺

X|Y ÛX|Y φ(y
tr)β

−
2

mn
1
⊺
nψ

⊺(xte)ÛX|Y φ(y
tr)β + const

=
1

m2
β
⊺ ΩKΩT

︸ ︷︷ ︸

,A

β −
2

mn
1
⊺
nK

cΩT

︸ ︷︷ ︸

,M

β + const, (5)

where we use short-hand notation Ω , L(L+ λI)−1.
As shown by Huang et al. (2007, Lemma 3), if βi ∈
[0, Bβ ], i.e., Bβ is the upper bound of β, given that
βi has finite mean and non-zero variance, the sample
mean 1

m

∑m

i=1 βi converges in distribution to a Gaus-
sian variable with mean EP tr

Y
[β(y)] and standard de-

viation bounded by
Bβ

2
√
m
. As EP tr

Y
[β(y)] = 1, we

have the following constrained quadratic programming
(QP) problem:

minimize
β

1

2
β
⊺
Aβ −

m

n
Mβ,

s.t. βi ∈ [0, Bβ ] and

∣
∣
∣
∣

m∑

i=1

βi −m

∣
∣
∣
∣
≤ mǫ,

where a good choice of ǫ is O
(

B
2
√
m

)

.

Note that β estimated this way is not necessarily a
function of y: different data points in the training set
with the same y value could correspond to different β
values. We also found that the β values estimated by
solving the above optimization problem usually change
dramatically along with y. We can improve the esti-
mation quality of β by making use of reparameteriza-
tion. First consider the case where Y is discrete. Let
C be the cardinality of Y and denote by v1, ..., vC its
possible values. We can define a matrix R(d) where

R
(d)
ik is 1 if yi = vk and is zero everywhere else. β

can then be reparameterized as β = R(d)α,where the
C-dimensional vector α is the new parameter.

We then consider the case where Y is continuous. Usu-
ally both distributions P tr

Y and P te
Y are smooth, and

so is β(y). Therefore, we would like to enforce the
smoothness of β(y) w.r.t. y. Let R(c) , Lβ(Lβ +
λβI)

−1, where Lβ is a kernel matrix of y with the
Gaussian kernel and λβ is the regularization param-
eter.2 Inspired by KRR (Saunders et al., 1998), we
parameterize β(ytr) as β = R(c)α with new parameter
α. One can consider β as a smoothed version of α.

Finally, we find α (and β) in both cases by solving:

minimize
α

1

2
α⊺[R⊺AR

]

α−
m

n

[

MR
]

α,

s.t. 0 ≤
[

Rα
]

i
≤ Bβ and

∣

∣1⊺
mRα−m

∣

∣ ≤ mǫ, (6)

where R stands for R(d) or R(c) , depending on whether
Y is discrete or continuous. In all our experiments, we
set Bβ = 10 and ǫ =

Bβ

4
√
m
. We then set β∗ in (1)

to the estimated β and γ∗(xi, yi) ≡ 1. Minimizing
(1) produces the classifier or regression model after
correction for TarS.

4. Location-Scale Conditional Shift

2Note that although Lβ and L are both kernel matrices
of y, they have different purposes and might have different
hyperparameters, so we use different notations.
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domain Y

X

Figure 2. A causal model
for ConS.

In practice P tr
X|Y and P te

X|Y

might differ to some ex-
tent. It is certainly not
possible to transfer useful
knowledge from the train-
ing domain to the test do-
main if PX|Y changes arbi-
trarily. However, under certain assumptions on the
change in PX|Y , one could estimate P te

X|Y without
knowing Y on test data. In this section we assume
that PX|Y changes across domains and that P tr

Y = P te
Y .

We term this situation Conditional Shift (ConS); Fig. 2
gives its causal interpretation. This situation might be
less realistic in practice and will not be considered in
our experiments; however, it serves as a foundation of
a more general situation, GeTarS, which will be stud-
ied in Sec. 5. When considering ConS and GeTarS, we
focus on classification problems.

4.1. Assumptions and Identifiability

x2

x1

y = −1

y = 1

Figure 3. An illustration of
LS-ConS where Y is binary
and X is two-dimensional.
Red lines are contours of
PX|Y (x|y = −1), and blues
ones are those of PX|Y (x|y =
1). Solid and dashed lines
represent the contours on the
training and test domains, re-
spectively.

In some situations,
we can formulate
how the conditional
distribution changes.
For instance, for the
same image, features
such as intensities
and colors are influ-
enced by illumination,
viewing angles, etc.,
which might change
across domains. Mod-
eling such a change
enables distribution
matching between
the training domain
and test domain, and
consequently improves
the performance on
the test domain. Here
we use the approach of transforming training data

to reproduce the covariate distribution on the test

domain; see Sec. 2. Since we can model the trans-
formation from P tr

X|Y to P te
X|Y , we do not need the

condition that the support of P te
X|Y is contained in

that of P tr
X|Y , making the approach more practical.

We assume that the shape of the distribution of each
feature Xi, as well as the dependence structure be-
tween features, is preserved across the domains. More
precisely, we assume that given any y value, P te

Xi|Y
and

P tr
Xi|Y

only differs in the location and scale:

AConS: There exists w(Y tr) =

diag[w1(Y
tr), ..., wd(Y

tr)] and b(Y tr) =
[b1(Y

tr), ..., bd(Y
tr)]⊺, where d is the dimension-

ality of X, such that the conditional distribution
of Xnew , w(Y tr)Xtr + b(Y tr) given Y tr is the
same as that of Xte given Y te.

We term this situation location-scale ConS (LS-ConS).
In matrix form, the transformed training points

xnew , xtr ⊙W +B, (7)

where the ith columns of W and B are
[w1(yi), ..., wd(yi)]

⊺ and [b1(yi), ..., bd(yi)]
⊺, re-

spectively, are expected to have the same distribution
as the test data. Fig. 3 illustrates on how the contours
of PX|Y change across domains under LS-ConS.

The following theorem states that Pnew
X|Y is identifiable

under some conditions on P tr
X|Y (x|yi).

Theorem 2 Let P
(wi,bi)
X|Y (x|yi) be the LS transformed

version of P tr
X|Y (x|yi) with parameters (wi,bi) and

P te
Y = P tr

Y . Suppose AConS holds, i.e., ∀i, ∃(w∗
i ,b

∗
i )

such that P
(w∗

i
,b∗

i
)

X|Y (x|yi) = P te
X|Y (x|yi). Further assume

AConS
2 : Set

{

ci1P
(wi,bi)

X|Y (x|yi) + ci2P
(w′

i
,b′

i
)

X|Y (x|yi) ; i =

1, ..., C
}

is linearly independent ∀ ci1, ci2 (c2i1+c
2
i2 6=

0), wi, w
′
i (||wi||

2
F + ||w′

i||
2
F 6= 0), and bi, b

′
i.

If ∃ (wi,bi) such that P te
X =

∑
i P

tr
Y (yi)P

(wi,bi)
X|Y (x|yi),

then we have ∀ i, P
(wi,bi)
X|Y (x|yi) = P te

X|Y (x|yi).

A necessary condition for AConS
2 is that P tr

X|Y (x|yi),
i = 1, ..., C, are linearly independent after any LS
transformations. Rougly speaking, the higher d, the
less likely for this assumption to be violated.

4.2. A Kernel Approach

As in Sec. 3.2, we parameterize W and B as W = RG

and B = RH, where G and H are the parameters to
be estimated, and R is R(c) or R(d), depending on
whether Y is discrete or continuous. In this way W

and B are guaranteed to be functions of y, and the
number of parameters is greatly reduced.

Noting the relationship between Xnew and Xtr, and
using the substitution rule, we have

U [Pnew
X|Y ] = CXnewY C

−1
Y Y

= E(Xnew,Y )∼Pnew

XY
[ψ(Xnew)⊗ φ

⊺(Y )]E−1
Y ∼P tr

Y

[φ(Y )⊗ φ
⊺(Y )]

= E(Xtr,Y )∼P tr

XY

[ψ(Xnew)⊗ φ
⊺(Y )] · E−1

Y ∼P tr

Y

[φ(Y )⊗ φ
⊺(Y )].

The empirical estimate of U [Pnew
X|Y ] is consequently

Û [Pnew
X|Y ] =

1

m
ψ(xnew) · φ⊺(ytr) ·

[ 1

m
φ(ytr)φ⊺(ytr) + λ̃I

]−1

=Ψ̃(L+ λI)−1Φ⊺
, (8)
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where Ψ̃ = ψ(xnew).

Let K̃ be the kernel matrix corresponding to the fea-
ture matrix Ψ̃, i.e., K̃i,j = k(xnewi , xnewj ), and K̃c

the cross kernel matrix between xte and xnew, i.e.,
K̃c

ij = k(xtei , x
new
j ). We aim to minimize

∣

∣

∣

∣µ[Pnew
X ] −

µ[P te
X ]

∣

∣

∣

∣

2
, whose empirical version is

J
ConS

,

∣

∣

∣

∣

∣

∣
µ̂[Pnew

X ]− µ̂[P te
X ]

∣

∣

∣

∣

∣

∣

2

=
∣

∣

∣

∣

∣

∣
Û [Pnew

X|Y ]µ̂[P tr
Y ]− µ̂[P te

Y ]
∣

∣

∣

∣

∣

∣

2

=
1

m2
1
⊺

mφ
⊺(ytr)Û⊺[Pnew

X|Y ]Û [Pnew
X|Y ]φ(ytr)1m

−
2

mn
1
⊺

nψ
⊺(xte)Û [Pnew

X|Y ]φ(ytr)1m

=
1

m2
1
⊺

mΩK̃ΩT
1m −

2

mn
1
⊺

nK̃
cΩT

1m. (9)

We then estimate W (or G) together with B (or H)
by minimizing JConS . In practice we also regular-
ize (9) to prefer the change in PX|Y to be as little as
possible, i.e., to make entries of W close to one and
those of B close to zero. This is particularly useful in
case assumption AConS

2 is violated; we then prefer the
slightest change in the conditional, among all possibil-
ities. The regularization term is

J
reg =

λLS

m
· ||W − 1m1

⊺

d||
2

F +
λLS

m
· ||B||2F . (10)

One can find the derivarive of JConS and Jreg w.r.t.
G andH, and use the scaled conjugate gradient (SCG)
to minimize JConS + Jreg. After estimating W and
B, we transform xtr to xnew according to (7), and
(xnew,ytr) would have the same distribution as the
test data, under assumption AConS . Consequently, the
classifier or regressor trained on (xnew,ytr) is expected
to generalize well to the test domain.

5. LS Generalized Target Shift

domain Y

X

Figure 4. A causal
model for GeTarS.

We then consider a more
general situation where
both PY and PX|Y change,
called Generalized Target
Shift (GeTarS). Fig. 4 gives
the causal model underlying
the GeTarS situation.

In this setting, we assume
that P te

Y 6= P tr
Y and that as-

sumption AConS holds, i.e., we consider LS-GeTarS,
and aim to estimate the importance weights β∗(yi) ,
P te

Y
(yi)

P tr

Y
(yi)

and the matrices W and B in (7). They would

transform the training data to mimic the distribution
of the test data, and the learning machine learned on
the reweighted transformed data is expected to work
well on the test data. Parameters can be estimated

by reweighting and transforming the training data to
reproduce P te

X , i.e., by minimizing ||µ[Pnew
X ]−µ[P te

X ]||,
where Pnew

X =
∫

Pnew
Y Pnew

X|Y dy, P
new
Y = βP tr

Y , and

Pnew
X|Y (x|yi) = P

(wi,bi)
X|Y (x|yi). The following theorem

provides the identifiability of pnewY and Pnew
X|Y .

Theorem 3 Suppose AConS holds. Under assump-
tion AConS

2 , if there exist (wi,bi) such that P te
X =

∑

i P
new
Y (yi)P

(wi,bi)
X|Y (x|yi), then we have Pnew

Y = P te
Y ,

and ∀ i, P
(wi,bi)
X|Y (x|yi) = P te

X|Y (x|yi).

Combining (3) and (8), we can find the empirical ver-
sion of ||µ[Pnew

X ]− µ[P te
X ]||2:

J =
∣

∣

∣

∣

∣

∣
µ̂[Pnew

X ]− µ̂[P te
X ]

∣

∣

∣

∣

∣

∣

2

=
∣

∣

∣

∣

∣

∣
Û [Pnew

X|Y ]µ̂[P te
Y ]− µ̂[P te

X ]
∣

∣

∣

∣

∣

∣

2

=
∣

∣

∣

∣

∣

∣

1

m
Û [Pnew

X|Y ]φ(ytr)β −
1

n
ψ(xte)1n

∣

∣

∣

∣

∣

∣

2

=
1

m2
β
⊺ΩK̃ΩT

β −
2

mn
1
⊺

nK̃
cΩT

β. (11)

When minimizing J , we would also like the difference
between P te

X|Y and P tr
X|Y , as measured by Jreg given

in (10), to be as little as possible. Combining both
constraints, we estimate the involved parameters β,
W, and B by minimizing

JGeTarS = J + λLSJ
reg. (12)

Finally, for parameter estimation, we iteratively alter-
nate between the QP to minimize (11) w.r.t β and the
SCG optimization procedure w.r.t. {W,B}. For de-
tails of the two optimization sub-procedures, see Sec-
tions 3 and 4, respectively. After estimating the pa-
rameters, we train the learning machine by minimizing
the weighted loss (2) on (xnew,ytr).

For how to select the hyperparameters involved in
our methods, please refer to the supplementary mate-
rial or the approach used for kernel-based conditional
independence test (Zhang et al., 2011). The MAT-
LAB source code for correcting TarS and LS-GeTarS
is available at
http://people.tuebingen.mpg.de/kzhang/Code-TarS.zip .

6. Simulations

We use simulations to study the performance of the
proposed approach for TarS and LS-GeTarS in four
scenarios. They are (a) a nonlinear regression problem
under TarS, (b) a classification problem under TarS,
(c) a classification problem approximatly following LS-
GeTarS, and (d) a classification problem under non-
LS-GeTarS with slight changes in the conditionals. See

http://people.tuebingen.mpg.de/kzhang/Code-TarS.zip
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Fig. 5 (left) for the training and test points generated
in one random replication. The training and test sets
consist of 500 and 400 data points, respectively.

We compare our approaches to correction for TarS
(Section 3) and for LS-GeTarS (Section 5) with the
baseline (unweighted) least squares KRR or SVM, the
importance weighting approach to correction for co-
variate shift (CovS) proposed in Huang et al. (2007);
Gretton et al. (2008), as well as two “oracle” ap-
proaches: one uses the theoretical values of β∗(y) =
P te

Y
/P te

Y
, and the other trains the learning machine di-

rectly on the test set. Note that the result learned on
the test set certainly has the best performance, but in
practice it cannot be applied; it is given to show the
limit of the performance that any domain-adaptation
approach can achieve. Since in the considered classi-
fication problems X is low-dimensional, it is possible
to apply the EM algorithm proposed by Chan & Ng
(2005) to estimate P te

Y
, so it is also included for com-

parison. We repeated the simulations for 100 times.

Fig. 5 (right) shows the boxplot of the performances
of all approaches, measured by the mean square er-
ror (MSE) or classification error on the test set; for
illustrative purposes, the left panels show the data
points generated in one replication as well as the re-
gression lines or decision boundaries learned by se-
lected approaches. Under TarS, (a, b), and non-LS-
GeTarS with slightly changing conditionals, (d), com-
pared to the baseline unweighted method, clearly our
approaches for TarS and LS-GeTarS improve the per-
formance significantly. For regression under TarS, the
estimated β values are very close to the theoretical
ones, as seen from the lower-right corner of Fig. 5 (a,
left). EM achieves a similar performance as TarS, since
PX|Y can be modeled well in this simple case. In (c)
the conditional PX|Y changes significantly, such that
none of the approaches correcting for CovS or TarS
helps, but since the change approximately follows LS-
GeTarS, our approach for LS-GeTarS greatly improves
the classification performance. Compared to the un-
weighted method, the important reweighting approach
for CovS slightly improves the performance in settings
(b) and (d), and make it worse in (a) and (c).

7. Real-world Data Sets

We evaluate the performance of the proposed ap-
proaches for regression and classification on real data.
We first consider prediction of nonstationary pro-
cesses, and then tackle the remote sensing image clas-
sification problem, with images obtained on different
areas.
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(d) Classification under non-location-scale GeTarS

Figure 5. Four simulation settings together with the perfor-
mances of different approaches. Left panels show the data
points together with the decision boundaries (or regression
lines) obtained by selected approaches in one replication,
and right panels give the boxplot of the performances of
different approaches for 100 random replications. (a) For
a regression problem with X depending on Y nonlinearly.
(b) For a classification problem under TarS. (c) For a clas-
sification problem under shape-preserving GeTarS. (d) For
a classification problem under GeTarS but the shape of the
conditional distribution changes. Note that y-values of the
test data were not given in the training phase, and they
are plotted for illustrative purposes.
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7.1. Regression under TarS

We first applied our approach for prediction on suit-
able data selected from the cause-effect pairs.3 We
selected data set No. 68, since 1) the data are non-
stationary time series, 2) there is a strong dependence
between the two variables so that one can be predicted
non-trivially by the other, and 3) the variables are be-
lieved to have a direct causal relation, so that the in-
variance of the conditional distribution of one variable
(effect) given the other (cause) is likely to hold approx-
imately. Fig. 6 (top) showing the time series as well
as the joint distribution. Here X and Y stand for the
number of bytes sent by a computer at the tth minute
and the number of open http connections at the same
time, respectively. It is natural to have the causal rela-
tion Y → X, and we aim to predict Y from X without
making use of temporal dependence in the data. One
subsample was always used for training, because on it
Y has large values. The remaining data were divided
into four subsets, and each time one of them was used
for test and the others included for training.

Fig. 6 (bottom) shows the estimated β∗ values on the
four test sets; they match P te

Y
well. Table 2 gives the

MSE on the four test sets produced by different ap-
proaches. Note that to achieve robustness of the pre-
diction result, we incorporated an exponent q for β∗ as
the importance weights, as in correction for CovS with
importance re-weighting (Shimodaira, 2000). q = 1
(i.e., the proposed standard approach) and q = 0.5
were used. From Table 2 one can see TarS gives the
best results on all four test sets.
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Figure 6. Prediction results on Pair 68 of the cause-effect
pairs. Top: time series data of X and Y (left, shifted apart
for clarity) and the joint distribution (right). Bottom: es-
timated β∗ values on the four test sets.

Table 2. Prediction performance (MSE) on test sets.

Test set Unweight. CovS CovS (q = 0.5) TarS TarS (q=0.5)
1 0.3789 0.3844 0.3802 0.3310 0.3229

2 0.0969 0.1126 0.1071 0.0937 0.0887

3 0.0578 0.0673 0.0659 0.0466 0.0489
4 0.2054 0.2126 0.2136 0.2008 0.1630

3http://webdav.tuebingen.mpg.de/cause-effect/

7.2. Remote Sensing Image Classification

We used a benchmark data set for remote sensing im-
age classification with 14 classes and 145 features; for
details of this data set, see (Ham et al., 2005). The
labeled samples were collected on two different and
spatially disjoint areas, and one would expect that
not only PY , but also PX|Y changes across them, due
to physical factors related to ground, vegetation, and
atmospheric conditions. The samples taken on each
area were partitioned into a training set TR and a
test set TS by random sampling. TR1, TS1, TR2,
and TS2 have sample sizes 1242, 1252, 2621, and 627,
respectively. We consider two adaptation problems,
TR1 → TS2 and TR2 → TS1.

After estimating the weights and/or transformed
training data (with λLS = 10−4), we applied the multi-
class classifier with a RBF kernel on the weighted or
transformed data. Hyperparameters were selected by
cross-validation. Table 3 shows the overall classifica-
tion error (i.e., the fraction of misclassified points) ob-
tained by different approaches for each domain adap-
tation problem. We can see that in this experiment,
correction for target shift does not significantly im-
prove the performance; in fact, the estimated β values
for most classes are rather close to one. However, cor-
rection for conditional shift with LS-GeTarS substan-
tially reduces the overall classification error in both
cases.

Table 3. A misclassification rate on remote sensing data set
under different distribution shift correction schemes.

Problem Unweight CovS TarS LS-GeTarS
TR1 → TS2 20.73% 20.73% 20.41% 11.96%

TR2 → TS1 26.36% 25.32% 26.28% 13.56%

8. Conclusion and Discussions

We have considered domain adaptation where both the
distribution of the covariate and the conditional distri-
bution of the target given the covariate change across
domains. From the causal point of view, we assume the
target causes the covariate, such that the change in the
the data distribution can be modeled easily. In par-
ticular, we studied three situations, target shift, con-
ditional shift, and generalized target shift which com-
bines the above two situations. We presented practical
approaches to handle them based on the kernel mean
embedding of conditional and marginal distributions.
Simulations were conducted to verify our theoretical
claims, and experimental results on diverse real-world
problems, showed that (generalized) target shift often
happens in domain adaptation, and that the proposed
approaches could substantially improve the classifica-
tion or regression performance.

http://webdav.tuebingen.mpg.de/cause-effect/
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